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Abstract. This paper proposes a new e�cient signature scheme from bilinear maps that is

secure in the standard model (i.e., without the random oracle model). Our signature scheme

is more e�ective in many applications (e.g., blind signatures, group signatures, anonymous

credentials etc.) than the existing secure signature schemes in the standard model. As typical

applications of our signature scheme, this paper presents e�cient blind signatures and par-

tially blind signatures that are secure in the standard model. Here, partially blind signatures

are a generalization of blind signatures (i.e., blind signatures are a special case of partially

blind signatures) and have many applications including electronic cash and voting. Our blind

signature scheme is more e�cient than the existing secure blind signature schemes in the

standard model such as the Camenisch-Koprowski-Warinsch [9] and Juels-Luby-Ostrovsky

[24] schemes. Our partially blind signature scheme is the �rst one that is secure in the stan-

dard model and it is also e�cient (as e�cient as our blind signatures). The security proof of

our blind and partially blind signature schemes requires the 2SDH assumption, a stronger

variant of the SDH assumption introduced by Boneh and Boyen [7]. This paper also presents

an e�cient way to convert our (partially) blind signature scheme in the standard model to

a scheme secure for a concurrent run of users in the common reference string (CRS) model.

Finally, we present a blind signature scheme based on the Waters signature scheme.

1 Introduction

1.1 Background

Digital Signatures: The concept of digital signatures was invented by Di�e and Hellman [18],

and their security was formalized by Goldwasser, Mical and Rivest [23]. A secure signature scheme

exists if and only if a one-way function exists [28, 36]. However, the general solution is far from

yielding any practical applications.

Using the random oracle model, much more e�cient secure signature schemes have been pre-

sented such as RSA-FDH, RSA-PSS, Fiat-Shamir and Schnorr signature schemes. However, the

random oracle model cannot be realized in the standard (plain) model. In addition, signatures with

hash functions (random oracles) are less suitable for several applications (e.g., group signatures).

Several e�cient schemes that are secure in the standard model have recently been presented.

There are two classes of such schemes, some are based on the strong RSA assumption (i.e., based

on the integer factoring (IF) problem), while the others are based on bilinear maps (i.e., based

on the discrete logarithm (DL) problem). The Camenisch-Lysyanskaya [11], Cramer-Shoup [16],

Fischlin [20] and Gennaro-Halevi-Rabin [22] schemes are based on the strong RSA assumption.

The Boneh-Boyen [7], Camenisch-Lysyanskaya [11], and Waters [37] schemes are based on bilinear

maps.



Digital signatures not only provide basic signing functionality but also are important building

blocks for many applications such as blind signatures (for electronic voting and electronic cash),

group signatures and credentials. In the light of these applications, the schemes based on bilinear

maps (i.e., based on the discrete logarithm problem) are better than those based on the strong

RSA assumption (i.e., based on the integer factoring problem), since we can often more easily

construct e�cient protocols based on the DL problem (because the order of a DL-based group can

be published but the order of an IF-based multiplicative group cannot), and the data size is shorter

with bilinear maps than with IF problems.

Among the bilinear-map-based schemes, the Boneh-Boyen scheme is not suitable for many

applications such as blind signatures and credentials, since the signature forms �  g

1=(x+m+sy)

,

where (x; y) is the secret key, m is a message and (�; s) is the signature, so it is hard to separate

an operation (blinding, encryption etc.) with m from another operation that uses the secret key.

The Waters scheme is better than the Boneh-Boyen scheme, since a message operation, through

form

Q

i2M

u

i

, can be separated from another operation that uses the secret key. However, as shown

in Section 10 the protocol of proving the knowledge of a message is not so e�cient.

Blind Signatures: Since the concept of blind signatures was introduced by Chaum [14], it has

been used in numerous applications, most prominently in electronic voting and electronic cash.

Informally, blind signatures allow a user to obtain signatures from a signer on any document in

such a manner that the signer learns nothing about the message that is being signed. The security

of blind signatures was formalized by [24, 31].

Even in the random oracle model, only a few secure blind signature schemes have been proposed

[2, 5, 30{33]; [5] requires a non-standard strong assumption and [31{33] only allow a user to make

a poly-logarithmically (not polynomially) bounded number of interactions with a signer, while [2,

30] are secure for a polynomially number of interactions.

Only two secure blind signature schemes have been presented in the standard model [9, 24].

However, the construction of [24] is based on a general two-party protocol and is thus extremely

ine�cient. The solution of [9] is muchmore e�cient than that of [24], but it is still much less e�cient

than the secure blind signature schemes in the random oracle model [2, 5, 30{33]. For example, the

protocol of [9] is much more complicated (where proofs of knowledge for at least 40 variables are

required for a user) than that of [5, 31, 32], and requires many interactions between user and signer.

Recently, a new blind signature scheme that is concurrently secure without random oracles has

been presented [25], but it is in the common reference string (CRS) model, not in the standard

model.

Partially Blind Signatures: One particular shortcoming of the concept of blind signatures is

that, since the signer's view of the message to be signed is completely blocked, the signer has no

control over the attributes except for those bound by the public key. For example, a shortcoming

can be seen in a simple electronic cash system where a bank issues a blind signature as an electronic

coin. Since the bank cannot set the value on any blindly issued coin, it has to use di�erent public

keys for di�erent coin values. Hence the shops and customers must always carry a list of those public

keys in their electronic wallet, which is typically a smart card whose memory is very limited. Some

electronic voting schemes also face the same problem.

A partially blind signature scheme allows the signer to explicitly include common information

in the blind signature under some agreement with the receiver. This concept is a generalization of

blind signatures since the (normal) blind signatures are a special case of partially blind signatures

where the common information is a null string.
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The notion of partially blind signatures was introduced in [3], and the formal security de�nition

and a secure partially blind signature scheme in the random oracle model were presented by [4].

However, no partially blind signature scheme secure in the standard model has been proposed.

1.2 Our Result

This paper proposes new digital signatures, blind signatures, and partially blind signatures:

{ (Digital signatures:)

We propose a new e�cient signature scheme secure in the standard model that is more suitable

for many applications including blind signatures than the existing signature schemes secure in

the standard model [7, 11, 16, 37]. The security of our basic signature scheme depends on the

strong Di�e-Hellman (SDH) assumption introduced by [7], and its variant signature scheme

depends on the 2SDH assumption, a variant of the SDH assumption.

{ (Blind signatures:)

We propose a secure blind signature scheme in the standard model whose e�ciency is compa-

rable to that of existing blind signature schemes whose security has been analyzed heuristically

or in the random oracle model. The security proof of our scheme depends on the 2SDH as-

sumption.

{ (Partially blind signatures:)

We propose the �rst secure partially blind signature scheme in the standard model. This scheme

is as e�cient as our blind signatures and secure under the 2SDH assumptions.

{ (Conversion to concurrent security:)

The proposed (partially) blind signature scheme is secure for polynomially many synchronized

(or constant-depth concurrent) runs of users, but the security proof does not work for general

concurrent runs. This paper presents an e�cient way to convert our (partially) blind signature

scheme in the standard model to a scheme secure for a general concurrent run of users in the

common reference string (CRS) model.

{ (Blind signatures from Waters:)

This paper also presents (partially) blind signatures from the Waters scheme that are secure

in the standard model under the BDH assumption. The (partially) blind signatures are much

less practical than the above-mentioned proposed scheme.

2 Preliminaries

2.1 De�nition of Secure Signature Schemes

In this section we recall the standard notion of security, existential unforgeability (against chosen

message attacks) [23] as well as a slightly stronger notion of security for a signature scheme, strong

existential unforgeability (against chosen message attacks) [7].

A signature scheme is made up of three algorithms (machines) (G;S;V), for key generation,

signing and veri�cation. Here we omit the description of these algorithms except the minimum

syntax description, G(1

n

) = (pk; sk), S(sk;m) = � and V(pk;m;�) = accept=reject. For a

detailed description, see [23]).

Existential unforgeability: To de�ne existential unforgeability, we introduce the following game

among adversary A and honest signer S.
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1. (Key setup:)

Run key generation algorithm G(1

n

) to obtain a pair of public-key and secret-key, (pk; sk). pk

is given to adversary A, and (pk; sk) is given to signer S.

2. (Queries to signing oracle:)

A adaptively requests S (or signing oracle) to sign on at most q

S

messages of his choice

m

1

; : : : ;m

q

S

. S responds to m

i

with a signature �

i

= S(sk;m

i

).

3. (Output:)

Eventually, A outputs pair (m;�). A wins the game if

(a) m is not any of m

i

(i = 1; : : : ; q

S

).

(b) V(pk;m; �) = accept.

We de�ne Adv

unforge

Sig

to be the probability that A wins the above game, taken over the coin

tosses made by A, G and S.

De�nition 1. (Existential Unforgeability) Adversary A (t; q

S

; �)-forges a signature scheme if A

runs in time at most t, A makes at most q

S

queries to S, and Adv

unforge

Sig

is at least �. A signature

scheme is (t; q

S

; �)-existentially-unforgeable under adaptive chosen message attacks if no adversary

A (t; q

S

; �)-forges the scheme.

Remark: (Strong Existential Unforgeability) If the condition in Step 3a in the above game is

changed to \(m;�) is not any of (m

i

; �

i

)" (instead that \m is not any of m

i

") (i = 1; : : : ; q

S

), we

obtain a stronger notion of unforgeability. If a scheme satis�es the above de�nition of unforgeabil-

ity under this stronger notion, we say that it is (t; q

S

; �)-strongly-existentially-unforgeable under

adaptive chosen message attacks.

2.2 De�nition of Secure (Partially) Blind Signature Scheme

In this section we recall the de�nition of a secure partially blind signature scheme [4, 9]. Note that

this de�nition includes that of a secure blind signature scheme [24] as a special case where the piece

of information shared by the signer and user, info, is a null string, ? (i.e., info = ?).

Although our de�nition is based on [4, 9], our blindness de�nition is slightly stronger than [4,

9] as follows

1

:

{ Signer S

�

can arbitrarily choose pk in ours, while pk must be honestly generated in [4, 9].

Partially blind signature scheme: In the scenario of issuing a partially blind signature, the

signer and the user are assumed to agree on a piece of common information, denoted as info. In

some applications, info may be decided by the signer, while in other applications it may just be

sent from the user to the signer. Anyway, this negotiation is done outside of the signature scheme,

and we want the signature scheme to be secure regardless of the process of agreement.

De�nition 2. (Partially Blind Signature Scheme) A Partially blind signature scheme is made up

of four (interactive) algorithms (machines) (G;S;U ;V).

1

The stronger de�nition is also introduced in [1]. The de�nition shown in our preliminary version [29]

has a trivial 
aw in the blindness de�nition, where even if only one of two users, U

0

or U

1

, outputs a

valid signature, S

�

is allowed to obtain the valid signature. Then, if S

�

interacts incorrectly with U

0

and correctly with U

1

in the signing protocol, S

�

can identify m

b

(i.e., b) for U

0

by checking U

1

's valid

signature.
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{ G is a probabilistic polynomial-time algorithm that takes security parameter n and outputs a

public and secret key pair (pk; sk).

{ S and U are a pair of probabilistic interactive Turing machines each of which has a public input

tape, a private input tape, a private random tape, a private work tape, a private output tape, a

public output tape, and input and output communication tapes. The random tape and the input

tapes are read-only, and the output tapes are write-only. The private work tape is read-write.

The public input tape of U contains pk generated by G(1

n

) and info. The public input tape of

S contains info. The private input tape of S contains sk, and that for U contains message m.

S and U engage in the signature issuing protocol and stop in polynomial-time in n. When they

stop, the public output tape of S contains either completed or not-completed. Similarly, the

private output tape of U contains either ? or (m;�).

{ V is a (probabilistic) polynomial-time algorithm that takes (pk; info;m; �) and outputs either

accept or reject.

De�nition 3. (Completeness) If S and U follow the signature issuing protocol with common input

(pk; info), then, with probability of at least 1� 1=n

c

for su�ciently large n and some constant c, S

outputs completed, and U outputs (m;�) that satis�es V(pk; info;m; �) = accept. The probability

is taken over the coin 
ips of G, S and U .

We say message-signature tuple (info;m; �) is valid with regard to pk if it leads V to accept.

Partial blindness: To de�ne the blindness property, let us introduce the following game among

adversarial signer S

�

and two honest users U

0

and U

1

.

1. Adversary S

�

(1

n

; info) outputs pk and (m

0

;m

1

).

2. Set up the input tapes of U

0

, U

1

as follows:

{ Randomly select b 2 f0; 1g and put m

b

and m

�

b

on the private input tapes of U

0

and U

1

,

respectively (

�

b denotes 1 � b hereafter).

{ Put (info; pk) on the public input tapes of U

0

and U

1

.

{ Randomly select the contents of the private random tapes.

3. Adversary S

�

engages in the signature issuing protocol with U

0

and U

1

.

4. If U

0

and U

1

output valid signatures (info;m

b

; �

b

) and (info;m

�

b

; �

�

b

), respectively, then give

(�

0

; �

1

) to S

�

. Give ? to S

�

otherwise.

5. S

�

outputs b

0

2 f0; 1g.

We de�ne

Adv

blind

PBS

= 2 � Pr[b

0

= b] � 1;

where the probability is taken over the coin tosses made by S

�

, U

0

and U

1

.

