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Abstract

Message Authentication Codes (MACs) are core algorithms deployed in virtually every security pro-
tocol in common usage. In these protocols, the integrity and authenticity of messages rely entirely on
the security of the MAC; we examine cases in which this security is lost.

In this paper, we examine the notion of “reforgeability” for MACs, and motivate its utility in the
context of {power, bandwidth, CPU}-constrained computing environments. We first give a definition for
this new notion, then examine some of the most widely-used and well-known MACs under our definition
in a variety of adversarial settings, finding in nearly all cases a failure to meet the new notion. We
examine simple counter-measures to increase resistance to reforgeabiliy, using state and truncating the
tag length, but find that both are not simultaneously applicable to modern MACs. In response, we give
a tight security reduction for a new MAC, WMAC, which we argue is the “best fit” for resource-limited
devices.
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1 Introduction

Message Authentication Codes. Message authentication codes (MACs) are the most efficient algorithms
to guarantee message authenticity and integrity in the symmetric-key setting, and as such are used in nearly
all security protocols. They work like this: if Alice wishes to send a message M to Bob, she processes M with
an algorithm MAC using her shared key K and possibly some state or random bits we denote with s. This
produces a short string Tag and she then sends (M, s,Tag) to Bob. Bob runs a verification algorithm VF
with key K on the received tuple and VF outputs either ACCEPT or REJECT. The goal is that Bob should
virtually never see ACCEPT unless (M, s,Tag) was truly generated by Alice; that is, an imposter should
not be able to impersonate Alice and forge valid tuples.

There are a large number of MACs in the literature. Most have a proof of security where security is
expressed as a bound on the probability that an attacker will succeed in producing a forgery after making q
queries to an oracle that produces MAC tags on messages of his choice. The bound usually contains a term
q2/2t where q is the total number of tags generated under a given key and t is the tag length in bits. This
quadratic term typically comes from the probability that two identical tags were generated by the scheme
for two different messages; this event is typically called a “collision” and once it occurs the analysis of the
scheme’s security no longer holds. The well-known birthday phenomenon is responsible for the quadratic
term: if we generate q random uniform t-bit strings independently, the expected value of q when the first
collision occurs is about

√
π2t−1 = Θ(2t/2).

Reforgeability. The following is a natural question: if a forgery is observed or constructed by an adversary,
what are the consequences? One possibility is that this forgery does not lead to any additional advantage
for the adversary: a second forgery requires nearly as much effort to obtain as the first one did. We might
imagine using a random function f : Σ∗ → {0, 1}t as a stateless MAC. Here, knowing a forgery amounts
to knowing distinct M1,M2 ∈ Σ∗ with f(M1) = f(M2). However it is obvious this leads to no further
advantage for the adversary: the value of f at points M1 and M2 are independent of the values of f on all
remaining unqueried points.

Practical MAC schemes, however, usually do not come close to truly random functions, even when
implemented as pseudorandom functions (PRFs). Instead they typically contain structure that allows the
adversary to use the obtained collision to infer information about the inner state of the algorithm. This
invariably leads to further forgeries with a minimum of computation.

Applications. One might reasonably ask why we care about reforgeability. After all, aren’t MACs designed
so that the first forgery is extremely improbable? They are, in most cases, and for many scenarios this is
the correct approach, but there are several settings where we might want to think about reforgeability
nonetheless.

• In sensor nodes, where radio power is far more costly than computing power, short tag-length MACs
might be employed to reduce the overhead of sending tags.

• Streaming video applications might use a low-security MAC with the idea that forging one frame
would hardly be noticeable to the viewer; our concern would be that the attacker would be unable to
efficiently forge arbitrarily many frames, thereby taking over the video transmission.

• VOIP is another setting where reforgeability is arguably more appropriate than current MAC security
models. In this setting, a forged packet probably only corresponds to a fraction of a second of sound
and is relatively harmless.

In all cases, if parameters are chosen correctly so that an attacker’s best strategy is to guess tags, the
overwhelming number of incorrect guesses can be used to inform users in situations where a forged packet
could potentially have serious consequences.

Finally, the question seems a natural one and answering it should help lend a deeper understanding about
one of the fundamental objects in cryptology. The fact that, partly as a result of the posting of an earlier
version of this paper on eprint.iacr.org, the question of reforgeability has arisen in newsgroups, online
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MAC scheme Expected queries Succumbs to Succumbs to Message
for j forgeries padding attack other attack freedom

CBC MAC C1 + j
√

m− 2
EMAC C1 + j

√ √
m− 2

XCBC C1 + j
√ √

m− 2
PMAC C1 + j

√
1

ANSI retail MAC C1 + j
√ √

m− 2
HMAC

∑
i Ci/2i + j

√
m− 1

Figure 1: Summary of Results. The upper table lists each well-known MAC scheme we examined, along with its resistance
to reforgeability attacks. Here n is the output length (in bits) of each scheme, and m is the length (in n-bit blocks) of the
queries to the MAC oracle; the i-th collision among the tags is denoted by event Ci. For most schemes, the first forgery
is made after the first collision among the tags, and each subsequent forgery requires only one further MAC query. With
a general birthday attack, the first collision is expected at around 2n/2 MAC queries, although the exact number for each
scheme can differ somewhat. The last column gives the number of freely-chosen message blocks in the forgery.

discussions, and the fact that industry is now specifically requesting reforgeability resistant MACs [32] lends
support to this.

Main Results. In this paper we conduct a systematic study of reforgeability, treated first in the literature
by McGrew and Fluhrer [33]. We first give a definition of reforgeability, both in the stateless and stateful
settings. We then examine a variety of well-known MAC schemes and assess their resistance to reforgeability
attacks. We find that for all stateless schemes and many stateful schemes there exists an attack that enables
efficient generation of forgeries given knowledge of an existing collision in tags. In some cases this involves
fairly constrained modification of just the final block of some fixed message; in other cases we obtain the
MAC key and have free rein. For each stateful scheme where we could not find an attack, we then turned our
attentions to another related problem: nonce misuse. That is, if nonces are reused with the same key, can
we forge multiple times? The answer is an emphatic “yes.” For many of these MACs only a single protocol
error is required to break the security; querying to the birthday bound is unnecessary.

Figure 1 and Figure 2 give a synopsis of our findings. In most cases, our attack is based on finding
collisions and this in turn leads to a substantial number of subsequent forgeries; the degree to which each
scheme breaks is noted in the table. For some Wegman-Carter-Shoup (WCS) [10, 38] MACs, the attack is
more severe: nonce misuse yields the universal hash family instance almost immediately.

• CBC MAC. We show that after an initial collision between two m-block messages, we can forge
arbitrary m-block messages where the first two blocks are identical to those of the colliding messages,
but the last m− 2 blocks can be chosen arbitrarily.

• EMAC [5], XCBC [13], ANSI Retail MAC [1], HMAC [2]. The first three schemes are variants
of the basic CBC MAC and succumb to the same attack just mentioned. Additionally all four of these
MACs allow varying-length messages (unlike the basic CBC MAC) and therefore admit an additional
attack, the “Padding Attack” [35] that allows arbitrary blocks to be appended to colliding pairs at the
cost of one additional MAC query.

• PMAC [14]. For PMAC the best attack we found was quite limited: given a colliding pair of messages,
we can arbitrarily alter the last block of one message and produce a forgery after a single additional
MAC query using the other.

• hash127 [7]/ Poly1305[9]. Hash127 and Poly1305 are polynomial-hashes based on evaluating poly-
nomials over the fields Z mod 2127−1 and Z mod 2130−5, respectively. In the FH paradigm, any collision
among tags is catastrophic: given two colliding messages their difference produces a polynomial whose
roots include the hash key. Finding roots of polynomials over a finite field is computationally efficient
using Berlekamp’s algorithm [6] or the Cantor-Zassenhaus algorithm [17]. In the WCS paradigm (in
which Poly1305-AES is defined), nonce misuse can be similarly devastating: a single repeated nonce
reveals the key.
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UHF in FH mode Expected queries Reveals key Queries for
for j forgeries key recovery

hash127/Poly1305 C1 + log m + j
√

C1 + log m
VMAC C1 + 2j
Square Hash C1 + 2j

√
mC1

Topelitz Hash C1 + 2j
Bucket Hash C1 + 2j
MMH/NMH C1 + 2j

UHF in WCS mode Expected queries Repeated Reveals key Queries for
with nonce misuse for j forgeries nonce key recovery
hash127/Poly1305 2 + log m + j 1

√
2 + log m

VMAC C1 + 2j C1 + j
Square Hash 3m + j m

√
3m

Topelitz Hash 2j + 2 1
Bucket Hash 2j + 2 1
MMH/NMH 2m + j m

√
2m

Figure 2: Results for Carter-Wegman MACs. The top table lists 6 well-known universal hash families, each made into a
MAC via the FH construction [18, 42] where the hash family is composed with a pseudorandom function to produce the
MAC tag. These similarly succumb to reforgeability attacks after a collision in the output tags, with hash127/Poly1305
and Square-Hash surrendering their key in the process. The last column gives the expected number of queries for key
recovery, where possible. The bottom table considers the same hash families in the Wegman-Carter-Shoup (WCS) [10, 38]
paradigm (the most prominent MAC paradigm for ε-AU hash families), but where nonces are misused and repeated. With
many families, only one repeated nonce query is enough to render the MAC totally insecure. Others reveal the key with a
few more queries using the same nonce. See [27] for further attacks on these and other hash families in a similar setting.

• Square Hash [23]. Square-Hash is another fast-to-compute universal hash function family suggested
for use in MACs. Once again, in the FH paradigm any tag collision results in an efficient algorithm that
derives the hash key. The attack is specific to the Square-Hash function and we specify it in Section A.4
where the scheme is described in full. In the WCS paradigm, nonce reuse also reveals the key after
just a handful of out-of-protocol repeated nonces.

• Remaining UHFs. For each of the remaining universal hash function families we examine [19, 26, 30,
36] we similarly show that collisions in the tag lead to further forgeries for the MAC scheme, provided
we use the FH construction that composes a PRF (or PRP) with a member of the hash family. (If a
PRF is used, our attacks work only if the tag collision occurs in the underlying universal hash function.
This can be efficiently detected.) The idea that multiple forgeries can be obtained after one collision
in Carter-Wegman style MACs is not new [37]. We also analyze the UHFs under the Wegman-Carter-
Shoup mode of operation with misuse of nonces, finding similar weaknesses. Handschuh and Preneel
have improved and extended many of attacks found here in [27].

