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14032 Caen Cedex, France

E-mail address: nitaj@math.unicaen.fr

February 28, 2006

Abstract. Let N = pq be an RSA modulus where p, q are large primes of the same
bitsize. We study the class of the public exponents e for which there exist an integer m

with 1 ≤ m ≤
log N

log 32
and small integers u, X, Y and Z satisfying

(e+ u)Y m − ψ(N)Xm = Z,

where ψ(N) = (p + 1)(q − 1). First we show that these exponents are of improper use in

RSA cryptosystems. Next we show that their number is at least O
“

mN
1

2
+ α

m
−α−ε

”

where

α is defined by N1−α = ψ(N).

1 Introduction

Let N = pq be an RSA modulus, i.e the product of two large primes p and q. Without
loss of generality, we assume that q < p. Morever, throughout this paper we assume that
the primes p and q are balanced, in other words, that the bitsizes of the primes are equal
so that q < p < 2q.

Let e, d be the public and secret exponents satisfying ed ≡ 1 (mod φ(n)) where φ(n) =
(p−1)(q−1) is the Euler totient function. To speed up the RSA decryption of some devices
with limited computing power such as smart card, one might be tempted to use short
secret exponents d. In 1990, Wiener [11] showed that if d < 1

3N
1

4 , then RSA was insecure.
Wiener’s method is based on approximations using continued fractions. Verheul and van
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2 A. NITAJ

Tilborg [8] and Dujella [4] proposed an extension of the results of Wiener that allows RSA

to be broken when d < N
1

4
+γ using an exhaustive search for about 8 + 2γ log2N bit. In

1999, Boneh and Durfee [2] improved Wiener’s bound to d < N0.292. Their attack is based
on Coppersmith’s technique [3] for finding small roots to polynomial equations, which in
turn is based on the LLL-lattice reduction algorithm. In 2002, de Weger [9] proposed an
extension of these attacks to an RSA modulus with a small difference between its prime
factors. In 2004, Blömer and May [1] extended both Wiener and de Weger attacks for the
RSA cryptosystems with secret exponents having the modular factorization d ≡ −xy−1

(mod φ(N)) where x and y are integers satisfying

1 ≤ x <
1

3
N

1

4 and |y| < N− 3

4 ex.

Morever, they showed that the number of such keys is at least O
(

N
3

4
−ε
)

where ε is a

positive constant. In contrast to the attacks of Wiener and Boneh-Durfee, the secret key
in the attack of Blömer-May could be large.

The starting point of the former attacks is the defining equation ed ≡ 1 (mod φ(N)),
which means that there exists an integer k such that ed− kφ(N) = 1. The main results
of these attacks are based on the arithmetical properties encoded in the public exponent
e and the Euler totient function φ(N). Such keys (N, e) are called weak keys in [1] and
φ(N)-constrained keys in [7]. Instead of focusing on the information encoded in the public
exponent e reltively to φ(N), an alternative way proposed in [7] is to replace φ(N) by any
function F with special properties. In that paper, an attack was proposed on the public
exponents e satisfying eY −p(q−u)X = Z, with suitably small unknown integers u, X, Y ,
Z. It is shown that every public exponent with these properties yields the factorization

of N in polynomial time and that the number of such keys is at least O
(

N
3

4
−ε
)

.

In this work we consider the class of the public exponents e satisfying the diophantine
equation

(e+ u)Xm − ψ(N)Y m = Z, (1)

where m is an integer satisfying 1 ≤ m ≤ logN
log 32 and

ψ(N) = (p+ 1)(q − 1).

For notational convenience, we define α ∈ R so that ψ(N) = N1−α. Typically, ψ(N) ≈ N

and therefore α ≈ 0. We present a new method that finds p and q in polynomial time for
every exponent e satisfying (1) with

Y ≤





me1−
1

mN
1

m
− 1

4ψ(N)

2
(√

3N
1

4 e+ 2ψ(N)
)





1

2

,

|Z| ≤ min

{

N
1

4Xm,

√
3N

1

4 e+ 2ψ(N)

2mN
1

m
− 1

4ψ(N)1−
1

m

Y m

}

,

0 ≤ u ≤ N
1

4Xm

Y m
.



