A Simpler Sieving Device:
Combining ECM and TWIRL

Willi Geiselmann!, Fabian Januszewski?, Hubert Kopfer!, Jan Pelzl®, and
Rainer Steinwandt*

! Institut fiir Algorithmen und Kognitive Systeme, Fakult#t fiir Informatik,
Am Fasanengarten 5, Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany
geiselma@ira.uka.de
2 Mathematisches Institut IT, Fakultit fiir Mathematik, Englerstrafe 2,
Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany
fabian. januszewski@math.uni-karlsruhe.de
3 Horst Gortz Institute for IT-Security, Ruhr University of Bochum,
Universitétsstrale 150, 44780 Bochum, Germany
pelzl@crypto.rub.de
4 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA

rsteinwa@fau.edu

Abstract. A main obstacle in manufacturing the TWIRL device for
realizing the sieving step of the Number Field Sieve is the sophisticated
chip layout. Especially the logic for logging and recovering large prime
factors found during sieving adds significantly to the layout complexity.
We describe a device building on the Elliptic Curve Method (ECM) that
for parameters of interest enables the replacement of the complete logging
part in TWIRL by an off-wafer postprocessing. The postprocessing is
done in real time, leaving the total sieving time basically unchanged.
The proposed device is an optimized ECM implementation building on
curves chosen to cope with factor sizes as expected in the output of
TWIRL. According to our preliminary analysis, for the relation collec-
tion step expected for a 1024-bit factorization our design is realizable
with current fab technology at very moderate cost. The proposed ECM
engine also finds the vast majority of the needed cofactor factorizations.
In summary, we think the proposed device to enable a significant decrease
of TWIRL’s layout complexity and therewith its cost.

Keywords: RSA, NFS, ECM, cryptanalytic hardware

1 Introduction

Lacking paramount theoretical progress in the design of algorithms for factoring
integers, in recent years significant efforts have been invested into designing
special purpose hardware for factoring. Having in mind a record factorization
of a 1024-bit RSA-modulus, at the moment the (General) Number Field Sieve



(NFS) seems to be the algorithm of choice, and consequently several proposals
for using dedicated hardware to speed up the time-dominating steps of the NFS
have been put forward. In particular, for the NFS’ linear algebra step significant
progress has been achieved [2, 14, 8,5, 6]—for the most recent designs thinking of
a practical implementation for the 1024-bit case does not seem too far-fetched.

On the other hand, even the most recent designs that have been proposed for
implementing the sieving step of the NFS—the other time-dominating part of
the NFS—rely on highly non-trivial technological assumptions: for mesh-based
devices along the lines of [2,7,9,10] no practically promising parameter set for
the 1024-bit case has been proposed so far, the TWIRL device [23,15] involves
rather large chip sizes along with a non-trivial layout, and for SHARK [4] the
actual implementation of the underlying butterfly transport system is techno-
logically challenging. From a practical point of view, finding modifications or
alternatives to the existing proposals that are of comparable performance but
closer to existing fab technology is highly desirable.

In this contribution we describe a device that enables the removal of the
complete “diary circuitry” from TWIRL (see [23, Appendix A.7]). This part of
TWIRL adds significantly to the layout complexity, but unfortunately seems
vital for the recovery of largish prime factors found during sieving. While our
approach does not solve the problem of TWIRL being a wafer-scale design, it
enables a significant reduction of the complexity of the layout. We show that for
relevant parameter choices it is feasible to omit the recording of prime factors
during sieving, and to recover them in a postprocessing phase with an optimized
implementation of the Elliptic Curve Method (ECM): Our design builds on ellip-
tic curves chosen to cope with factor sizes as expected in the output of TWIRL.
Specifically, for the parameters currently considered as realistic for the 1024-bit
case, according to our preliminary analysis the proposed ECM engine can be
implemented on chips of standard size at very moderate cost. Additionally, the
suggested device computes almost all the required cofactor factorizations. As the
required computations can be performed in real time, the overall sieving time
remains basically unchanged. In summary, we think the proposed ECM engine
to enable a significant decrease of TWIRL’s layout complexity and therewith
its implementation cost. Clearly, the major issue that TWIRL is a wafer-scale
design is not solved by our contribution. However, we think that simplifying the
structure of this wafer-scale circuitry is a significant contribution towards a pro-
totype of TWIRL. The chips proposed for our design are fairly standard ASIC
chips, whose production should encounter no major obstacles. For other sieving
designs like SHARK [4] it seems worthwhile, too, to explore—e. g., bandwidth—
savings that can be achieved through the use of a high performance ECM engine
as described here. The idea of not having to store prime factors found during
sieving seems to be more than of pure conceptual relevance. Due to the very
modest hardware requirements, our approach may in fact be of independent
interest for NF'S implementations on “classical” hardware platforms.