After an earlier draft of this paper appeared on eprint, many of the attacks in Figure 1 and Figure 2
were subsequently improved in [27] by Handschuh and Preneel. In light of this, we have moved the attack
details to the appendix. Please refer there or to the other literature on the subject [16, 27, 33, 35].

These attacks were sufficient to make us wonder if there exists an efficient and practical MAC scheme
resistant to reforgeability attacks. A natural first try is to add state, in the form of a nonce inserted in a
natural manner, to the schemes above. We show, however, that this approach can be insufficient or insecure
when subtly misused. Another approach would be to use a stateless MAC such as HMAC, and truncate
the output so a collision in tags does not expose some exploitable internal information. However, this is
also somewhat unsatisfactory because all the fastest MACs are stateful WCS-style MACs where trucation
severely reduces the security.
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We therefore devised a new (stateful) scheme, WMAC, that allows nonce reuse and where for most
parameter sizes guessing the tag is the best reforgeability strategy. The scheme is described fully in Section 3
but briefly it works as follows.

Let H be some ε−AU hash family H = {h : D → {0, 1}l}, and R a set of functions R = Rand(l + b, L).
Let ρ

$←R and h
$←H; the shared key is (ρ, h). Let 〈cnt〉b denote the encoding of cnt using b bits. To MAC

a message (M, cnt), the signer first ensures that cnt < 2b−1 and if so sends (cnt, ρ(〈cnt〉b ‖h(M))). To verify
a received message M with tag (i,Tag), the verifier computes ρ(〈i〉b ‖ h(M)) and ensures it equals Tag.

Why WMAC? There are essentially four parameters which much be balanced when choosing a suitable
MAC: speed, security, tag length, and deployment feasibility. WCS MACs provide excellent performance on
the first two items, but require long tags and absolutely non-repeatable nonces (which also increases the tag
length), a potential deployment problem where the state might have to be consistent across several machines.
Stateless MACs, whose tags may be truncated without degrading security and therefore tend to do well on
the last two items, lag behind on the first two.

WMAC can be seen as a compromise between the two sets of MACs. It has the speed of the fastest WCS
MACs but the tag length may be truncated appropriately and nonces may be reused. A fixed nonce may
be used for all queries if desired, effectively yielding the FH [18, 42] scheme as a special case. At the other
extreme end, nonces are never repeated and WMAC retains a high degree of security comparable to the
WCS setting. For most real-world applications that may already have implicit nonces (via the underlying
networking protocol, eg) and that could use the added security benefits from nonces but do not want to
enforce nonce uniqueness, WMAC is the best solution.

As an example, consider the following concrete WMAC instantiation. Let ε ≤ 2−82, b = 8, and our PRF
will be AES truncated to 24 bits. Then after 232 signing queries and 224 verification queries, one forgery is
expected (from guessing the output of the PRF). The hash family can be a variant of the VHASH used in
VMAC-128, so that the speed of the family is comparable to VMAC-128.1 Moreover, the total tag length,
including the nonce is only 32 bits. There is no efficient MAC which, using 32 bits for both the tag and
nonce, can safely MAC as many messages with so few expected forgeries. (Note that the nonce greatly helps
the security in this case; without it an expected 64 forgeries would be possible.)

Because nonce values may be reused, it is possible to use incremental verification in WMAC. In some
constrained environments like sensor networks, it is beneficial to have the option to pre-screen incoming
MAC tags. First, a low cost check is performed on the message/tag pair. Only if that check is passed will
the more expensive MAC be computed. This can be useful when an attacker tries to deplete the power
resources in a sensor node by spoofing a large number of messages. The attacker is not necessarily interested
in forging messages, but merely requiring the sensor node to perform many expensive calculations. The nonce
value may be used as the tag for this first check, computed using a weaker but fast-to-compute MAC. When
combined with WMAC’s computational efficiency and short tag length, this property makes the scheme ideal
for these constrained environments.

We stress that although WMAC offers good tradeoffs for resource-constrained environments where some
forgeries may be acceptable, it is still susceptible to attacks that exploit some bad event that occurs during
operation, usually related to the value of ε for the ε-almost universal hash family used. To be clear, the
attacks from [27] still apply and indeed come within a constant factor of matching the bound given in our
security reduction.2

Related Work. David McGrew and Scott Fluhrer have also done some work [33] on a similar subject,
produced concurrently with our work but published earlier. They examine MACs with regard to multiple
forgeries, although they view the subject from a different angle. They show that for HMAC, CBC MAC, and
GMAC from the Galois Counter Mode (GCM) of operation for blockciphers [31], reforgeability is possible.
However, they examine reforgeability in terms of the number of expected forgeries (parameterized by the
number of queries) for each scheme, which is dependent on the precise security bounds for the respective

1Dan Bernstein has proposed [8] an almost-universal hash family which should be as fast or faster than VMAC-64, but
which uses a much smaller key than VMAC. Bernstein’s hash would use fewer multiplications and additions than VMAC-128,
although those operations are done in some field F , not modulo 2n.

2Our bound also highlights interesting behavior with a verification query-only attack when the length of the tag is much
smaller than lg(ε−1). This case is also matched by essentially the attacks from [27].
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MACs. Although our focus is somewhat different, our work complements their paper by showing their
techniques and bounds apply to all major MACs.

Handschuh and Preneel investigated attacks on ε-almost universal hash families used in Wegman-Carter-
Shoup mode MACs, and found new classes of attacks [27]. Their attacks improve on ours in several ways,
probably the most significant of which is that they do not require misuse of nonce values to work.

2 Preliminaries

Let {0, 1}n denote the set of all binary strings of length n. For an alphabet Σ, let Σ∗ denote the set of
all strings with elements from Σ. Let Σ+ = Σ∗ − {ε} where ε denotes the empty string. For strings s, t,
let s ‖ t denote the concatenation of s and t. For set S, let s

$← S denote the act of selecting a member s
of S according to a probability distribution on S. Unless noted otherwise, the distribution is uniform. For
a binary string s let |s| denote the length of s. For a string s where |s| is a multiple of n, let |s|n denote
|s|/n. Unless otherwise noted, given binary strings s, t such that |s| = |t|, let s⊕ t denote the bitwise XOR
of s and t. For a string M such that |M | is a multiple of n, |M |n = m, then we will use the notation
M = M1 ‖M2 ‖ . . . ‖Mm such that |M1| = |M2| = . . . = |Mm|. Let Rand(l, L) = {f | f : {0, 1}l → {0, 1}L}
denote the set of all functions from {0, 1}l to {0, 1}L.

Universal Hash Families. Universal hash families are used frequently in the cryptographic literature.
We now define several notions needed later.

Definition 1 (Carter and Wegman [18]) Fix a domain D and range R. A finite multiset of hash functions
H = {h : D → R} is said to be Universal if for every x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] = 1/|R|.

Definition 2 Let ε ∈ R+ and fix a domain D and range R. A finite multiset of hash functions H = {h :
D → R} is said to be ε-Almost Universal (ε-AU) if for every x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] ≤ ε.

Definition 3 (Krawczyk [30], Stinson [40]) Let ε ∈ R+ and fix a domain D and range R ⊆ {0, 1}r for some
r ∈ Z+. A finite multiset of hash functions H = {h : D → R} is said to be ε-Almost XOR Universal
(ε-AXU) if for every x, y ∈ D and z ∈ R with x 6= y, Prh∈H[h(x)⊕h(y) = z] ≤ ε.

Throughout the paper we assume that a given value of ε for an ε-AU or ε-AXU family includes a parameter
related to the length of the messages. If we speak of a fixed value for ε, then we implicitly specify an upper
bound on this length.

Message Authentication. Formally, a stateless message authentication code is a pair of algorithms,
(MAC,VF), where MAC is a ‘MACing’ algorithm that, upon input of key K ∈ K for some key space K,
and a message M ∈ D for some domain D, computes a τ -bit tag Tag; we denote this by Tag = MACK(M).
Algorithm VF is the ‘verification’ algorithm such that on input K ∈ K, M ∈ D, and Tag ∈ {0, 1}τ , outputs
a bit. We interpret 1 as meaning the verifier accepts and 0 as meaning it rejects. This computation is
denoted VFK(M,Tag). Algorithm MAC can be probabilistic, but VF typically is not. A restriction is that
if MACK(M) = Tag, then VFK(M,Tag) must output 1. If MACK(M) = MACK(M ′) for some K, M , M ′,
we say that messages M and M ′ collide under that key.

The common notion for MAC security is resistance to adaptive chosen message attack [3]. This notion
states, informally, that an adversary forges if he can produce a new message along with a valid tag after
making some number of queries to a MACing oracle. Because we are interested in multiple forgeries, we now
extend this definition in a natural way.

Definition 4 [MAC Security—j Forgeries] Let Π = (MAC,VF) be a message authentication code, and let
A be an adversary. We consider the following experiment:

Experiment Exmtjuf -cma
Π (A, j)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi,Tagi), 1 ≤ i ≤ j, such that
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— VFK(Mi,Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi,Tagi), query its MACK oracle at Mi

Then return 1 else return 0

The juf-cma advantage of A in making j forgeries is defined as

Advjuf -cma
Π (A, j) = Pr

[
Exmtjuf -cma

Π (A, j) = 1
]
.

For any qs, qv, µs, µv,Time ≥ 0 we overload the above notation and define

Advjuf -cma
Π (t, qs, µs, qv, µv, j) = max

A
{Advjuf -cma

Π (A, j)}

where the maximum is over all adversaries A that have time-complexity at most Time, make at most qs

MAC-oracle queries, the sum of those lengths is at most µs, and make at most qv verification queries where
the sum of the lengths of these messages is at most µv.

The special case where j = 1 corresponds to the regular definition of MAC security. If, for a given MAC,
Advjuf -cma

Π (t, qs, µs, qv, µv, j) ≤ ε, then we say that MAC is (j, ε)-secure. For the case j = 1, the scheme is
simply ε-secure.

It is worth noting that the adversary is allowed to adaptively query VFK and is not penalized for queries
that return 0. All that is required is for j distinct queries to VFK return 1, subject to the restriction these
queries were not previously made to the MACing oracle.

Stateful MACs. We will also examine stateful MACs that require an extra parameter or nonce value.
Our model will let the adversary control the nonce, but limit the number of MAC queries per nonce. Setting
this limit above 1 will simulate a protocol error where nonces are re-used in computing tags.