RSA AND A DIOPHANTINE EQUATION 3

In particular, we show that our attack works for all public exponents e with the special
structure e =

⌊

ψ(N)X
m

Ym

⌋

+ 1 where X, Y are relatively prime integers satisfying

N− 1

4mY ≤ X ≤ Y <

√
2m

4
N

1

4
+ α

2m
−α

2 .

Morever, we show that the number of such exponents is at least O
(

mN
1

2
+ α

m
−α−ε

)

and

should not be used in the design of an RSA cryptosystem. As in [1] and [7], our attack will
be based on combining the theory of continued fractions and Coppersmith’s technique [3].

The remainder of this paper is organized as follows. In Section 2, we briefly recall well
known results from continued fractions and Coppersmith’s technique. In Section 3, we
state some properties of the function ψ. This is useful to explain our attack. In Section 4,
we present the new attack. Finally, in Section 5 we give a lower bound for the number of
public exponents e with a special arithmetical structure for which our approach applies.

2 Legendre’s theorem and Coppersmith’s technique

In this section we briefly recall Coppersmith’s lattice method and the classical Le-
gendre’s theorem on diophantine approximations.

Let N = pq be an RSA modulus with q < p < 2q. Let f(x) be an univariate monic
polynomial of degree δ. In [3], Coppersmith described a remarkable method that finds

all integer solutions x0 of the equation f(x0) ≡ 0 (mod N) provided that |x0| ≤ 1
2N

1

δ
−ε.

This method has many applications in cryptography. A key role in our attack is played
by the following theorem (see [3] or [6], Theorem 10).

Theorem 2.1. (Coppersmith [3]). Let N = pq be an RSA modulus with q < p < 2q.
If p̃ is an approximation of p satisfying

|p− p̃| ≤ 2N
1

4 ,

then N can be factored in time polynomial in logN .

Similarly to Wiener’s attack, our approach is also based on the continued fraction
algortithm. More precisely, we will use the following classical theorem on diophantine
approximations (see Corollary 2, [1, § 2] in [5]).

Theorem 2.2. (Legendre). Let ξ be a real number. If the coprime integers X and Y

satisfy
∣

∣

∣

∣

ξ − X

Y

∣

∣

∣

∣

<
1

2Y 2
,

then X
Y

is a convergent of ξ.
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3 Properties and basic lemmas

In this section we state some facts that we will use throughout this paper. Let N = pq

be an RSA modulus where p and q are primes of equal bitsize. We begin with the
following useful lemma.

Lemma 3.1. Let N = pq be an RSA modulus with q < p < 2q. Then

N − 1 −
√

2

2

√
N < ψ(N) < N − 1.

Proof. Since q < p < 2q, then q2 < N < 2q2. This gives

√
2

2

√
N < q <

√
N. (2)

On the other hand, since p = N
q

, then (2) gives

√
N < p <

√
2
√
N. (3)

Combining (2) and (3), we get

0 < p− q <
√

2
√
N −

√
2

2

√
N =

√
2

2

√
N.

Rewriting ψ(N) = (p+ 1)(q − 1) = N − 1 − (p− q), we get

N − 1 −
√

2

2

√
N < N − 1 − (p− q) < N − 1,

which proves the lemma. �

Notice that for prime difference p− q ≤ N
1

4 an algorithm of Fermat finds the factor-
ization of N in polynomial time (see [9]).

Recall that throughout this paper the public exponents e have the structure that they

satisfy (1). We will consider in Section 4 the continued fraction expansion of
e

1

m

N
1

m

. The

following lemma states the error terms in approximating ψ(N)
1

m by N
1

m .
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Lemma 3.2. Let N = pq > 39 with q < p < 2q. Let m be an integer with 1 ≤ m ≤ logN
log 32 .