Further related work We do not claim the idea of using a dedicated ECM circuitry
within the relation collection step of the NFS to be a novel one, e. g., the idea of



a parallel ECM engine for smoothness testing is mentioned in [2, 15] already, and
[20] proposes a dedicated ECM engine in connection with the SHARK device.
The design presented below differs significantly from that in [20] resp. SHARK,
however. To the best of our knowledge our proposal is the first one that aims
at coping with the performance requirements needed to substitute parts of the
TWIRL architecture through an ECM engine and has been explored at this
level of detail. Our discussion includes, e.g., an issue like efficient primality
testing within ECM, and we are not aware of a “simple reparametrization” of
the design in [20] that meets our performance requirements. However, we deem
it an interesting question for future work to what extent the ideas below can
also facilitate an implementation of SHARK—and vice versa how to integrate
ideas from [20] with TWIRL.

Should we do better? It may look tempting to expand the role taken by ECM in
the relation collection, and we considered a hybrid design where an ECM engine
replaces the algebraic TWIRL device altogether. However, so far we could not
identify a concrete design, where this approach yields a device that is easier to
implement than the known proposals.

2 Preliminaries and Parameters

Providing an introduction to the NFS is beyond the scope of this contribution,
and we refer to [22] for a survey and to the standard reference [13] for details
of the NFS. Section 2.1 gives a brief summary of those aspects of the (relation
collection step of the) NFS, that are crucial for our design. Similarly, for an
introduction to ECM we refer to [16], but Section 2.2 recalls those aspects that
are relevant for describing our design.

2.1 Choice of NFS parameters

In this paper we deal with the NFS’ relation collection step only. At this we are
given two univariate polynomials f(z),g(z) € Z[z] sharing a common root M
modulo the integer N to be factored:

f(M)=g(M)=0 (mod N).

Everything related to f(z) is usually referred to as belonging to the algebraic
side, and analogously for everything related to g(z) we use the term rational
side. We are specifically interested in the case of a 1024-bit factorization with
N = 1350...7563 being the number RSA-1024 as specified in [12]. To this aim
we assume the polynomials f(z) and g(z) to be chosen of degree 5 and 1, respec-
tively, as proposed in [23, Appendix B.2] resp. [15, Appendix B]. Both of these
specific polynomials are non-monic, and accordingly we define two homogeneous
polynomials Na(a,b) := |b° - f(a/b)| (of degree 5) and Ny(a,b) := |b- g(a/b)| (of
degree 1). Now the goal of the relation collection step can be phrased as finding
pairs of coprime integers (a,b) with b > 0 such that both N,(a,b) and Ny(a,b)



split into a product of primes smaller than a smoothness bound y, resp. y,. At
this, we do not require a “full splitting”, but allow that Na(a,b) resp. Ny(a,b)
contain up to £, resp. ¢, “large” prime factors below some semi-smoothness
bound z, resp. zr.

The question of the concrete choice of these parameters and of the required
sieving range for the pairs (a,b) obviously arises. As our device aims at an
integration with TWIRL, for the analysis of the 1024-bit case we adopt the
parameters from [23] resp. [15, Table 10]:

— On the rational side, the smoothness and semi-smoothness bounds are chosen
as yr = 3.5-10% and 2z, = 4 - 10!, respectively.

