Security of VSH in the Real World

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 OEX, UK.

m saari nen@ hul . ac. uk

Abstract. In Eurocrypt 2006, Contini, Lenstra, and Steinfeld progbaenew
hash function primitive, VSHyery smooth hashn this brief paper we offer com-
mentary on the resistance of VSH against some standardcaigtic attacks, in-
cluding preimage attacks and collision search for a trigtt®SH. Although the
authors of VSH claim only collision resistance, we show whg anust be very
careful when using VSH in cryptographic engineering, wieatditional security
properties are often required.

1 Introduction

Many existing cryptographic hash functions were origindisigned to benessage di-
gestdfor use in digital signature schemes. However, they areaiten used as building
blocks for other cryptographic primitives, such as pseaddom number generators
(PRNGSs), message authentication codes, password sescingynes, and for deriving
keying material in cryptographic protocols such as SSL, ,Tar&l IPSec.

These applications may use truncated versions of the hagtiesin implicit as-
sumption that the security of such a variant against attizadisectly proportional to the
amount of entropy (bits) used from the hash result. An exarofthis is the HMAC-n
construction in IPSec [1]. Some signature schemes alsowsestted hashes. Hence we
are driven to the following slightly nonstandard definitioihsecurity goals for a hash
function usable in practice:

1. Preimage resistanceFor essentially all pre-specified outputs it is difficult to
find a messag® such that (Y') = X. The difficulty should bex 2! when there
arel pre-specified bits it .

2. 2nd-preimage resistanceGiven a pre-specified messade it is difficult to find
another messagg so thatH (X) = H(Y). The difficulty should bex 2! when
there ard pre-specified bits that match in the hashes.

3. Collision resistance It should requirex 2!/2 effort to find any two messages
andY that produce a collisiof/ (X) = H(Y') in [pre-specified bits in the hashes.

In addition to the above three usual goals, we state a foomthe informal goal —
pseudorandomnessin essence, we would like a PRNG, stream cipher, or othéreter
design that relies on a hash function to have at lea®t'? security, as if it was secured
with a “real” pseudorandom function.

Pseudorandomness implies that a hash has good statistip@lrpes and resistance
against a wide array of distinguishing attacks.

All of the mentioned desirable properties are difficult iftnmpossible to prove
without nonstandard assumptions. We note that proofs l@asadsumptions are them-
selves assumptions, whether their origins are in the toaditof symmetric or asym-
metric cryptanalysis. An assumption based on the sievirag@lof the NFS factoring
algorithm may seem like a “hard problem” to a researcher wddpent a lot of time
tweaking the sieving phase of the NFS factoring algorithm.t@e other hand, a re-
searcher who has dedicated years of effort into symmetyjatanalysis may feel that
symmetric cryptography possesses equally well studiedd“paoblems”, while also
allowing more efficient overall implementation.

A “political” standardisation consideration is that (byfidéion) VSH has a back-
door in the secret factorisation of In the past it has been difficult to popularise cryp-
tographic technologies that rely on trusted third parties.

In our opinion VSH is a simple, elegant design that is basedaqgplausible
complexity-theoretic assumption (VSSR: Very Smooth numbentrivial modular
Square Root). However, it should not be considered a geperabse hash function
as usually understood in security engineering.

On VSH Security Claims

“VSH is not a Hash Function.”
— Arjen K. Lenstra, Eurocrypt 2006

Collision resistance is the only property proven for VSH.Saction 3 of the VSH
paper [2], short message inversion (equivalent to preimagistance) is considered
and one possible “solution” is provided. As will be shown ic8on 2.1 of this paper,
the solution is not adequate.

The authors therefore clearly expected VSH to exhibit sawellof preimage and
2nd preimage resistance. These are standard requiremethies very definition of a
“cryptographic hash function”. The authors of VSH are vdgacin that “VSH should
not be used to model random oracles”. Random oracle behdsioaot a standard hash
function security requirement.