Then

1

mN1− 1

m

< N
1

m − ψ(N)
1

m <

√
3
√
N

2mψ(N)1−
1

m

,

Proof. Note that

N − ψ(N) =
(

N
1

m − ψ(N)
1

m

)

m−1
∑

i=0

N
m−1−i

m ψ(N)
i

m ,

and

N
1

m − ψ(n)
1

m =
N − ψ(N)

∑m−1
i=0 N

m−1−i

m ψ(N)
i

m

. (4)

First, consider the denominator of (4). Since ψ(N) < N , then

m−1
∑

i=0

ψ(N)
m−1−i

m ψ(N)
i

m <

m−1
∑

i=0

N
m−1−i

m ψ(N)
i

m <

m−1
∑

i=0

N
m−1−i

m N
i

m ,

that is

mψ(N)1−
1

m <

m−1
∑

i=0

N
m−1−i

m ψ(N)
i

m < mN1− 1

m . (5)

Next, consider the numerator of (4). By Lemma 3.1, we have N − 1−
√

2
2

√
N < ψ(N) <

N − 1. This gives for N > 39

1 < N − ψ(N) < 1 +

√
2

2

√
N ≤

√
3

2

√
N.

Combining this with (5) in (4), we get

1

mN1− 1

m

< N
1

m − ψ(N)
1

m <

√
3
√
N

2mψ(N)1−
1

m

,

which terminates the proof. �

The following lemma gives an estimation involving ψ(N)
1

m and N .
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Lemma 3.3. Let N = pq > 30 with q < p < 2q. Let m be an integer with 1 ≤ m ≤ logN
log 32 .

Then
(

2 +
√

3
)

ψ(N)
1

m > 2mN
1

m
− 1

4 .

Proof. Using Lemma 3.1, we get

ψ(N)
1

m >

(

N − 1 −
√

2

2

√
N

)
1

m

.

Define ε by

N − 1 −
√

2

2

√
N = N1−ε.

Then for N > 30 we have ε < 1
20 . It follows that for all m ≥ 1,

(

N − 1 −
√

2
√
N

2

)
1

m

= N
1

m
− ε

m ≥ N
1

m
−ε > N

1

m
− 1

20 = N
1

m
− 1

4N
1

5

Since m < logN
log 32 , then

(

2 +
√

3
)

N
1

5 > N
1

5 > 2m. Hence

(

2 +
√

3
)

N
1

m
− 1

4N
1

5 > 2mN
1

m
− 1

4 ,

and finally
(

2 +
√

3
)

ψ(N)
1

m > 2mN
1

m
− 1

4 ,

which terminates the proof. �

Let e be a public exponent and u a positive integer with u < N
1

4 . The following
lemma states the error terms in the approximation of (e+ u)

1

m by e
1

m .

Lemma 3.4. Let N = pq with q < p < 2q. Let m be an integer with 1 ≤ m ≤ logN
log 32 . If

0 ≤ u ≤ N
1

4 , then

(e+ u)
1

m − e
1

m ≤ N
1

4

me1−
1

m

.

Proof. Put x = (e+ u)
1

m and y = e
1

m . Since u ≥ 0, then x ≥ y and

u = xm − ym = (x− y)
m−1
∑

i=0

xm−1−iyi ≥ (x− y)
m−1
∑

i=0

ym−1−iyi = m(x− y)ym−1.
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This gives

x− y ≤ u

mym−1
.

Assume that u ≤ N
1

4 . Then

(e+ u)
1

m − e
1

m = x− y ≤ u

mym−1
≤ N

1

4

me1−
1

m

,

which terminates the proof. �

Let us focus on the diophatine equation (1). The following lemma proves the existence

of a link between the small solutions of this equation and the approximations of
(

e
ψ(N)

)
1

m

.

Lemma 3.5. Let N = pq with q < p < 2q. Let e be a public exponent and X, Y be

relatively prime positive integers. Put eY m − ψ(n)Xm = Z. Then

∣

∣

∣

∣

∣

X

Y
−
(

e

ψ(N)

)
1

m

∣

∣

∣

∣

∣

≤ 2m−1|Z|
me1−

1

mψ(N)
1

mY m
.

