
Information-theoreti
 analysis of 
oating PUFs

B.

�

Skori�
, S. Mauba
h, T. Kevenaar, P. Tuyls

Philips Resear
h Laboratories,

Prof. Holstlaan 6,

5656 AA Eindhoven, The Netherlands

Abstra
t Physi
al Un
loneable Fun
tions (PUFs) 
an be used as a 
ost-e�e
tive means to

store 
ryptographi
 key material in an un
loneable way. In 
oating PUFs, keys are generated

from 
apa
itan
e measurements of a 
oating 
ontaining many randomly distributed parti
les

with di�erent diele
tri
 
onstants.

We introdu
e a physi
al model of 
oating PUFs by simplifying the 
apa
itan
e sensors to

a parallel plate geometry. We estimate the amount of information that 
an be extra
ted from

the 
oating. We show that the inherent entropy is proportional to

p

n(log n)

3=2

, where n is the

number of parti
les that �t between the 
apa
itor plates in a straight line. However, measure-

ment noise may severely redu
e the amount of information that 
an a
tually be extra
ted in

pra
ti
e. In the noisy regime the number of extra
table bits is in fa
t a de
reasing fun
tion of

n. We derive an optimal value for n as a fun
tion of the noise amplitude, the PUF geometry

and the diele
tri
 
onstants.
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1 Introdu
tion

1.1 General introdu
tion to PUFs

A `Physi
al Un
loneable Fun
tion' (PUF) is a fun
tion that is realized by a physi
al system,

su
h that the fun
tion is easy to evaluate but the physi
al system is hard to 
hara
terize,

model or reprodu
e.

Physi
al tokens were �rst used as identi�ers in the 1980s in the 
ontext of strategi
 arms

limitation treaty monitoring. The 
on
ept was later investigated for 
ivilian purposes [1℄.

The tokens whi
h were then studied are very hard to reprodu
e physi
ally, but quite easy

to read out 
ompletely, i.e. all the physi
al parameters ne
essary for su

essful identi�
ation

are readily given up by the token. This makes these tokens suitable for systems where the

veri�er knows with 
ertainty that an a
tual token is being probed and that the measuring

devi
e 
an be trusted. However, the tokens are not suitable for online identi�
ation proto
ols

with a remote party. An imposter 
an relatively easily 
opy the data from someone's token,

and then enter that data through a keyboard. The veri�er 
annot tell if a token is a
tually

present.

Truly un
loneable tokens (PUFs) were introdu
ed by Pappu [2, 3℄. These tokens are so


omplex that it is infeasible to fully read out the data 
ontained in a token or to make a
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omputer model that predi
ts the outputs of a token [4℄. This makes PUFs suitable for online

proto
ols as well as veri�
ation involving physi
al probing by untrusted devi
es.

A PUF is a physi
al system designed su
h that it intera
ts in a 
ompli
ated way with

stimuli (
hallenges) and leads to unique but unpredi
table responses. A PUF 
hallenge and the


orresponding response are together 
alled a Challenge-Reponse-Pair (CRP). A PUF behaves

like a keyed hash fun
tion; the physi
al system 
onsisting of many `random' 
omponents

is equivalent to the key. In order to be hard to 
hara
terize, the system should not allow

eÆ
ient extra
tion of the relevant properties of its intera
ting 
omponents by measurements.

Physi
al systems that are produ
ed by an un
ontrolled produ
tion pro
ess, e.g. random

mixing of several substan
es, turn out to be good 
andidates for PUFs. Be
ause of this la
k

of 
ontrol, it is hard to produ
e a physi
al 
opy of the PUF. Furthermore, if the physi
al

fun
tion is based on many 
omplex intera
tions, then mathemati
al modeling is also very

hard. These two properties together are referred to as Un
loneability.

1.2 Appli
ations

From a se
urity perspe
tive the uniqueness of the responses and un
loneability of the PUF

are very useful properties. Be
ause of these properties, PUFs 
an be used as unique identi�ers

[1, 5, 6, 7℄, means of tamper-dete
tion and/or as a 
ost-e�e
tive sour
e for key generation

(
ommon randomness) between two parties [8, 9℄. By embedding a PUF inseparably into a

devi
e, the devi
e be
omes uniquely identi�able and un
loneable. Here `inseparable' means

that any attempt to remove the PUF will with very high probability damage the PUF and

destroy the key material it 
ontains. A wide range of devi
es 
an be equipped with a PUF

in this way, e.g. smart-
ards, 
redit 
ards, RFID tags, value papers, 
hips, se
urity 
ameras,

et
.

Several se
ure identi�
ation and authenti
ation proto
ols based on CRPs have been worked

out in [8, 10, 11℄. Typi
ally there are two phases: enrollment and veri�
ation. In the enroll-

ment phase, a number of 
hallenges is 
hosen randomly, and the 
orresponding PUF responses

are measured and then stored in some form. In the veri�
ation phase the PUF is subje
ted

to one or more of the enrollment 
hallenges. The response is 
he
ked against the enrolled

response data.

We distinguish between on the one hand `identi�
ation', where a dire
t 
omparison is

made between unpro
essed PUF outputs, usually involving a 
orrelation or distan
e measure,

and on the other hand `authenti
ation', where a 
ryptographi
 key is derived from the PUF

output for performing a 
ryptographi
 
hallenge-response proto
ol. In this paper we fo
us

on the latter 
ase. The typi
al s
enario is that the veri�er and the PUF holder are separated

and 
ommuni
ate over an inse
ure 
hannel.

For 
ryptographi
 proto
ols it is important to ensure that exa
tly the same bit string is

derived from the enrollment and veri�
ation measurements in spite of the measurement noise.

To this end so-
alled `helper data' is generated for ea
h CRP, data that des
ribes how the PUF

output should be pro
essed, quantized et
. to obtain a noise-resilient bit string. The helper

data for ea
h enrolled 
hallenge is stored together with the 
hallenge. In most appli
ations

only the keys need to be kept se
ret. Hen
e, the 
hallenges and helper data 
an be stored

anywhere (e.g. 
onveniently on the PUF), while the keys must either be stored in a safe pla
e

or in some en
rypted or hashed form. In the veri�
ation phase the veri�er sele
ts an enrolled


hallenge with the 
orresponding helper data. The PUF is subje
ted to this 
hallenge and

the PUF output is 
ombined with the helper data to obtain a bit string. If this bit string
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Figure 1: Stru
ture of a 
oating PUF. The sensor wires are perpendi
ular to the paper.

is exa
tly equal to the enrolled key, then the 
ryptographi
 
hallenge-response proto
ol will

result in a su

essful mat
h, 
onvin
ing the veri�er that the PUF is authenti
. Furthermore,

at the end of the proto
ol the veri�er and the PUF holder possess a shared se
ret that they


an use e.g. as a session key. (Well designed proto
ols hide this key from eavesdroppers).