Some researchers tend to concentrate their efforts on sgdiat their hash func-
tions provide collision resistance, while ignoring othecwrity properties. However,
it is well known that collision resistance does not implyiprage-resistance or other
important hash function properties.

To illustrate this point, we present a classical countermeple. Consider ahi- 1-bit
hashH’(x) that has been constructed fromlarbit hashH as follows:

If [z| <1—1then H'(z) =2] 1]]00---0.
If || >1—1then H' () = H(z) || 1.
! Quoted with permission. During the conference A.K. Lenasied some of the results from this
note in his presentation, with appropriate credit. Thisledssome people to mistakenly think
that the results in this note were already contained in [R]c#ptanalytic results presented in

this paper are by the author; a draft was circulated with tiieas of VSH before Eurocrypt
2006.

That is, if the message is less tharl — 1 bits long, H'(x) consists of the message
itself, a single 1 bit and a padding of zero bits. If the messag— 1 bits or longer, the
resulting hash consists of a (secure) hash,dbllowed by a single 1 bit.

It is easy to show that’ is collision resistant ifH is. It is also easy to see that
H’ is not preimage resistant for a large proportion of hash outpuis,that a slightly
truncated version inot collision resistant.

2 The VSH Algorithm

We describe the VSH algorithm in its most basic form, esaéiptas it appears in the
beginning section 3 of [2]. We note that the attacks can bengddd to most of the
variants given in the VSH paper, especially the Fast VSHavaiin section 3.1 of [2f

Letp; = 2,p2 = 3,p3 = 5, ... be the sequence of primes. Lebe a large RSA
composite. Lek, the block length, be the largest integer such Iﬂé;l pi < n.Letm
be a be ari-bit message to be hashed, consisting of hitsms, . .., m;, and assume
that! < 2*. To compute the hash of:

1. Letxo=1.
2. LetL = [I/k] the number of blocks. Let:; = 0 for ! < i < Lk (padding).

3. Letl = Zle 1;2=1 with ; € {0, 1} be the binary representation of the message
length/ and definen;.; =1; for1 <i < k.
4. Forj =0,1,..., L in succession compute

k
—
Tjy1 :x? sz' @D mod .
=1

5. Returnzy 4.

Selecting a 1024-bit modulushas been suggested in the original paper, indicating
131-bit block size.

2.1 Preimage resistance

VSH is multiplicative: Letxz, y, andz be three bit strings of equal length, where
consists only of zero bits and the strings satisfy y = z. It is easy to see that

H(z)H(xzVy) = H(z)H(y) (mod n).

This multiplicative property is similar, although simpléran the one used by Cop-
persmith to attack (then) Annex D of X.509 [3].

2 There were many changes to VSH before its final publicatiomstmecently in early March
2006 when message length padding was changed to be perfafteedhe message been
hashed, rather than at the beginning. Such small changesskgnificant implications on the
development of practical attacks. Remarkably, the “sécprioof” required no modification.
The attacks discussed in this paper apply only to the pudigburocrypt version of VSH;
other attacks may be devised on other variants.

As a result VSH succumbs to a classical time-memory traflatiafck that applies
to multiplicative and additive hashes. The attack is similanany aspects to Shanks’
baby-step giant-step algorithm for discrete logarithnms [5

We set the secret messageas(z V y) and rewrite the equation as

H(y) = H(z) *H(2)H(m) (mod n).
To solve the-bit preimagen of H(m):

1. Tabulatef (z || 00---0)"*H(z)H(m) (mod n) for 0 < z < 2!/2.
2. Do table lookups foF (00---0 || y) fory = 0,1,2,. .., looking for a match.

The algorithm terminates whem = z || 3, in other words beforg < 2!/2. A
preimage attack on VSH therefore hag'/2 complexity rather thar- 2! as expected.

Final squarings proposed in section 3 of [2] under subtgfeott message inversion”
do not protect against this attack.