Proof. Let δ =
(

e
ψ(N)

)
1

m

and θk = δ exp
(

2kπi
m

)

for k = 0, 1, · · · ,m− 1. We have

|ψ(N)Xm − eY m| = ψ(N)
m−1
∏

k=0

|X − θkY | = ψ(N) |X − δY |
m−1
∏

k=1

|X − θkY | .

Hence

|Z| = ψ(N) |X − δY |
m−1
∏

k=1

|X − θkY | . (6)

Since X > 0, Y > 0 and δ > 0, then |X − θkY | ≥ |X − δY | . Hence for k ≥ 1,

|X − θkY | ≥ 1

2
(|X − θkY | + |X − δY |) ≥ 1

2
|δ − θk|Y.

This gives
m−1
∏

k=1

|X − θkY | ≥ Y m−1

2m−1

m−1
∏

k=1

|δ − θk| . (7)

Further, let g(x) = ψ(N)xm − e. Then

m−1
∏

k=0

|x− θk| =
|g(x)|
ψ(N)

,
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and
m−1
∏

k=1

|δ − θk| =
|g′(δ)|
ψ(N)

= mδm−1.

Combining this with (7), we get

m−1
∏

k=1

|X − θkY | ≥ mδm−1Y m−1

2m−1
.

Using this inequality in (6), we get

|Z| ≥ ψ(N)|X − δY |mδ
m−1Y m−1

2m−1
,

and finally
∣

∣

∣

∣

X

Y
− δ

∣

∣

∣

∣

≤ 2m−1|Z|
mδm−1ψ(N)Y m

.

Replacing δ =
(

e
ψ(N)

)
1

m

, this proves the lemma. �

We end this section by the following simple lemma connecting any approximation of
p− q to an approximation of p+ q.

Lemma 3.6. Let N = pq with q < p < 2q. Let T > 0 and S =
√
T 2 + 4n. We have

|S − (p+ q)| < |T − (p− q)|.

Proof. Using the identity (p+ q)2 − 4n = (p− q)2, we get

|S − (p+ q)| =

∣

∣S2 − (p+ q)2
∣

∣

S + p+ q

=

∣

∣T 2 + 4n− (p+ q)2
∣

∣

S + p+ q

=

∣

∣T 2 − (p− q)2
∣

∣

S + p+ q

=
|T − (p− q)| (T + p− q)

S + p+ q
.

Since T < S and p− q < p+ q, then T + p− q < S + p+ q. This gives

|S − (p+ q)| < |T − (p− q)| ,

which concludes the lemma. �
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4 The attack algorithm

In this section we present the attack on the public exponents e verifying (1) that we
have considered. Both continued fraction and Coppersmith’s method techniques will be
applied. We begin by linking the small solutions of the diophantine equation (1) to the

diophantine approximations of
(

e+u
N

)
1

m for any positive integer u with u ≤ N
1

4 .

Theorem 4.1. Let N = pq with q < p < 2q. Let e be a public key and m ≥ 1 be an

integer. Suppose that e satisfies the equation eY m − ψ(N)Xm = Z with

|Z| ≤
√

3N
1

4 e+ 2ψ(N)

2mN
1

m
− 1

4ψ(N)1−
1

m

Y m, (8)

and

Y ≤





me1−
1

mN
1

m
− 1

4ψ(N)

2
(√

3N
1

4 e+ 2ψ(N)
)





1

2

. (9)

Then for all positive integers u ≤ N
1

4 ,
X

Y
is a convergent of

(

e+ u

N

)
1

m

.