A spe
ial 
lass of appli
ations be
omes possible if so-
alled `
ontrol' is introdu
ed [10℄. A

Controlled PUF (CPUF) is a PUF that is bound to a pro
essor whi
h 
ompletely governs the

input and output. The 
hip 
an prohibit frequent 
hallenging of the PUF and forbid 
ertain


lasses of 
hallenges. It 
an s
ramble in
oming 
hallenges. Furthermore, it 
an hide the

physi
al output of the PUF, revealing to the outside world only indire
t information derived

from the output, e.g. an en
ryption or hash. This 
ontrol layer substantially strengthens the

se
urity, sin
e an atta
ker 
annot probe the PUF at will and 
annot interpret the responses.

CPUFs allow for new appli
ations su
h as `
erti�ed exe
ution' and `
erti�ed measurement'

[8, 10℄.

1.3 Coating PUFs

Several physi
al systems are known on whi
h PUFs 
an be based. The main types are opti
al

PUFs [2, 3℄, 
oating PUFs [8℄, sili
on PUFs [11, 12℄ and a
ousti
 PUFs [8℄. In this paper we

dis
uss 
oating PUFs. The idea of using an `a
tive 
oating' was proposed in [13℄ and further

developed in the 
ontext of PUFs in [8℄.

Coating PUFs are integrated with an IC (see Fig. 1). The IC is 
overed with a 
oating


onsisting of e.g. aluminophosphate, whi
h is doped with random diele
tri
 parti
les. By

random diele
tri
 parti
les we mean several kinds of parti
les of random size and shape with

a relative diele
tri
 
onstant "

r

di�ering from the diele
tri
 
onstant of the 
oating matrix. In

order to 
hallenge the 
oating PUF, an array of metal sensors (e.g. a 
omb stru
ture of wires),

is laid down dire
tly beneath the passivation layer. SuÆ
ient randomness is only obtained if

the diele
tri
 parti
les are approximately of the same size as the distan
e between the sensor

parts, or smaller.

A 
hallenge 
orresponds to a voltage of a 
ertain frequen
y and amplitude applied to the

sensors at a 
ertain point of the sensor array. Be
ause of the presen
e of the 
oating material

with its random diele
tri
 properties, the sensor plates with the material in between behave

as a 
apa
itor with a random 
apa
itan
e value. The 
apa
itan
e value is then 
onverted into

a bit string whi
h 
an be used as an identi�er or a key.

Coating PUFs have the advantage of possessing a high degree of integration. The matrix


ontaining the random parti
les 
an be part of a tamper-resistan
e 
oating. A 
oating PUF
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also has the advantage that it is easily turned into a Controlled PUF (CPUF), as it is insepa-

rably bound to the underlying devi
e. The 
ontrol ele
troni
s 
an simply be put underneath

the 
oating.

1.4 Information-theoreti
al approa
h to PUFs

A general information-theoreti
al framework for the analysis of the se
urity of PUFs was

formulated in [4℄. The 
entral 
on
ept is the entropy of a measurement, i.e. the amount of

information about the PUF's stru
ture that is revealed by a measurement. One needs the

notion of `PUF spa
e' or 
on�guration spa
e, a dis
rete spa
e where ea
h point 
orresponds

to a possible PUF realisation. A measurement is represented as a partitioning of the PUF

spa
e, and the measurement entropy is the entropy of this partitioning. This formalism will

be used for the analysis in se
tions 3 and 4.

1.5 Contributions of this paper

This paper 
ontains the following novel 
ontributions:

� We introdu
e a model of a 
oating PUF measurement at one lo
ation in the sensor array,

by des
ribing ea
h sensor as a parallel plate 
apa
itor. The geometry is simpli�ed, but

the e�e
ts of �nite parti
le size are in
orporated, as well as the insensitivity of the


apa
itan
e to parti
le permutations.

� Using our model, we 
ompute the entropy of the probability distribution fun
tion of

the 
apa
itan
e. This `inherent entropy' is the absolute upper bound on the extra
table

information. It 
orresponds to `perfe
t' measurements, i.e. without any noise. The

inherent entropy s
ales as

p

n(lnn)

3=2

, with n the number of parti
les that �ts linearly

between the 
apa
itor plates.

� There are two 
ountera
ting e�e
ts at work. On the one hand, smaller parti
le size

leads to more inherent PUF entropy. On the other hand, smaller parti
les imply better

mixing, whi
h leads to a redu
ed varian
e of the 
apa
itan
e. (This is a `law of large

numbers' e�e
t proportional to 1=

p

#parti
les). The latter puts a lower bound on the

useful parti
le size, sin
e a large 
apa
itan
e varian
e is needed in order to obtain a

good signal to noise ratio. We derive an optimum parti
le size that yields the highest

number of extra
table bits.

� In the regime of noisy measurements, the number of extra
table bits is largest if (i)

the relative diele
tri
 
onstants of the two 
oating materials di�er strongly, and (ii) the

mixture 
ontains only a small fra
tion of the substan
e with the low diele
tri
 
onstant,

namely of the order of the ratio of the two 
onstants.

� If the measurement noise � is very small, of the order 1=(density of states), individual


apa
itan
e states may be resolved. The density of states has a sharp peak, but the


apa
itan
es most likely to be measured lie outside this peak. Hen
e, if � is made so

small that individual states 
an just be resolved, one enters into a regime where the

�nite density of states limits the extra
table entropy, while the extra
table entropy is

still far smaller than the inherent entropy.
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2 Modelling 
oating PUFs

2.1 Motivation

Our aim is to estimate the maximum amount of information that 
an be extra
ted from

a 
oating PUF. To this end we formulate a physi
al model of a 
apa
itan
e measurement

(se
tion 2.2) and 
ompute the Shannon entropy of the 
apa
itan
e distribution. We do not

aim for an exa
t answer, but we want to know the order of magnitude and the s
aling

behaviour, i.e. the dependen
e of the entropy on all the important model parameters su
h as

the distan
e between the sensor wires, the diele
tri
 
onstants, the size of the random parti
les

and the relative amounts of the random parti
les. We di�erentiate between two regimes:

1. Measurements with very little noise. In this 
ase the amount of information that


an be extra
ted is limited by the entropy of the PUF itself. The PUF entropy is �nite

due to the �nite size of the random parti
les. The 
omputation is presented in se
tion 3.

2. Noisy measurements. In this 
ase the �nite parti
le size e�e
ts are unnoti
eable,

be
ause they are overshadowed by the noise. The measurement entropy is 
ompletely

determined by the signal to noise ratio. This 
omputation is presented in se
tion 4.