This type of attack is extremely serious if VSH is used to sepasswords, a typical
application for hash functions. Note that the complexityatibck does not depend on
the modulus size, but on the entropy of the password strings.

Example 1. VSH is being used to secure a 4 character lower case alpbalassword
M, stored with ASCII encoding. For demonstration purposeshaose k = 32 and a
169-bit modulusa:
n = (2% +3)(2% — 19)
= 748288838313422294120286382894166426220969123119047.

The hash of the secret is
H(m) = 16844120625154617337159062413466716693049866864325.

In this caseH(z) = 13; the first iteration yields 1, and the second round 13,
the sixth prime, as the length of the message2is = 32 bits. We tabulate
H(x)"'H(2)H(m) (mod n) for 262 = 676 valuesT’[0. .. 675]:

X: aa.. Bi nary: 01100001 01100001 00000000 00000000

T[0] = 91345572106882035279752100576530653

x: ab.. Bi nary: 01100001 01100010 00000000 00000000
T[1] = 116156501606261492576199026944080853

X: zz.. Bi nary: 01111010 01111010 00000000 00000000
T[675] = 384284712674090018973838770853950813384926485216514

In the second phase we run through the valueX @f):

H(. . aa) 3904844677556216209933
H(. . ab) 3396095819174949308197

A match is found after 83 steps &f(. . df) = 30205660456999582781162559493,
which matches withI'[18] = H(as..) 'H(z)H(m) (mod n). Hence the secret
passwordV/ is “asdf ".

Note that it is not necessary to store the entire value toghke T'[i]; appropriate
number of least significant bits usually suffices. When thdetés indexed by, say,
T[i] mod 232, search becomes &»(1) operation.

This example illustrates that password cracking time isaifely “square-rooted”
by this attack;i-character passwords offer a level of security expectech fig2-
character passwords.

2.2 One-wayness (of the “Cubing” Variant)

In section 3.4 of the VSH specification, a variant that usdsrguinstead of squaring
in its compression function is proposed. Using the Jacobitml, the compression
function
k
Tjp1 =T Hp;” mod n,
i=1

(22) = ()T ()"

becomes

We define a “binary” version of the Jacobi symbol:

. 1 c
pon-4(-9)
We now have a linear equation giving the parity of some mesbésg:

k

j(xj1,m) = j(xi,m) + > j(pi,n)ms (mod 2).
=1

Note that the Jacobi symbol can be very efficiently computetithat;j(p;, n) is
essentially randomly 0 or 1 for each randomly generated owsitgn. If the same
message has been hashed witdifferent modulin, a system ofc linear equations
can be obtained, leading to disclosure of bits by solvingstrstem of equations.

The same attack applies to the standard squaring versioelgsout it only leaks
information about the message length. This was not the ecas€SH versions 3.57
and before (ePrint revisions of VSH published before Mar@d6), where information
about the contents of the last message block could be obtaine

One-wayness is implied by the standard hash security remeint of preimage re-
sistance. If one obtains some information about some of thienage bits easily, one
can find the rest faster in an exhaustive search, as the sgzach is smaller.

Example 2. Assume that a 64-bit password has been hashed with VSH. Foorde
stration purposes we define the modulu® be equivalent to the RSA-1024 factoring
challenge numbet = 1350..(300 digits).7563 [4].

The Jacobi symbols for the first small primes modulare:

2 3 5 7 11 13
G-t G =) =)=t G) =1 (5) =1
Since the length padding (last round) will simply consistwibing the product of primes
and multiplying that with length indicatg; = 13, we may write

(M) - ()T (2)"

Using the binaryj(c, n) function and knowledge of, this can be further simplified
into the following parity equation:

J(H(m),n) =14+ mq +ma + m3 + mg + mz + mig + miz + mig + mys +
mie + Mi7 + Moz + Mag + Mas + Mae + Mar + Mag + Mag +
m31 + ma3 + Mae + M3ag + Mao + M43 + Mag + Mae + Mag +
ms1 + Ms2 + Ms7 + Msg + Mme1 + mea (mod 2).