Proof. We have

∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− X

Y

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− e
1

m

N
1

m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

e
1

m

ψ(N)
1

m

− e
1

m

N
1

m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

e
1

m

ψ(N)
1

m

− X

Y

∣

∣

∣

∣

∣

. (10)

Using Lemma 3.4, we get

∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− e
1

m

N
1

m

∣

∣

∣

∣

∣

=

∣

∣

∣
(e+ u)

1

m − e
1

m

∣

∣

∣

N
1

m

≤ N
1

4
− 1

m

me1−
1

m

. (11)

On the other hand, applying Lemma 3.2, we get

∣

∣

∣

∣

∣

e
1

m

ψ(N)
1

m

− e
1

m

N
1

m

∣

∣

∣

∣

∣

=
e

1

m

∣

∣

∣
N

1

m − ψ(N)
1

m

∣

∣

∣

ψ(N)
1

mN
1

m

<

√
3N

1

2
− 1

m e
1

m

2mψ(N)
. (12)

Finally, by Lemma 3.5, we have

∣

∣

∣

∣

∣

e
1

m

ψ(N)
1

m

− X

Y

∣

∣

∣

∣

∣

≤ 2m−1|Z|
me1−

1

mψ(N)
1

mY m
. (13)
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Combining (11), (12) and (13) in (10), we get

∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− X

Y

∣

∣

∣

∣

∣

<
N

1

4
− 1

m

me1−
1

m

+

√
3N

1

2
− 1

m e
1

m

2mψ(N)
+

2m−1|Z|
me1−

1

mψ(N)
1

mY m

=

√
3N

1

4 e+ 2ψ(N)

2me1−
1

mN
1

m
− 1

4ψ(N)
+

2m−1|Z|
me1−

1

mψ(N)
1

mY m
.

Assume that Z satisfies (8). Then

∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− X

Y

∣

∣

∣

∣

∣

<

√
3N

1

4 e+ 2ψ(N)

me1−
1

mN
1

m
− 1

4ψ(N)
.

Similarly, assume that Y satisfies (9). Then

∣

∣

∣

∣

∣

(e+ u)
1

m

N
1

m

− X

Y

∣

∣

∣

∣

∣

<
1

2Y 2

which means, by Theorem 2.2, that
X

Y
is a convergent of

(

e+ u

N

)
1

m

. �

The next theorem ensures that the modulus N can be factored if e has a more special
structure.

Theorem 4.2. Let N = pq with q < p < 2q. Let e be a public exponent. Let m, X, Y

be positive integers. If eY m−ψ(N)Xm = Z with |Z| < 2N
1

4Xm, then N can be factored

in polynomial time.

Proof. From eY m −ψ(N)Xm = Z with ψ(N) = (p+ 1)(q− 1) = N − 1− (p− q), we get

p− q = N − 1 − eY m

Xm
+

Z

Xm
.

Let T =
∣

∣N − 1 − eYm

Xm

∣

∣ and suppose that |Z| < 2N
1

4Xm. We have

|T − (p− q)| ≤
∣

∣

∣

∣

Z

Xm

∣

∣

∣

∣

=
|Z|
Xm

≤ 2N
1

4 .

This means that T is an approximation of p− q with an error term less than 2N
1

4 . Next,
put S =

√
T 2 + 4N and P̃ = S+T

2 . Applying Lemma 3.6, we get

|S − (p+ q)| < |T − (p− q)| < 2N
1

4 .
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Hence

|P̃ − p| =
1

2
|S + T − 2p|

=
1

2
|S − (p+ q) + (T − (p− q))|

≤ 1

2
|S − (p+ q)| + 1

2
|T − (p− q)|

< 2N
1

4 .

It follows that P̃ is an approximation of p up to an error term bounded by 2N
1

4 . We can
then apply Theorem 2.1 to find p and the factorization of N . �

Let us briefly summarize the new attack. Recall that the input is a public exponent
e such that (e + u)Y m − ψ(N)Xm = Z with unknown integers X, Y Z, u satisfying

0 ≤ u ≤ N
1

4 , |Z| < N
1

4Xm and the inequalities (8), (9). Notice that, since 0 < e < N ,
the right hand side of (9) satisfies





me1−
1

mN
1

m
− 1

4ψ(N)

2
(√

3N
1

4 e+ 2ψ(N)
)





1

2

≤
(

mN1− 1

mN
1

m
− 1

4ψ(N)

4ψ(N)

)
1

2

=

(

mN
3

4

4

)
1

2

=

√
mN

3

8

2
.

Algorithm 4.3.

