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Abstract. The MEM mode is a nonce-based enciphering mode of op-
eration proposed by Chakraborty and Sarkar, which was claimed to be
secure against symmetric nonce respecting adversaries. We show that
this is not correct by using two very simple attcks. One attack need
one decryption and one decryption queries, and the other only need one
encryption query.
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1 Introduction

A mode of operation, or mode, for short, is a scheme that specifies how to use a
blockcipher to provide some cryptographic services, such as privacy or authen-
ticity. Recently, Chakraborty and Sarkar proposed the MEM (Mask Encrypt
Mask) mode, a nonce-based enciphering, or length preserving encryption, mode
of operation which was claimed to be secure against symmetric nonce respecting

adversaries.
Suppose the underlying blockcipher is

E : K × {0, 1}n → {0, 1}n

where K is a key space, then the MEM mode is

MEM[E] : K ×N × ({0, 1}n)+ → ({0, 1}n)+

where N = {0, 1}n is a nonce space and the key space K is same as that of the
underlying blockcipher E. Let EK(·, ·) and DK(·, ·) be the encryption and the
decryption algorithms of MEM respectively, and let DK be the inverse of EK .

Symmetric Nonce Respecting Adversaries. The nonce-based encryption
is a syntax for an encryption scheme where the encryption process is a de-
terministic algorithm which surfaces an initial vector. This syntax was advo-
cated by Rogaway, Bellare, et al. [RBBK01,Rog04b], and first used in the OCB



mode [RBBK01,Rog04a], then adopted by the GCM mode [MV02], the CWC
mode [KVW04], the EAX mode [BRW04], etc.

The security model of MEM assumes that the adversary be symmetric nonce
respecting, i.e., the adversary can not repeat nonce in either encryption or de-
cryption query. Note that an adversary is allowed to choose the same nonce for
both the encryption and the decryption queries. Without loss generality, we also
assume that the adversary does not make pointless query, such as as a decryption
query of (N, C) after get it as an answer to an encryption query, etc. To sum up,
the disallowed queries for the symmetric nonce respecting adversaries are listed
bellow:

When query and get then these queries are disallowed:

EK(N, P ) C EK(N, ·), DK(N, C)
DK(N, C) P DK(N, ·), EK(N, P )

Symmetric nonce respecting model is a reasonable in certain scenarios [CS06].
Get rid of the nonce respecting restriction, the security mode is exactly that of
strong secure tweakable blockcipher [LRW02]. Dedicated strong secure tweakable
blockcipher constructions, such as CMC [HR03], EME [HR04], HCTR [WFW05],
etc. are of course secure against symmetric nonce respecting adversaries.

Security Claimed by [CS06]. Chakraborty, et al. claimed that the symmetric
nonce respecting adversary cannot distinguish the output of EK(·, ·) and DK(·, ·)
from that of a random tweakable permutation and its inverse; Or equivalently
saying [CS06,HR03,HR04], this kind of adversary cannot distinguish the output
of EK(·, ·) and DK(·, ·) from that of $(·, ·) and $(·, ·), where $(N, P ) returns a
random string of length |P |. Let ≈ denote the indistinguishability. They “proved”
that:

EK(·, ·),DK(·, ·) ≈ $(·, ·), $(·, ·).

The security proof is always a subtle thing, especial a long one. For example,
the EMD mode [Rog02] proposed by Rogaway also had a proof, but was soon
broken by Joux [Jou03].

Our Contributions. We show that EME is not secure against symmetric nonce
respecting adversaries at all. The first attack makes one decryption and one
encryption queries. The second attack makes only one encryption query.

2 Specifications of MEM

An n-bit string is viewed as an element in the finite field GF (2)[x]/τ(x), where
τ(x) is a fixed irreducible polynomial of degree n.

MEM makes use of the polynomials pi(x) which are defined as following.
For 0 < i < m and (n + 1) ∤ i, define pi(x) = xj−1 + xj , where j = (i − 1)



mod (n + 1) + 1; for 0 < i < m and (n + 1) | i, define pi(x) = xn + 1; for i = m,
define pi = xj−1 + 1, where j = (i − 1) mod (n + 1) + 1.

The encryption and decryption algorithms of EME are listed in the figure 1,
which consists of three cases: m = 1, m = 2 and m > 2. In our attacks we only
make use of the case m > 2. Figure 2 shows the enciphering of a four-block
message.