De�nition 4. (Partial Blindness) Adversary S

�

(t; �)-breaks the blindness of a partially blind sig-

nature scheme if S

�

runs in time at most t, and Adv

blind

PBS

is at least �. A partially blind signature

scheme is (t; �)-blind if no adversary S

�

(t; �)-breaks the blindness of the scheme.

Remark: (Partially Perfect Blindness) As usual, one can go for a stronger notion of blindness

depending on the power of the adversary and its success probability. A scheme provides partially

perfect blindness if it is (1; 0)-blind.
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Unforgeability: To de�ne unforgeability, let us introduce the following game among adversarial

user U

�

and an honest signer S.

1. (pk; sk) is generated by G(1

n

), pk is put on the public input tapes of U

�

and S, and sk is put

on the private input tape of S .

2. For each run of the signature issuing protocol with S, adversary U

�

outputs info, which is put

on the public input tape of S. Then, U

�

engages in the signature issuing protocol with S in a

concurrent and interleaving way.

3. For each info, let `

info

be the number of executions of the signature issuing protocol where S

outputs completed, given info on its input tape. (For info that has never appeared on the input

tape of S , de�ne `

info

= 0.) When info = ?, `

?

is also de�ned in the same manner.

4. U

�

wins the game if U

�

outputs ` valid signatures (info;m

1

; �

1

); : : : ; (info;m

`

; �

`

) for some info

such that

(a) m

i

6= m

j

for any pair (i; j) with i 6= j (i; j 2 f1; : : : ; `g).

(b) ` > `

info

.

We de�ne Adv

unforge

PBS

to be the probability that U

�

wins the above game, taken over the coin

tosses made by U

�

, G and S.

De�nition 5. (Unforgeability) An adversary U

�

(t; q

S

; �)-forges a partially blind signature scheme

if U

�

runs in time at most t, U

�

executes at most q

S

times the signature issuing protocol, and

Adv

unforge

PBS

is at least �. A partially blind signature scheme is (t; q

S

; �)-unforgeable if no adversary

U

�

(t; q

S

; �)-forges the scheme.

2.3 Bilinear Groups

This paper follows the notation regarding bilinear groups in [8, 7]. Let (G

1

;G

2

) be bilinear groups

as follows:

1. G

1

and G

2

are two cyclic groups of prime order p, where possibly G

1

= G

2

,

2. g

1

is a generator of G

1

and g

2

is a generator of G

2

,

3.  is an isomorphism from G

2

to G

1

, with  (g

2

) = g

1

,

4. e is a non-degenerate bilinear map e : G

1

�G

2

! G

T

, where jG

1

j = jG

2

j = jG

T

j = p, i.e.,

(a) Bilinear: for all u 2 G

1

, v 2 G

2

and a; b 2 Z, e(u

a

; v

b

) = e(u; v)

ab

;

(b) Non-degenerate: e(g

1

; g

2

) 6= 1 (i.e., e(g

1

; g

2

) is a generator of G

T

),

5. e;  and the group action in G

1

, G

2

and G

T

can be computed e�ciently.

3 Assumptions

Here we �rst recall the de�nition of the strong Di�e-Hellman (SDH) assumption introduced in

[7], on which the security of our signature scheme is based, and then introduce new assumptions,

the 2-variable strong Di�e-Hellman (2SDH), on which the security of a variant of our signature

scheme and the proposed (partially) blind signature scheme is based.
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3.1 Strong Di�e-Hellman (SDH) Assumption:

Let (G

1

;G

2

) be bilinear groups as shown in Section 2.3. The q-SDH problem in (G

1

;G

2

) is de�ned

as follows: given the (q+ 2)-tuple (g

1

; g

2

; g

x

2

; : : : ; g

x

q

2

) as input, output pair (g

1

x+c

1

; c) where c 2 Z

�

p

.

Algorithm A has advantage, Adv

SDH

(q), in solving q-SDH in (G

1

;G

2

) if

Adv

SDH

(q) Pr[ A(g

1

; g

2

; g

x

2

; : : : ; g

x

q

2

) = (g

1

x+c

1

; c) ];

where the probability is taken over the random choices of g

2

2 G

2

, x; y 2 Z

�

p

, and the coin tosses

of A.

De�nition 6. Adversary A (t; �)-breaks the q-SDH problem if A runs in time at most t and

Adv

SDH

(q) is at least �. The (q; t; �)-SDH assumption holds if no adversary A (t; �)-breaks the

q-SDH problem.

3.2 2-Variable Strong Di�e-Hellman (2SDH) Assumption:

The q-2SDH problem in (G

1

;G

2

) is de�ned as follows: given a (3q+4)-tuple (g

1

; g

2

; w

2

 g

x

2

; u

2

 

g

y

2

; g

y+b

1

x+a

1

2

; : : : ; g

y+b

q

x+a

q

2

; a

1

; : : : ; a

q

; b

1

; : : : ; b

q

) as input, output (�  g

y+d

�x+�

1

; �  g

�x+�

2

; d) as well as

Test(�)  (U; V ), where a

1

; : : : ; a

q

; b

1

; : : : ; b

q

; d; �; � 2 Z

�

p

; w

1

  (w

2

); �;U 2 G

1

; �; V 2 G

2

;

and

e(�;�) = e(g

1

; u

2

g

d

2

); e(U; �) = e(w

1

; w

2

) � e(g

1

; V ); d 62 fb

1

; : : : ; b

q

g: (1)

Algorithm A has advantage, Adv

2SDH

(q), in solving q-2SDH in (G

1

;G

2

) if

Adv

2SDH

(q)

 Pr[ A(g

1

; g

2

; w

2

; u

2

; g

y+b

1

x+a

1

2

; : : : ; g

y+b

q

x+a

q

2

; a

1

; : : : ; a

q

; b

1

; : : : ; b

q

)

= (�;�; d; Test(�)); (2)

where Eq. (1) holds. The probability is taken over the random choices of g

2

2 G

2

, x; y; a

1

; b

1

; : : : ; a

q

;

b

q

2 Z

�

p

, and the coin tosses of A.

De�nition 7. Adversary A (t; �)-breaks the q-2SDH problem if A runs in time at most t and

Adv

2SDH

(q) is at least �. The (q; t; �)-2SDH assumption holds if no adversary A (t; �)-breaks the

q-2SDH problem.

Lemma 1. Assume that each variable X of f�; Test(�)g in G

i

(i = 1; 2) corresponds to a unique

index value, (�

X

; �

X

) 2 (Z

�

p

)

2

, such that X = w

�

X

i

g

�

X

i

. For two variables, X and Y , we also

assume that e(X;Y ) corresponds to a unique index value, (!

1

; !

2

; !

3

) 2 (Z

�

p

)

4

, such that e(X;Y ) =

e(w

1

; w

2

)

!

1

�e(g

1

; w

2

)

!

2

�e(g

1

; g

2

)

!

3

. Here, (!

1

; !

2

; !

3

) is consistent with (�

X

; �

X

) and (�

Y

; �

Y

) with

respect to the pairing operation, and the index of a variable is also consistent with other indexes of

other variables with respect to the group operation in G

1

and G

2

.

Then, there exists Test(�) satisfying Eq.(1), if and only if � corresponds to (�; �) with � 6= 0

such that � = w

�

2

g

�

2

.

Remark: To break the assumption in this lemma (i.e., to �nd index values, (�

X

; �

X

)'s, of X ,

or index values, (!

1

; !

2

; !

3

)'s, of e(X;Y )) implies to compute x (in Eq.(2)) e�ciently. Therefore,

if adversary A cannot correctly compute X;Y satisfying the form e(X;Y ) = c without knowing

(extracting) the value of (�

X

; �

X

; �

Y

; �

Y

), then A can output (�; �) satisfying � = w

�

2

g

�

2

with � 6� 0

(mod p), if A provides a valid answer of the 2SDH problem, assuming that A cannot compute x.

Then, A can break the 2SDH

+

problem to be introduced in Remark 3 below.
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Proof. (If part:)

Let X 2 f�;U; V g and X = w

�

X

i

g

�

X

i

. For two variables, X = w

�

X

1

g

�

X

1

and Y = w

�

Y

2

g

�

Y

2

, of

f�; Test(�)g, if e(X;Y ) = e(w

1

; w

2

)

!

1

e(g

1

; w

2

)

!

2

e(g

1

; g

2

)

!

3

holds, then !

1

= �

X

�

Y

; !

2

= �

X

�

Y

+

�

X

�

Y

; !

3

= �

X

�

Y

:

Suppose Test(�) holds. From e(U; �) = e(w

1

; w

2

)e(g

1

; V ),

e(U; �) = e(w

�

U

1

g

�

U

1

; w

�

�

2

g

�

�

2

) = e(w

1

; w

2

)

�

U

�

�

e(g

1

; w

2

)

�

U

�

�

+�

U

�

�

e(g

1

; g

2

)

�

U

�

�

= e(w

1

; w

2

)e(g

1

; w

2

)

�

V

e(g

1

; g

2

)

�

V

:

Therefore,

�

U

�

�

� 1 (mod p); �

U

�

�

+ �

U

�

�

� �

V

(mod p); �

U

�

�

� �

V

(mod p):

Then, �

�

6� 0 (mod p).

(Only if part:)

If �  w

�

2

g

�

2

(� 6= 0), (U;V ) satisfying Eq.(1) can be computed such that U  w

1=�

1

g

�

1

,

V  w

��+�=�

2

g

��

2

, where � is randomly selected from Z

�

p

. a

Lemma 2. Given (�;U; V ) with e(U;�) = e(w

1

; w

2

) � e(g

1

; V ), for any value of � 2 Z

�

p

there exists

� 2 Z

�

p

such that � = g

�x+�

2

.

Proof. Given (�;U; V ) with e(U;�) = e(w

1

; w

2

) � e(g

1

; V ), for any value of � 2 Z

�

p

there exists

(�; �) 2 (Z

�

p

)

2

such that

log

g

2

� = �x+ � mod p; log

g

2

U = x=� + � mod p; log

g

2

V = (��+ �=�)x+ ��:

a

Remark 1: The check for Test(�) is introduced to avoid a trivial attack [35] such that randomly

select � 2 Z

�

p

, compute �  g

�

2

, where � corresponds to g

x+c

, and g

y+d

x+c

1

= (u

1

g

d

1

)

1=�

for an

arbitrary d 2 Z

�

p

, and output (g

y+d

x+c

1

; �; d). Clearly this is a valid output of the 2SDH problem if

Eq.(1) is not tested. The output in this trivial attack, where � = 0 with � = w

�

2

g

�

2

, should be

rejected by testing Eq.(1), as shown in Proposition 1.

Remark 2: We occasionally drop t and � and refer to the q-SDH (or q-2SDH) assumption rather

than the (q; t; �)-SDH (or (q; t; �)-2SDH) assumption. We also sometimes drop q- and refer to the

SDH (or 2SDH) assumption rather than the q-SDH (q-2SDH) assumption.

The 2SDH assumption without explicit quantities (q; t; �) denotes the (q; t; �)-2SDH assumption

with polynomial-time quantities for (q; t; �), i.e., a polynomial number of q, polynomial-time of t,

and negligible probability of � in security parameter n.

Remark 3: (Relation between the SDH and 2SDH assumptions)

We now consider a variant of the 2SDH problem, the 2SDH

+

problem, as follows: given a (3q+

4)-tuple (g

1

; g

2

; g

x

2

; g

y

2

; g

y+b

1

x+a

1

2

; : : : ; g

y+b

q

x+a

q

2

; a

1

; : : : ; a

q

; b

1

; : : : ; b

q

) as input, output a pair (g

y+d

x+c

1

; c; d),

where (c; d) 6= (a

i

; b

i

) for all i = 1; : : : ; q. We can then de�ne the 2SDH

+

assumption.

Clearly the 2SDH assumptions is stronger than the 2SDH

+

assumptions.

The 2SDH

+

assumption and the SDH assumption can be reduced to each other in a manner

similar to the reduction in Theorem 1 (c

type

= 1 and 2) as well as the equivalence of (q�1)-wDHA

assumption and q-CAA assumption [27], where the q-wDHA problem is to compute g

1

x

1

, given a

8



(q + 2)-tuple (g

1

; g

2

; g

x

2

; : : : ; g

x

q

2

) as input, and the q-CAA problem is to compute pair (g

1

x+c

1

; c)

where c 2 Z

�

p

and c 62 fa

1

; : : : ; a

q

g, given a (2q + 3)-tuple (g

1

; g

2

; g

x

2

; g

1

x+a

1

2

; : : : ; g

1

x+a

q

2

; a

1

; : : : ; a

q

)

as input.

4 The Proposed Signature Scheme

This section presents the proposed secure signature scheme in the standard model under the SDH

assumption

2

Let (G

1

;G

2

) be bilinear groups as shown in Section 2.3. Here, we assume that the message,

m, to be signed is an element in Z

�

p

, but the domain can be extended to all of f0;1g

�

by using a

collision resistant hash function H : f0; 1g

�

! Z

�

p

, as mentioned in Section 3.5 in [7].

4.1 Signature Scheme

Key generation: Randomly select generators g

2

; u

2

; v

2

2 G

2

and set g

1

  (g

2

), u

1

  (u

2

),

and v

1

  (v

2

). Randomly select x 2 Z

�

p

and compute w

2

 g

x

2

2 G

2

. The public and secret keys

are:

Public key: g

1

; g

2

;w

2

, u

2

, v

2

Secret key: x

Signature generation: Let m 2 Z

�

p

be the message to be signed. Signer S randomly selects r

and s from Z

�

p

, and computes

�  (g

m

1

u

1

v

s

1

)

1=(x+r)

:

Here 1=(x+ r) mod p (and m=(x + r) mod p and s=(x + r) mod p) are computed. In the unlikely

event that x+ r � 0 mod p, we try again with a di�erent random r. (�; r; s) is the signature of m.