A stateful message authentication code is a pair of algorithms, (MAC,VF), where MAC is an algorithm
that, upon input of key K ∈ K for some key space K, a message M ∈ D for some domain D, and a state value
S from some prescribed set of states S, computes a τ -bit tag Tag; we denote this by Tag = MACK(M,S).
Algorithm VF is the verification algorithm such that on inputs K ∈ K, M ∈ D, Tag ∈ {0, 1}τ , and
S ∈ S, VF outputs a bit, with 1 representing accept and 0 representing reject. This computation is denoted
VFK(M,S, Tag). A restriction on VF is that if MACK(M,S) = Tag, then VFK(M,S, Tag) must output 1.

As discussed later, all our attacks on stateless MACs work by examining the event of a collision in
tag values, by virtue of the birthday phenomenon or otherwise. With stateful MACs an adversary may see
collisions in tags, but the state mitigates, and in most cases neutralizes, any potentially damaging information
leaked in such an event. With that in mind, we will consider two different security models with regard to
stateful MACs. In one, we treat stateful MACs as intended: nonces are not repeated among queries, but
repeated nonces may be used with verification queries. Many MACs we examine have security proofs in this
model, so it is not surprising that they perform well, even with short tags. Others don’t, and we provide the
analysis.

We also provide analysis for a plausible and interesting protocol error: that in which nonces are reused.
This can happen in several reasonable scenarios: 1) the nonce is a 16- or 32-bit variable, and overflow occurs
unnoticed, and 2) the same key is used across multiple virtualized environments. This latter case may happen
when MACs in differing virtualized environments are keyed with the same entropy pools, or one environment
is cloned from another.

These protocol misuses are captured formally by allowing an adversary a maximum of α queries per nonce
between the two oracles. For most MACs we examine, α need only be 2 for successful reforgery attacks.

Definition 5 [Stateful MAC Security—j Forgeries] Let Π = (MAC,VF) be a stateful message authentica-
tion code, and let A be an adversary. We consider the following experiment:

Experiment Exmtjsuf -cma
Π (A, j, α)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi, si,Tagi), 1 ≤ i ≤ j, such that
— VFK(Mi, si,Tagi) = 1 for each i from 1 to j

6



— A did not, prior to making verification query (Mi, si,Tagi), query its MAC oracle with (Mi, si)
— A did not make more than α queries to MACK with the same nonce.
Then return 1 else return 0

The jsuf-cma advantage of A in making j forgeries is defined as

Advjsuf -cma
Π (A) = Pr

[
Exmtjsuf -cma

Π (A, j, α) = 1
]
.

For any qs, qv, µs, µv,Time, j, α ≥ 0 we let

Advjsuf -cma
Π (t, qs, µs, qv, µv, j, α) = max

A
{Advjsuf -cma

Π (A, j, α)}

where the maximum is over all adversaries A that have time-complexity at most Time, make at most qs

MACing queries, the sum of those lengths is at most µs, where no more than α queries were made per nonce,
and make at most qv verification queries where the sum of the lengths of the messages involved is at most
µv.

If, for a given MAC, Advjsuf -cma
Π (t, qs, µs, qv, µv, j, α) ≤ ε, then we say that MAC is (j, ε)-secure. For

the case j = 1, the scheme is simply ε-secure.

3 A Fast, Stateful MAC with Short Tags

For some stateful MACs discussed in the attacks section, we found no attack, and others are accompanied by
a proof of security. Similarly, tag truncation is a simple technique which may be used to ensure that security
is retained well after one starts seeing collisions in tags. Perhaps we should be satisfied and consider our
search for reforgeability-resistant MACs complete. However, both of these techniques have drawbacks for
the applications in mind which require very short tags. Namely, the nonce value must be transmitted with
each query, and tag truncation may not be used on the fastest MACs without seriously degrading security.3

It is with these thoughts in mind, and with newfound knowledge of the perils associated with nonce
misuse in WCS MACs, that we designed WMAC. WMAC boasts speed comparable to VMAC/Poly1305,
can use much shorter tags, and is the first MAC we know of to use repeating nonces, a side effect of which
is shorter tags.

WMAC. Let H = {h : D → R} be a family of ε-AU hash functions and let F : K × T ×R → {0, 1}n be a
PRF. We define

WMAC[H, F ]th,FK
(x) = FK(t, h(x)),

where t ∈ T , h
$←H, K

$←K, and x ∈ D. Informally, once keyed with the selection of K ∈ K and AU hash
instance h, WMAC accepts a message x and nonce t as inputs and returns FK(t, h(x)) as the tag.

Nonces in WMAC. WMAC’s nonce use can be considered as “flexible” in the sense that the security
analysis is done for different uses. To model this, we are mainly interested in an adversary of somewhat
limited capability, that is, an adversary which can make at most α signing queries for each nonce t ∈ T . The
adversary’s verification queries per nonce are not similarly bounded. We call such an adversary α-limited,
and define Advjsuf -cma

Π (q, t, α) be the maximum of Advjsuf -cma
Π (A) over every α-limited adversary A which

makes at most q = qs + qv oracle queries (qs to the signing oracle and qv to the verification oracle) and halts
within time Time. We say that Π is secure as an α-limited MAC, if Advjsuf -cma

Π (q, t, α) is negligibly small
for any reasonably large q and Time.

As an example, the FH and FCH [18, 42] modes of operation are special cases of WMAC where α is set
to qs and 1, respectively.

3Truncating the tag of VMAC or Poly1305-AES by t bits also effectively grows ε for the ε-AU family by a multiplicative
factor of 2t. If these MACs were to be revised into FH mode, truncation would be possible, but without nonces they succumb
to attacks covered in this paper, and with nonces ε needs to be unacceptably reduced to make room for the nonce input.
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Theorem 6 For any α-limited adversary A of WMAC which makes at most q = qs + qv queries in time
Time, there exists an adversary B of F such that

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) +
ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + max{2n, q

1
2 2

n
2 +3}qv

)
+ δ(j, n, qv).

and where B makes at most q queries, using time proportional to Time + Hash(q), where Hash(1) is the

time to compute h(M) for some message M ∈ D and h
$←H. The term δ(j, n, qv) is defined as

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
where S is the set of distinct message-tag pairs seen in all verification queries, Sk is the set of k-tuples in S,
and for an element x ∈ S, qv,x is the number of verification queries made for that element.

Discussion of the Bound and Expected Number of Forgeries. McGrew and Fluhrer discuss the
expected number of forgeries for GMAC (a WCS MAC)[31], CBC MAC, and HMAC in terms of ε, n, and
q. Our specific attacks complement their analysis by showing their methods apply to all major stateful
and stateless MACs. Essentially, they show that for stateless MACs, the expected number of forgeries is
cq32−n + O(q42−2n), where n is output size of the blockcipher or hash function and c is a constant. For
WCS MACs, they show the expected number of forgeries is cq2ε +O(q3ε2).

We believe this sort of analysis should supplant the current definition of MAC security for the simple
reason that it more accurately quantifies the risks for MACing q messages over the lifetime of one key
and, in the case of our bound in particular, makes the bound more easily understood. Rather than giving
the traditional security bound and suggesting the number of queries be “well below” a certain value (2n/2,
usually), producing a specific expected number of forgeries is much superior.

And in this spirit, we give a formula for the expected number of forgeries for WMAC, which also helps
to understand the rather obtuse bound in theorem 6. For a given MAC scheme Π = (MAC,VF), let
E(ForgeΠ, qs, qv) denote the expected number of forgeries when qs queries are allowed to the MAC oracle
and qv queries are allowed to the VF oracle.

Following [33], we will assume WMAC uses an ideal random function as the PRF. Unless qv is unreason-
ably large, the expected number of forgeries is overwhelmingly influenced by the chance that an adversary
sets bad to true during one of the qs queries to the MAC oracle. If this occurs, we give the adversary qv

forgeries. There is a small chance bad is set to true in the verification phase and to simplify the analysis
we admit qv forgeries in this case as well. Thus, we bound the expected number of forgeries as qv times the
probability that bad is set to true. Finally, we must consider the expected number of forgeries when the
adversary merely guesses the correct outputs of the ideal random function, which is qv2−n. Thus,

E(ForgeWMAC, q) ≤ εqvqs(α− 1)
2

+
qvε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

+ qv2−n.

It is this formula which is used to give figures in the example from section 1. Note that when q = qs = qv,
letting α take on values in {1, q} gives bounds similar to those from [33].

Proof: Without loss of generality, we may assume that A doesn’t ask the same signing query twice, and that
A makes all signing queries before making any verification queries.4 Our adversary B has access to an oracle
Q(t, x). We construct B, which runs A as a subroutine, by directly simulating the oracles A expects. That is,
in the startup phase, B randomly selects h

$←H. It then runs A, responding to A’s signing query (t, M) by
querying its oracle at (t, h(M)) and returning the answer to A. Similarly, B responds to a verification query
(t, M, Tag) by querying its oracle at (t, h(M)) and returning 1 if the answer is equal to Tag, 0 otherwise.
After A has completed all queries, B outputs the same bit as A.

4This condition is not required by our security reduction— an adversary may make queries in any order she wishes — but
for ease of notation we adopt it.
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Consider the games G0 and G1 in figure 3, where Game G1 includes the boxed statement. The function
InitializeMap takes as arguments a map name, a domain, and a range, and initializes a map with the input
name where every map lookup returns ⊥.

Procedure Initialize

0 V ← ∅, h
$←H, ρ

$← Rand(T ×R, {0, 1}n),
InitializeMap(Map, T × D, T ×R), InitializeMap(Mapo, T × D, T ×R)

Procedure MAC(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v)
$←T ×R \ V }

3 V ← V ∪ (t, v)
4 return ρ(t, v)

Procedure VF(t, x, Tag)
5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v)
}

9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = ρ(Mapo[(t, x)]) or Tag = ρ(Map[(t, x)]) then { bad ← true }

}
11 return Tag = ρ(Map[(t, x)])

Figure 3: Game G0 and Game G1

Clearly, AG0 corresponds to the experiment where A is given access to the signing oracle ρ(t, h(x)) and
verification oracle ρ(t, h(x)) = Tag, and AG1 corresponds to the experiment where the tags for A’s queries
(either signing or verification), are choosen as uniform random outputs. Because A doesn’t ask the same
signing query twice and by the way we constructed B, this is precisely the answers A will get when the
signing oracle is a uniform random function and the verification oracle behaves similarly. Finally, when B’s
oracle is FK , B simulates the oracle A expects exactly. Therefore,

Advprf
F (B) = Pr

h
1← AWMACK,h

i
− Pr

h
1← AG0

i
= Pr

h
1← AWMACK,h

i
− Pr

h
1← AG1

i
+ Pr

h
1← AG1

i
− Pr

h
1← AG0

i
≥ Pr

h
1← AWMACK,h

i
− Pr

h
1← AG1

i
− Pr

h
AG1 sets bad

i
= Advjsuf -cma

WMAC (A)− Pr
h
1← AG1

i
− Pr

h
AG1 sets bad

i
,

since G0 and G1 are identical-until-bad games.