2.2 The model

For the sake of simpli
ity, we model the sensor wires and the 
oating above them as an ordi-

nary 
apa
itor 
onsisting of two parallel ele
trode plates with a diele
tri
 substan
e between

them. This simpli�
ation will of 
ourse fail to represent the spatially varying ele
tri
 �eld

produ
ed by the wires. However, we are interested only in the statisti
al properties of parti-


le distributions within the region that 
ontains most of the ele
tri
 �eld density. As a �rst

approximation, we idealize the geometry of the �eld.

As a �rst step we study the 
apa
itor shown in Fig. 2a, a parallel-plate 
apa
itor �lled

with layers 1 : : : n of equal thi
kness a=n with diele
tri
 
onstants "

1

: : : "

n

. It is well known

[14℄ that its 
apa
itan
e is given by

C

n layers

= C

ref

�

 

1

n

n

X

s=1

1

"

s

!

�1

; C

ref

=

A"

0

a

; (1)

where A is the plate area, "

0

the permittivity of the va
uum, and C

ref

the 
apa
itan
e of the

system with va
uum between the plates, whi
h we will use as a referen
e value throughout

the paper. The result (1) has several invarian
e properties. A re-ordering of the layers does

not 
hange the 
apa
itan
e. Additionally, C remains un
hanged even if we split up a layer,

so that we have more than n layers, and then re-order. In fa
t, as long as we make 
hanges

in the verti
al dire
tion only, the 
apa
itan
e depends just on the average value of 1=".

As a se
ond step we look at the 
apa
itor shown in Fig. 2b, with m 
olumns of di�erent

diele
tri
 material. This 
apa
itor 
an, in good approximation, be 
onsidered as m parallel


omponents, and hen
e its total 
apa
itan
e is the sum of the parts,

C

m 
olumns

= C

ref

�

1

m

m

X

j=1

"

j

(2)

We observe that only the average diele
tri
 
onstant matters.
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Figure 2: Motivation of the model. (a) A 
apa
itor 
onsisting of several diele
tri
 layers

parallel to the plates. (b) Diele
tri
 
olumns perpendi
ular to the plates. (
) Combination of

layers and 
olumns. The volume between the plates is �lled with random diele
tri
 building

blo
ks.

This leads us to the 
onstru
tion of our model (see Fig. 2
). Between the plates there is a

mixture of two substan
es whi
h have di�erent diele
tri
 
onstants, "

1

and "

2

. Without loss

of generality we will always assume that "

2

< "

1

.

The volume is dis
retized: there are m 
olumns of n `voxels'. When the mixture is

produ
ed, the probability that a voxel will be o

upied by substan
e 1 is denoted as p, and

the probability of having substan
e 2 is q = 1� p. The number of voxels in the j-th 
olumn

that ends up �lled with substan
e 1 is denoted as N

j

. Writing the total 
apa
itan
e as a sum

of parallel 
olumn 
apa
itan
es we have

C =

m

X

j=1

C

j

; C

j

=

C

ref

m

� n

�

N

j

"

1

+

n�N

j

"

2

�

�1

: (3)

Note that C is invariant under swaps of 
omplete 
olumns and under voxel shifts within a


olumn.

For 
onvenien
e later on, we introdu
e the following notation. The number of 
olumns


ontaining pre
isely k parti
les of substan
e 1 (k = 0 : : : n) is denoted as �

k

. The set f�

k

g

satis�es

P

n

k=0

�

k

= m, sin
e the total number of 
olumns is m. The 
apa
itan
e is then

expressed as

C =

n

X

k=0

�

k

�

k

; �

k

=

C

ref

m

� n

�

k

"

1

+

n� k

"

2

�

�1

: (4)

Note that dis
repan
ies may arise between our model and the geometry of Fig. 1 when the

diele
tri
 
onstants be
ome very large. In our model the ele
tri
 �eld lines are for
ed to move

perpendi
ular to the plates, through the `
olumns', while in Fig. 1 the �eld lines are free to

avoid the 
oating altogether. However, we expe
t our model to be useful for reasonable values

of "

1

; "

2

.

2.3 The density of states

First we examine the density of states (d.o.s.) in our model. The d.o.s. is the number of

states that exist per in�nitesimal interval on the 
apa
itan
e axis, and we will denote it as
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Figure 3: Density of states for n = 180, m = n. Left: Lo
ation of the peak as a fun
tion of

"

2

="

1

. Right: Width of the peak as a fun
tion of "

2

="

1

. The squares are numeri
al simulation

results. The dashed 
urve in the left graph 
orresponds to (6). The dashed 
urve in the right

graph is the estimate (7) with � = 0:9. All 
apa
itan
es have been expressed in units of C

ref

"

1

.

D(C). The total number of 
apa
itan
e values in the model is given by the number of points

in the �-latti
e, i.e. the number of ways to partitionm into n+1 non-negative integers, where

the ordering is important.

N

states

=

m

X

�

0

=0

m��

0

X

�

1

=0

� � �

m��

0

������

n�2

X

�

n�1

=0

1 =

�

n+m

n

�

: (5)

The d.o.s. must satisfy

R

C

ref

"

1

C

ref

"

2

D(C)dC = N

states

. The states are distributed non-uniformly

over the C-axis. In appendix B we estimate the shape ofD(C) based on a typi
al set argument.

The highest 
on
entration of states o

urs at C = C

peak

. For symmetry reasons, this point

o

urs when all the �

k

are equal, i.e. �

k

= m=(n+1) for all k. The 
orresponding 
apa
itan
e

C

peak

is given by

C

peak

�

C

ref

"

�1

2

� "

�1

1

ln

"

1

"

2

: (6)

Terms of order 1=n are negle
ted. In the vi
inity of this peak, the d.o.s. turns out to have an

almost gaussian distribution with varian
e �,

�

2

� �

2

C

2

ref

n

�

�

"

1

"

2

� C

2

peak

	

; (7)

where � is a `
urve �tting' 
onstant of order unity. Fig. 3 shows that (7) has good 
orrespon-

den
e with simulation results. However, the typi
al set approximation is only valid 
lose to

the peak. The tails of the d.o.s. are not gaussian.