Signature veri�cation: Given public-key (g

1

; g

2

; w

2

; u

2

; v

2

), message m, and signature (�; r; s),

check that m; r; s 2 Z

�

p

, � 2 G

1

, � 6= 1, and

e(�;w

2

g

r

2

) = e(g

1

; g

m

2

u

2

v

s

2

):

If they hold, the veri�cation result is valid; otherwise the result is invalid.

Remark: Here we assume that g

1

=  (g

2

) has been con�rmed when the public-key is registered.

Alternatively, g

1

=  (g

2

) can be con�rmed in the signature veri�cation procedure, or g

1

is not

included in the public-key and g

1

=  (g

2

) is calculated in the signature veri�cation process.

4.2 Performance

Signature length: A signature contains three elements (�; r; s), each of which is around jpj bits,

so the signature length is around 3jpj bits. It is 1.5 times longer than that of the Boneh-Boyen

scheme [7]. For example, if we use an elliptic curve described in [8], and jpj = 250, the signature

length is 750 bits, which is still less than that of RSA based signatures with the same level of

security.

2

In our preliminary version [29], a variant of the 2SDH assumption, which is equivalent to the SDH as-

sumption, was used to prove the security of this scheme. This signature scheme was implicitly introduced

in the group signature scheme [21].
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Computational complexity: Key and signature generation times are comparable to those of

Boneh-Boyen [7] and BLS [8]. Signature veri�cation time is comparable to that of [8], but around

twice as slow as that of [7].

A Performance Improvement Technique (Precomputation) By introducing additional se-

cret key y; z 2 Z

�

p

such that u

2

= g

y

2

and v

2

= g

z

2

, we can apply the precomputation technique for

signature generation.

Before getting message m, signer S randomly selects r;� from Z

�

p

, and computes �  g

�=(x+r)

1

as the precomputation of a signature. Given message m, S computes s such that s  (� � m �

y)=z mod p; where 1=z mod p and (� � y)=z mod p can be also precomputed.

4.3 Security

Theorem 1. If the (q

S

+1; t

0

; �

0

)-SDH assumption holds in (G

1

;G

2

), the proposed signature scheme

is (t; q

S

; �)-strongly-existentially-unforgeable against adaptive chosen message attacks, provided that

� � 3q

S

�

0

; and t � t

0

� �(q

2

S

T );

where T is the maximum time for a single exponentiation in G

1

and G

2

.

Proof. Assume A is an adversary that (t; q

S

; �)-forges the signature scheme. We will then construct

algorithm B that breaks the (q

S

+1)-SDH assumption with (t

0

; �

0

). Hereafter, we often use q  q

S

+1

(as well as q

S

).

An informal outline of our proof is as follows: First we classify the output (forgery) of A into

three types (Types-1,2,3). We will then show that any type of output allows B to break the q-SDH

assumption. Type-1 forgery leads to breaking the q-SDH assumption in a manner similar to that

in [7]. Type-2 forgery leads to breaking the q-SDH assumption. Type-3 forgery leads to breaking

the discrete logarithm (to which q-SDH is reducible).

First, we introduce three types of forgers,A. Let (g

1

; g

2

; w

2

; u

2

; v

2

) be given to A as a public-key,

and z  log

g

2

v

2

2 Z

�

p

(i.e., v

2

= g

z

2

). Suppose A asks for signatures on messages m

1

; : : : ;m

q

S

2 Z

�

p

and is given signatures (�

i

; r

i

; s

i

) for i = 1; : : : ; q

S

on these messages. The three types of forgers

are as follows:

Type-1 forger outputs forged signature (m�; �

�

; r

�

; s

�

) such that r

�

62 fr

1

; r

2

; : : : ; r

q

S

g.

Type-2 forger outputs forged signature (m

�

; �

�

; r

�

; s

�

) such that r

�

2 fr

1

; r

2

; : : : ; r

q

S

g (i.e.,

r

�

= r

k

for some k 2 f1; : : : ; q

S

g) and m

�

+ s

�

z 6� m

k

+ s

k

z (mod p).

Type-3 forger outputs forged signature (m�; �

�

; r

�

; s

�

) such that r

�

1

2 fr

1

; r

2

; : : : ; r

q

S

g (i.e.,

r

�

= r

k

for some k 2 f1; : : : ; q

S

g) and m

�

+ s

�

z � m

k

+ s

k

z (mod p). Note that in this case

s

�

6= s

k

, since s

�

= s

k

implies m

�

= m

k

and �

�

= �

k

.

Algorithm B is constructed as follows:

1. (Input:)

(g

1

; A

0

; A

1

; : : : ; A

q

), where A

i

= g

x

i

2

, for i = 0; 1; : : : ; q.

2. (Coin 
ip:)

Algorithm B �rst picks a random value c

type

2 f1;2; 3g that indicates its guess for the type of

forger that A will emulate. The subsequent actions performed by B di�er with c

type

2 f1; 2; 3g

as follows:

3. (If c

type

= 1;)

10



(a) (Key setup)

B randomly selects y; z; r

i

(i = 1; : : : ; q � 1) from Z

�

p

.

Let f(X) be a polynomial of variable X such that f (X)  

Q

q�1

i=1

(X + r

i

) mod p =

P

q�1

i=0

�

i

X

i

. (Here note that x is a value in Z

�

p

determined by the input to B such as A

1

= g

x

2

,

while X is just a variable.) Clearly B can e�ciently calculate �

i

2 Z

�

p

(i = 0; : : : ; q � 1)

from r

i

(i = 1; : : : ; q � 1).

B computes

g

0

2

 

q�1

Y

i=0

A

�

i

i

= g

f(x)

2

; w

0

2

 

q�1

Y

i=0

A

�

i

i+1

= g

xf(x)

2

= (g

0

2

)

x

;

u

0

2

 (g

0

2

)

y

; v

0

2

 (g

0

2

)

z

:

Let g

0

1

  (g

0

2

), u

0

1

  (u

0

2

) and v

0

1

  (v

0

2

).

B gives (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle)

Upon receiving a query to the signing oracle, B simulates the reply to A as follows:

Let f

i

(X)  f(X)=(X + r

i

) mod p =

Q

q�1

j=1;j 6=i

(X + r

j

) mod p =

P

q�2

j=0




j

X

j

. B can

e�ciently calculate 


j

2 Z

�

p

(j = 0; : : : ; q � 2) from r

l

(l 6= i ^ l = 1; : : : ; q � 1).

For each query i (i = 1; : : : ; q�1) with messagem

i

fromA to the signing oracle, B randomly

selects s

i

2 Z

�

p

, and computes

�

i

 

�

q�2

Y

j=0

 (A

j

)




j

�

m

i

+y+s

i

z

=

�

g

f

i

(x)

1

�

m

i

+y+s

i

z

=

�

g

f (x)=(x+r

i

)

1

�

m

i

+y+s

i

z

= (g

0

1

)

(m

i

+y+s

i

z)=(x+r

i

)

=

�

(g

0

1

)

m

i

(u

0

1

)(v

0

1

)

s

i

�

1=(x+r

i

)

:

B returns (�

i

; r

i

; s

i

) to A as the reply to the query. Clearly this is a valid signature for

public-key (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

) and the distribution is exactly the same as that given by the

signing oracle.

(c) (Output)

When A outputs a (valid) forgery (m

�

; �

�

; r

�

; s

�

), B checks whether r

�

2 fr

1

; : : : ; r

q�1

g. If

r

�

2 fr

1

; : : : ; r

q�1

g, B then outputs failure and aborts. Otherwise, �

�

should satisfy

�

�

= (g

0

1

)

(m

�

+y+s

�

z)=(x+r

�

)

;

since e(�

�

; w

0

2

(g

0

2

)

r

�

) = e(g

0

1

; (g

0

2

)

m

�

(u

0

2

)(v

0

2

)

s

�

), w

0

= (g

0

2

)

x

, u

0

2

= (g

0

2

)

y

; v

0

2

= (g

0

2

)

z

(i.e.,

e(�

�

; (g

0

2

)

x+r

�

) = e(g

0

1

; (g

0

2

)

m

�

+y+s

�

z

. )

Let c(X)  

P

q�2

i=0

!

i

X

i

and d 2 Z

�

p

such that f(X) � c(X)(X + r

�

) + d (mod p). B can

e�ciently calculate !

i

; d 2 Z

�

p

(i = 0; : : : ; q � 2) from f (X) and r

�

.

B then computes

�  

�

(�

�

)

1=(m

�

+y+s

�

z)

q�2

Y

i=0

 (A

i

)

�!

i

�

1=d

=

�

(g

f (x)

1

)

1=(x+r

�

)

g

�c(x)

1

�

1=d

=

�

g

(c(x)(x+r

�

)+d)=(x+r

�

)�c(x)

1

�

1=d

=

�

g

c(x)+d=(x+r

�

)�c(x)

1

�

1=d

= g

1=(x+r

�

)

1

:

B outputs (�; r

�

).
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4. (If c

type

= 2;)

(a) (Key setup)

B randomly selects z; a; b; r

i

(i = 1; : : : ; q�1) from Z

�

p

, and randomly selects k 2 f1; : : : ; q�

1g. Let f(X)  

Q

q�1

i=1

(X + r

i

) mod p =

P

q�1

i=0

�

i

X

i

, f

i

(X)  f(X)=(X + r

i

) mod p =

Q

q�1

j=1;j 6=i

(X + r

j

) mod p =

P

q�2

j=0




(i)

j

X

j

, f

k;i

(X)  f (X)=((X + r

k

)(X + r

i

)) mod p =

Q

q�1

j=1;j 6=i;j 6=k

(X + r

j

) mod p =

P

q�3

l=0

�

l

X

l

, B can e�ciently calculate �

i

; 


j

; �

l

2 Z

�

p

(i =

0; : : : ; q � 1, j = 0; : : : ; q � 2, l = 0; : : : ; q � 3).

B computes

g

0

2

 

q�2

Y

i=0

A




(k)

i

i

= g

f

k

(x)

2

; w

0

2

 

q�2

Y

i=0

A




(k)

i

i+1

= g

xf

k

(x)

2

= (g

0

2

)

x

;

u

0

2

 (

q�1

Y

i=0

A

�

i

i

)

a

(

q�2

Y

i=0

A




(k)

i

i

)

b

= g

af(x)

2

g

�bf

k

(x)

2

; v

0

2

 (g

0

2

)

z

:

Let g

0

1

  (g

0

2

), u

0

1

  (u

0

2

) and v

0

1

  (v

0

2

).

B gives (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle)

Upon receiving a query to the signing oracle, B simulates the reply to A as follows:

For each query i 2 f1; 2; : : : ; k�1; k+1; q�1g (i.e., i 6= k) with message m

i

from A to the

signing oracle, B randomly selects s

i

2 Z

�

p

, and computes

�

i

 

�

q�2

Y

j=0

 (A

j

)

�

j

�

m

i

+s

i

z

�

q�2

Y

j=0

 (A

j

)




(i)

j

�

a

�

q�2

Y

j=0

 (A

j

)

�

j

�

�b

= (g

f

k;i

(x)

1

)

m

i

+s

i

z

(g

af

i

(x)

1

g

�bf

k;i

(x)

1

);

= (g

0

1

)

(m

i

+y+s

i

z)=(x+r

i

)

:

B returns (�

i

; r

i

; s

i

) to A as the reply to the query. Clearly this is a valid signature for

public-key (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

).

For the k-th query with message m

k

from A to the signing oracle, B computes s

k

 

(b�m

k

)=z mod p, and

�

k

 

�

q�2

Y

i=0

 (A

i

)




(k)

i

�

a

= g

af

k

(x)

1

= (g

f

k

(x)(m

k

+s

k

z)

1

g

af(x)

1

g

�bf

k

(x)

2

)

1=(x+r

k

)

= ((g

0

1

)

m

k

(v

0

1

)

s

k

u

0

1

)

1=(x+r

k

)

:

Therefore, (�

k

; r

k

; s

k

) is a valid signature for public-key (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

).

B returns (�

k

; r

k

; s

k

) to A as the reply to the query.

(c) (Output) When A outputs a (valid) forgery (m

�

; �

�

; r

�

; s

�

), B checks whether r

�

= r

k

and

m

�

+ s

�

z 6� m

k

+ s

k

z (mod p). If r

�

6= r

k

or m

�

+ s

�

z � m

k

+ s

k

z (mod p), B outputs

failure and aborts. Otherwise, m

�

+ s

�

z 6� m

k

+ s

k

z (mod p). Let b

�

 m

�

+ s

�

z mod p.

(Here b = m

k

+ s

k

z mod p). Let h(X)  

P

q�3

i=0




i

X

i

and d 2 Z

�

p

such that f

k

(X) �

h(X)(X + r

k

) + e (mod p). Since b

�

6= b, B can compute

�  

 

(�

�

=�

k

)

1=(b

�

�b)

Q

q�3

i=0

 (A

i

)




i

!

1=e

:
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Here,

 

(�

�

=�

k

)

1=(b

�

�b)

Q

q�3

i=0

 (A

i

)




i

!

1=e

=

 

g

f

k

(x)=(x+r

k

)

1

g

h(x)

1

!