The term δ(j, n, qv) represents the probability of A’s success when presented with the oracle of game G1. In
this case, a verification query (ti, xi, τi) with a new message-nonce pair (ti, xi) ‘succeeds’ iff ρ(ti, h(xi)) = τi,
and this happens with probability 2−n. Similarly, for ` verification queries made with (ti, xi) as the message-
tag pair, the total success probability is `/2n. By summing over all possibilities for correct and incorrect
guesses, we have that

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
.

(A much more intuitive grasp of this term can be obtained by considering its expected value, qv2−n. This
can be seen by the fact that the expected number of forgeries for any one message tag pair x ∈ S is qv,x2−n;
the value follows by linearity of expectation of independent events and the fact that qv =

∑
x∈S qv,x.)

Now we must bound the probability that bad is set to true, but first we go through some output distribution-
preserving game transitions to make the analysis easier. The difference between Game G1 and Game G2 is
that in G2, MAC(t, x) returns a uniform random value τ from {0, 1}n and VF(t, x, Tag) chooses its outputs
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Procedure Initialize

0 V ← ∅, h
$←H, ρ

$← Rand(T ×R, {0, 1}n), InitializeMap(Map, T × D, T ×R),
InitializeMap(Mapo, T × D, T ×R), InitializeMap(O, T ×R, {0, 1}n)

Procedure Q(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v)
$←T ×R \ V }

3 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

}
9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Figure 4: Game G2

in line 8 from uniform random values from {0, 1}n. But in Game G1, ρ(t, v) is computed for all distinct (t, v)
in line 4 and in line 11 ρ(Map[(t, x)]) is computed for all distinct values of Map[(t, x)] when distinct (t, x)
values are used. Therefore the two games are identical. In Game G3, we clean things up by removing the
unnecessary ρ, and removing the statement (t, v) $←T × R \ V . This is possible because this occurs after
bad ← true.

Procedure Initialize

0 V ← ∅, O ← ∅, h
$←H, InitializeMap(Map, T × D, T ×R),

InitializeMap(Mapo, T × D, T ×R), InitializeMap(O, T ×R, {0, 1}n)
Procedure Q(t, x)

1 v ← h(x)
2 If (t, v) ∈ V then { bad ← true }
3 V ← V ∪ (t, v), O[(t, v)]

$← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

}
9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Figure 5: Game G3

In Game G4, we first generate all the random answers to the queries of A, and on ith signing query, save
the query and just return the ith random answer. The verification queries are handled similarly by using
the saved values. We can check whether we should set bad at the finalization step, using the saved query
values. Clearly, all games G2, G3, and G4 preserve the probability that bad gets set. Therefore,

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) + Pr[AG4 sets bad] + δ(j, n, qv).

We will use the fact that

Pr[AG4 sets bad] ≤ Pr[AG4 sets bad in line 6] + Pr[AG4 sets bad in line 8].

It is easy to analyze the probability Pr[AG4 sets bad in line 6]; In Game G4, the adversary A gets no
information about h at all, and the random variables ti and xi are independent from h. Let’s enumerate all
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Procedure Initialize

0 h
$←H, (τ1, . . . , τqs+#qv )

$← ({0, 1}n)qs+#qv , i← 0,
InitializeMap(O, T ×R, {0, 1}n)

Procedure Q(t, x)
1 i← i + 1, ti ← t, xi ← x, O[(t, x)]← τi

2 return τi

Procedure VF(t, x, Tag)
3 If O[(t, x)] = ⊥ then {
4 i← i + 1, ti ← t, xi ← x, O[(t, x)]← τi, Tagi ← Tag

}
5 return τi = Tagi

Procedure Finalize
6 If (ti, h(xi)) = (tj , h(xj)) for some i < j ≤ qs, then { bad ← true }
7 If (ti, h(xi)) = (tj , h(xj)) for some i < j, qs < j then {
8 If O[(ti, xi)] = Tagj or O[(tj , xj)] = Tagj then { bad ← true }

}

Figure 6: Game G4

the elements of T as T1, . . . , T|T |, and let qs,i be the number of signing queries (t, x) such that t = Ti. Then,

Pr[AG4 sets bad in line 6] ≤
|T |∑
i=1

ε · qs,i(qs,i − 1)
2

≤
|T |∑
i=1

ε · qs,i(α− 1)
2

=
ε(α− 1)

2

|T |∑
i=1

qs,i =
ε(α− 1)qs

2
.

We must also bound the probability Pr[AG4 sets bad in line 8]. The adversary A still learns no information
about h, but we must account for an optimal tag guessing strategy with respect to bad being set to true. We
first focus on the case where A does not guess multiple tags for a message-nonce pair and then handle the
general case. For each value k ∈ T let Sk be the set of indices i such that 1 ≤ i ≤ qs and ti = k. Similarly,
let Vk be the set of indices i such that qs < i ≤ qs + qv and ti = k. Let g be the number of correctly guessed
tags during the verification phase. Let Xk = {xi : i ∈ Sk∨ (i ∈ Vk∧Tagi = τi)} and let Xτ

k = {τi : xi ∈ Xk}.
(Note that

∑
k∈T |Xk| = qs + g.) For any value τ ∈ {0, 1}n, let Gk(τ) = {xi : τi ∈ Xτ

k , τ = τi}. Let
Ck = max{|Gk(τ)| : τ ∈ Xτ

k } and C = max{Ck} and let Eb be the the event that AG4 sets bad in line 8.
Then,

Pr[Eb] ≤
X
k∈T

X
i∈Vk

0@ max
τ∈Xτ

k

Pr [h(xi) = h(x) : x ∈ Gk(τ)] (1)

+ Pr [h(xi) = h(x) : x ∈ Xk}] · Pr[Tagi = τi] (2)

+
X

j∈Vk,j<i

Pr[h(xj) = h(xi)] · Pr
ˆ
Tagj = τj ∨ Tagj = τi

˜1A (3)

≤
X
k∈T

X
i∈Vk

0@εCk + ε|Xk|2−n +
X

j∈Vk,j<i

ε2−n+1

1A (4)

≤ ε
X
k∈T

|Vk|−1X
j=0

(Ck + (α + g)2−n + j2−n+1) (5)

≤ ε
X
k∈T

 
|Vk|(C + (α + g)2−n) + 2−n+1

 
|Vk|
2

!!
(6)

≤ ε

 
qv(C + (α + g)2−n) + 2−n+1

X
k∈T

 
|Vk|
2

!!
(7)
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≤ ε

 
qv(C + (α + g)2−n) + 2−n+1

 
qv

2

!!
(8)

On a verification query (tj , xj ,Tagj) we consider two cases where the conditional on line 7 is met: i ≤ qs

and qs < i. Also, on line 8, there are two events that may set bad to true: A’s guess may be correct for the
unmodified output τi, or it may be a correct guess for the modified output τj . Suppose bad is set to true on
line 8, then we distinguish these four events:

• E1,j : i ≤ qs and A’s guess was correct for the unmodified output.

• E2,j : i ≤ qs and A’s guess was correct for the modified output.

• E3,j : qs < i and A’s guess was correct for the unmodified output.

• E4,j : qs < i and A’s guess was correct for the modified output.

Then Pr[AG4 sets bad in line 8] on the j-th query is

Pr[E1,j ∨ E2,j ∨ E3,j ∨ E4,j ] ≤ Pr[E1,j ] + Pr[E2,j ] + Pr[E3,j ] + Pr[E4,j ].

Lines (1) and (2) of the set of the equations denote Pr[E1,j ] and Pr[E2,j ], respectively, and line (3) contains
Pr[E3,j ∨E4,j ]. The justification for line (1) is that an adversary’s best strategy when i ≤ qs is to guess the
most frequently occuring tag returned during the signing phase (or a tag that is known by being guessed
correctly during the verification phase). In lines (2) and (3) the adversary must try to guess an independent
uniform random sample from 2n values once the conditional is met. Line (4) upper bounds the probabilities
for these events to occur, lines (5-7) simplify the equation, and the last inequality is justified by the fact that
the quantity is maximized by making all verification queries with the same nonce.

Finally, with a simple argument we cover the case where during the verification phase multiple tags are
guessed for a particular message-nonce pair. Since A learns nothing about h during the game, A has no way
of learning which of its queries caused the conditional on line 7 to be true and gains no advantage from this
approach. Indeed, the optimal strategy is to only make one verification query per message-nonce pair, so
that the odds of line 8 being reached are increased with each query by forcing more values to be re-mapped
as in line 7 of game G3.

Appendix C contains a bound for C for values of interest. In particular, C ≤ max{1, qs+g
2n + 15

√
qs+g
2n/2 } and

the expected value of g is qv2−n. Putting it together, we have

Pr[AG4 sets bad] ≤ ε(α− 1)qs

2
+ ε

(
qv(C + (α + g)2−n) + 2−n+1

(
qv

2

))

≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+ 2qvC

)

≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+

qvqs

2n−1
+

q2
v

22n−1
+

15qv
√

q

2n/2

)

≤ ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

.

4 Conclusions

We have shown that for most MACs, forging multiple times is not much harder than forging once. We then
find that two natural ways of improving resistance to reforgeability are, unfortunately, mutally exclusive
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when applied to common MACs. WMAC, which aims to reconcile these two methods with a modern Carter-
Wegman-Shoup MAC, is introduced and the security bounds given match the best known attacks [27].
WMAC provides parameter choices that yield constructions with varying security, speed, tag length, and
use of state. For this flexibility, the inputs to WMAC are longer than other Wegman-Carter style MAC
constructions and therefore messages take slightly longer to process.
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A Attacks

As mentioned in the introduction, all stateless MACs we investigate fail to be secure under the definitions of
security given above. Furthermore, some stateful schemes with correct nonce use, and all stateful schemes
with incorrect nonce use are insecure.