2.4 The probability distribution of the 
apa
itan
e

Without loss of generality we assume that the ratio "

2

="

1

is 
hosen to be a non-algebrai


number. In this way the mapping from f�

k

g to C is bije
tive, i.e. the 
apa
itan
e is uniquely

determined by the set f�

k

g. (A proof is presented in Appendix A). This means that the

probability distribution of C is equivalent to the probability distribution of f�

k

g. The latter
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is obtained as follows. First we introdu
e the notation x

k

for the probability of �nding k

voxels with substan
e 1 in a given 
olumn. This is the binomial distribution,

x

k

=

�

n

k

�

p

k

q

n�k

: (8)

Then we note that the total probability of a 
on�guration f�

k

g is a multipli
ation of probabili-

ties x

k

, one for ea
h 
olumn. Finally, the 
apa
itan
e is invariant under 
olumn permutations,

and hen
e the number of su
h permutations must be taken into a

ount. This brings us to

the following expression,

P

�

=

�

m

�

�

n

Y

k=0

x

�

k

k

;

�

m

�

�

=

m!

�

0

! � � � �

n

!

: (9)

Here we have used the shorthand notation � = f�

k

g with the impli
it 
onstraint

P

n

k=0

�

k

=

m. It is easily veri�ed that the probabilities P

�

add up to unity using the following general

identity [15℄,

X

�

�

m

�

�

n

Y

k=0

Y

�

k

k

= (Y

0

+ � � � + Y

n

)

m

: (10)

A useful identity (for the 
omputation of moments) 
an be derived from (10) by taking the

derivative �=�Y

s

,

X

�

�

s

�

m

�

�

n

Y

k=0

Y

�

k

k

= mY

s

(Y

0

+ � � �+ Y

n

)

m�1

: (11)

3 Entropy of a `noiseless' measurement

3.1 Analyti
 part of the 
al
ulation

The goal is to 
ompute the Shannon entropy H

�

of the distribution (9). The �rst steps 
an

be done analyti
ally. We start by expanding lnP

�

H

�

= �

X

�

P

�

lnP

�

= �

n

X

k=0

lnx

k

X

�

P

�

�

k

�

X

�

P

�

ln

�

m

�

�

: (12)

The �-sum in the �rst right-hand-side term is evaluated using the identity (11) with Y

k

! x

k

,

yielding

P

�

P

�

�

k

= mx

k

. Rewriting the ln of the binomial in the last term as a sum of

logarithms, we get

H

�

= �m

n

X

k=0

x

k

lnx

k

� lnm! +

n

X

k=0

X

�

P

�

ln(�

k

!): (13)

All three terms in (13) have a 
ombinatorial interpretation. The �rst term is m times the

entropy of the binomial distribution x

k

. This represents the measurement entropy of m

separate distinguishable 
olumns. (Note that the 
apa
itan
e measurement in our model does

not `see' the lo
ations of 
olumns.)

The se
ond term is the entropy of permuting the m 
olumns. The third term is the

average entropy of permuting only those 
olumns that have the same �lling value k, for all k

8



separately. The se
ond and third term together represent the average entropy of the

�

m

�

�

distin
t 
olumn 
on�gurations that are 
onsistent with a given set �.

The last term in (13) 
an be further evaluated. The �-sum averages a quantity that

depends only on one 
omponent, �

k

, of the set �. Hen
e the average w.r.t. the probability

P

�


an be repla
ed by the average w.r.t. the marginal distribution P

�

k

of the 
omponent �

k

.

H

�

= �m

n

X

k=0

x

k

lnx

k

� lnm! +

n

X

k=0

m

X

�

k

=0

P

�

k

ln(�

k

!): (14)

The marginal distribution is given by

P

�

k

=

�

m

�

k

�

x

�

k

k

(1� x

k

)

m��

k

: (15)

The derivation is given in appendix C. Note that P

�

k

is a binomial distribution 
orresponding

to �

k

out of m events with base probability x

k

. This is what one would intuitively expe
t.

As x

k

itself is a binomial in k, we have `nested' binomial distributions.

3.2 Approximation

We 
annot evaluate the third term in (14) exa
tly. However, we 
an make a good approxi-

mation for n� 1, m�

p

n. (We remind the reader that m / n in the 2D 
ase and m / n

2

in the 3D 
ase). We make use of the fa
t that both binomial distributions P

�

k

and x

k

are

sharply peaked, and that x

k


an be approximated by a normal distribution N

np;�

(k) in the

vi
inity of its peak, with � =

p

npq. Furthermore, we de�ne a 
onstant 
 and an interval

I




= (np� 
�; np+ 
�) su
h that mx

k

> 1 for k 2 I




. The details of the 
al
ulation are shown

in appendix D. The result is

H

�

�

1

3




3

� +O(
�) ; 
 = f

s

ln

m

2

2�npq

; (16)

where f is a numeri
al 
onstant of order one. Fig. 4 shows that the approximation is quite

a

urate.

There is an intuitive way of understanding the s
aling H

�

/ 


3

�. The entropy is ap-

proximately the log of the number of latti
e points in the �-
on�guration latti
e that 
arry

substantial probability. The probability is 
on
entrated around a sharp peak at h�

k

i = mx

k

.

In ea
h of the n+ 1 dimensions the standard deviation is

p

mx

k

. However, in most of these

dimensions

p

mx

k

is far less than one latti
e point, and hen
e these hardly 
ontribute to the

entropy. In the 
ontributing dimensions (k 2 I




) the standard deviation is of order

p

mx

np

.

Sin
e jI




j = 2
� we then get H

�

/ ln(

p

mx

np

)

2
�

� 
� ln(m=

p

n) � 


3

�.

In the 
ase of a two-dimensional 
apa
itor, m / n, where the proportionality 
onstant

depends on the length and the width of the 
apa
itor. In the three-dimensional 
ase, m will

s
ale as m / n

2

. In both 
ases we have lnm / lnn, and therefore H

�

s
ales as

H

�

/

p

n(lnn)

3=2

: (17)

This equation for the entropy H

�

is the main result of this se
tion.

9
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Figure 4: Intrinsi
 entropy of a 
apa
itor for m = n,p =

1

2

. The squares show the result of

numeri
al evaluation of (14). The dotted 
urve is the approximation (50) with f = 1:27. The

entropy is expressed in `natural units', i.e. the logarithm with base e is used.

4 Entropy of a noisy measurement

In the 
ase of a noisy measurement, the noise is larger than the e�e
ts 
aused by the �niteness

of the parti
le size. For all intents and purposes the 
apa
itan
e 
an be treated as a 
ontinuous

variable, i.e. a sto
hasti
 variable C with a smooth probability distribution fun
tion �(C).

In order to obtain reprodu
ible measurements in spite of the noise, the C-axis is divided into

bins of size �, where � is 
hosen proportional to the noise amplitude.