1=e

= g

(f

k

(x)=(x+r

k

)�h(x))=e

1

= g

(e=(x+r

k

)+h(x)�h(x))=e

1

= g

1=(x+r

k

)

1

B outputs (�; r

k

).

5. (If c

type

= 3;)

(a) (Key setup)

B randomly selects x

0

; y

0

from Z

�

p

.

B computes

g

0

2

 A

0

= g

2

; w

0

2

 (g

0

2

)

x

0

; u

0

2

 (g

0

2

)

y

0

; v

0

2

 A

1

= g

x

2

:

Here we rename x as z

0

just for ease of representation, so

v

0

2

= (g

0

2

)

z

0

:

Let g

0

1

 g

1

.

B gives (g

0

1

; g

0

2

; w

0

2

; u

0

2

; v

0

2

) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle) Since B knows x

0

, the simulation of the signing oracle exactly

replicates the signing oracle.

(c) (Output) WhenA outputs a (valid) forgery (m

�

; �

�

; r

�

; s

�

), B checks whether r

�

2 fr

1

; : : : ; r

q

S

g

(i.e., r

�

= r

k

for some k 2 f1; : : : ; q

S

g) and s

�

6= s

k

. If r

�

62 fr

1

; : : : ; r

q

S

g or s

�

6= s

k

, then

B outputs failure and aborts. Otherwise, B computes

z

�

 (m

k

�m

�

)=(s

�

� s

k

) mod p;

and checks whether A

1

= A

z

�

0

. If it holds, z

�

= z

0

= x. B then randomly selects c 2 Z

�

p

and

can compute �  g

1=(z

�

+c)

1

= g

1=(x+c)

1

:

B outputs (�; c).

Note that if the forgery (m

�

; �

�

; r

�

; s

�

) is Type-3, m

�

+ s

�

z

0

� m

k

+ s

k

z

0

(mod p) and

s

�

6= s

k

, so z

0

= (m

k

�m

�

)=(s

�

� s

k

) mod p.

This completes the description of algorithm B. For any value of c

type

2 f1;2; 3g, the distribution

of the simulation (public-key generation and signing oracle simulation) by B is exactly equivalent

to that of the real attack scenario. Therefore, regardless of the value of c

type

inside B, adversary

A produces a valid forgery in time t with probability at least �.

We then obtain the probability �

0

that B breaks the q-SDH assumption as follows:

{ (When c

type

= 1;)

If Type-1 forgery occurs, B does not abort (i.e., breaks the q-SDH assumption).

{ (When c

type

= 2;)

If Type-2 forgery occurs, B does not abort (i.e., breaks the q-SDH assumption) with probability

1=q

S

.

{ (When c

type

= 3;)

If Type-3 forgery occurs, B does not abort (i.e., breaks the q-SDH assumption).

Since the value of c

type

is independent of the type of forgery, B breaks the q-SDH assumption with

probability at least �=(3q

S

). a
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5 Variant of the Proposed Signature Scheme

This section presents a variant of the proposed signature scheme shown in the previous section.

This variant is used by our blind signatures.

5.1 Signature Scheme

The key generation is the same as that for the proposed signature scheme.

The signature, (�;�; s; Test(�)), of message, m 2 Z

�

p

, is generated as follows:

�  (g

m

1

u

1

v

s

1

)

1=(�x+�)

; � g

�x+�

2

; Test(�) (U; V );

U  w

1=�

1

g

�

1

; V  w

��+�=�

2

g

��

2

; (3)

where �; �; s; � 2 Z

�

p

are randomly chosen.

The signature veri�cation is:

m; s 2 Z

�

p

; �;U 2 G

1

; �; V 2 G

2

; � 6= 1; � 6= 1

e(�;�) = e(g

1

; g

m

2

u

2

v

s

2

); e(U; �) = e(w

1

; w

2

) � e(g

1

; V ): (4)

5.2 Security

The following theorem shows that this variant of the proposed signature scheme is existentially

unforgeable against adaptive chosen message attacks, provided that the 2SDH assumption holds

in (G

1

;G

2

).

We now introduce a strong adaptive chosen message attack in this signature scheme, where,

given adversary's query, message m, the signing oracle returns to the adversary the signature,

(�; r; s), of the basic signature scheme presented in Section 4, in place of the signature, (�;�; s; Test(�)),

of the variant signature scheme introduced in this section.

If an adversary can forge the variant signature scheme against adaptive chosen message attacks

(CMA), the adversary can also forge the variant signature scheme against strong adaptive cho-

sen message attacks (S-CMA), since a reply from the signing oracle in S-CMA can be e�ciently

transformed into a reply from the signing oracle in CMA. That is, if the variant signature scheme

is secure against S-CMA, the variant signature scheme is also secure against CMA. Thus, in the

following theorem, we show that the variant signature scheme is secure against S-CMA.

Theorem 2. If the (q

S

; t

0

; �

0

)-2SDH assumption holds in (G

1

;G

2

), the proposed signature scheme

is (t; q

S

; �)-existentially-unforgeable against \strong" adaptive chosen message attacks (S-CMA),

provided that

� � 2�

0

; and t � t

0

�O(q

S

T );

where T is the maximum time for a single exponentiation in G

1

and G

2

and a single pairing

operation.

Proof. Assume A is an adversary that (t; q

S

; �)-forges the signature scheme in the sense of \strong"

adaptive chosen message attacks. We will then construct an algorithm B that breaks the q

S

-2SDH

assumption with (t

0

; �

0

).

An informal outline of our proof is as follows: First we classify the output (forgery) of A

into two types (Types-1,2). We will then show that any type of output allows B to break the

2SDH assumption. Type-1 forgery leads to breaking the 2SDH assumption. Type-2 forgery leads

to breaking the discrete logarithm (to which 2SDH is reducible).
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First, we introduce two types of forgers, A. Let (g

1

; g

2

; w

2

; u

2

; v

2

) be given to A as a public-key,

and z  log

g

2

v

2

2 Z

�

p

(i.e., v

2

= g

z

2

). Suppose A asks for signatures on messages m

1

; : : : ;m

q

S

2 Z

�

p

and is given signatures (�

i

; r

i

; s

i

) for i = 1; : : : ; q

S

on these messages. The two types of forgers are

as follows:

Type-1 forger outputs forged signature (m

�

; �

�

; �

�

; s

�

) such that m

�

+ s

�

z 6� m

i

+ s

i

z (mod p)

for all i 2 f1; : : : ; q

S

g.

Type-2 forger outputs forged signature (m�; �

�

; �

�

; s

�

) such that m

�

+ s

�

z � m

k

+ s

k

z (mod p)

for some k 2 f1; : : : ; q

S

g. In this case, s

�

6= s

k

, since s

�

= s

k

implies m

�

= m

k

and m

�

6= m

k

.

(Note that we only consider standard unforgeability, not strong unforgeability, here.)

Algorithm B is constructed as follows:

1. (Input:)

(g

1

; g

2

; A;B;C

1

; : : : ; C

q

S

; a

1

; : : : ; a

q

S

; b

1

; : : : ; b

q

S

), where A = g

x

2

, B = g

y

2

, C

i

= g

y+b

i

x+a

i

2

(i =

1; : : : ; q

S

).

2. (Coin 
ip:)

Algorithm B �rst picks random value c

type

2 f1; 2g that indicates its guess for the type of

forger that A will emulate. The subsequent actions performed by B di�er with c

type

2 f1; 2g

as follows:

3. (If c

type

= 1;)

(a) (Key setup)

B randomly selects z 2 Z

�

p

, and B sets

w

2

 A = g

x

2

; u

2

 B = g

y

2

; v

2

 g

z

2

:

B gives (g

1

; g

2

; w

2

; u

2

; v

2

) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle)

Upon receiving a query to the signing oracle, B simulates the reply to A as follows:

For each query i 2 f1; 2; : : : ; q

S

g with message m

i

from A to the signing oracle, B computes

s

i

 (b

i

�m

i

)=z mod p; r

i

 a

i

�

i

  (C

i

) = g

(y+b

i

)=(x+a

i

)

1

= g

(m

i

+y+s

i

z)=(x+r

i

)

1

:

B returns (�

i

; r

i

; s

i

) to A as the reply to the query. Clearly this is a valid signature of the

basic signature scheme for public-key (g

1

; g

2

; w

2

; u

2

; v

2

).

(c) (Output) When A outputs a (valid) forgery (m

�

; �

�

; �

�

; s

�

; Test(�)), B checks whether

m

�

+ s

�

z 6� m

i

+ s

i

z (mod p) for all i 2 f1; : : : ; q

S

g. (Here b

i

= m

i

+ s

i

z (mod p) for i 2

f1; : : : ; q

S

g.) If m

�

+s

�

z � m

k

+s

k

z (mod p) for some k 2 f1; : : : ; q

S

g, B outputs failure

and aborts. Otherwise, B sets b

�

 m

�

+ s

�

z mod p, and outputs (�

�

; �

�

; b

�

; Test(�)).

4. (If c

type

= 2;)

(a) (Key setup)

B randomly selects x

0

; y

0

from Z

�

p

.

B computes

w

2

 g

x

0

2

; u

2

 g

y

0

2

; v

2

 A = g

x

2

:

Here we rename x as z

0

just for ease of representation, so

v

2

= g

z

0

2

:

B gives (g

1

; g

2

; w

2

; u

2

; v

2

) to A as a public-key of the signature scheme.
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(b) (Simulation of signing oracle) Since B knows x

0

, the simulation of the signing oracle exactly

replicates the signing oracle.

(c) (Output) When A outputs a (valid) forgery (m

�

; �

�

; �

�

; s

�

), B computes

z

�

 (m

i

�m

�

)=(s

�

� s

i

) mod p;

for all if1; : : : ; q

S

g such that s

i

6= s

�

, and checks whether A = g

z

�

2

. If it holds, z

�

=

z

0

= x. B then randomly selects c; d 2 Z

�

p

and computes g

(y+d)=(x+c)

1

and g

c

2

. B outputs

(g

(y+d)=(x+c)

1

; g

x+c

2

; d; Test(�)).

Note that if forgery (m

�

; �

�

; �

�

; s

�

) is Type-2, m

�

+ s

�

z

0

� m

k

+ s

k

z

0

(mod p) and s

�

6= s

k

for some k 2 f1; : : : ; q

S

g. Then, z

0

= (m

k

�m

�

)=(s

�

� s

k

) mod p.

This completes the description of algorithm B. For any value of c

type

2 f1; 2g, the distribution

of the simulation (public-key generation and signing oracle simulation) by B is exactly equivalent

to that of the real attack scenario. Therefore, independently of the value of c

type

inside B, adversary

A produces a valid forgery in time t with probability at least �.

We then obtain the probability �

0

that B breaks the 2SDH assumption as follows:

{ (When c

type

= 1;)

If Type-1 forgery occurs, B does not abort (i.e., breaks the 2SDH assumption).

{ (When c

type

= 2;)

If Type-2 forgery occurs, B does not abort (i.e., breaks the 2SDH assumption).

Since the value of c

type

is independent of the type of forgery, B breaks the q

S

-2SDH assumption

with probability at least �. a

6 The Proposed Blind Signature Scheme

This section shows the application of the proposed signature scheme to blind signatures. We present

a secure blind signature scheme in the standard model under the 2SDH and 2SDH assumptions.

6.1 Blind Signature Scheme

Let (G

1

;G

2

) be bilinear groups as shown in Section 2.3. Here, we also assume that the message,

m, to be blindly signed is an element in Z

�

p

, but the domain can be extended to all of f0; 1g

�

by

using a collision resistant hash function H : f0; 1g

�

! Z

�

p

, as mentioned in Section 3.5 in [7].

Key generation: Randomly select generators g

2

; u

2

; v

2

2 G

2

and set g

1

  (g

2

), u

1

  (u

2

),

and v

1

  (v

2

). Randomly select x 2 Z

�

p

, and compute w

2

 g

x

2

2 G

2

.

The public and secret keys are:

Public key: g

1

; g

2

;w

2

, u

2

, v

2

Secret key: x

16



Blind signature generation:

1. U checks whether g

2

; w

2

, u

2

, v

2

2 G

2

and g

1

=  (g

2

). If they hold, U proceeds with the

following signature generation protocol.

2. U randomly selects s; t 2 Z

�

p

, computes

X  g

mt

1

u

t

1

v

st

1

;

and sends X to S. Here m 2 Z

�

p

is the message to be blindly signed. In addition, U proves

to S that U knows (mt mod p; t; st mod p) for X using the witness indistinguishable proof as

follows:

(a) U randomly selects a

1

; a

2

; a

3

from Z

�

p

, computes

W  g

a

1

1

u

a

2

1

v

a

3

1

;

and sends W to S.

(b) S randomly selects � 2 Z

�

p

and sends � to U .

(c) U computes

b

1

 a

1

+ �mt mod p; b

2

 a

2

+ �t mod p; b

3

 a

3

+ �st mod p;

and sends (b

1

; b

2

; b

3

) to S.

(d) S checks whether the following equation holds or not:

g

b

1

1

u

b

2

1

v

b

3

1

=WX

�

: (5)

If it holds, S accepts. Otherwise, S rejects and aborts.

3. If S accepts the above protocol, S randomly selects r 2 Z

�

p

. In the unlikely event that x+r � 0

mod p, S tries again with a di�erent random r. S also randomly selects ` 2 Z

�

p

, computes

Y  (Xv

`

1

)

1=(x+r)

;

and sends (Y; r; `) to U .