INPUT N , e.
1. m = 1.

2. Compute Y0(m) =
√
mN

3

8

2 .

3. Compute the continued fraction expansion of
(

e
N

)
1

m .

4. For every convergent X
Y

with Y < Y0.

i. Compute T =
∣

∣N − 1 − eYm

Xm

∣

∣, S =
√
T 2 + 4N , P̃ = S+T

2 .

ii. Apply Coppersmith’s algorithm to P̃ . If the prime factor p is found, then stop.

5. m = m+ 1. Return to Step 2 if m ≤ logN
log 32 .

OUTPUT p.

Since for every m with 1 ≤ m ≤ logN
log 32 there are O(log Y0(m)) = O(logN) convergents

and each step in the algortithm can be done in polynomial time in logN , we can factor
N in polynomial time.
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5 The number of ψ-constrained keys

In Section 4, we showed that every exponent e that satisfies (1) with the inequalities
of Theorem 4.1 and Theorem 4.2 yields the factorization of N . In this section, we restrict
these exponents to the case where there exist small coprime positive integers X, Y such
that e =

⌊

ψ(N)X
m

Ym

⌋

+ 1. We give an estimation of the number of such exponents. We
begin by a corollarly of Lemma 3.3 which states a property of these exponents.

Corollarly 5.1. Let N = pq be an RSA modulus with q < p < 2q and m an integer with

1 ≤ m ≤ logN
log 32 . Let X, Y be coprime positive integers satisfying

N− 1

4mY < X < Y.

If e =
⌊

ψ(N)X
m

Ym

⌋

+ 1, then

√
3N

1

4 e+ 2ψ(N)

2mN
1

m
− 1

4ψ(N)1−
1

m

> 1.

Proof. Since e =
⌊

ψ(N)X
m

Ym

⌋

+ 1, then

e ≤ ψ(N)
Xm

Y m
+ 1 < e+ 1. (14)

Combining this with N− 1

4mY < X we get

e > ψ(N)
Xm

Y m
>
ψ(N)

N
1

4

.

This gives √
3N

1

4 e+ 2ψ(N) >
√

3ψ(N) + 2ψ(N) =
(

2 +
√

3
)

ψ(N)

On the other hand, by Lemma 3.3, we have
(

2 +
√

3
)

ψ(N)
1

m > 2mN
1

m
− 1

4 .

Multilpying this by ψ(N)1−
1

m we get
(

2 +
√

3
)

ψ(N) > 2mN
1

m
− 1

4ψ(N)1−
1

m .

Hence √
3N

1

4 e+ 2ψ(N) > 2mN
1

m
− 1

4ψ(N)1−
1

m ,

and the corollarly follows. �

Another property of the exponents defined by e =
⌊

ψ(N)X
m

Ym

⌋

+ 1 is the following.
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Lemma 5.2. Let N = pq be an RSA modulus with q < p < 2q and m an integer with

1 ≤ m ≤ logN
log 32 . Let X, Y be coprime positive integers satisfying

N− 1

4mY < X < Y.

If e =
⌊

ψ(N)X
m

Ym

⌋

+ 1, then

me1−
1

mN
1

m
− 1

4ψ(N)√
3N

1

4 e+ 2ψ(N)
≥ m

4
N

1

2
+ α

m
−α.

Proof. Assume that N− 1

4mY < X < Y . Then 1 < N
1

4
Xm

Ym . Combining this with (14),
we get

√
3N

1

4 e+ 2ψ(N) ≤
√

3N
1

4

(

ψ(N)
Xm

Y m
+ 1

)

+ 2ψ(N)

≤ 2N
1

4ψ(N)
Xm

Y m
+ 2ψ(N)

= 2ψ(N)

(

N
1

4

Xm

Y m
+ 1

)

< 4N
1

4ψ(N)
Xm

Y m
.