The entropy H

�

[�℄ of the thus dis
retised distribution is given by [16℄

H

�

[�℄ = h[�℄� ln�; (18)

where we have introdu
ed the di�erential entropy h[�℄ = �

R

dC�(C) ln�(C). If the noise

level is redu
ed, h[�℄ remains 
onstant, but the term � ln� grows, and hen
e H

�

grows. If

the noise is made very small, the diele
tri
 parti
le size be
omes noti
eable and (18) be
omes

invalid. Then one has to use the results of se
tion 3.

The di�erential entropy h[�℄ is readily estimated. In appendix E we give an approximation

for the average �




and varian
e �




of the 
apa
itan
e, using the model de�ned in se
tion 2.2

and the 
apa
itan
e distribution P

�

(9). For n� 1 we have

�




�

C

ref

p"

�1

1

+ q"

�1

2

; �




� �




r

pq

nm

�

j"

�1

1

� "

�1

2

j

p"

�1

1

+ q"

�1

2

: (19)

Fig. 5 
ompares (19) to numeri
al simulations. The error in �




is 2%, while the error in �




is

0.2%.

Note that �




is a de
reasing fun
tion of n andm. This 
an be understood as follows. When

the number of random parti
les between the plates is large, the probability of deviating from

the average value hki = np is small for all 
olumns. A �ner mixing pro
ess allows for a better

approximation of perfe
tly uniform mixing of the two substan
es.

If the 
apa
itan
e distribution is sharply peaked (�




=�




� 1) then we 
an repla
e it with a

gaussian distribution without mu
h loss of a

ura
y. The di�erential entropy of the gaussian

10
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Figure 5: Left: Probability distribution of the 
apa
itan
e. Right: �




as a fun
tion of

n. The dotted line represents the estimate (19). The squares show the statisti
al result of

10

4

randomly generated �llings. The parameters are m = n = 70, p =

1

2

, "

2

= "

1

=2, and


apa
itan
es have been normalized w.r.t. C

ref

"

1

.

distribution N

�




;�




is given by [16℄

h[N

�




;�




℄ = ln(�




p

2�e): (20)

Combining (18) and (20) we 
an write the entropy of the dis
retised distribution as

H

�

[�℄ = ln(

�




�

p

2�e): (21)

This equation has the form of a 
hannel 
apa
ity for a noisy 
hannel with signal to noise ratio

(�




=�)

2

.

4.1 Optimal 
hoi
e of "

1

; "

2

; p

In the derivation of (21) it was assumed that the distribution is sharply peaked. However, it

is possible to obtain a rather broad distribution. Let (1; "

max

), with "

max

� 1, be the interval

from whi
h "

1

; "

2

may be 
hosen. Take "

1

= "

max

and make q and "

2

="

1

very small. In this

limit we have

�




!

C

ref

"

1

p

nm

p

q "

2

="

1

(q + "

2

="

1

)

2

: (22)

�





an be made large by 
hoosing either (a) q = O("

2

="

1

) � 1 or (b) q � "

2

="

1

�

p

q.

For both approa
hes we show that the broadening of the distribution is not unlimited. The

lowest feasible value of q must satisfy q > 1=(nm). Otherwise, there would be only a small

probability of having substan
e 2 in the 
apa
itor at all, whi
h 
learly is not desirable.

� Case (a): We set "

2

="

1

= �q, with � a 
onstant of order unity. This gives

�




!

C

ref

"

1

1 + 1=�

; �




!

C

ref

"

1

�

(1 + �)

2

1

p

qnm

�

C

ref

"

1

4

p

qnm

(23)

with equality for � = 1. Sin
e q > 1=(nm), �





annot ex
eed C

ref

"

1

=4, i.e. one quarter

of the full 
apa
itan
e range.
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� Case (b): We 
an realize the 
hoi
e q � "

2

="

1

�

p

q by setting "

2

="

1

= Bq




, with B

a 
onstant of order unity and 
 2 (

1

2

; 1). This yields

�




! C

ref

"

1

; �




!

C

ref

"

1

B(nm)

1�


; (24)

whi
h is far smaller than C

ref

"

1

sin
e nm� 1.

We 
on
lude that no reasonable 
hoi
e of q and "

2


an give rise to a �




ex
eeding C

ref

"

1

=4.

In pra
ti
e �




does not even 
ome 
lose to this value, be
ause q has to be 
hosen mu
h larger

than 1=(nm) to get substantial mixing. Furthermore, in 
ase a the parameter q 
annot be

mu
h smaller than 1="

max

, whi
h may be a further impediment to lowering q.

It is also important to note that the intrinsi
 entropy H

�

(16) be
omes quite small in the

limit of small q. In fa
t, a point q

0

may even exist where H

�

gets smaller than H

�

[�℄ (21). In

that 
ase (21) is 
learly not the 
orre
t expression for the entropy. If we set "

2

="

1

= q with

1

nm

< q � 1 (
ase a), then the 
rossover point H

�

[�℄ = H

�

is given by the following impli
it

equation for q

0

,

nq

0

�

ln

m

2

2�nq

0

�

3

= 9

"

ln

C

ref

"

1

p

2�e

4�

p

m

p

nq

0

#

2

(25)

Here we have put f = 1. Note that (25) 
an be read as a relationship between the three

parameters m, C

ref

"

1

=� and nq

0

. The extra
table entropy in this regime is

H = min

(

ln

C

ref

"

1

p

2�e

4�

p

m

p

nq

;

1

3

p

nq

�

ln

m

2

2�nq

�

3=2

)

(26)

The point "

2

="

1

= q = q

0

, with q

0

de�ned by (25), represents the optimal parameter 
hoi
e

yielding the highest possible entropy for �xed n and m. It is not a sharply peaked optimum,

however, be
ause of the weak q-dependen
e of ln(1=

p

q) in H

�

[�℄.

In this se
tion we have always assumed that the measurement noise � is so large that

many states �t inside a 
apa
itan
e interval of width �, i.e. we have assumed � > 1=D(C).

In the limit "

2

="

1

! 0 the d.o.s. gets very sharply peaked around C = C

ref

"

2

, su
h that

almost all states are 
on
entrated there (see Fig. 3). This leaves few states in the vi
inity of

C = �




. Thus, if � is small enough, � < 1=D(�




) be
omes a possibility. In that 
ase (21,26)

are valid no longer and the �nite d.o.s. limits the extra
table entropy.