Here, Y = (Xv

`

1

)

1=(x+r)

= (g

m

1

u

1

v

s+`=t

1

)

t=(x+r)

.

4. U randomly selects f; � 2 Z

�

p

, and computes

�  (ft)

�1

mod p; �  Y

�

; � w

f

2

g

fr

2

; �  s+ `=t mod p:

Compute Test(�) (U;V ) as follows:

U  w

1=f

1

g

�

1

; V  w

f�+r

2

g

fr�

2

; (6)

Here, � = (g

m

1

u

1

v

s+`=t

1

)

1=(fx+fr)

= (g

m

1

u

1

v

�

1

)

1=(fx+fr)

, and � = w

f

2

g

fr

2

= g

fx+fr

2

.

5. (�;�;�; Test(�)) is a blind signature of m.

Signature veri�cation: Given public-key (g

1

; g

2

; w

2

; u

2

; v

2

), message m, and signature (�;�; �;

Test(�)), check

m;� 2 Z

�

p

; �; U 2 G

1

; �; V 2 G

2

; � 6= 1; � 6= 1;

e(�;�) = e(g

1

; g

m

2

u

2

v

�

2

); e(U; �) = e(w

1

; w

2

) � e(g

1

; V ): (7)

If they hold, the veri�cation result is valid; otherwise the result is invalid.
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6.2 Security

The following theorems show that the proposed blind signature scheme is perfectly blind and

unforgeable provided that the 2SDH assumption hold in (G

1

;G

2

).

Theorem 3. The proposed blind signature scheme is perfectly blind.

Proof. We will show that A's view is perfectly independent from the value of b in the blindness

de�nition (experiment) shown in Section 2.2.

Even if dishonest signer S

�

outputs any public-key, (g

2

; w

2

, u

2

, v

2

) 2 (G

2

)

4

and g

1

=  (g

2

), the

view of S

�

, (X;W;�; b

1

; b

2

; b

3

) as well as S's randomness in the signature generation protocol is

perfectly (information theoretically) independent from the value of (m; s; f), since X = (g

m

1

u

1

v

s

1

)

t

is perfectly independent from (m; s), the protocol is witness indistinguishable with respect to (m; s)

against any dishonest S

�

, and f is not used in the protocol with S

�

.

Hence, the value of (m; �; �) is perfectly independent from the view of S

�

, where � = (x +

r)f mod p and �  s + `=t mod p. Here, � = (g

m

1

u

1

v

�

1

)

1=�

, � = g

�

2

, and (�;�; �) is the (blind)

signature of m. Therefore, the signature along with m, (m;�;�; �), is also perfectly independent

from the view of S

�

, since � and � are perfectly dependent on (m;�; �). In addition, (�;U;V ) is

perfectly independent from (f; fr) (i.e., r).

That is, the distribution of the view of S

�

for U

0

and U

1

in the blindness de�nition in Section

2.2 are equivalent.

In the blindness de�nition (experiment), whether S

�

�nally receives ? or two valid signatures

depends only on whether S

�

's reply (Y;R; `) to B satis�es e(Y;w

2

R) = e(X

i

v

`

1

; g

2

) (i = 0; 1) or not,

and is independent from b, since the distributions of X

0

and X

1

are equivalent and the distribution

of (X

0

; X

1

) is independent from b. a

De�nition 8. Let suppose a protocol between two parities, Alice and Bob. In a round of the proto-

col, Alice and Bob exchange messages, a; b; c; : : : ; d, where the �rst move is Alice (i.e., Alice sends a

and Bob returns b etc.). We now consider q rounds of the protocol execution. Here (a

i

; b

i

; c

i

; : : : ; d

i

)

is the exchanged messages in the i-th round (i = 1; : : : ; q). We say that a protocol between Alice

and Bob is executed in a synchronized run of q rounds of the protocol, if the q rounds of the protocol

consists of L sequential intervals and each interval, or the j-th interval (j = 1; : : : ; L), consists

of the parallel run of q

j

(q

j

2 f1; : : : ; qg rounds of the protocol. q = q

1

+ � � � q

L

. Therefore, the

�rst interval consists of: the �rst move from Alice is (a

1

; a

2

; : : : ; a

q

1

), the second move from Bob

is (b

1

; a

2

; : : : ; b

q

1

), and so on. After completing the �rst interval, the second interval starts and

consists of: the �rst move from Alice is (a

q

1

+1

; a

q

1

+2

; : : : ; a

q

1

+q

2

), the second move from Bob is

(b

q

1

+1

; b

q

1

+2

; : : : ; b

q

1

+q

2

), and so on.

Clearly the synchronized run is a generalization of the parallel and sequential runs.

Theorem 4. If the (q

S

; t

0

; �

0

)-2SDH assumption holds in (G

1

;G

2

), the proposed blind signature

scheme is (t; q

S

; �)-unforgeable against an L-interval synchronized run of adversaries, provided

that

�

0

�

1� 1=(L + 1)

16

� �; and t

0

� O

�

24L ln (L+ 1)

�

� t

�

+�(q

S

T );

where T is the maximum time for a single exponentiation in G

1

and G

2

.

Proof. Assume A is an adversary that (t; q

S

; �)-forges the blind signature scheme. We will then

construct algorithm B that (t

00

; q

S

; �

00

)-forges the proposed signature scheme (the variant signature

scheme: Section 5) with strong chosen message attacks (S-CMA). This leads to an algorithm that

breaks the 2SDH assumption with (q

S

; t

00

+ O(q

S

T ); �

00

=2) by Theorem 2.
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B, given (g

1

; g

2

; w

2

; u

2

; v

2

) as a public key of the basic signature scheme, provides them to A

as a public key for blind signatures.

B is allowed to access the signing oracle of the basic signature scheme (Section 4) q

S

times.

Here note that we assume S-CMA, where the signing oracle return a signature with the form of

(�; r; �). By using this signing oracle, B plays the role of an honest signer against A (dishonest

user).

First, A requests B to sign X along with the witness indistinguishable (WI) protocol on witness

(mt mod p; t; st mod p) against B's random challenge � 2 Z

�

p

. After completing the WI protocol,

B resets A to the initial state of the WI protocol and runs the same procedure with the same

commitment value ofW and another random challenge �

0

2 Z

�

p

(� 6= �

0

). If B succeeds in completing

the WI protocol twice with di�erent challenges � and �

0

such that

g

b

1

1

u

b

2

1

v

b

3

1

= WX

�

; g

b

0

1

1

u

b

0

2

1

v

b

0

3

1

=WX

�

0

; (8)

B can compute

m

0

 (b

1

� b

0

1

)=(� � �

0

) mod p;

t (b

2

� b

0

2

)=(� � �

0

) mod p; (9)

s

0

 (b

3

� b

0

3

)=(� � �

0

) mod p;

such that

X = g

m

0

1

u

t

1

v

s

0

1

:

B computes

m m

0

=t mod p; s s

0

=t mod p: (10)

B then resumes the protocol just after the WI protocol, and sends m to the signing oracle. The

signing oracle returns to B (�; r; �) such that �  (g

m

1

u

1

v

�

1

)

1=(x+r)

. B computes

Y  �

t

; ` t(� � s) mod p; (11)

and returns A (Y; r; `).

B repeats the above procedures (at the request of A) q

S

times. If all q

S

rounds of the above

procedures are completed, A �nally outputs the at least q

S

+ 1 valid signatures with distinct

messages. From the pigeon-hole principle, among at least q

S

+ 1 distinct messages with valid

signatures that A outputs, at least one message with valid signature is di�erent from the q

S

messages with valid signatures given by the signing oracle. This contradicts the q

S

-unforgeability

of the basic signature scheme.

The remaining problem in this strategy is how to execute all q

S

rounds of the WI protocol

twice with distinct challenges � and �

0

in a synchronized run with A.

Suppose that the synchronized run of blind signature generation protocol (including the WI

protocol) consists of L sequential intervals, the j-th of which consists of the parallel execution of

q

j

rounds of the protocol, where q

S

= q

1

+ � � �+ q

L

.

B then behaves in a synchronized run of A as follows:

1. The randomness of G, A and B is randomly �xed. Then, q

S

random challenges of B, (�

1

; : : : ; �

q

S

),

are also �xed. Hereafter in this procedure, the randomness except B's random challenges is

�xed.

2. In the j-th interval of the synchronized run (j = 1; : : : ; L), using (�

Q

j

+1

; : : : ; �

Q

j

+q

j

) (Q

j

=

q

1

+ � � � q

j�1

and Q

1

= 0), B runs the blind signature generation protocol, and obtains A's

responses, (b

1

; b

2

; b

3

)

Q

j

+1

; : : : ; (b

1

; b

2

; b

3

)

Q

j

+q

j

, for B's challenges, (�

Q

j

+1

; : : : ; �

Q

j

+q

j

).
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3. B checks the validity. If all responses are valid, B rewinds the protocol up to the beginning of

the j-th interval (i.e., just after A's sending the commitments, (X;W )

Q

j

+1

; : : : ; (X;W )

Q

j

+q

j

,

to signer, B). Otherwise, B halts.

B then randomly selects challenges, (�

0

Q

j

+1

; : : : ; �

0

Q

j

+q

j

) (�

0

Q

j

+1

6= �

Q

j

+1

, : : : ; �

0

Q

j

+q

j

6= �

Q

j

+q

j

),

and sends them to A. B obtains A's responses, (b

1

; b

2

; b

3

)

0

Q

j

+1

; : : : ; (b

1

; b

2

; b

3

)

0

Q

j

+q

j

. B checks

the validity, and if all responses are valid, computes (m; t; s)

Q

j

+1

; : : : ; (m; t; s)

Q

j

+q

j

by Eqs.

(8), (9) and (10). Otherwise, B return to the beginning of this step.

4. With the help of the signing oracle, B then computes (Y; `)

Q

j

+1

; : : : ; (Y; `)

Q

j

+q

j

by Eq. (11),

and sends them to A.

5. Move to the next interval.

6. If all intervals are completed successfully, A provides an output.

We now consider the game scenario used in De�nition 5. In the game scenario, let assume that

the randomness of G, U

�

(here A) and S except S's random challenges, (�

1

; : : : ; �

q

S

), is �xed. Thus

value of (�

1

; : : : ; �

q

S

) chosen leads to the result of the game, U

�

's win or not.

To characterize all choices of the value of (�

1

; : : : ; �

q

S

) that lead to win or not, we consider an

L layer tree from its root node (the 0-th layer), in which all nodes in the (j � 1)-th layer have

n

j

 (p � 1)

q

j

sons (j = 1; : : : ; L). Thus, in total there are n

1

n

2

� � �n

L

leafs at the bottom (the

L-th layer). A path is labelled by (p

1

; p

2

; : : : ; p

L

), where p

j

2 f1; : : : ; n

j

g (j = 1; : : : ; L), identi�es

a j-th layer node on the path. So, each node can be identi�ed by the corresponding path, i.e.,

(p

1

; p

2

; : : : ; p

j

) denotes the j-th layer node on path (p

1

; p

2

; : : : ; p

L

), and a leaf node (the L-th layer

node) has the same label as the corresponding path. The root node is identi�ed by ?. Each path

leads to the game result, `win' or not (`lose'), and the leaf is labelled by `win' or `lose'. If a node

leads to game abort, then the node is labelled by `lose'. We say that a node survives if it is not

labelled as `lose'.

Let �

j�1;(p

1

;:::;p

j�1

)

be the ratio of sons of (j�1)-th node (p

1

; : : : ; p

j�1

) that survive in the j-th

layer among the n

j

sons of node (p

1

; : : : ; p

j�1

). Let �

�

be Adv

unforge

PBS

with the �xed randomness of

G, U

�

(A) and S except S's random challenges, (�

1

; : : : ; �

q

S

).

Therefore,

�

�

=

X

(p

1

;p

2

;:::;p

L�1

)

(�

0;?

�

1;p

1

�

2;(p

1

;p

2

)

� � � �

L�1;(p

1

;p

2

;:::;p

L�1

)

)=(n

1

n

2

� � �n

L�1

);

where if L = 1, �

�

= �

0;?

.

We call path (p

1

; p

2

; : : : ; p

L

) heavy if (�

0;?

� � � �

L�1;(p

1

;p

2

;:::;p

L�1

)

) � �

�

=2. This leads to the

following claim:

Claim. At least half of all `win' paths are heavy.

Proof. Let's assume that more than half of all `win' paths are not heavy. That is, more than

�

�

(n

1

n

2

� � �n

L

)=2 `win' paths are not heavy. Each `lose' path can be corresponded to a `win' path

disjointly (in the manner shown below), and there are (1=(�

0;?

� � � �

L�1;(p

1

;p

2

;:::;p

L�1

)

) � 1) `lose'

paths that correspond to a single `win' path (p

1

; p

2

; : : : ; p

L

) disjointly.

This correspondence is made as follows: (1 � �

j�1;(p

1

;p

2

;:::;p

j�1

)

)n

j

`lose' sons of (j � 1)-th

node (p

1

; : : : ; p

j�1

) and all their descendant paths can be corresponded to the �

j�1;(p

1

;p

2

;:::;p

j�1

)

n

j

`win' sons of node (p

1

; : : : ; p

j�1

). That is, (1=�

j�1;(p

1

;p

2

;:::;p

j�1

)

� 1) `lose' sons of (j � 1)-th node

(p

1

; : : : ; p

j�1

) and their all descendant paths can be disjointly corresponded to each `win' son of

node (p

1

; : : : ; p

j�1

). By repeating this correspondence for all layers (j = 1; : : : ; L), (1=(�

0;?