Combinig this with (14) again, it follows that

me1−
1

mN
1

m
− 1

4ψ(N)√
3N

1

4 e+ 2ψ(N)
>
m
(

ψ(N)X
m

Ym

)1− 1

m N
1

m
− 1

4ψ(N)

4N
1

4ψ(N)X
m

Ym

=
mN

1

m
− 1

2ψ(N)1−
1

mY

4X

>
m

4
N

1

m
− 1

2ψ(N)1−
1

m

=
m

4
N

1

m
− 1

2N (1−α)(1− 1

m )

=
m

4
N

1

2
+ α

m
−α.

and the Lemma follows. �

Let us show that the public exponents e defined by e =
⌊

ψ(N)X
m

Ym

⌋

+ 1 where X and
Y are small positive integers should not be used in the design of an RSA cryptosystem.
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Theorem 5.3. Let N = pq be an RSA modulus with q < p < 2q. Let X, Y be coprime

positive integers satisfying

N− 1

4mY < X < Y <

√
2m

4
N

1

4
+ α

2m
−α

2 .

If e =
⌊

ψ(N)X
Y

⌋

+1, then for all u with 0 ≤ u ≤ N
1

4

(

X
Y

)m
, X
Y

is a convergent of
(

e+u
N

)
1

m

and N can be factored in polynomial time.

Proof. Put Z = eY m − ψ(N)Y m. Since e =
⌊

ψ(N)X
m

Ym

⌋

+ 1, then using (14), we get

0 < e− ψ(N)
Xm

Y m
≤ 1.

Multiplying by Y m, we get 0 < Z ≤ Y m. Combining this and Corollary 5.1, we get

0 < Z ≤ Y m <

√
3N

1

4 e+ 2ψ(N)

2mN
1

m
− 1

4ψ(N)1−
1

m

Y m.

Hence the inequality (8) of Theorem 4.1 is satisfied. On the other hand, by assumption

Y <
√

2m
4 N

1

4
+ α

2m
−α

2 . Then applying Lemma 5.2, we get

Y <

√
2m

4
N

1

4
+ α

2m
−α

2 =
(m

8
N

1

2
+ α

m
−α
)

1

2 ≤





me1−
1

mN
1

m
− 1

4ψ(N)

2
(√

3N
1

4 e+ 2ψ(N)
)





1

2

.

Hence the inequality (9) of Theorem 4.1 is also satisfied. Consequently, by Theorem 4.1,

for all u with 0 ≤ u ≤ N
1

4 , X
Y

is a convergent of
(

e+u
N

)
1

m . Next, put

Zu = (e+ u)Y m − ψ(N)Xm = Z + uY m.

Since 0 < Z ≤ Y m, N− 1

4mY < X and 0 ≤ u ≤ N
1

4

(

X
Y

)m
, we get

|Zu| ≤ Z + |u|Y m ≤ Y m +N
1

4Xm < 2N
1

4Xm.

Applying Theorem 4.2, we conclude that N can be factored in polynomial time. �

The following lemma shows that different tuples (X,Y ) lead to different exponents e

with e =
⌊

ψ(N)
(

X
Y

)m
⌋

+ 1.
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Lemma 5.4. Let N = pq be an RSA modulus with q < p < 2q. Let X, Y , U , V be

coprime positive integers with

N− 1

4mY < X < Y <

√
2m

4
N

1

4
−α

2
+ α

2m and N− 1

4mV < U < V <

√
2m

4
N

1

4
−α

2
+ α

2m .

Let e =
⌊

ψ(N)
(

X
Y

)m
⌋

+1 and e′ =
⌊

ψ(N)
(

U
V

)m
⌋

+1. If e+u = e′+u′ for some positive

integers u and u′ with 0 ≤ u, u′ ≤ N
1

4 then e = e′.

Proof. Since e =
⌊

ψ(N)
(

X
Y

)m
⌋

+ 1, then using (14), we get

u < e+ u− ψ(N)

(

X

Y

)m

≤ 1 + u.

Similarly, we have

u′ < e′ + u′ − ψ(N)

(

U

V

)m

≤ 1 + u′.

Combining these inequalities, we get

u′ − u− 1 < (e′ + u′) − (e+ u) + ψ(N)

((

X

Y

)m

−
(

U

V

)m)

< u′ − u+ 1.