We can therefore speed up dictionary search against thevpatsby a factor close
to two as half of the password candidates can be rejectedsivithle bit shift, AND
and XOR operations, rather than with computationally espenmodular arithmetic
required to compute the full hash.

Note that if the same secret has been hashed with multiflereiift modulin, the
speedup grows almost exponentially; two distinct modwdig/ia speedup factor close
to 4 etc.

2.3 Collision Search for Truncated VSH Variants

VSH produces a very long hash (typically 1024 bits). Thee raw indications that
a truncated VSH hash offers security that is commensuratkettnash length. This
appears to rule out the applicability of VSH in digital sitgum@ schemes which produce
signatures shorter than the VSH hash result, such as Elative signature schemes.

To illustrate this point, we will describe give an attack aredruncated variant of
VSH.

Partial Collision Attacks. We will first discuss a generic technique for turning a pértia
collision attack into a full collision attack.

Assume that there is a faél(1) mappingf that causes the hash result of lan
bit hashH to be in some smaller subset of possible outpé$f(z)) € S, where
|S| < 2L Typically f would be chosen in such a way that certain hash result bits are
forced to have the same constant value. In other waftdisrces partial collisions. Note

that f itself should not produce too many collisions, ig. # x5 usually means that
f(z1) # f(x2).

If such anf can be found, and it is fast, the complexity of finding full leabns
becomes /[S|. Note thatf does not need to be able to force the hasH tin each
iteration, it is sufficient that it works with reasonable pability. The iteration in low-
memory parallel collision search algorithm becomes, = H(f(s;)), and generic
parallel collision search algorithms such as those desgiiin [6] can be used.

Attack on VSH Truncated to Least Significant 128 bits. We will instantiate this
attack on a VSH variant that only uses the least-signific@gtHits of the hash func-
tion result. For basic VSH (1024-bit n, k=131) the result ahing a 128-bit message
mi|maz|- - - |mi2s can be simplified to:

128
xr= (19(Hp§ni)2 mod n) mod 2'%.
i=1

The constani9 = pg is caused by the length padding in the second (and final)
round.

It is easy to see that modular reduction/bpccurs in this case with less tha6%
probability if m is random (or randomised) and its Hamming weight behavesrdec
ingly. This is due to the fact that if only half of the bits inetlmessage are ones, the
product of corresponding small primes will be roughly thensabit size as/n. The
square of this will still be less tham with a significant probability and hence there is
no modular reduction by. Hamming weight of a random bit string is binomially dis-
tributed. In practice the modular reduction happens in¢aie with roughly? ~ 0.35
probability. We get the following approximation that is idavith significant probabil-
ity:

128

T = 19(Hp;ni)2 mod 2'28,
i=1

Note that the iteration is independent of the RSA modulifghere is no reduction.
Precomputation phase: For each of #1é bit stringsr of length41 we compute
and store- into a lookup table, indexed by the product

42
(TP)" mod 222,
=2

We will choose thef mapping as follows: Select message bitss, m44, . . ., M128
from corresponding bits of;. Compute the partial produ{ﬁ[ﬁ%13 p;."j mod 242 and
use that to select message bhits, ms, . . . , my2 using the lookup tablenf; is always
set to zero).

This will often (P = 0.5) force the least significant2 bits to a certain con-
stant value, 19, on each iteration. Note that if the tabldumpofails, we may select
meo,ms, ..., My t0 be some arbitrary deterministic value; one that satisfies=

19 (mod 2!) for somel < 42 would be a good choice.

Hence we have can cause the iteration to run in a significaniller subset with
essentiallyO(1) effort (constant-factor increase), and collisions candendl signifi-
cantly faster.

Example 3. We will start withs; = 242 4+ 19, and try to produce a sequence satisfying
s; = 19 (mod 2?) for a significant portion of.