� � �

�

L�1;(p

1

;p

2

;:::;p

L�1

)

)�1) `lose' paths are disjointly corresponded to each `win' path (p

1

; p

2

; : : : ; p

L

).)

20



Therefore, if a `win' path is not heavy, there are more than 2=�

�

(`lose' or `win') paths that

correspond to the path. Since there are more than �

�

(n

1

n

2

� � �n

L

)=2 `not-heavy win' paths from

the assumption, there must be more than n

1

n

2

� � �n

L

(= (2=�

�

)(�

�

(n

1

n

2

� � �n

L

)=2)) paths. This

contradicts that the total number of paths is n

1

n

2

� � �n

L

. a

When path (p

1

; p

2

; : : : ; p

L

) is heavy, �

j�1;(p

1

;p

2

;:::;p

j�1

)

� �

�

=2 for all j = 1; : : : ; L. Therefore, if B

tries 12 ln (L+ 1)=�

�

rewinding challenges in the j-th interval, the probability that B can compute

(m; t; s)

Q

j

+1

; : : : ; (m; t; s)

Q

j

+q

j

is at least (1 � (L + 1)

�2

) (by Cherno� bound). (Note that more

precisely we have to consider the probability that �

0

Q

j

+i

= �

Q

j

+i

for some i 2 f1; : : : ; q

j

g. However,

since the probability is negligible in n, around q

j

=(p � 1), we ignore it in this evaluation (i.e.,

precisely we have to use �

�

=2� q

j

=(p � 1) in place of �

�

=2, but the di�erence is negligible in n).)

To summarise in total, B breaks the q

S

-unforgeability of the basic signature scheme with prob-

ability at least (1� (L+ 1)

�2

)

L

�

�

=2 (i.e., at least (1� (L+1)

�1

)�

�

=2) under the condition that B

rewinds random challenges at most 12L ln (L+ 1)=�

�

times in L intervals.

The above-mentioned evaluation is based on �

�

as Adv

unforge

PBS

under the �xed randomness of

G, U

�

(here A) and S except S's random challenges. Finally, given � as Adv

unforge

PBS

over the whole

random space, we evaluate the success probability. Let R

0

be the �xed part of randomness and R

1

be S's randomness for challenges, (�

1

; : : : ; �

q

S

). We say that a value of R

0

is heavy, if Adv

unforge

PBS

under the value ofR

0

is at least �=2. This yields the following claim by a simple counting argument:

Claim. More than half of `win' values of (R

0

;R

1

) have heavy values of R

0

.

Thus, B breaks the q

S

-unforgeability of the basic signature scheme with probability at least

(1� 1=(L+1))�=8 under the condition that B rewinds random challenges at most 24L ln (L+ 1)=�

times in total. By combining this result with Theorem 2 we obtain the claim of this theorem. a

Remark: (Constant-depth concurrency) We can de�ne a speci�c type of concurrent runs, constant-

depth concurrent runs, in which, informally speaking, only a constant depth of purely inner rounds

is allowed in all paths. A synchronized run is a speci�c type of depth-1 concurrent runs. We

can show that our blind signature scheme is still secure against a constant-depth concurrent run

of adversaries under the same assumption and model. The result is presented in the full paper

version.

7 The Proposed Partially Blind Signature Scheme

This section shows the application of the proposed signature scheme to partially blind signatures.

We present a secure partially blind signature scheme in the standard model under the 2SDH

assumption.

7.1 Partially Blind Signature Scheme

Let (G

1

;G

2

) be bilinear groups as shown in Section 2.3. Here, we also assume that the message,

m, to be partially blindly signed is an element in Z

�

p

, but the domain can be extended to all of

f0; 1g

�

by using a collision resistant hash function H : f0; 1g

�

! Z

�

p

, as mentioned in Section 3.5

in [7].
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Key generation: Randomly select generators g

2

; u

2

; v

2

; h

2

2 G

2

and set g

1

  (g

2

), u

1

  (u

2

),

v

1

  (v

2

), and h

1

  (h

2

). Randomly select x 2 Z

�

p

and compute w

2

 g

x

2

2 G

2

. The public

and secret keys are:

Public key: g

1

; g

2

;w

2

; u

2

; v

2

; h

2

Secret key: x

Partially blind signature generation:

1. Signer S and user U agree on common information m

0

(which is info in Section 2.2) in a

predetermined way.

2. U randomly selects s; t 2 Z

�

p

, computes

X  h

m

0

t

1

g

m

1

t

1

u

t

1

v

st

1

;

and sends X to S. Here,m

1

is the message to be blindly signed along with common information

m

0

. In addition, U proves to S that U knows (t;m

1

t; t; st) for X = (h

m

0

1

)

t

g

m

1

t

1

u

t

1

v

st

1

using the

witness indistinguishable proof as follows:

(a) U randomly selects a

1

; a

2

; a

3

from Z

�

p

, computes

W  (h

m

0

1

)

a

2

g

a

1

1

u

a

2

1

v

a

3

1

;

and sends W to S.

(b) S randomly selects � 2 Z

�

p

and sends � to U .

(c) U computes

b

1

 a

1

+ �m

1

t mod p; b

2

 a

2

+ �t mod p; b

3

 a

3

+ �st mod p;

and sends (b

1

; b

2

; b

3

) to S.

(d) S checks whether the following equation holds or not:

(h

m

0

1

)

b

2

g

b

1

1

u

b

2

1

v

b

3

1

= WX

�

:

If it holds, S accepts. Otherwise, S rejects and aborts.

3. If S accepts the above protocol, S randomly selects r 2 Z

�

p

. In the unlikely event that x+r � 0

mod p, S tries again with a di�erent random r. S also randomly selects ` 2 Z

�

p

, computes

Y  (Xv

`

1

)

1=(x+r)

;

and sends (Y; r; `) to U .

Here, Y = (Xv

`

1

)

1=(x+r)

= (h

m

0

1

g

m

1

1

u

1

v

s+`=t

1

)

t=(x+r)

.

4. U randomly selects f 2 Z

�

p

, and computes

� = (ft)

�1

mod p; �  Y

�

; � w

f

2

g

fr

2

; �  s+ `=t mod p:

Compute Test(�) (U;V ) as follows:

U  w

1=f

1

g

�

1

; V  w

f�+r

2

g

fr�

2

; (12)

Here, � = (h

m

0

1

g

m

1

1

u

1

v

s+`=t

1

)

1=(fx+fr)

= (h

m

0

1

g

m

1

1

u

1

v

�

1

)

1=(fx+fr)

, and � = w

f

2

g

fr

2

= g

fx+fr

2

.

5. (�;�;�; Test(�)) is the partially blind signature of (m

0

;m

1

), where m

0

is common information

between S and U , and m

1

is blinded to S.
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Signature veri�cation: Given a public-key (g

1

; g

2

; w

2

; u

2

; v

2

; h

2

), common information m

0

, mes-

sage m

1

, and a signature (�;�; �; Test(�)), check

m

0

;m

1

2 Z

�

p

; � 2 Z

p

�;U 2 G

1

; �; V 2 G

2

; � 6= 1; � 6= 1;

e(�; �) = e(g

1

; h

m

0

2

g

m

1

2

u

2

v

�

2

); e(U; �) = e(w

1

; w

2

) � e(g

1

; V ):

If they hold, the veri�cation result is valid; otherwise the result is invalid.

7.2 Performance

The performance of these partially blind signatures is almost the same as that of the proposed

blind signatures.

7.3 Security

The following theorems show that the proposed partially blind signature scheme is unforgeable

and perfectly blind provided that the 2SDH assumption hold in (G

1

;G

2

).

Theorem 5. The proposed partially blind signature scheme is perfectly blind.

The proof is almost the same as that in Theorem 3.

Theorem 6. If the (q

S

; t

0

; �

0

)-2SDH assumption holds in (G

1

;G

2

), the proposed partially blind

signature scheme is (t; q

S

; �)-unforgeable, against an L-interval synchronized run of adversaries,

provided that

�

0

�

1� 1=(L + 1)

32

� �; and t

0

� O

�

48L ln (L+ 1)

�

� t

�

+�(q

S

T );

where T is the maximum time for a single exponentiation in G

1

and G

2

.

Proof. Assume A is an adversary that (t; q

S

; �)-forges the partially blind signature scheme. We will

then construct algorithm B that (t + �(qT ); q

S

; �=2)-forges our proposed blind signature scheme.

This leads to an algorithm that breaks the q-2SDH assumption with (q

S

; O

�

24L ln (L+1)

�

� t

�

+

�(q

S

T );

1�1=(L+1)

16

� �) by Theorem 4.

First, we introduce two types of forgers, A. Let (g

1

; g

2

; w

2

; u

2

; v

2

; h

2

) be given to A as a public-

key, and �  log

g

2

h 2 Z

�

p

(i.e., h = g

�

2

). Then there are two types of forgers, A, that output at

least q

S

+ 1 signatures (m

0;1

;m

1;1

; �

1

; �

1

; �

1

); : : : ; (m

0;L

; �

L

; �

L

; �

L

) (L � q

S

+ 1) as follows:

Type-1 forger (�m

0;i

+m

1;i

mod p; �

i

; �

i

; �

i

) 6= (�m

0;j

+m

1;j

mod p; �

j

; �

j

; �

j

) for all pairs (i; j)

such that i 6= j and i; j 2 f1; : : : ; Lg.

Type-2 forger There exists pair (i; j) such that i 6= j, i; j 2 f1; : : : ; Lg and (�m

0;i

+ m

1;i

mod

p; �

i

; �

i

; �

i

) = (�m

0;j

+m

1;j

mod p; �

j

; �

j

; �

j

).

Algorithm B is constructed as follows:

1. (Input:)

(g

1

; g

2

; w; u; v) as a public key of the blind signature scheme.
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2. (Coin 
ip:)

Algorithm B �rst picks a random value c 2 f1; 2g that indicates its guess for the type of

forger that A will emulate. The subsequent actions performed by B di�er with c

type

2 f1; 2g

as follows:

3. (If c = 1;)

(a) (Key setup)

B randomly selects � 2 Z

�

p

and computes h  g

�

2

. B then provides (g

1

; g

2

; w; u; v; h) to A

as a public key of the partially blind signatures.

(b) (Simulation)

In the partially blind signing process, A sends to B X along with common information m

0

and the witness indistinguishable proof of witness (m

1

; s; R) for Z = X=( (h)

m

0

 (u)) =

g

m

1

1

 (v)

s

( (wf))

R

. In the process, B sends X to S when A sends out X . B also transfers

a

1

; a

2

; a

3

from A to S, and transfers � from S to A. When A replies (b

1

; b

2

; b

3

), B computes

b

0

1

 b

1

+ ��m

0

mod p, and replies (b

0

1

; b

2

; b

3

) to S. If A's proof is valid, the proof changed

by B is also a valid proof of witness (�m

0

+m

1

mod p; s; R) for X= (u).

(c) (Output)

It is easy for B to convert A's output (at least q

S

+ 1 signatures) to B's output (at least

q

S

+ 1 signatures) such that A's signature (�;�; �) for (m

0

;m

1

) is B's signature (�;�; �)

for m �m

0

+m

1

mod p.

If (�m

0;i

+m

1;i

mod p; �

i

; �

i

; �

i

) 6= (�m

0;j

+m

1;j

mod p; �

j

; �

j

; �

j

) for all pairs (i; j) such

that i 6= j and i; j 2 f1; : : : ; Lg, then B obtains L distinct message/signatures. Otherwise,

B aborts.

4. (If c = 2;)

(a) (Key setup)

B randomly selects x

0

; z

0

2 Z

�

p

, computes w

0

 g

x

0

2

and v

0

 g

z

0

2

, and sets h  w. B then

provides (g

1

; g

2

; w

0

; u; v

0

; h) to A as a public key of the partially blind signatures.

(b) (Simulation)

B can play the role of a signer in the partially blind signing process with A, since B knows

secret key (x

0

; z

0

).

(c) (Output)

If there exists a pair (i; j) such that i 6= j, i; j 2 f1; : : : ; Lg and (xm

0;i

+ m

1;i

mod

p; �

i

; �

i

; �

i

) = (xm

0;j

+ m

1;j

mod p; �

j

; �

j

; �

j

), where h

0

= w = g

x

2

, then m

0;i

6= m

0;j

since m

0;i

= m

0;j

implies (m

0;i

;m

1;i

; �

i

; �

i

; �

i

) = (m

0;j

;m

1;j

; �

j

; �

j

; �

j

), which is not al-

lowed. Therefore, B can calculate x = (m

1;j

�m

1;i

)=(m

0;i

�m

0;j

) mod p. B then can forge

L signatures in the public-key (g

1

; g

2

; w; u; v), since B knows the secret-key x.

Otherwise, B aborts.

This completes the description of algorithm B. In any value of c 2 f1; 2g, the distribution of

the simulation (public-key generation and simulation) by B is exactly equivalent to that of the

real attack scenario. Therefore, regardless of the value of c inside B, adversary A produces a valid

forgery in time t with probability at least �.

We then obtain the probability �

00

that B forges our blind signatures as follows:

{ (When c = 1;)

If Type-1 forgery occurs, B does not abort (i.e., forges our blind signatures).

{ (When c = 2;)

If Type-2 forgery occurs, B does not abort (i.e., forges our blind signatures).