Preneel and van Oorschot noted that for any iterated hash function one collision can be used to find
others by simply appending identical message blocks to the colliding messages [35]. In the same paper they
describe why prepending and appending key material or the block length of the message does not prevent
this weakness. Several of their ideas are reiterated in what follows. In other instances, where their attacks
do not apply, we employ our own methods. In particular, we investigate the composition of functions from
a universal hash family with a PRF and ask how easily an adversary, given a colliding pair of messages, can
produce another colliding pair of messages. In a similar vein, we analyze nonce misuse in the WCS paradigm,
finding devastating consequences for most hash families.

Many of these attacks in this and other subsections exploit the knowledge of certain types of collisions
to forge successfully. Although a typical birthday attack will usually suffice to find these collisions, more
efficient attacks may exist for the particular scheme involved. For example, Bellare and Kohno [4] describe
a way to find collisions in hash functions with certain properties using computational resources significantly
less than that required for a standard birthday attack. In other cases, collision attacks specific to a specific
MAC may be more efficient. Regardless, we are instead focusing on what happens after those collisions have
occurred.

A.1 Blockcipher Based MACs

Let E = {0, 1}k × {0, 1}n → {0, 1}n be a mapping such that for a fixed K (called the key), E(K, ·) (also
denoted by EK(·)) is a permutation on binary strings of n bits. Many MACs use blockciphers as an underlying
building block. The security of such schemes usually reduces to the security of the blockcipher used. We
present several widely-used MACs based on blockciphers and examine their security. For the purposes of
these attacks, we assume no weaknesses of the blockcipher; the attacks work regardless of the family of
permutations chosen.

CBC MAC. The tag produced by CBC MAC with key K on message M ∈ {0, 1}nm, for some fixed m,
denoted by CBCMACK(M), is is computed iteratively as follows: Let h0 = 0n and hi = EK(Mi⊕hi−1)
for 1 ≤ i ≤ m. Then CBCMACK(M) = hm. The values h0, h1, . . . , hm are sometimes referred to as the
“chaining values.” The security of this scheme is dependent on the fact that all input messages are the same
length in the number of n-bit blocks, and a security bound is given in [3]. Once a pair of messages (M,M ′)
that collide have been found, we can easily produce other colliding messages based on an attack by Preneel
and van Oorschot in [35], which also serves as the basis for the rest of the attacks in this subsection. The
best known attack for finding collisions in CBC MAC is a birthday attack, needing an expected 2n/2 queries
to produce a colliding pair of messages (M,M ′). Without loss of generality, assume that the fixed length of
messages is 2n (m = 2), and let M = M1 ‖M2 and M ′ = M ′1 ‖M ′2 such that |M1| = |M ′1| = |M2| = |M ′2| = n.
If CBCMACK(M) = CBCMACK(M ′) then, because EK is one-to-one,

EK(M2⊕EK(M1)) = EK(M ′2⊕EK(M ′1))⇒M2⊕EK(M1) = M ′2⊕EK(M ′1)

Let v ∈ {0, 1}n − 0n be arbitrary and query the MAC oracle on input M1 ‖M2⊕ v to receive tag t∗. Then
we can submit the pair (M ′1 ‖M ′2⊕ v, t∗) as a forgery pair. To see why, consider the following:

M2⊕EK(M1) = M ′2⊕EK(M ′1)

⇒M2⊕ v⊕EK(M1) = M ′2⊕ v⊕EK(M ′1)

⇒ EK(M2⊕ v⊕EK(M1)) = EK(M ′2⊕ v⊕EK(M ′1))

We can repeat this attack as long as we select a distinct v each time. Each additional forgery requires one
query to the MACing oracle. If the set length of messages is m blocks, we can query messages which have
identical blocks in the last m− 2 blocks, so that the birthday attack finds a collision in the chaining values
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after the first two blockcipher invocations during the computation of CBCMAC. This allows the adversary
to forge messages for which the last m− 2 blocks are of the adversary’s choice.

XCBC. The XCBC scheme is an extension of CBC MAC that allows for messages of arbitrary length. Given
keys K1,K2,K3, |K1| = k, |K2| = |K3| = n, and an input message M ∈ {0, 1}∗, the tag produced by
XCBC on input M , denoted by XCBCK1,K2,K3(M), is defined in two cases. First suppose that |M | is a
multiple of n and that |M |n = m for some m. Let h0 = 0n and hi = EK1(Mi⊕hi−1) for 1 ≤ i ≤ m − 1.
Then the tag produced by XCBC is EK1(hm−1⊕Mm⊕K2). Now suppose |M | is not a positive multiple
of n. Let M∗ be M ‖ 10l where l = n − 1 − |M | mod n so that |M∗| = m for some m. Let h0 = 0n and
hi = EK1(M∗i ⊕hi−1) for 1 ≤ i ≤ m− 1. Then the tag produced by XCBC is EK1(hm−1⊕M∗m⊕K3).

Suppose XCBCK(M) = XCBCK(M ′) for M 6= M ′, and n does not divide |M | or |M ′|. Then the XOR-
ing of K3 before the last blockcipher invocation does not prevent the attack used on CBC MAC. Namely, if
we assume that M and M ′ have lengths after padding, in n-bit blocks, of m and m′, respectively, then

Mm⊕K3⊕EK(Mm−1) = M ′m′ ⊕K3⊕EK(M ′m′−1)

⇒Mm⊕K3⊕ v⊕EK(Mm−1) = M ′m′ ⊕K3⊕ v⊕EK(M ′m′−1)

⇒ EK(Mm⊕K3⊕ v⊕EK(Mm−1)) = EK(M ′m′ ⊕K3⊕ v⊕EK(M ′m′−1))

Similarly, if XCBCK(M) = XCBCK(M ′) for M 6= M ′ and n divides |M | and |M ′|, then the XOR-ing of
K2 before the last blockcipher invocation does not prevent the attack used on CBC. The adversary gets to
choose the length of the queried messages, so the adversary may guarantee that a found collision will be of
one of these two forms; we will note, however, that a collision between distinct M,M ′ such that n divides
|M | but n does not divide |M ′| is apparently not useful to an adversary. Again, an adversary can generate
collisions that occur in the second chaining variable so that the last m− 2 blocks of a forged message are of
the adversary’s choice and again, one MACing query is required for each additional forgery.

EMAC. The EMAC scheme [5] is an extension of CBC MAC which attains security without requiring that
all messages be of a fixed length. Let M ∈ ({0, 1}n)+ such that |M |n = m for some m. For keys K1,K2 let
h0 = 0n and hi = EK1(Mi⊕hi−1) for 1 ≤ i ≤ m. Then the tag produced by EMAC with keys K1,K2 on
message M , denoted by EMACK1,K2(M), is EK2(hm). This extra encryption under the blockcipher keyed
with K2 does nothing to prevent the attack we described on CBC MAC, so an adversary can forge messages
in exactly the same way as the attack described there.

A.2 Padding Attacks

Iterated Hash Functions. Cryptographic hash functions are useful in many contexts. A particularly
popular methodology, suggested first by Merkle [34] and later by Damg̊ard[20], is the iterated construction.
Formally, let f : {0, 1}n × {0, 1}l → {0, 1}l and define the iterated hash H : ({0, 1}n)+ × {0, 1}l → {0, 1}l
based on f by the following: On inputs M ∈ ({0, 1}n)+, IV ∈ {0, 1}l such that M = M1 ‖M2 ‖ . . . ‖Mm,
H(M, IV) = hm, where h0 = IV and hi = f(Mi, hi−1) for 1 ≤ i ≤ m.5

Application to MACs. For many MACs, we can think of modeling the MAC abstractly as g(f(·)) where
f is an iterated hash function and g is a post-processing function, typically a PRF or PRP. There is a
conceptual difference in that cryptographic hash functions do not require a secret key and have notably
different security goals than that of MACs, but we feel modeling MAC functions in this way is pedagogically
useful.

EMAC. EMAC lends itself well to the above abstraction: On input message M such that |M |n = m,
we define f : K × ({0, 1}n)+ → {0, 1}n, fK1(M) = hm where hm is as from the description of EMAC
earlier. Then define g : K × {0, 1}n → {0, 1}n, gK2(x) = EK2(x) so that EMACK1,K2(M) = gK2(fK1(M)).

5Typically the length of the message (|M |) is appended to the message before hashing, but for all attacks presented in this
paper the messages queried by the adversary are assumed to be of the same length (unless otherwise noted), so for simplicity
we have omitted this extra step.
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Padding attacks work by exploiting known properties in the function f . Namely, in our example of EMAC,
it is easy to see that if f(M) = f(M ′) for some M,M ′ ∈ ({0, 1}n)+, then for any string s ∈ ({0, 1}n)+,
f(M ‖ s) = f(M ′ ‖ s). This is a property of all iterated hash functions and has been observed by others
[28, 35]. This padding attack is effective against EMAC [5], ANSI retail MAC [1], XCBC [13], and HMAC
[2].

HMAC. Let H : ({0, 1}l)+ × {0, 1}L → {0, 1}L be an iterated hash function. Given a secret key K and
input message M , HMACK(M) is defined as H(K̄ ⊕ opad ‖ H(K̄ ⊕ ipad ‖ M)) where opad and ipad are
predefined constants and K̄ denotes the unambiguous padding of K to match the input block size of H.
HMAC will succumb to the padding attack described above because of its use of an iterated hash function.
Let M,M ′ ∈ ({0, 1}l)+, |M | = |M ′| = m be distinct messages that collide under HMACK . If we assume
that the collision occurs in the hash function keyed by K̄ ⊕ ipad (see [35] for methods on ensuring this event
occurs), then by the observation made above about collisions in iterated hash functions, M ‖ s will collide
with M ′ ‖ s for s ∈ ({0, 1}l)+. The adversary forges by querying the MACing oracle at M ‖ s to receive tag t
and querying the verification oracle at (M ′ ‖s, t). We can also generate the collision within the first iteration
of the compression function used in H via the method described in the attack on CBC MAC (common
suffixes among all queried messages); this allows an adversary to forge messages for which all but the first
message block is of the adversary’s choice.