5 Transition between noisy and noiseless regimes; Optimal n

In this se
tion we investigate the limit of small �. As mentioned in the previous se
tion, it


an o

ur for small � that the extra
table entropy is limited by the �nite density of states. A

transition between the `noiseless' and `noisy' regime takes pla
e when the noise � is so small

that individual states on the C-axis 
an be resolved. This happens when 1=� is 
omparable

in magnitude to D(�




). Taking this into a

ount, (21) is repla
ed by

H

�

[�℄ = ln

�

p

2�emin

n

�




�

; D(�




)�




o�

; (27)

where we have assumed that �




=�




is suÆ
iently small, so that the d.o.s. in the interval

(�




� �




; �




+ �




) is approximately 
onstant at D(�




). (We are not looking at `
ase a' here).
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Unfortunately, the results of se
tion 2.3 do not give us the d.o.s. at C = �




, sin
e in

general �




does not lie 
lose to C

peak

(6). We have to resort to another type of approximation

to determine the d.o.s. in the tail of the D(C) distribution. Note that, sin
e �




lies in this

tail, the transition e�e
ts are noti
eable, long before ea
h individual state on the whole C-axis


an be resolved! Consequently, the extra
table entropy (27) will be signi�
antly smaller than

the intrinsi
 entropy H

�

even when D(�




) < 1=�.

We de�ne ÆC as the smallest 
apa
itan
e step that we 
an generate by applying (integer)


hanges Æ�

k

to the `average' 
on�guration �

k

= mx

k

. This gives us the estimate D(C) �

1=ÆC. The best method we 
ould identify is to 
enter the Æ�

k

parameters around the 
enter

of the �

k

distribution (k = np), and to arrange them in su
h a way that they generate an

N -th derivative. For instan
e, if we take

Æ�

np+v

= (�1)

v+1

�

N

1

2

N + v

�

; v 2 f�

1

2

N; : : : ;

1

2

Ng (28)

then the 
apa
itan
e step ÆC =

P

k

�

k

Æ�

k

is the dis
retised derivative

�

N

�k

N

�

k

at k = np. It

turns out that for n > 10

5

the best result is obtained at N = 2. For n < 10

5

the optimal N


an be mu
h higher. However, the allowed values of Æ�

k

are bounded by the `starting values'

mx

k

, and this bounds N . The highest allowed N satis�es Æ�

np

= �mx

np

with Æ�

np

de�ned

in (28). Using Stirling's approximation for the binomial, the bound 
an be expressed as

2

N+1

p

N

=

m

p

npq

: (29)

The resulting ÆC is

ÆC �

�

N

�k

N

�

k

�

�

�

�

k=np

= C

ref

N !

mn

N

("

�1

2

� "

�1

1

)

N

(p"

�1

1

+ q"

�1

2

)

N+1

: (30)

When ÆC (30) is equal to �, then the transition between the `noisy' and `noiseless' regime

takes pla
e.

The point of equality, � = ÆC, 
an be seen as an equation expressing the transition value

of � as a fun
tion of n, m, "

1

, "

2

and p. Conversely, the equation 
an also be read to give

the transition values for n, m as a fun
tion of �, "

1

, "

2

and p. If we write m = �n

d�1

, with

� a proportionality 
onstant and d the number of dimensions (2 or 3) of the 
apa
itor, then

the transition value of n is given by the impli
it equation

n

trans

=

�

C

ref

N !("

�1

2

� "

�1

1

)

N

��(p"

�1

1

+ q"

�1

2

)

N+1

�

1

N+d�1

(31)

where N depends on n

trans

logarithmi
ally a

ording to (29),

N � log

2

�

e

p

pq

+ (d�

3

2

) log

2

n

trans

: (32)

Eq. (31) roughly de�nes the optimal parti
le size for a given noise level. On the one hand,

larger parti
les lead to a smaller number of distinguishable 
apa
itan
e values (ÆC grows)

within the region of high probability, and hen
e the measurable entropy de
reases. On the

other hand, taking smaller parti
les also redu
es the measurable entropy, sin
e the ratio �




=�
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de
reases. (Remember that �




/ 1=

p

n). For small 
hanges in n, N is almost a 
onstant,

and (31) gives a power law dependen
e n

trans

/ (1=�)

1

N+d�1

, with logarithmi
 
orre
tions.

Using this approximation, we see that the full �-dependen
e of the entropy H

�

(following

from �




/ (nm)

�

1

2

) is given by �

N�1+d=2

N�1+d

ln�.

6 Summary

Coating PUFs are a 
ost-e�e
tive way of storing 
ryptographi
 key material in an un
loneable

way. An IC is 
overed with a 
oating that is doped with random diele
tri
 parti
les. A se
ret

bit string is derived from 
apa
itan
e measurements.

We have introdu
ed a simpli�ed physi
al model of 
oating PUFs by representing ea
h

sensor in the PUF as a parallel plate 
apa
itor. Using this model, we have 
omputed the

intrinsi
 entropy of the mixture between the 
apa
itor plates as a fun
tion of the relative

amounts of the two substan
es, the number of `
olumns' (m), and the number of `slots' in

ea
h 
olumn (n). For large n and m, the intrinsi
 entropy s
ales as

p

n(ln[m=

p

n℄)

3=2

.

The a
tually extra
table information 
an be signi�
antly lower due to measurement noise.

The entropy of a 
apa
itan
e measurement is di
tated by the signal to noise ratio �




=�, where

the `signal' is the varian
e �




of the 
apa
itan
e distribution and the noise � is the un
ertainty

in the measured 
apa
itan
e. The varian
e s
ales as 1=

p

nm, re
e
ting the fa
t that large

deviations from average �lling be
ome in
reasingly unlikely when the mixing be
omes �ner.

For �xed number of parti
les, a large varian
e �




is obtained if one of the diele
tri
 
onstants

is very large ("

1

� 1) and the other 
lose to 1, while the mixing is su
h that the "

1

material

is far more abundant than the other (q = O("

2

="

1

)). However, �





annot be made arbitrarily

large without a penalty, sin
e (a) the inherent entropy, whi
h s
ales as

p

q, will be
ome too

small, and (b) the mixing ratio q has to be larger than 1=(nm) in order for the "

2

material

to be present at all.

At �xed "

1

, "

2

, p, the extra
table entropy has a maximum as a fun
tion of the parti
le

size when the dis
rete 
apa
itan
e steps in the model are approximately equal to the noise

�. The optimal parti
le size s
ales as a power of �, with logarithmi
 
orre
tions.
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A Bije
tive mapping �$ C

In this appendix we prove that 
hoosing a non-algebrai
 value for "

2

="

1

implies a bije
tive

mapping between � and C. (A number is 
alled non-algebrai
 if it 
annot be represented as

the solution of a polynomial equation with integer 
oeÆ
ients).