Since the value of c is independent from which type of forgery occurs, B forges our blind signatures

with probability at least 1=2. a
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7.4 Generalization

(m

0

;m

1

) with an additional key h

2

is generalized to (m

0

; : : : ;m

l

) with additional key (h

2;1

; : : : ; h

2;l

).

Arbitrary subset in fm

0

; : : : ;m

l

g can be blinded messages and the remaining be common messages.

8 Conversion to Fully Concurrent Security in the CRS Model

As mentioned above, the proposed (partially) blind signature scheme is secure against a synchro-

nized run of adversaries (or more generally, a constant-depth concurrent run of adversaries). In this

section, we show how to convert the proposed scheme to a scheme secure against a fully-concurrent

run of adversaries. Our proposed blind signature scheme is secure in the plain model (without any

setup assumptions), while the converted scheme is secure in the common reference string (CRS)

model. The key idea is similar to [25], and uses Paillier encryption for a simulator to extract blind

messages with the help of the CRS model, and also uses a trapdoor commitment [17] to realize a

concurrent zero-knowledge protocol. For simplicity of description, we will show a blind signature

scheme, but it is straightforward to extend it to our partially blind signature scheme.

8.1 Converted Blind Signature Scheme

Key generation: Randomly select generators g

2

; u

2

; v

2

2 G

2

and set g

1

  (g

2

), u

1

  (u

2

),

and v

1

  (v

2

). Randomly select x 2 Z

�

p

, and compute w

2

 g

x

2

2 G

2

. In addition, randomly

select secret and public keys of Paillier encryption, two prime integers P and Q, and (N = PQ;G),

where jN j = (6+ 3c

0

)jpj (c

0

is a constant and 0 < c

0

< 1). The public and secret keys, (pk; sk), of

a trapdoor commitment, commit, [17] are also generated. We consider that (c

0

; c

1

) is a part of the

system parameters such as the speci�cation of G

1

, G

2

and G

T

.

The public and secret keys and CRS are:

Public key: g

1

; g

2

;w

2

, u

2

, v

2

Secret key: x

CRS: N;G; pk

Trapdoor of CRS: P;Q; sk

Blind signature generation:

1. U checks whether g

2

; w

2

, u

2

, v

2

2 G

2

and g

1

=  (g

2

). If they hold, U proceeds with the

following signature generation protocol.

2. U randomly selects s; t 2 Z

�

p

and A 2 Z

N

2
, computes

X  g

mt

1

u

t

1

v

st

1

; D G

(mt mod p)+t2

K

+(st mod p)2

2K

A

N

mod N

2

;

and sends (X;D) to S. Here K = (2+ c

0

)jpj, and m 2 Z

�

p

is the message to be blindly signed.

In addition, U proves to S that U knows (mt mod p; t; st mod p) for X as follows:

(a) U randomly selects a

1

; a

2

; a

3

from f0; 1g

(2+c

1

)jpj

(c

1

is a constant and 0 < c

1

< c

0

< 1),

B 2 Z

N

2
and r

�

from the domain, computes

W  g

a

1

1

u

a

2

1

v

a

3

1

; E  G

a

1

+a

2

2

K

+a

3

2

2K

B

N

mod N

2

;

C  commit(E; r

�

; pk);

and sends (W;C) to S.
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(b) S randomly selects � 2 Z

�

p

and sends � to U .

(c) U computes

b

1

 a

1

+ �(mt mod p); b

2

 a

2

+ �t; b

3

 a

3

+ �(st mod p);

F  BA

�

mod N

2

;

and sends (b

1

; b

2

; b

3

; F ) as well as (E; r

�

) to S.

(d) S checks whether the following equations hold or not:

jb

i

j � (2 + c

1

)jpj (i = 1; 2;3); C = commit(E; r

�

; pk);

g

b

1

1

u

b

2

1

v

b

3

1

= WX

�

; G

b

1

+b

2

2

K

+b

3

2

2K

F

N

� ED

�

(mod N

2

):

If they hold, S accepts. Otherwise, S rejects and aborts.

(The remaining procedure is the same as that of the original blind signature scheme as follows:)

3. If S accepts the above protocol, S randomly selects r 2 Z

�

p

. In the unlikely event that x+r � 0

mod p, S tries again with a di�erent random r. S also randomly selects ` 2 Z

�

p

, computes

Y  (Xv

`

1

)

1=(x+r)

;

and sends (Y; r; `) to U .

4. U randomly selects f; � 2 Z

�

p

, and computes

�  (ft)

�1

mod p; �  Y

�

;

� w

f

2

g

fr

2

; �  s + `=t mod p:

Compute Test(�) (U;V ) as follows:

U  w

1=f

1

g

�

1

; V  w

f�+r

2

g

fr�

2

; (13)

5. (�;�;�; Test(�)) is a blind signature of m.

Signature veri�cation: (Same as that of the original blind signature scheme as follows:)

Given public-key (g

1

; g

2

; w

2

; u

2

; v

2

), message m, and signature (�;�; �; Test(�)), check

m;� 2 Z

�

p

; �; U 2 G

1

; �; V 2 G

2

; � 6= 1; � 6= 1;

e(�;�) = e(g

1

; g

m

2

u

2

v

�

2

); e(U; �) = e(w

1

; w

2

) � e(g

1

; V ): (14)

If they hold, the veri�cation result is valid; otherwise the result is invalid.

8.2 Properties:

The signature veri�cation of the converted blind signature scheme is equivalent to that of the

original one. That is, veri�ers do not need to care about whether a signature to be veri�ed is the

original or a converted one. In addition, the original signing protocol is employed by the converted

one as a core part as it is. The public-key and secret-key can be also shared by the original and

converted schemes.
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Therefore, a signer can 
exibly choose the original signing protocol or the converted one, de-

pending on the signer's strategy, whether the signer permits a fully concurrent run of users or

not. (The signer can control a run of users; e.g., a signer can reject replying to a user if the user's

response is received too late after receiving the commitment, or control the timing at which the

challenges are sent to users.) For example, a signer can change the choice of the signing protocol

day by day or event by event.

A signer and users can 
exibly select and change CRS without changing the public-key of the

signer. Even if the underlying CRS is broken (e.g., the secret key is revealed and published), it does

not a�ect the security of the signatures, since CRS is only employed in an online manner during

the signing protocol, and the key of the signatures is independent from CRS.

8.3 Security:

The following theorems show that the proposed blind signature scheme is blind and unforgeable.

Informally, the signature generation protocol is (statistically) witness indistinguishable, WI, ex-

cept D, which is Paillier encryption of a message. So, this blind signature scheme satis�es blindness

under the Paillier encryption is semantically secure.

As for unforgeability, if the WI protocol in the signature generation protocol is accepted by

a signer, the security reduction algorithm for unforgeability (or a simulator of the signer), who

knows the trapdoor of CRS (i.e., P;Q), can extract (m; s; t) by decrypting ED

�

(for two distinct

values of �) without rewinding A. So, the security reduction works against any concurrent run of

adversaries.

Theorem 7. The proposed blind signature scheme is blind assuming that Paillier encryption is

semantically secure (IND-CPA).

Proof. We assume that the proposed blind signature scheme is not blind, i.e., assume that a

dishonest signer S

�

can guess b correctly with a non-negligible (in n) advantage, �, in the de�nition

of blindness shown in Section 2.2. We can then construct an algorithm B to break the semantic

security of Paillier encryption as follows:

1. Given public-key (N;G) of Paillier encryption, B generates the public and secret keys, (pk; sk),

of a trapdoor commitment, commit, and gives ((N;G); pk) to S

�

as CRS.

2. S

�

provides B with a public-key, (g

1

; g

2

; w

2

, u

2

, v

2

), and two messages m

0

;m

1

2 Z

�

p

. S checks

that g

1

2 G

1

, g

2

; w

2

, u

2

, v

2

2 G

2

, and m

0

;m

1

2 Z

�

p

. If it does not hold, B halts and outputs

�

0

2 f0; 1g randomly.

3. B randomly selects s

0

; t

0

; s

1

; t

1

2 Z

�

p

, and setsM

0

 (m

0

t

0

mod p)+ t

0

2

K

+(s

0

t

0

mod p)2

2K

and M

1

 (m

1

t

1

mod p) + t

1

2

K

+ (s

1

t

1

mod p)2

2K

.

4. B gives (M

0

;M

1

) to the encryption oracle, EO, of Paillier encryption. EO randomly selects

� 2 f0; 1g and A

0

2 Z

N

2
, encrypts M

b

to D  G

M

�

A

N

0

mod N

2

, and gives D to B.

5. B randomly selects b 2 f0; 1g and A

1

2 Z

N

2
, and computes

X

0

 g

m

0

t

0

1

u

t

0

1

v

s

0

t

0

1

; D

0

 D;

X

1

 g

m

1

t

1

1

u

t

1

1

v

s

1

t

1

1

; D

1

 G

(m

1

t

1

mod p)+t

1

2

K

+(s

1

t

1

mod p)2

2K

A

N

1

mod N

2

;

and sends S

�

(X

b

; D

b

) as U

0

's request and (X

�

b

; D

�

b

) as U

1

's request.

6. B executes the protocol to prove to S

�

that B knows (m

i

t

i

mod p; t

i

; s

i

t

i

mod p) regarding

(X

i

; D

i

) (i = 0; 1) for U

0

and U

1

. B's procedure regarding (X

1

; D

1

) for U

�

b

is exactly the

same as the real one by U

�

b

. B's procedure regarding X

0

for U

b

is exactly the same as the
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real one by U

b

, but then procedure regarding D

0

(= D) for U

b

is a fake procedure that uses the

trapdoor, sk, of trapdoor commitment commit. That is, after obtaining � from S

�

, B randomly

generates F

0

2 Z

N

2
and computes E

0

 G

b

1

+b

2

2

K

+b

3

2

2K

F

N

0

=D

�

0

mod N

2

, where (b

1

; b

2

; b

3

) is

determined by the above-mentioned procedure regarding X

0

. B then opens C to (E

0

; r

�

) with

C = commit(E

0

; r

�

; pk) using trapdoor sk, and sends F

0

and (E

0

; r

�

) as well as (b

1

; b

2

; b

3

) to

S

�

.

7. After completing the protocol above, the remaining procedure is the same as the real one (i.e.,

B acts as a honest user).

8. After completing the signing phase of the proposed blind signature for U

0

and U

1

, B checks

the validity of the two obtained signatures for U

0

and U

1

. If at least one is invalid, B gives ?

to S

�

. If both of them are valid, B gives them to S

�

, B then obtains the output of S

�

, b

0

. If

b = b

0

, B outputs �

0

 0, otherwise outputs �

0

 1.

If � = 0, the distributions of the views of S

�

for U

0

and U

1

in the above-mentioned B's procedure

are identical to those in the experiment of blindness of the proposed blind signature scheme (in

Section 2.2).

Therefore, Pr[b = b

0

j � = 0] = 1=2 + �=2.

If � = 1, the distributions of D

0

and D

1

are exactly the same. The distributions of the views of

S

�

on the protocols regarding X

0

and X

1

are statistically indistinguishable, and the distributions

of the views of S

�

on the fake protocol regarding D

0

and on the real protocol regarding D

1

are

also statistically indistinguishable.

Whether B gives S

�

? or two valid signatures depends only on whether S

�

's reply (Y;R; `) to

B satis�es e(Y;w

2

R) = e(X

i

v

`

1

; g

2

) (i = 0; 1) or not, but does not depend on the value of b (or

independent from b), since the distributions of X

0

and X

1

are equivalent.

Hence, jPr[b 6= b

0

j � = 1]� 1=2j < �, where � is negligible in n.

Thus,

Pr[� = �

0

] = Pr[� = �

0

= 0 _ � = �

0

= 1]

= Pr[�

0

= 0 j � = 0]Pr[� = 0] + Pr[�

0

= 1 j � = 1]Pr[� = 1]

= 1=2(Pr[b = b

0

j � = 0] + Pr[b 6= b

0

j � = 1])

> 1=2(1=2 + �=2 + 1=2� �) = 1=2 + �=4� �=2:

Therefore, the advantage of IND-CPA of B against Paillier encryption, 2 � Pr[� = �

0

] � 1, is

non-negligible, (�=2� �) in n, which contradicts the assumption. a

Theorem 8. Let the 2SDH assumption hold in (G

1

;G

2

), and the underlying commitment, commit,

satisfy the binding condition. Then, the proposed blind signature scheme is unforgeable against a

concurrent run of adversaries in the CRS model.

Proof. The top-level strategy of the proof is similar to that of Theorem 4. That is, �rst we assume

A is an adversary that forges the blind signature scheme with non-negligible probability epsilon in

n. We will then construct algorithm B that forges the proposed signature scheme (basic signature

scheme presented in Section 5) with non-negligible probability in n. This leads to an algorithm

that breaks the 2SDH assumption by Theorem 2. Here, in the reduction, we also assume that A

can break the binding condition with negligible probability � in n(due to the theorem statement).

The major di�erence of this proof from the proof of Theorem 4 is that, in this proof, B does

not rewind A, instead B simulates the rewinding by itself with help from the trapdoor of the

commitment.

B behaves with a concurrent run of A as follows:

28



1. Given (g

1

; g

2

; w

2

; u

2

; v

2

) as a public key of the basic signature scheme, B randomly selects secret

and public keys of Paillier encryption, P and Q, and (N = PQ;G), and the public and secret

keys, (pk; sk), of a trapdoor commitment, commit.