— On the algebraic side, the smoothness and semi-smoothness bounds are cho-
sen as Ya = 2.6 - 10'Y and z, = 6 - 10!}, respectively.

— 2+ 2 large primes are used, i.e., both on the rational and on the algebraic
side we allow ¢, = £, = 2 large prime factors.

— For the sieving region —4 < a < A, 0 < b < B we choose A = 5.5-10'* and
B =2.7-108.

Another figure that is important for analyzing the 1024-bit case in more detail,
is the rate at which (a, b)-candidates are output by TWIRL: To be of practical
interest, the required test of simultaneous smoothness of N, (a,b) and N,(a,b)
should be completed in real-time and not require extensive buffering. Following
[23, Appendix A.7], we can expect that a fraction of v := 2- 107! of the sieve
locations will be output by TWIRL as interesting (a, b)-candidate. With the
1024-bit parameters in [23], TWIRL handles s, = 2!° sieve locations per clock
cycle, running at a clock speed of f := 1 GHz. If the candidates were output in
regular time intervals, we thus had to handle about

A= f -5, ~ 655

sieve locations per second with our ECM engine. At the beginning of the sieving
phase more candidates are to be expected, but at this early stage we can simply
store the candidates in some buffer, and it seems safe to design our ECM engine
to handle A := 1000 candidate (a, b)-pairs/second. The unlikely case of a buffer
overflow can be tolerated and is compensated by simply performing slightly
more sieving. For each of these candidates we have to determine the norms
Ny(a,b), Na(a,b) and compute the prime factorizations hereof if the smoothness
conditions are met. With the mentioned choices for Ny, N, A and B the numbers
to be factored can be expected to have no more than 216 bit on the rational and
350 bit on the algebraic side.

It is certainly acceptable to allow the ECM engine to fail for a small fraction
of the “good” (a,b)-candidates. Based on software simulations, for the NFS
parameters considered here, we decided to use 84 curves on each side, and we
estimate that < 0.5% of the “good” (a, b)-candidates get lost. To further decrease
the error, one could implement a version of our design applying more curves
and pay for this with an increased chip area. E. g., allowing 128 curves, on the
algebraic side, we encountered only 75 integers out of 10° that would be semi-
smooth on the algebraic side, but could not be factored by the curves used in



our design. The chosen number of 84 curves seems to be an acceptable trade-off
between error rate and chip area.

2.2 The Elliptic Curve Method (ECM)

To factor a composite n € N with Lenstra’s ECM method, one starts by choosing
a random point P = (z : y : 1) on a random elliptic curve in Weierstrass
normal form. Assuming ged(6,n) = 1, in affine coordinates that is a solution of
a Weierstrass equation

v =a%+ar+b (1)

modulo n, where ged(4a® + 27b%,n) = 1. Then the solutions of (1) modulo a
prime divisor ¢ of n constitute a finite abelian group F, if we adjoin a point
O = (0:1:0) at infinity (serving as identity element). Lenstra’s idea was to
apply Pollard’s “p — 17-method of factorization [21] but to work in E, instead
of (Z/qZ)*. The key point here is that the order of E, depends on a, b and g¢,
i.e., not only on ¢g. This allows multiple tries with different curves for the same
composite n. Formulae for the group law for curves in Weierstrass form are given
n [16]. One can expect that with a certain positive probability—depending on
the number of B-smooth integers in (¢ +1 —2,/q; ¢+ 1 +2,/q)—the order #E,
is B-smooth for a fixed bound B (and #E, is not B-smooth for prime divisors
q' # q of n). Then the computation of

[Ior-P e =llog,(a+1+2va)], (2)

p<B

yields the prime divisor g of n.

After the computation of (2) we can run a so-called continuation as in the
case of Pollard’s method of factorization. This resembles Shanks’ Baby step-
Giant step method. If we choose a second bound C > B, a sufficient condition
for a continuation of ECM to find ¢ is then that #FE, be divisible by a prime
p, B < p < C, and #E,/p be B-smooth. We will explain the choice of the
continuation in Section 3.2 below.