Let's assume that two ve
tors �

(1)

and �

(2)

yield the same value C. Then

P

k

d

k

�

k

= 0,

where we have de�ned d

k

= �

(1)

k

��

(2)

k

. We rewrite this equation as

P

k

d

k

=(k"

2

="

1

+n�k) = 0.
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Multiplying by

Q

j

(j"

2

="

1

+ n� j) we get

n

X

k=0

d

k

Y

jjj 6=k

(j

"

2

"

1

+ n� j) = 0: (33)

This is a polynomial equation in "

2

="

1

with integer 
oeÆ
ients. Sin
e "

2

="

1

is not an algebrai


number, the equation 
an only be satis�ed if d

k

= 0 for all k. Hen
e �

(1)

= �

(2)

, whi
h


ompletes the proof.

B Density of states; Typi
al set

In this appendix we estimate the shape of the D(C) fun
tion. To this end we treat the �

k

as sto
hasti
 variables with a uniform distribution between 0 and m, subje
t to the 
olle
tive


onstraint

P

n

k=0

�

k

= m. In other words, we employ a `fake' uniform distribution instead

of the a
tual non-uniform probability distribution P

�

(9). Consequently, all points in the

�-latti
e are treated equally. This 
onstru
tion allows us to determine the d.o.s. numeri
ally

by Monte Carlo simulation.

We use the 
on
ept of the `typi
al set' [16℄ of �-
on�gurations. When drawing a random

� from the uniform distribution, there is an overwhelming probability that it will belong to

the typi
al set.

First we determine the `mean' 
apa
itan
e C

peak

. For symmetry reasons, this point o

urs

when all the �

k

are equal, i.e. �

k

= m=(n+1) for all k. The 
orresponding 
apa
itan
e C

peak

is given by

C

peak

=

n

X

k=0

m

n+ 1

�

k

�

Z

1

0

d�

C

ref

�"

�1

1

+ (1� �)"

�1

2

=

C

ref

"

�1

2

� "

�1

1

ln

"

1

"

2

: (34)

Here we have used the de�nition of �

k

(4) and we have approximated the sum by an integral

by introdu
ing � = k=n (i.e.

P

k

! n

R

d�). Furthermore we have negle
ted terms of order

1=n.

We determine the shape of the d.o.s. 
urve by taking the 
ontinuum approximation, i.e.

we treat the �

k

as 
ontinuous variables on the interval [0;m℄. The number of states that

satisfy the two 
onstraints

P

k

�

k

= m and

P

k

�

k

�

k

= C 
an be expressed as an integral

over two Dira
 delta fun
tions that enfor
e those 
onstraints,

D(C) /

Z

m

0

d�

0

� � �

Z

m

0

d�

n

Æ(

n

X

k=0

�

k

�m)Æ(

n

X

k=0

�

k

�

k

� C): (35)

We perform a basis transformation �

k

! �

k

that simpli�es the �rst delta fun
tion. We de�ne

�

0

= (n + 1)

�1=2

P

n

k=0

�

k

and �

j

= (�

0

� �

j

)=

p

2 for 1 � j � n. The inverse relations are

�

0

= �

0

=

p

n+ 1+

p

2=(n+1)

P

n

j=1

�

j

and �

k

= �

0

=

p

n+ 1+

p

2=(n+1)

P

n

j=1

�

j

�

p

2�

k

for

1 � k � n. In the new basis the integrals are of the form

D(C) /

Z

d�

0

� � �

Z

d�

n

Æ(�

0

�

m

p

n+ 1

)

Æ(C

peak

p

n+ 1

m

�

0

+

p

2

m

n

X

j=1

�

j

[C

peak

�m�

j

℄� C): (36)
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The integration intervals of the � variables are more 
ompli
ated than in (35). We Integrate

out the �rst delta fun
tion, whi
h leads to the repla
ement �

0

! m=

p

n+ 1. Next we use an

integral representation for the se
ond delta fun
tion a

ording to Æ(x) = (2�)

�1

R

1

�1

dp e

ipx

.

The exp of the sum ni
ely fa
tors into a produ
t where ea
h fa
tor only depends on a single

�

j

variable.

D(C) /

Z

1

�1

dp

2�

e

�ip[C�C

peak

℄

Z

d�

1

� � �

Z

d�

n

n

Y

j=1

exp ip

p

2

m

�

j

[C

peak

�m�

j

℄: (37)

However, the fa
torisation is in
omplete in the sense that the �

1

� � � �

n

integrals 
annot be

evaluated independently, as the integration bounds on ea
h � variable are a�e
ted by the

other � variables.

At this point we introdu
e an approximation: We estimate the integration intervals based

on the properties of the typi
al set. First of all, from the symmetry between the �

k

it follows

that the bounds on all the �

j

do not depend on j. Furthermore, we 
an think of the d.o.s.

as a probability distribution for C based on 
ontinuous variables �

k

, su
h that ea
h point

in �-spa
e is equally likely. In this view, �

k

does not deviate mu
h from its `average' value

m=(n+1) in the set of typi
al 
on�gurations. Sin
e �

k

has to stay nonnegative, the magnitude

of this deviation will be of the orderm=(n+1). Re
alling the de�nition �

j

= (�

0

��

j

)=

p

2, we

take an estimated interval �

j

2 [�m�=(n+1)

p

2;+m�=(n+1)

p

2℄. Here we have introdu
ed a

numeri
al 
onstant � of order unity whi
h re
e
ts our ignoran
e. Note that our approximation

is valid only in the vi
inity of C = C

peak

, i.e. inside or 
lose to the typi
al set.

Ea
h �-integral is evaluated independently, and the result is

D(C) = N

states

Z

1

�1

dp e

�ip(C�C

peak

)

G(p)

G(p) �

n

Y

k=1

sin


p�(m�

k

� C

peak

)

n+ 1

; (38)

where `sin
' denotes the fun
tion sin
 x = x

�1

sinx. The G(p) is the generating fun
tion for

the distribution of the variable C � C

peak

. All moments of this distribution 
an be obtained

by di�erentiating G at p = 0. As G(p) is even in p, it is 
lear that all odd moments are zero.

The width � of the distribution is given by

�

2

= �

�

2

G

�p

2

�

�

�

�

p=0

=

�

2

(n+ 1)

2

n

X

k=1

(m�

k

� C

peak

)

2

: (39)

The summation of �

2

k


an be approximated by an integration as before, with � = k=n,

m

2

n

X

k=0

�

2

k

� n

Z

1

0

d� [�"

�1

1

+ (1� �)"

�1

2

℄

�2

= n"

1

"

2

; (40)

yielding the result (7)

�

2

� �

2

C

2

ref

n

�

�

"

1

"

2

� C

2

peak

	

: (41)
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C Marginal distribution of �

k

In this appendix we determine the marginal probability distribution (15) of �

k

. The 
ompu-

tation goes as follows. We start with the distribution (9) for the whole set �. One variable

�

k

is singled out of the �-summation, leaving all f�

j

g with j 6= k. Then the identity (10) is

used to evaluate the summation over these n variables.