B provides A (g

1

; g

2

; w

2

; u

2

; v

2

) as a public key for blind signatures as well as (N;G; pk) as

CRS.

2. B executes the blind signing protocol with A, where B plays the role of an honest signer against

user A (dishonest user), who tries to forge a signature.

3. On receiving the j-th signing request message, (X;D) and (W;C), B returns a random chal-

lenge, � 2 Z

�

p

, to A. When B later (at some step) receives the corresponding response,

(b

1

; b

2

; b

3

; F; E; r

�

), from A, B checks whether the following equations hold or not:

jb

i

j � (2 + c

1

)jpj (i = 1; 2; 3); C = commit(E; r

�

; pk);

g

b

1

1

u

b

2

1

v

b

3

1

= WX

�

; G

b

1

+b

2

2

K

+b

3

2

2K

F

N

� ED

�

(mod N

2

):

If the equations do not hold, B halts and outputs failure.

4. If the equations hold, B randomly selects �

0

2 Z

�

p

and computes � 2 Z

N

such that G

�

U

N

�

ED

�

0

(mod N

2

) by using secret key, (P;Q), of Paillier encryption. If there exist (b

0

1

; b

0

2

; b

0

3

)

such that � = b

0

1

+ b

0

2

2

K

+ b

0

3

2

2K

, and jb

0

i

j � (2+ c

1

)jpj (i = 1; 2; 3), then B checks whether the

following equation holds or not: g

b

0

1

1

u

b

0

2

1

v

b

0

3

1

=WX

�

0

.

If it does not hold, return to the top of this step. The number of iterations of this step is

bounded by a polynomial in security parameter n.

If it holds, B computes

t (b

2

� b

0

2

)=(� � �

0

) mod p; m (b

1

� b

0

1

)=(t(� � �

0

)) mod p;

s (b

3

� b

0

3

)=(t(� � �

0

)) mod p;

where X = g

mt

1

u

t

1

v

st

1

.

5. Since B is allowed to access the signing oracle of the basic signature scheme, B sends m to the

signing oracle. The signing oracle returns (�;R; �) to B such that �  (g

m

1

u

1

v

�

1

)

1=(x+r)

.

B computes

Y  �

t

; ` t(� � s) mod p; (15)

and returns (Y; r; `) to A.

6. If the whole signing procedures with q

S

rounds are completed successfully, A provides an

output.

7. If, in the output of A, B �nds a valid signature of a message, m

�

, that is di�erent from the

messages given to the signing oracle, B outputs the signature with m

�

. Otherwise, B outputs

failure.

After all q

S

rounds of the above procedures are completed, successful adversary A outputs the

at least q

S

+ 1 valid signatures with distinct messages. From the pigeon-hole principle, among at

least q

S

+1 distinct messages with valid signatures that A outputs, at least one message with valid

signature is di�erent from the q

S

messages with valid signatures given by the signing oracle. This

contradicts the q

S

-unforgeability of the basic signature scheme.

We now analyze the success probability of B.

We assume that A forges the blind signature scheme with non-negligible (in n) probability �

and breaks the binding condition of commit with negligible (in n) probability �. (Here, to break

the binding condition of commit means that A opens two distinct values for the same commitment

at least once during its execution.)
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We then consider the case, Forge-Bind, where A forges the blind signature scheme but does

not break the binding condition of commit. Forge-Bind occurs with probability at least �

�

 ���.

Similar to the analysis in the proof of Theorem 4, we consider the game scenario (in De�nition

5) with concurrent runs of users.

We assume that the randomness of G, U

�

(here A) and S except S's random challenges,

(�

1

; : : : ; �

q

S

), is �xed. It follows that the choice of the value of (�

1

; : : : ; �

q

S

) leads to the result

of the game, U

�

's win (Forge-Bind) or not. The probability of Forge-Bind, �

�

, is taken over the

whole random space. Let R

0

be the �xed part of randomness and R

1

be S's randomness for chal-

lenges, (�

1

; : : : ; �

q

S

). We say that a value of R

0

is heavy, if the probability that Forge-Bind occurs

under the value of R

0

is at least �

+

 �

�

=2. So we have the following claim by a simple counting

argument:

Claim. More than half of the values of (R

0

;R

1

) that lead to case Forge-Bind have heavy values

of R

0

.

Hereafter, we analyze the success probability of B based on the probability of Forge-Bind that

is at least �

+

, under a �xed heavy value of R

0

,

To characterize all choices of the value of (�

1

; : : : ; �

q

S

) that lead to Forge-Bind or not, we

consider a q

S

layer tree from a root node (the 0-th layer), in which all nodes have (p� 1) sons; in

total there are (p�1)

q

S

leafs at the bottom (the q

S

-th layer). A path is labelled by (�

1

; �

2

; : : : ; �

q

S

),

which identi�es a j-th layer node on the path (j = 1; : : : ; q

S

). That is, each node can be identi�ed

by the corresponding path, i.e., (�

1

; �

2

; : : : ; �

j

) denotes the j-th layer node on path (�

1

; �

2

; : : : ; �

q

S

),

and a leaf node has the same label as the corresponding path. The root node is identi�ed by ?.

Each path leads to the game result, `win' (Forge-Bind) or not (`lose'), and the leaf is labelled by

`win' or `lose'.

Each node (�

1

; : : : ; �

j�1

) (j = 1; : : : ; q

S

) (if j = 1, node (�

1

; : : : ; �

j�1

) denotes the root node, ?)

corresponds to the j-th commitment value, com

(�

1

;:::;�

j�1

)

, of the user after signer's (j�1) challenges

(�

1

; : : : ; �

j�1

). In a concurrent run of our protocol, after the user sends j-th commitment value

com

(�

1

;:::;�

j�1

)

(j = 1; : : : ; q

S

), the signer sends a challenge, �

j

, and then later the user sends response

resp

j

corresponding to com

(�

1

;:::;�

j�1

)

and �

j

. Here, com

(�

1

;:::;�

j�1

)

corresponds to (X;D;W;C) and

resp

j

to (b

1

; b

2

; b

3

; F; E; r

�

), in our protocol description.

The timing and validity of user's response resp

j

depend on the user's strategy and signer's

challenges (�

1

; : : : ; �

l

) that are sent before the user sends resp

j

. If resp

j

is accepted (or rejected)

as a valid response to com

(�

1

;:::;�

j�1

)

and �

j

, then b

j

 1 (or b

j

 0) is labelled as �

j

. When a

path (�

1

; �

2

; : : : ; �

q

S

) is �xed, then the value of b

j

labelled to �

j

is �xed for all j = 1; : : : ; q

S

. Note

that �

j

along with (�

1

; �

2

; : : : ; �

j�1

) cannot be always labelled by a unique value of b

j

without the

su�x of the path, (�

j+1

; �

j+2

; : : :).

We now analyze the success probability of B based on this tree model.

As shown in the algorithm of B, after receiving the j-th correct response (b

1

; b

2

; b

3

; F; E; r

�

)

to the j-th challenge �

j

and com

(�

1

;:::;�

j�1

)

and �

j

from A, B can calculate the possible response

to any other j-th challenge �

0

j

, and can check the validity of the response. This is because � with

G

�

U

N

� ED

�

0

j

(mod N

2

) is uniquely decrypted from ED

�

0

j

mod N

2

by B, and we now consider

only the case where commitment C is uniquely opened to E.

If � decrypted from ED

�

0

j

mod N

2

, (�

0

j

is a challenge to com

(�

1

;:::;�

j�1

)

) does not pass the

veri�cation, any path, (�

1

; : : : ; �

j�1

; �

0

j

; �; : : : ; �) with pre�x (�

1

; : : : ; �

j�1

; �

0

j

) is `lose' (i.e., b

j

 0

is labelled as �

0

j

for any path (�

1

; : : : ; �

j�1

; �

0

j

; �; : : : ; �)), since no valid response to challenge �

0

j

can

be replied to at any step in path (�

1

; : : : ; �

j�1

; �

0

j

; � ; : : : ; �), where � can be any possible challenge

value. If B passes the veri�cation, we call �

0

j

`survive'.
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Let �

j�1;(�

1

;:::;�

j�1

)

be the ratio of the j-th responses �

j

to com

(�

1

;:::;�

j�1

)

that leads to `sur-

vive' among all j-th responses com

(�

1

;:::;�

j�1

)

). We call path (�

1

; �

2

; : : : ; �

q

S

) heavy if (�

0;?

� � �

�

q

S

�1;(�

1

;:::;�

q

S

�1

)

) � �

+

=2. This leads to the following claim:

Claim. At least half of all `win' paths are heavy.

This claim can be proven in a manner similar to that of the claim in the proof of Theorem 4.

We then obtain the success probability analysis similar to that in the proof of Theorem 4:

If B tests 12 ln (q

S

+ 1)=�

+

challenges for each commitment, the probability that B can compute

(m; t; s), is at least (1� (q

S

+1)

�2

). Overall, B breaks the q

S

-unforgeability of the basic signature

scheme with probability at least (1 � 1=(q

S

+ 1))�

+

=2 under the condition that B tests random

challenges at most 12q

S

ln (q

S

+ 1)=�

+

times.

The above-mentioned evaluation is based on �

+

under the �xed randomness of G, U

�

(here

A) and S except S's random challenges. Finally, over the whole random space, B breaks the q

S

-

unforgeability of the basic signature scheme with probability at least (1 � 1=(q

S

+ 1))�

�

=8 under

the condition that B tests random challenges at most 24q

S

ln (q

S

+ 1)=�

�

times in total, where

�

�

= �� �.

Combining this result with Theorem 2, B breaks the (q

S

; t

0

; �

0

)-2SDH assumption

�

0

=

1 � 1=(q

S

+ 1)

16

� (�� �); and t

0

= t+O

�

24q

S

ln (q

S

+ 1)

� � �

� T

�

;

where T is the time for B's test, i.e., for decrypting Paillier encryption and checking the veri�cation

equations.

Since � is non-negligible and � is negligible in n, polynomial-time algorithm B breaks 2SDH

assumption with non-negligible probability, which contradicts the assumption of this theorem. a

9 Other Applications

We have shown the application of the proposed signature scheme to blind and partially blind signa-

tures. The proposed signature scheme also supports other applications such as restrictive (partially)

blind signatures, group signatures [26], veri�ably encrypted signatures, anonymous credentials and

chameleon hash signatures. (The full paper version presents restrictive (partially) blind signatures

based on our (partially) blind signatures.)

10 (Partially) Blind Signatures from the Waters Scheme

10.1 The Proposed Blind Signature Scheme from the Waters Scheme

Key generation: Let a symmetric bilinear group, (G

1

;G

1

), be used in this scheme. Randomly

select � 2 Z

�

p

. Randomly select generators g; g

2

; u

0

; u

1

; : : : ; u

n

2 G

1

and set g

1

 g

�

.

Public key: g; g

1

; g

2

; u

0

; u

1

; : : : ; u

n

Secret key: g

�

2
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Blind signature generation: Let m be the n-bit message to be signed, m

i

the ith bit of m.

1. User U randomly selects t 2 Z

�

p

, computes

X  (u

0

n

Y

i=1

u

m

i

i

)

t

;

and sends X to S. In addition, U proves to S that U knows (t;m

1

; : : : ;m

n

) with m

i

2 f0; 1g

for X = (u

0

Q

n

i=1

u

m

i

i

)

t

using the witness indistinguishable � protocols. For example,

(a) U randomly selects �

1

; : : : ; �

n

2 Z

�

p

, computes M

i

= u

m

i

i

(u

0

)

�

i

(i = 1; : : : ; n), and sends

(M

1

; : : : ;M

n

) to S.

(b) U proves to S that U knows �

i

such that M

i

= (u

0

)

�

i

or M

i

= u

i

(u

0

)

�

i

(i = 1; : : : ; n). Such

an OR-proof can be e�ciently realized by a � protocol [4].

(c) U proves to S that U knows (t; �; 


1

; : : : ; 


n

) such that X = (

Q

n

i=1

M

i

)

t

(u

0

)

�

, and X =

(u

0

)

t

Q

n

i=1

u




i

i

, where �  t� t(

P

n

i=1

�

i

) mod p and 


i

 tm

i

.

2. If S accepts the above protocol, S randomly selects r 2 Z

�

p

, computes

Y

1

 g

�

2

X

r

; Y

2

 g

r

;

and sends (Y

1

; Y

2

) to U .

3. U randomly selects s 2 Z

�

p

, and computes

�

1

 Y

1

(u

0

n

Y

i=1

u

m

i

i

)

s

; �

2

 Y

t

2

g

s

4. �  (�

1

; �

2

) is a blind signature.

Signature veri�cation: Given public-key (g; g

1

; g

2

; u

0

; u

1

; : : : ; u

n

), message m 2 Z

�

p

, and signa-

ture � = (�

1

; �

2

), check

e(�

1

; g)=e(�

2

; u

0

n

Y

i=1

u

m

i

i

) = e(g

1

; g

2

):

If it holds, the veri�cation result is valid; otherwise the result is invalid.

Remark: If adversary A executes in a synchronized (or constant-depth concurrent) run with sim-

ulator B (as signer), B can e�ectively extract (m

1

; : : : ;m

n

) and t from A. B can then reduce the

basic Waters signature scheme attack to the proposed blind signature scheme attack. It is straight-

forward to realize a partially blind signature scheme in a similar manner. The major problem in

the e�ciency of the signing process is in proving the knowledge of many (O(n)) variables in the

WI � protocols.
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