Suppose that e+ u = e′ + u′ with u, u′ < N
1

4 . Then

ψ(N)

∣

∣

∣

∣

(

X

Y

)m

−
(

U

V

)m∣
∣

∣

∣

≤ max(|u′ − u− 1|, |u′ − u+ 1| ≤ N
1

4 ,

which gives

ψ(N) |(XV )m − (Y U)m| ≤ N
1

4 (Y V )m,

and

|XV − Y U | ≤ N
1

4 (Y V )m

ψ(N)
∑m−1

i=0 (XV )m−1−i(Y U)i
. (15)

Since X > N− 1

4mY and U > N− 1

4mV , then

m−1
∑

i=0

(XV )m−1−i(Y U)i ≥
m−1
∑

i=0

N−m−1−i

4m (Y V )m−1−iN− i

4m (Y V )i

=
m−1
∑

i=0

N−m−1

4m (Y V )m−1

= mN−m−1

4m (Y V )m−1.
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Combining this with (15) we get

|XV − Y U | ≤ N
1

4 (Y V )m

mψ(N)N−m−1

4m (Y V )m−1
=
N

1

2
− 1

4mY V

mψ(N)
.

Since Y, V <
√

2m
4 N

1

4
−α

2
+ α

2m and ψ(N) = N1−α with α < 1
4 , we get

N
1

2
− 1

4mY V

mψ(N)
≤ 1

8

N
1

2
− 1

4mN
1

2
−α+ α

m

N1−α
=

1

8
N

4α−1

4m <
1

8
.

Summarizing, we find that

|XV − Y U | < 1

8
.

Since XV − Y U is an integer and gcd(X,Y ) = gcd(U, V ) = 1, then XV = Y U and
X = U , Y = V implying e = e′. �

Finally, we derive a lower bound for the number of public exponents with the special

atructure e =
⌊

ψ(N)
(

X
Y

)m
⌋

+ 1 where X, Y are small positive integers.

Theorem 5.5. Let N = pq be an RSA modulus with q < p < 2q. The number of

ψ(N)-constrained exponents is at least

O
(

mN
1

2
+ α

2
−α−ε

)

.

Proof. We will give a lower bound for the number of exponents e satisfying Theorem 5.3.
Let X and Y be relatively prime integers satisfying

N− 1

4mY < X < Y <

√
2m

4
N

1

4
−α

2
+ α

2m .

Let u be an integer with 0 ≤ u ≤ N
1

4
Xm

Ym . Let e be defined by e =
⌊

ψ(N)
(

X
Y

)m
⌋

+ 1.

The uniqueness of e is assured by Lemma 5.4. Put

X0 =
⌈

N− 1

4mY
⌉

and Y0 =

⌊√
2m

4
N

1

4
−α

2
+ α

2m

⌋

.

The number of the exponents e+ u defined before is

Ω =

Y0
∑

Y=1

Y−1
∑

X=X0

gcd(X,Y )=1

N
1

4

Xm

Y m
.
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Since N− 1

4mY < X, then trivially N
1

4
Xm

Ym > 1. Hence

Ω >

Y0
∑

Y=1

Y−1
∑

X=X0

gcd(X,Y )=1

1 =

Y0
∑

Y=1

Y −X0

Y
φ(Y ) =

(

1 −N− 1

4m

)

Y0
∑

Y=1

φ(Y ).

Recall that φ(Y ) is the Euler totient function and satisfies (see [10])

φ(Y ) ≥ e−λY

9 log log(Y )
≥ Y

log log(N)
= N−εY,

where γ is the Euler-Mascheroni constant and ε is a small positive constant. We get
finally

Ω >
(

1 −N− 1

4m

)

N−ε
Y0
∑

Y=1

Y

=
(

1 −N− 1

4m

)

N−εY0(Y0 + 1)

2

≥ m

16

(

1 −N− 1

4m

)

N−εN
1

2
+ α

m
−α.

Since m ≤ logN
log 32 , then 1 −N− 1

4m ≥ 1
2 , which concludes the proof. �
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