For some arbitrary fun
tion f we 
an write

X

�

P

�

f(�

k

) =

m

X

�

k

=0

�

m

�

k

�

x

�

k

k

f(�

k

)

X

f�

j

g;j 6=k

(m� �

k

)!

Q

t6=k

�

t

!

n

Y

s;s6=k

x

�

s

s

: (42)

The identity (10), but now for the variables �n�

k

, gives

X

�

P

�

f(�

k

) =

m

X

�

k

=0

�

m

�

k

�

x

�

k

k

(1� x

k

)

m��

k

f(�

k

) =:

m

X

�

k

=0

P

�

k

f(�

k

): (43)

D Approximate entropy

In this appendix we approximate the summations in the last term of (14). The 
omputation


onsists of three steps.

1. We note that the binomial distribution P

�

k

is sharply peaked around h�

k

i = mx

k

. The

valuemx

k

is vanishingly small when k lies in one of the tails of the binomial distribution

x

k

. Hen
e, for `tail' values of k, the 
ontribution to the k-sum will be approximately

P (�

k

= 0) ln(0!) + P (�

k

= 1) ln(1!) + P (�

k

= 2) ln(2!) = P (�

k

= 2) ln(2), whi
h is

vanishingly small be
ause of the negligible P (�

k

= 2).

This means that we only have to sum over those values k that lie in the peak of the

distribution x

k

. The peak is 
entered on k = np and has standard deviation � =

p

npq.

Our summation interval is I




= [np � 
�; np + 
�℄, where the 
onstant 
 is somewhat

arbitrarily de�ned su
h that at the boundaries mx

k

� 1. We have

mx

np�
�

� 1 ; 


2

= 2f

2

ln

m

p

2�npq

; (44)

where f is a numeri
al 
onstant of order unity. Be
ause of the somewhat fuzzy de�nition

of 
, we have to `�t' f to obtain the 
orre
t proportionality 
onstant in H

�

. It turns

out that the best 
hoi
e for f has a weak dependen
e on p and lies between 1.1 and 1.3.

Note that we need m >

p

n, otherwise a solution does not exist.

2. For k 2 I




the distribution P

�

k

is sharply peaked around h�

k

i > 1. In general, for a sharp

distribution of some variable u and some smooth fun
tion f(u) one 
an approximate

hf(u)i � f(hui). Using this te
hnique, we 
an write the third term in (14) as

n

X

k=0

m

X

�

k

=0

P

�

k

ln(�

k

!) �

X

k2I




ln(mx

k

)!

�

X

k2I




ln

p

2�mx

k

+m

X

k2I




x

k

lnx

k

+m ln

m

e

X

k2I




x

k

: (45)
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In the last step we have used the Stirling approximation. Substitution of (45) into (14)

gives

H

�

�

X

k2I




ln

p

2�mx

k

�m ln

m

e

X

k2tail

x

k

�m

X

k2tail

x

k

lnx

k

; (46)

where we have negle
ted terms of order lnm.

3. We 
an approximately evaluate the summations in (46) by repla
ing x

k

for k 2 I




by a gaussian distribution with average np and standard deviation � =

p

npq. The

approximation holds for jk � npj � n.

Then we repla
e the summations by integrations. The �rst term gives

Z

np+
�

np�
�

dk ln

p

2�mx

k

�

1

3




3

� + 
� ln

p

2�: (47)

In the se
ond term of (46) we get

1�

Z

np+
�

np�
�

dk x

k

� 1� Erf




p

2

�

q

2

�




�1

e

�


2

=2

=

2�

m


; (48)

where we have used the asymptoti
 expansion of the Erf fun
tion for large arguments.

For the 
omputation of the third term in (46) we note that the full k-sum would yield the

entropy H

np

of the binomial distribution, whi
h we know [17℄ to be H

np

= ln(�

p

2�e)+

O(1=n). We 
al
ulate the tail entropy as the full entropy H

np

minus the entropy in the

peak,

H

np

+

Z

np+
�

np�
�

dk x

k

lnx

k

� [1� Erf




p

2

℄ ln(�

p

2�e)�




p

2�

e

�


2

=2

�

2�

m


ln(m

p

e): (49)

Comparison of (47), (48) and (49) shows that the �rst term in (46) has 
ontributions

of order 


3

� and 
�, while the se
ond and third term in (46) partly 
an
el ea
h other,

leaving only a 
ontribution of order 
=�.

The �nal result is

H

�

�

1

3




3

� + 
� ln

p

2� + 3�=
: (50)

E Average and varian
e of the 
apa
itan
e

In this appendix we estimate the average �




and standard deviation �




of the 
apa
ity C =

P

k

�

k

�

k

(4). We have �




= hCi

�

=

P

k

�

k

h�

k

i

�

and

�

2




=




C

2

�

�

� hCi

2

�

=

n

X

k;l=0

�

k

�

l

[h�

k

�

l

i

�

� h�

k

i

�

h�

l

i

�

℄ (51)

where the notation h�i

�

indi
ates averaging with respe
t to P

�

(9). We use the identity (11)

to 
ompute the expe
tation values analyti
ally,

h�

k

i

�

= mx

k

; h�

k

�

l

i

�

� h�

k

i

�

h�

l

i

�

= �mx

k

x

l

+ Æ

kl

mx

k

: (52)
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Substitution into (51) gives

�




= m h�

k

i ; �

2




= m

h




�

2

k

�

� h�

k

i

2

i

: (53)

The notation h�i indi
ates averaging w.r.t. the distribution x

k

. Analyti
 
omputation does

not yield a 
losed-form solution. Hen
e we approximate as follows. We de�ne k = np+ �u,

where � =

p

npq is the standard deviation of x

k

. In terms of the new variable u, whi
h is of

order 1 in the peak of x

k

, we 
an write

�

k

=

C

ref

m[p"

�1

1

+ q"

�1

2

℄

�

1

1 + u 

;  =

�

n

�

"

�1

1

� "

�1

2

p"

�1

1

+ q"

�1

2

: (54)

For n� 1 we 
an make use of the fa
t that  = O(1=

p

n) to make a Taylor expansion in  

to se
ond order. Sin
e hui = 0 and




u

2

�

= 1 we obtain

�

1

1 +  u

�

� 1 +  

2

�

1

(1 +  u)

2

�

�

�

1

1 +  u

�

2

� (1 + 3 

2

)� (1 + 2 

2

) =  

2

: (55)

This results in

�




=

C

ref

p"

�1

1

+ q"

�1

2

; �




= C

ref

�

r

pq

nm

�

�

�

"

�1

1

� "

�1

2

�

�

[p"

�1

1

+ q"

�1

2

℄

2

: (56)
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