Algorithm EN

K
(P1, P2, · · · , Pm)

EN ← EK(N); EEN ← EK(xEN);
MP ← P1 ⊕ P2 · · · ⊕ Pm;
if m = 1 then

M1 ← EK(MP ⊕ EN);
C1 ←M1 ⊕ xEEN;
return C1

if m = 2 then

M1 ← EK(MP ⊕ EN);
PP1 ←M1 ⊕ P1; PP2 ←M1 ⊕ EEN ⊕ P2;
CC1 ← EK(PP1); CC2 ← EK(PP2);
M2 ← EK(CC1 ⊕ CC2 ⊕ EEN);
C1 ←M2 ⊕ CC1; C2 ← EN ⊕ CC2;
return C1, C2

if m > 2 then

M1 ← EK(MP ⊕ EN); MC ← 0n;
for i = 1 to m

if (i− 1 > 0 ∧ i− 1 mod (n + 1) = 0)
M1 ← EK(M1);

PPi ← Pi ⊕ pi(x)M1;
CCi ← EK(PPi); MC ←MC ⊕ CCi;

for i = 1 to m

if (i− 1 > 0 ∧ i− 1 mod (n + 1) = 0)
M2 ← EK(M2);

Ci ← CCi ⊕ pi(x)M2;
return C1, C2, · · · , Cm

Algorithm DN

K
(C1, C2, · · · , Cm)

EN ← EK(N); EEN ← EK(xEN);
MC ← C1 ⊕ C2 · · · ⊕ Cm;
if m = 1 then

M2 ← DK(MC ⊕ xEEN);
P1 ← M2 ⊕ EEN ;
return P1

if m = 2 then

M2 ← EK(MC ⊕ EN ⊕ EEN);
CC1 ←M2 ⊕ C1; CC2 ←M2 ⊕ EN ⊕ C2;
PP1 ← DK(CC1); PP2 ← DK(CC2);
M1 ← EK(PP1 ⊕ PP2 ⊕ EEN ⊕ EN);
P1 ← M1 ⊕ PP1; P2 ←M1 ⊕ EEN ⊕ PP2;
return P1, P2

if m > 2 then

M2 ← EK(MC ⊕ EEN); MP ← 0n;
for i = 1 to m

if (i− 1 > 0 ∧ i− 1 mod (n + 1) = 0)
M2 ← EK(M2);

CCi ← Ci ⊕ pi(x)M2;
PPi ← DK(CCi); MP ←MP ⊕ PPi;

for i = 1 to m

if (i− 1 > 0 ∧ i− 1 mod (n + 1) = 0)
M1 ← EK(M1);

Pi ← PPi ⊕ pi(x)M1;
return P1, P2, · · · , Pm

Fig. 1. The MEM Mode

3 Distinguishers against MEM

We can distinguish EK(·, ·),DK(·, ·) from $(·, ·), $(·, ·) with overwhelming advan-
tage of 1−1/2n. The first distinguisher makes one decryption and one encryption
queries. The second distinguisher makes only one encryption.

3.1 Two-query Distinguisher

This distinguisher is similar to the one used in [CS06] to show that MEM is
not secure against nonce repeating adversary. The difference is that the one in
in [CS06] made two encryption queries with the same nonce and we make one
decryption and one encryption queries with the same nonce.

The distinguisher is as following:
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Fig. 2. Enciphering a four-block message P1P2P3P4 under MEM. Set M1 = EK(P1 ⊕
P2 ⊕ P3 ⊕ P4 ⊕ EK(N)) and M2 = EK(CC1 ⊕ CC2 ⊕ CC3 ⊕ CC4 ⊕ EK(xEK(N))).
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3. Calculate X1 = p1(x)−1(Cs

1 ⊕ Ct
1) and X2 = p2(x)−1(Cs

2 ⊕ Ct
2).

4. If X1 = X2, then return 1, else return 0.

When the distinguisher queries EK(·, ·),DK(·, ·),

M s
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2 ⊕ Cs
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and
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Notice that CCs
1 = CCt

1 and CCs
2 = CCt

2, we get that

M s
2 ⊕ M t

2 = p1(x)−1(Cs
1 ⊕ Ct

1) = p2(x)−1(Cs
2 ⊕ Ct

2).

So the probability of X1 = X2 is 1.
When the distinguisher queries $(·, ·), $(·, ·), then Ct

1 and Ct
2 are two inde-

pendently random strings. So the probability of X1 = X2 is 1/2n.
From the above analysis, the advantage of the distinguisher is 1 − 1/2n.

3.2 One-query Distinguisher

This distinguisher only makes one encryption query. Notice that when the mes-
sage length is m = n + 3 blocks, pn+2(x) = pn+3(x) = 1 + x. We make an
encryption query of (N, P1, P2, · · · , Pm+3), where P1 = P2 = ... = Pn+3 = 0n,
and get (C1, C2, · · · , Cn+3). If Cn+2 = Cn+3 then return 1, else return 0.

When the distinguisher queries E(·, ·), we always have Cn+2 = Cn+3. When
the distinguisher queries $(·, ·), the probability of Cn+2 = Cn+3 is 1/2n.

From the above analysis, the advantage of the distinguisher is also 1− 1/2n.
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