3 Splitting the Norms in Real Time

The goal of our device is to check whether the candidates (a,b) received (from
a diary-free TWIRL) satisfy the rational and algebraic semi-smoothness con-
ditions. If yes, the factorizations of Ny(a,b) and Na(a,b) are to be computed.
These computations are to be done in real time, so that no excessive buffering or
a significant increase of the time spent for relation collection becomes necessary.
The proposed design naturally splits into two parts which process the received
values in a pipelined manner: a Rational Factorization Unit and an Algebraic
Factorization Unit.



3.1 Basic Components

The Rational Factorization Unit It is distributed on four identical chips. Each
of these chips consists of four parts: The first part, a controller, handles the 1/0,
distributes the tasks to the other parts on the chip and stores the results. The
second part receives the (a,b) pairs from TWIRL through the controller and
calculates the rational norm N, (a,b), where b remains constant during the siev-
ing of one line. After some preprocessing for each line, calculating the rational
norm (which can be expected to have no more than 216 bit) therefore reduces
to the evaluation of an affine polynomial, i.e., one multiplication and one ad-
dition. These operations are performed using a 16 bit adder, some logic for the
multiplication and four registers up to a length of 216 bit. Some 10,000 tran-
sistors should be sufficient to realize this part. The norm N,(a,b) is forwarded
to the trial division pipeline that performs the divisions with all primes/prime
powers < 100, 000 and reports the factors found to the controller. The remaining
factor of Ny(a,b) (with ~ 200 bit on average) is then forwarded, through the
controller, to the fourth and largest part of the chip, the ECM engine. Details of
the trial division pipeline and the ECM engine which factors the remaining part,
if the semi-smoothness conditions are met, will be discussed in Section 4.2. If an
(a, b)-pair turns out to satisfy the rational semi-smoothness bounds, it is—along
with a report encoding the factors found on the rational side—forwarded to the
subsequent algebraic factorization unit.

The Algebraic Factorization Unit Tt is realized with five chips and has the same
structure as its rational counterpart, but it considers only those (a, b)-pairs where
the rational semi-smoothness conditions turned out to be fulfilled already. As on
the rational side, first the norm Ny (a, b) has to be computed, which for a constant
b amounts to 5 multiplications and 5 additions (using Horner’s rule). On the al-
gebraic side we have to deal with larger integers than on the rational side, and we
can expect Na(a,b) to have no more than 350 bit. However only those (a, b)-pairs
fulfilling the rational semi-smoothness conditions are forwarded to this device.
Therefore on average no more than 75 inputs are expected per chip and second.
This reduced number of inputs compensates the larger multiplication/division
time. It should be possible to realize this part with 14,000 transistors. Again, the
trial division pipeline and an ECM engine are used to split Na(a,b) into prime
factors.

3.2 Design of the ECM Engine

From a mathematical point of view, our use of ECM on the algebraic and the
rational side is the same: We build on an identical set of 84 curves over QQ, and for
the second phase we use the same improved standard continuation. Due to the
different operand sizes, however, the hardware implementation on the algebraic
and the rational side is different. In the remaining part of this section we focus on
theoretical parameter choices underlying our design. Section 4 discusses aspects
related to a hardware implementation.



Choice of Curves Any elliptic curve over a field K with char K 16 is isomor-
phic to a curve in Weierstrass form (1). Referring to ideas of Suyama, in [19]
Montgomery suggests to use different families of curves to speed up ECM. In
fact, it is possible to choose a random elliptic curve E; over F, and to guarantee
d | #E, for any fixed d € {4,12,16}°. Basing on software experiments of one of
the authors [11], for our purposes the family proposed by Atkin and Morain in
[1] with d = 16 seems to perform best.
In [19] Montgomery proposed to use elliptic curves of the form

sy = 2% +ta® + z, ged(s(t? —4),n) = 1. (3)

Equation (3) usually is referred to as Montgomery form or Chudnovsky form, and
[19] gives efficient formulae for the computation on curves of this form. One major
advantage is that these formulae enable the evaluation of the product (2) without
the use of inversions. Additionally the order of the torsion subgroup of a curve of
this type is known a priori to be divisible by 4. Besides being useful for factoring
this also implies that not all elliptic curves can be isomorphically transformed
into this form. The family with d = 16 proposed by Atkin and Morain may be
transformed into Montgomery form. Generation of random curves of this family
involves computations on an elliptic curve which cannot be transformed into
Montgomery form (due to the reason mentioned above). The aspects of curve
generation are discussed in the following paragraph.