The partial produc{];*; pI"™* mod 2* yields ps3 = 191 for s;. We will then

perform a lookup in the precomputed table; it turns out tieé#ting message bitg,
throughmys as

01110010 01010101 00000000 11100001 11110111 0O

will force the product the desired subset, as the productrioigs corresponding to
those message bits is

3:-5-7-17-29-37-43-53-97-101-103-131-137-139-149-151-163-167-173
= 1164213571911795168635778009100095,
and this multiplied by the partial product satisfies

191 - 1164213571911795168635778009100095 = 1 (mod 2*?).

Clearly squaring a number that is congruent tmod 242 maintains that property. The
final multiplication by 19 results in that that the secondredat of the sequence satisfies
the desired property, = 19 (mod 242). We have

59 =19 (191 - 1164213571911795168635778009100095)% mod 2'2®
= 79424 F 79408 D6 B27 F'52 A50000000001314

With this sequence we only need to rely on a birthday coltisiothe uppe 28 — 42 =
86 bits of the sequence. Roughly® iterations are required with algorithms of [6] to
achieve this.

Note that with some probability this algorithm will yieldlé& collisions due to
the fact that the inverse of the partial product is not alwiaymd in the lookup table.
Modular reduction by: may also cause false collisions. This only results in a @onist
factor increase to the complexity of the algorithm, howeweronly need to restart with
different starting points until a proper collision is found

Overall complexity. In essence, the complexity of this attack against VSH trtetta
to! bits is:

— Pre-computing the table offline: 2% time and space.

— Finding collisions~ 23 iterations.

— Total cost: roughly= 23, rather thare 2% as expected from a hash function with
good pseudorandomness properties.

We acknowledge that this represents joiseway of truncating VSH — using, say,
the most significant bits of the result would be an even wopd®n. Many other trun-
cated variants can be attacked using a diffeifefunction.

2.4 Other features of VSH

The authors of VSH do not explicitly note this, but the hashction result can be
updated after small changes without computing the entish lagain. A “bit flip” in
a message will always cause a predictable change in the geesssult (it becoming
multiplied mod n by certain power of a small prime or its inverse). This is du¢he
highly algebraic nature of the hash.

We note such a property may be useful in some applicationsemapid update
of the hash is required, but it is undesirable in many more aan facilitate adap-
tive attacks against some cryptographic protocols. Similaltiplicative property was
sufficient for the X.509 Annex D hash function to be considdremken [3].

3 Acknowledgments

The author would like to thank Arjen K. Lenstra and other auttof VSH for encour-
agement. The paper wouldn'’t exist if Kenny Paterson woulbHave pointed out that
publication of relatively simple results is important foeél world” security engineers.
Keith Martin, Daniel J. Bernstein and anonymous programrodiae members helped
to make the paper significantly easier to read.

References

1. M. BELLARE, R. CANETTI AND H. KRAWCZYK. HMAC: Keyed-Hashing for Message
Authentication. IETF RFC 2104, 1997.

2. S. CoNTINI, A.K. LENSTRA AND R. STEINFELD. VSH, an efficient and provable colli-
sion resistant hash function. Advances in Cryptology — EGR®PT 2006, LNCS 4004,
Springer-Verlag, 2006.

3. D. CoPPERSMITH Analysis of ISO/CCITT Document X.509 Annex D. IBM Reseaieh D
sion, Yorktown Heights, N.Y., 11 June 1989.

4. RSA LABORATORIES. RSA-1024 Factoring Challenge Number. Available frdmht p:

/I ww. rsasecurity. con rsal abs/ node. asp?i d=2093

5. D. SHANKS. Class number, a theory of factorization and genera. Proea@yPure Math.
pp. 415 — 550. AMS, Providence, R.1., 1979.

6. P.vAN OORSCHOT ANDM. WIENER. Parallel collision search with cryptanalytic applica-
tions. Journal of Cryptology, 12 (1999), pp. 1 — 28, 1999.