XCBC. Similarly, we can view XCBCK1,K2,K3(M) as g(f(M)) where g(x) = EK1(x⊕K2) if n divides |M |
and g(x) = EK1(x⊕K3) otherwise. First suppose that |M | is a multiple of n and that |M |n = m for some
m. Let h0 = 0n and hi = EK1(Mi⊕hi−1) for 1 ≤ i ≤ m − 1. Then f(M) is defined as hm−1⊕Mm. Now
suppose |M | is not a positive multiple of n. Let M∗ be M ‖10l where l = n−1−|M | mod n so that |M∗| = m
for some m. Let h0 = 0n and hi = EK1(M∗i ⊕hi−1) for 1 ≤ i ≤ m− 1. f(M) is defined as hm−1⊕M∗m. Let
M,M ′ ∈ ({0, 1}n)+ collide under f so that g(f(M)) = g(f(M ′)). By the properties of iterated functions
discussed above, for an arbitrary v ∈ ({0, 1}n)+, f(M ‖ v) = f(M ′ ‖ v)⇒ g(f(M ‖ v)) = g(f(M ′ ‖ v)). The
case where the lengths of M and M ′ are not multiples of n can be handled similarly.

PMAC. The MAC PMAC is described as follows: for a given blockcipher E and a given message M =
M1 ‖ M2 ‖ . . . ‖ Mm for some m, |Mi| = n for 1 ≤ i ≤ m − 1, we let Xi = Mi⊕ γi · L for 1 ≤
i ≤ m where the operation ‘·’ as well as the constants γi and L are given in the original PMAC paper
[13]. The tag produced by PMAC with key K on message M of m blocks, denoted by PMACK(M),
is EK(pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) where pad is a function that unambiguously pads
strings of length less than n to strings of length n.

For two distinct messages (M,M ′) that collide with respective lengths, in n-bit blocks, of m and m′, we
know that the following must be true:

EK(pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) =

EK(pad(M ′m′)⊕X ′m′ ⊕EK(X ′1)⊕ . . . ⊕EK(X ′m′ − 1))

⇒ pad(Mm)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm−1) =

pad(M ′m′)⊕X ′m′ ⊕EK(X ′1)⊕ . . . ⊕EK(X ′m′−1)

Let l = min{|Mm|, |M ′m′ |} and let v ∈ {0, 1}l − 0l be arbitrary. Let F = M1 ‖ . . . ‖Mm−1 ‖Mm⊕ v and
let F ′ = M ′1 ‖ . . . ‖M ′m′−1 ‖M ′m′ ⊕ v. Then PMACK(F ) = PMACK(F ′). Indeed,

EK(pad(Mm⊕ v)⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm − 1)) =

EK(pad(M ′m′ ⊕ v)⊕X ′m′ ⊕EK(X ′1)⊕ . . . ⊕EK(X ′m′ − 1))

⇒ pad(Mm)⊕ v⊕Xm⊕EK(X1)⊕ . . . ⊕EK(Xm−1) =

pad(M ′m′)⊕ v⊕X ′m′ ⊕EK(X ′1)⊕ . . . ⊕EK(X ′m′−1)

⇒ pad(M ′m′)⊕X ′m′ ⊕EK(X ′1)⊕ . . . ⊕EK(X ′m′−1)
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To forge an attacker would query the oracle on input F to receive tag t∗ and forge with F ′, t∗. The reason
that we cannot XOR by a string with more than l bits is that in that case the composition of functions pad
and XOR is not commutative — if we XOR by a string longer than the original length of Mm or M ′m′ , the
messages are not padded in the same way and we are not changing the same bits in both messages. Again,
the adversary chooses the lengths of the messages, so this does not hinder the effectiveness of the attack.

A.3 Effects of Adding State

A natural question to ask is whether adding state to the schemes discussed above adds sufficient security
under our definition. For some natural ways to do so the answer is, surprisingly, “no.” In instances where
we found no attack on the stateful schemes with correct nonce management, we turn our attention to how
repeated nonces among tags affects security. For all MACs we examine, just a handful of MAC queries with
repeated tags are enough to allow j-forgery attacks.

One obvious way to add state to a stateless MAC Π = (MAC,VF) is to parameterize inputs with a nonce,
cnt. Let 〈cnt〉b denote the b-bit encoding of cnt. Upon an input (M, cnt), and with key K ∈ K, the new
stateful algorithm outputs the tag generated by MACK on input 〈cnt〉b ‖M . Just as naturally, the algorithm
can be defined to return the value MACK(M ‖ 〈cnt〉b). In either case we will assume the nonce is encoded
using n bits — a full block. Our attacks can easily be adapted to shorter encodings of the state.

CBC MAC. Suppose that we have chosen to add state to CBC MAC by appending an encoding of the state
to the messages before MACing. Suppose (M, i) collides with (M ′, j) and consider the attack on CBC MAC
discussed earlier. Because of the way the state is appended to the message, the variable v in the attack is
now XOR-ed with the nonces instead of the last blocks of M,M ′. Thus, let v be a value such that the nonce
k, l defined as i⊕ v and j⊕ v, respectively, have not been queried by the adversary. Then the adversary may
query on (M,k) to receive tag t, and forge with (M ′, l, t). Note that in this attack each nonce is queried
at most once and all but two blocks may be freely chosen by the adversary. That is, perhaps surprisingly,
adding state in this way to CBC MAC does not add any security.

Now suppose an encoding of the state is prepended to each message in the setting of CBC MAC. With
proper nonce management (ie, no repeated nonces) we found no attack which effectively used information
from a pair of colliding messages. However if we allow α = 2 queries per nonce, a simple j-forgery attack
immediately follows where we need only j MAC queries using prior nonces: An adversary queries messages
of the form Ri ‖M where Ri is a randomly-chosen value from {0, 1}n and M is a fixed, arbitrarily chosen
string from {0, 1}n(m−1) until j distinct collisions of this form have been found. It is expected that j

collisions will occur after Θ(
√

j2n+1) MAC queries, which is clearly less than linear in j and the number of
expected queries to find one collision. Suppose (Ri ‖M, i) collides with (Rk ‖M,k). Because the last m− 1
blocks of the message are the same, we know that, during the computation of the tags, a collision occurs in
the second chaining value (h2) and is propagated through the rest of the computation. This implies that
EK(〈i〉n)⊕Ri = EK(〈k〉n)⊕Rk. The adversary picks arbitrary v ∈ {0, 1}n − 0n, M ′ ∈ {0, 1}n(m−1) and
queries on (Ri⊕ v ‖M ′, i) to receive tag t and forges with (Rk ⊕ v ‖M ′, k, t). The justification of this claim
is almost identical to the justification for the attack on the stateless CBC MAC and is omitted. This attack
first appeared in [16].

This method of adding state does much better, under our definition of security, than all previous schemes
we have covered. Instead of allowing an adversary to forge one message per query after one collision in the
output tags, an attacker must find a collision using new nonces for each forgery she wishes to make. There
are two downsides, however. One is that the number of possible forgeries grows as a square in proportion to
the number of times an adversary can query 2n/2 messages. Ideally, the adversary must work equally hard
for each forgery, but we will see later that this is possible with WMAC. The other downside is that there is
no proof of security that the above attack is the best an adversary can do. Again, we do not claim that any
of our attacks are the most damaging.

For the same reason that the non-padding attack on CBC MAC worked with only slight alterations for
EMAC and XCBC, the attack described above will also work on EMAC and XCBC with the same alterations.
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HMAC and PMAC. For both HMAC and PMAC, simply prepending or appending state prevents attacks,
but we will cover the cases of nonce misuse, where for both schemes only j out-of-protocol MAC queries are
necessary to obtain j forgeries.

HMAC. Recall that given a secret key K and input message M , HMACK(M) is defined as

H(K̄ ⊕ opad ‖H(K̄ ⊕ ipad ‖M))

where H denotes some iterated hash function and K̄ denotes the unambiguous padding of K to match the
input block size of H. Suppose H takes strings of the form ({0, 1}n)+ as input and the state is encoded
as a string of length n and prepended to the message M to obtain a string M∗; the returned tag is the
output of the stateless version of HMAC on input M∗. An adversary can efficiently attack this construction
by querying messages of the form (M, i) for varying values of i and an arbitrary, fixed M . This querying is
done until j colliding pairs of messages have been found — as mentioned earlier, this will occur with much
fewer than j times the number of queries required to produce the first collision. For each pair of colliding
messages (M, i), (M, j), the adversary picks an arbitrary M ′ 6= M in the domain of H, queries the oracle on
(M ′, i) to receive tag t, and forges with (M ′, j, t). This will be a correct forgery by the properties of iterated
hash functions described earlier.

Now suppose the encoding of the state is appended to the message M to obtain message M∗, which is
used as the input to HMAC. The adversary first queries, up to the birthday bound, messages of the form
(M i, a) for distinct M i where n divides |M i| and fixed a, until a pair of colliding messages (M i, a), (M j , a)
is found. The attacker can now forge messages by arbitrarily choosing an unqueried nonce k, querying the
oracle at (M i, k) to receive tag t and forging with (M j , k, t).

PMAC Prepending the state to a message M before MACing does not prevent forgeries for PMAC in
our model. The attack is as follows: messages of the form (Ri ‖ 0n, i), where Ri is a random string from
{0, 1}n(m−1), are queried. Suppose the queries (Ri ‖ 0n, i), (Rj ‖ 0n, j) to the MAC oracle return the same
tag t. Then by an analysis similar to the stateless (specified) version of PMAC, an adversary may query on
(Ri ‖ 1n, i) to get tag t′ and forge with (Rj ‖ 1n, j, t′). The justification for this is the same for the stateless
case. Again, j forgeries may be obtained in expected queries within a constant factor of

√
j2n+1.

A.4 Attacks on Carter-Wegman MACs

There are two MAC paradigms of the Carter-Wegman style [18] described in this paper: the stateless mode
FH, proposed in Carter and Wegman’s original paper [18], and a stateful mode which we refer to as WCS
for Wegman-Carter-Shoup, reflecting the original idea by Carter and Wegman and whose formal security
bounds have been more recently improved by Shoup [38] and Bernstein [10].

The attack on each scheme is dependent on the family of universal hash functions used. We will show
that for each of the families hash127/Poly1305 [7, 9], Square-Hash[23], LFSR-based Topelitz Hash[30], Bucket
Hash[36], MMH[26], NMH[12], and VHASH[19] there exists an adversary A such that A can forge j messages
in the FH[H,R] paradigm in resources comparable to those required for a single forgery. Informally, the
bounds given in [10] show that the first forgery in the WCS mode will likely occur well after one starts to see
collisions in tags, so we instead concentrate on potential problems with nonce misuse. For some hash families,
nonce misuse can be devastating: if any nonce is repeated, even once, to the MAC oracle an adversary can
learn the hash key. To be clear — our results do not contradict any bounds given in [10], and only reinforce
the necessity of proper nonce management in WCS MACs.