Generation of Curves For a composite n we generate a random elliptic curve
modulo n and a point on it as follows. According to [1], S :=(12:40:1) is a
point of infinite order on F : Y2 = X3 — 8X — 32 over Q. Therefore we get for
every r € N a different point (z : y : 1) :=r- S € E. According to [1] and [11]
every (x,y) yields an elliptic curve E, in Montgomery form for which we can
guarantee 16 | #E, as follows:

Define o := (z — 9)/(z + y + 16) and 3 := 4a + 1. Then & := 43 — (3* —
1)(B+1)% 2 := 4(B8+1)? yield a point (Z : § : Z) of infinite order on the
elliptic curve E, given by sY? = X3 +tX? + X with s,t,§ also depending on
a. For actual computations we do not need to know the values of g, s, ¢ but the
value of

t+2 (B2 +1)
1T 168 - )2
This term is the only one, despite of £ and Z, that is needed by the arithmetic
described by Montgomery in [19] for computations on E,.. For our design it seems
practical to precompute the values of 5 over Q for r € {1,...,84} and to proceed
then modulo n to compute &, Z and (¢ + 2)/4. Numerators and denominators of
the coordinates (z,y) grow rather quickly over Q. Since we restricted our setting
to the “first” 84 curves of this family, the numerators and denominators of the
values of 0 we need to handle are bounded in size by 17 kbit.

® By a celebrated result of Mazur we cannot expect more, because of 16 being the
maximal order arising for a torsion subgroup of an elliptic curve over Q.



Modular reduction of such large numbers takes time. Therefore we partition
the set of the values of « as follows. The i-th partition consists of the curves for
r € {i,i+14,i+28,i+42,i+56,i+ 70}. To factor n we then choose randomly®
i€ {l,...,14} and apply the curves i,i+ 14,7+ 28,7+ 42,7+ 56,7+ 70 to n (in
that order, because the absolute values of the numerator and denominator of (3
are smaller for r small). During the computation on an elliptic curve we may
precompute the modular reduction needed for the next curve.

First Phase We choose B = 402 so that there are 79 primes p1,...,p7r9 < B.
Additionally we choose v = 530, e; := [log,, v] and compute k = szl ot
Then the first phase consists in computing ¢ = k - P. This can be done effi-
ciently without inversions using Montgomery’s formulae [19]. Finally we do a
ged computation to check if this computation already yields a nontrivial divisor
d of n (this is necessary for our primality test, see below). If this does yield a
nontrivial divisor of n we can continue the computation modulo n’ := n/d with
Q' :=Q (mod n').

We restricted v to the value of 530 instead of v = (¢ + 1 4 2,/¢)/16 corre-
sponding to Equation (2) with y, < ¢ < z, since the probability that a greater
power of p;* divides ord(P) was seen to be very low in simulations for candidates
in our setting, see [11]. So the reduction of v leads to a considerable speedup of
ECM.

Continuation As second phase for ECM we choose the improved standard
continuation as described in [3, Section 3.2] and [11] which may be realized
using Montgomery’s arithmetic. We choose C' = 9680 and let () = k - P denote
the result of the first phase. In the continuation we compute sequentially the
points 2- Q,4-Q,...,2t- Q. Then we can write every prime ¢ with B < ¢ < C
in the form ¢ = 2(st £ r) + 1, with 1 < r < ¢. This enables us to test whether
q-@Q = O holds modulo a divisor d of n by checking whether 2r-Q = +(2st+1)-Q
holds modulo d. If [ - Q = (X; : — : Z;) for | € N this can be done by checking if
d | XorZast+1 — Xast+1Z2, which in an implementation amounts to computing
ged(n, XopZost41 — Xost+1Z2r). Instead of computing every ged separately we
may Compute do = ng(TL, TO,O) where T()yo = Hr,s (XQTZQStJrl — X25t+1Z2r) for
all relevant pairs (r, s) which correspond to a prime ¢ (or a pair of primes) as
above.