Following the posting of this paper on eprint.iacr.org, Handschuh and Preneel [27] improved and
expanded many of the attacks here, among other results.

FH. The FH paradigm is parameterized by a pseudorandom function family R and an ε-AU hash family H,
written as FH[H,R]. The shared key between signer and receiver is (h, ρ), where h

$←H = {h : D → {0, 1}l}
and ρ

$←R = Rand(l, L). To MAC message M , the signer sends ρ(h(M)). To verify a received message M
with tag t, the verifier computes ρ(h(M)) and ensures it equals t.

Attacks on FH. The adversary works by hashing messages to the birthday bound of h and, with the
knowledge of two messages M,M ′ such that h(M) = h(M ′), producing two more messages F, F ′ related
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to M,M ′ such that h(F ) = h(F ′). This allows the adversary to forge by querying the MAC oracle on
F to receive tag t∗ and to forge with (F ′, t∗). Notably, h(F ) = h(F ′) implies that ρ(h(F )) = ρ(h(F ′)).
We describe the insecurity of the hash functions by showing ways to, given a colliding pair of messages
M,M ′ under that hash function instance, produce a new pair of messages which collide under the same
instance without making any additional queries. Of course, if we see a collision in the tags computed by a
particular instance of FH on messages M,M ′, we do not know whether h(M) = h(M ′) or h(M) 6= h(M ′)
and the collision occurred in ρ. We get around this by assuming the former event until we see evidence to
the contrary. That is, we apply the techniques covered throughout the rest of this subsection and if more
collisions occur as predicted, we can be reasonably confident that the collision occurred first in h. This idea
of exploiting ‘internal’ collisions in MACs is not new [35].

hash127/Poly1305. Let M = (M0,M1, . . . ,Mm−1) be a sequence of integers in [−2r, 2r − 1] for some
r. For any integer x define hx(M) = (xm+1 + M0x

m + M1x
m−1 + . . . + Mm−1x) mod (p) for some prime

p > 2r. When x is thought of as the hash instance or key, this is the well-known polynomial hash, known
to be m/p-AU for some time [11, 21, 41]. More recently, Bernstein has described two efficiently computable
polynomial hashes, hash127 where p = 2127 − 1 and Poly1305 where p = 2130 − 5, in [7, 9].

Claim 7 Let M = (M0,M1, . . . ,Mm−1), M ′ = (M ′0,M
′
1, . . . ,M

′
m−1) be two distinct messages such that

hx(M) = hx(M ′). Then for an arbitrary non-zero constant v ∈ [−2r, 2r − 1] such that Mi + v < 2r − 1,
M ′i + v < 2r− 1, the messages F = (M0, . . . ,Mi−1,Mi + v,Mi+1, . . . ,Mm−1) and F ′ = (M ′0, . . . ,M

′
i−1,M

′
i +

v,M ′i+1, . . . ,M
′
m−1) will also collide under hx.

Proof: hx(F ) = (hx(M) + xm−iv) mod (p)

= hx(M) mod (p) + xm−iv mod (p)

= hx(M ′) mod (p) + xm−iv mod (p)

= (hx(M ′) + xm−iv) mod (p)

= hx(F ′).

One can do better than finding more collisions, however. Let g(x) be the monic polynomial of degree m
over Fp, where the coefficient of the m + 1 − i-th term is (M0 −M ′0)

−1(Mi −M ′i) (all arithmetic is done
modulo p) for 0 ≤ i ≤ m. We know g is non-zero because M 6= M ′. Because hx(M) = hx(M ′), g(x) = 0.
Using Berlekamp’s algorithm [6] for factoring polynomials over large fields, we can find all zeros of g and
test them via the MAC oracle to determine x with arbitrarily high probability. There are at most m zeros
of g (g may have as factors irreducible polynomials of degree > 1), so a probabilistic algorithm will need
an expected log m queries to the MAC oracle to determine the key with probability close to 1 − 1/p. This
probability can be brought arbitrarily close to 1 with more queries. The algorithm for doing this

Square-Hash. We describe the universal hash family Square-Hash, first given in [23] as follows: choose
a prime number p. For a given secret key x ∈ Z, and message M , Square-Hash is computed by hx(M) =
(M + x)2 mod p. An interesting property of Square-Hash is that when two messages M and M ′ are found
to collide under hx, it is possible to recover the secret x.

Claim 8 Let M , M ′ be two distinct messages such that hx(M) = hx(M ′). Then x ≡ (2M−2M ′)−1((M ′)2−
M2) mod p, where the multiplicative inverse is taken over Fp.

Proof: By definition, because hx(M) = hx(M ′), we know that

(M + x)2 mod p ≡ (M ′ + x)2 mod p⇒

(M2 + 2Mx + x2) mod p ≡ ((M ′)2 + 2M ′x + x2) mod p⇒

(M2 + 2Mx) mod p ≡ ((M ′)2 + 2M ′x) mod p⇒
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(2M − 2M ′)x mod p ≡ ((M ′)2 −M2) mod p⇒

x mod p ≡ (2M − 2M ′)−1((M ′)2 −M2) mod p

To allow messages of greater lengths, Square-Hash was extended to a family SQH∗ by using a sum.6 Let
M = M1 ‖M2 ‖ . . . ‖Mm where |Mi| = n and let x be an m-vector with coordinates x1, x2, . . . , xm in the
integers. Then SQH∗x(M) is computed as

∑m
i=1(Mi + xi)2 mod p. In this scheme, key recovery is possible

using m separate birthday attacks. For 1 ≤ i ≤ m, query messages up to the birthday bound of the form
0n(i−1) ‖Rk ‖ 0n(m−i) where Rk

$←{0, 1}n so that tags are computed using only the secret value xi and the
MAC is reduced to the original Square-Hash. A collision among messages of this form will yield the value
of xi. After m such attacks are completed the entire key x may be recovered.

To forge messages after only one collision has occurred, an attacker may find the appropriate xi using
the attack above then query on an arbitrary message M = M1 ‖M2 ‖ . . . ‖Mm to receive tag t. Note that
(Mi + x)2 ≡ a mod p is a quadratic residue mod p and that there are two distinct values b, c mod p such
that b2 ≡ c2 ≡ a mod p. Clearly (Mi + x)2 is one of those values. The attacker merely finds the other value
and computes M ′i from this value. Then let M ′ be the message formed by letting M ′j = Mj for j 6= i and
M ′i from this value computed earlier. Then MAC(M) = MAC(M ′).

Wegman-Carter-Shoup MACs. Let H be some ε−AU hash family H = {h : D → {0, 1}L}, and R a
set of functions R = Rand(b, L).7 The Wegman-Carter-Shoup scheme parameterized by these families is
denoted as WCS[H,R]. Let ρ

$←R and h
$←H. Then (ρ, h) is the shared key between signer and verifier.

The signer has a nonce, cnt, which is an integer variable. To MAC message M , the signer first ensures that
cnt < 2b − 1 and if so sends (cnt, ρ(〈cnt〉b) ⊕ h(M)) where ⊕ denotes the operation over some group (for
VMAC and Poly1305-AES it is simple addition over the the numbers modulo 2L). To verify a message M
with tag (i, t), the verifier computes ρ(〈i〉b)⊕ h(M) and ensures it equals t.

Attacks on WCS. The attacks on hash127/Poly1305 and Square Hash in WCS mode use the same idea
to recover the key. Two distinct messages M,M ′, of the same length, are queried using the same nonce i,
yielding two tags t and t′, respectively. (Note that only one errant query is required for this attack.) The
value t′ − t gives the difference of outputs from the UHF on inputs M ′ and M . For hash127, Poly1305, and
Square Hash this gives a polynomial equation modulo some prime p, evaluated at the hash key. It is a simple
process to then use the techniques described in the attack on hash127/Poly1305 in the FH setting to factor
the polynomial over the finite field, and test possible values of the hash key via the verification oracle.

This attack demonstrates that proper nonce management is an extremely important part of the security
of WCS MACs. Even an innocuous-looking “off by one” implementation error can enable an attacker to forge
an arbitrary number of messages, with complete message freedom. This susceptibility to insecurity when
perhaps subtle programming mistakes are made led us to construct a more fault-tolerant stateful MAC.

Other hash Families For each remaining universal hash family, we first describe an attack using collisions
in tags found in FH mode, then cover an attack in WCS mode with nonce misuse. We stress again that
many of these attacks have been subsequently improved in [27].

LFSR-Based Topelitz Hash. In Carter and Wegman’s original paper, they provided an example of a
universal hash family. Fix parameters m and n. Let A be a random m × n binary matrix. The family
H = {h : {0, 1}m → {0, 1}n} is universal where a member of the family is specified by the choice of A. We
compute h(M) by AM . Krawczyk introduced another family based on this [30], with changes designed to
speed up hardware implementations. The changes are not relevant to the attacks discussed here, however,
because a member of the scheme that Krawczyk describes is still a matrix A, and h(M) is still defined as
AM .

6The fully optimized version of Square-Hash has some minute differences from the scheme presented here that complicate
the exposition yet do not hinder the general nature of our attack; thus this simplified version is presented.

7The security bounds given in [10, 38] do not require that R be a family of random functions. R may also be a family of
random permutations.
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For the FH scenario, consider distinct messages M,M ′ in the domain of h such that h(M) = h(M ′).
This means that

AM = AM ′ ⇒ A(M −M ′) = 0

Because M 6= M ′, we have found a non-zero vector vector w such that Aw = 0 (clearly A must be singular
for this to occur, but for h to be a compression function m > n anyway, so this assumption is acceptable).
Pick F in the domain of h not equal to M or M ′ arbitrarily. Then let F ′ = F −M + M ′.

Claim 9 h(F ) = h(F ′)

Proof: AF −AF ′ = A(F − F ′) = A(F − (F −M + M ′) = A(M −M ′) = 0

The attack in the WCS mode of operation is almost identical. Query two distinct messages M,M ′ with
the same nonce. The difference of their respective tags t∗ is equal to the following equation:

A(M −M ′)

The attacker then constructs two message F, F ′, using a similar process as described above, such that
h(F )−h(F ′) = t∗. A forgery attack follows immediately by querying with (F, j) to receive tag t and forging
with (F ′, t− t∗). Again only one MAC query with a repeated nonce is needed.

Bucket Hash. First described by Rogaway in 1995 [36], the bucket hashing scheme is as follows: fix three
positive integers: a word-size w, a block size n and a security parameter N (we will call N the “number of
buckets”). To hash a message M we break M into n words of w bits each. So M = M1 ‖M2 ‖ . . . ‖Mn

with each |Mi| = w. Then we imagine N “buckets” (which are simply variables of w bits) into which we will
XOR the words of M . For each word Mi of M we XOR Mi into three randomly chosen buckets. Finally we
concatenate all the bucket contents as the output of the hash function. The only restriction on the buckets
for any Mi is that they cannot be the same three buckets as were used for any Mj with i 6= j. Formally, let
x be a randomly chosen n-vector with distinct coordinates, each coordinate being a 3-element set of w-bit
words. We denote the ith coordinate of x as xi = {xi1, xi2, xi3}. For any M ∈ {0, 1}nw we run the following
algorithm:

bucket hash(M)
for i← 1 to N do Yi ← Ow

for i← 1 to N do
Yxi1 ← Yxi1 ⊕Mi

Yxi2 ← Yxi2 ⊕Mi

Yxi3 ← Yxi3 ⊕Mi

return Y1 ‖ Y2 ‖ . . . ‖ Yn

For the attack in the FH setting, assume that a collision has occurred so that we know M,M ′ such that
bucket hash(M) = bucket hash(M ′). Pick an arbitrary v ∈ {0, 1}w such that v 6= 0w. Define F as the result
of XOR-ing every Mi with v, and similarly define F ′ as the result of XOR-ing every M ′i with v.

Claim 10 bucket hash(F ) = bucket hash(F ′).

The proof is left as an exercise to the interested reader.
For the attack in the WCS setting we again need only one errant MAC query. By the same technique used

earlier, query distinct messages M,M ′ with the same nonce to obtain bucket hash(M)− bucket hash(M ′) =
t∗. Create two messages F, F ′ by the same method used in the FH setting. Query on (F, j) to get tag t and
forge with (F, j, t− t∗).

MMH. The MMH family [26] is H = {h : ({0, 1}32)n → {0, 1}32} where a member of this set is selected by
some n-vector x with coordinates in {0, 1}32. For any message M taken as an n-vector with coordinates in
{0, 1}32 we compute hx(M) as[[[ n∑

i=1

Mixi

]
mod 264

]
mod (232 + 15)

]
mod 232
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where xi denotes the ith coordinate of x and Mi the ith coordinate of M . Through some clever implemen-
tation tricks, this family is very efficient in software. For the attack in the FH setting, consider message M
and M ′ such that hx(M) = hx(M ′). Choose arbitrary non-zero v ∈ {0, 1}32 and i0 ∈ [1 . . . n]. Define F in
the following manner: Fi = Mi for all i 6= i0 and Fi0 = Mi0 + v mod 232. Similarly we define F ′ as F ′i = M ′i
for i 6= i0 and F ′i0 = M ′i0 + v.

Claim 11 hx(F ) = hx(F ′).

Proof:

hx(F ) =
[[[

vxi0 +
∑n

i=1 Mixi

]
mod 264

]
mod (232 + 15)

]
mod 232 =

[[[∑n
i=1 Mixi

]
mod 264

]
mod (232 + 15)

]
mod 232+

[[[
vxi0

]
mod 264

]
mod (232 + 15)

]
mod 232 =[[[

vxi0 +
∑n

i=1 M ′ixi

]
mod 264

]
mod (232 + 15)

]
mod 232 = hx(F ′)

The equalities are justified by the fact that modular arithmetic can be distributed over addition.

Misuse of nonces in the WCS allows complete recovery of the key material, with only n MAC queries
with repeated nonces. Namely, for each xi, query M ′ = 032n and M such that Mj = 032 for j 6= i and
Mi = 1. The difference of the tags produced on MAC queries M and M ′ is exactly xi. After all n indices
have been queried, the complete key is known.

NMH. Also mentioned in the MMH paper [26] is the adaption of the authors’ methods to a family created by
Mark Wegman. NMH is defined as H = {h : ({0, 1}32)n → {0, 1}32} where a member of this set is selected
by some n-vector x with coordinates in {0, 1}32. We assume here, for simplicity, that n is even. For any
message M taken as an n-vector with coordinates in {0, 1}32 we compute hx(M) as[[[ n/2∑

i=1

(M2i−1 + x2i−1 mod 232)(M2i + x2i mod 232)
]

mod 264

]
mod (232 + 15)

]
mod 232

where xi denotes the ith coordinate of x and Mi the ith coordinate of M .
For FH, consider the case where there are two distinct message M , M ′ such that hx(M) = hx(M ′). Pick

distinct i0, i1 ∈ [1 . . . n]. Without loss of generality assume both i0 and i1 are both even. For concision
denote a = Mi0−1 −M ′i0−1 and b = Mi1−1 −M ′i1−1. Let v0 = ab2 and v1 = −a2b. Define message F in the
following manner: Fi = Mi for i /∈ {i0, i1} and Fib

= Mib
+ vb for b ∈ 0, 1. Define message F ′ as F ′i = Mi

for i /∈ {i0, i1} and F ′ib
= Mib

+ vb for b ∈ 0, 1.

Claim 12 hx(F ) = hx(F ′)

Proof:

hx(F ) =
[[[

v0(Mi0−1 + xi0−1) + v1(Mi1−1 + xi1−1)+

∑n/2
i=1(M2i−1 + x2i−1 mod 232)(M2i + x2i mod 232)

]
mod 264

]
mod (232 + 15)

]
mod 232

But note that

hx(F ′) =
[[[

v0(M ′i0−1 + xi0−1) + v1(M ′i1−1 + xi1−1)+

∑n/2
i=1(M

′
2i−1 + x2i−1 mod 232)(M ′2i + x2i mod 232)

]
mod 264

]
mod (232 + 15)

]
mod 232
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It will suffice to show that v0(Mi0−1 + xi0−1) + v1(Mi1−1 + xi1−1) = v0(M ′i0−1 + xi0−1) + v1(M ′i1−1 + xi1−1).
After subtracting the common terms in x from both sides, note that this is equivalent to showing that
v0a = −v1(b). By the way v0 and v1 were defined, v0a = a2b2 = −v1b.

A key recovery attack is possible in the WCS setting, requiring n MAC queries with repeated nonces.
The attack is almost identical to the key recovery attack on MMH, and is omitted.

The family NH used in UMAC [12] is very similar to NMH — essentially the differences amount to the
constants chosen over which to do modular arithmetic. As such, the above attacks can be easily adopted to
NH.

VHASH. The VHASH family is used in VMAC, a successor to UMAC. Because VHASH is the composition
of three different hash families, we were not able to find an attack when nonces were misused. We conjecture
that there is a simple attack which uses only a small number of queries, but it has so far eluded us. However,
if one is allowed to query up to the birthday bound with the same nonce, then tag collisions will occur and
we may use the above techniques to detect those collisions which are result of the innermost hash function,
based on NH, and apply the attack above.

B Details of the hash127 Attack

Let us briefly recall the scenario described in Section A.4. The adversary has knowledge of two messages
M,M ′ such that hx(M) = hx(M ′) for the unknown instance hx of hash127/Poly1305. The adversary has
constructed a polynomial g(x) over Fp, one of the roots of which is the secret x. g has at most m roots (where
m is the length of the message, in blocks of r bits), and these can be found efficiently using Berlekamp’s
algorithm [6] or the Cantor/Zassenhaus algorithm [17]. Let x1, x2, . . . , xk denote these roots (k ≤ m). We
assume here that the adversary has made at least one extra query M ′′ to the MAC oracle (besides the
colliding messages), and received in response tag t′′. If this is not the case (in which case the adversary was
extremely lucky — the first two queries yielded a collision!), then the adversary must make one extra query.

The attack is probabilistic and needs an expected log m additional queries. The algorithm is described
below.
Algorithm Find Key
X ← {xi : 1 ≤ i ≤ k}
while |X| > 1 do:

• Z1 ← {xi : 1 ≤ i ≤
⌊
|X|

⌋
}

• Z2 ← {xi : 1 ≤ i ≤
⌈
|X|

⌉
}

• Let R← {ri : 1 ≤ i ≤ m− |Z1|} be randomly-chosen elements from Fp.

• Construct a monic polynomial f∗(y) of degree m such that f∗ ←
∏

z∈Z1
(y − z)

∏
r∈R(y − r)

• Choose the coefficients of message M∗, using simple subtraction, so that the polynomial f , whose
m + 1− i-th term is (M ′′i −M∗i ), is equal to f∗.

• Query the MAC oracle on M∗ to receive tag t∗.

• if t∗ = t′′ then X ← Z1 else X ← Z2

end do
return contents of X

The algorithm works by choosing messages M∗ such that the polynomial f∗ has zeros on half of the
remaining possible roots. That is, if the real key x is a root of f∗, then by the way f∗ was formed,
hx(M ′′) = hx(M∗), and t∗ = t′′. If the real key x is not a root of f∗, then t∗ = t′′ with probability
∼ 1/p + 1/n, where n is the output size, in bits, of the MAC oracle. The algorithm may be repeated as
necessary with different values of M ′′ (which must be queried) if the adversary suspects the returned value
xi is not the real key x, so that with probability arbitrarily close to 1 the adversary may be sure he has the
correct value of x.
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C A Bound for C

We seek an answer to the following (maximum occupancy) question: Given a randomly selected q-tuple
S

$←{{0, 1}n}q, how many times does the maximally-occurring value in the tuple occur? It was shown by
Gonnet [25] that if q2−n = β for some fixed β, then this number is ∼ ln q/ ln ln q as q, 2n→∞. In general,
however, we do not necessarily expect that q2−n grows as a constant since we are interested in tag truncation.

We can use the normal approximation to give an estimate to the following related question: On average
how many values in {0, 1}n occur in S exactly k times? The answer is given as

2n e−x2

√
2π

+ O(1/q)

where

k =
q

2n
+ x

√
q

2n
and x = O(1)

Letting x = 15 will ensure this quantity is ≤ 2−64 for all cases of practical interest (n ≤ 256). Thus,
C ≤ max{1, q

2n + 15
√

q
2n } and in particular when q

2n = 2t then C ≤ max{1, 2t + 15 · 2t/2}.
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