If dy is composite this implies that several prime divisors were found at
once. In that case we may try to recover those prime divisors by splitting the
product T()yo into Subproducts Tl,O = Hsome s (XQTZQStJrl — XQStJrlZQT), T111 =
To,0/T1 0 followed by a computation of di = ged(dp,T1,0), d2 = ged(do, T11) =
do/dy. If 1 # dy # dy we successfully reconstructed a finer factorization dy =
dyds. This process may be repeated recursively to eventually compute a decom-
position of dy into prime factors. We refer subsequently to this structure as the
tree structure and call the T; ; the product tree.

6 In a hardware implementation the needed random value can be determined, e.g.,
using an LFSR.



In our design we compute first 17 o and 73,; and then Ty o = T1,071,1 - To
have a chance of 50% to split a composite dy into nontrivial dyi,ds we (once
for all) choose the (r, s)-pairs which contribute to T ¢ randomly from all pairs.
Due to the parameters chosen, there are 1116 primes in the continuation so
that there are at most [log, 1116] = 11 levels of recursion or equivalently, a
product tree of height 11, if we want to recover in all cases all information that
the continuation may provide. We limit us to a height of 3 so that there are 15
values T9,0,741,0,71,1,--.,13,7 to be stored. Since we use that tree structure also
as a basis for our primality test we compute dy = ged(n,To,0) and proceed to
compute dy = ged(dp, Th o) if do > 1. Then we compute dz/d; and depending
on whether d; > dy or not we continue by computing ds = ged(dy,T2) or
d3 = ged(dz, Tz,2). Likewise we continue to compute dy = ged(ds,T3;) for an
i €{0,2,4,6}. Consequently we end up with precisely 4 ged computations after
the continuation. See [11] for more details.

We choose t = 30 so that there are only 16 different values for » which occur
in a representation of a prime ¢ considered in the continuation. Therefore we
only need to keep 16 points of the form 2r - () in memory while s runs from 1 to
162. Furthermore a pair (r, $) may represent two primes at once. Our choice of
t reduces the number of 1116 primes to precisely 1024 pairs.

Primality Test We know that smooth cofactors n > z, are composite and that
composite numbers n < z, are of the form n = p - ¢ with p, ¢ prime, because we
assume that the trial division removed all small prime factors less than 100,000.
Assuming p < ¢ this leads to p < 774,593. Then for every elliptic curve E, over
F, we have #E, < 776,353 and we may assume 16 | #E, such that the greatest
prime dividing #FE, is bounded from above by C := ¥ := 48,522. For the same
reason every prime whose square divides # £, is less than B := 220. We could
use ECM with the parameters v, B, C replaced by v, B.C to search for p and
thereby checking primality. But the values of v, B, C' we choose for factoring do
not differ significantly from those given here. In fact, an analysis of the orders
of the starting points on the curves of our family modulo all primes p < 774,593
showed that we may use the same ECM parameters for factoring and primality
testing. This enables us to factor and test primality at once. Therefore we need
no additional circuitry for a primality test.

This primality test fails if we encounter a composite n = p - ¢ where p and
q have, in view of ECM and our parameters, the same order characteristics for
all 84 curves. That means that for each curve one of the following three cases
applies: (a) the orders modulo p and ¢ both divide k& (first phase); (b) p and
q are both detected by the same (r,s) pair (or the same class of (r,s) pairs
since we grouped those into classes by restricting the product tree); (¢) p and ¢
are not detected at all. If p and ¢ differ significantly it is unlikely that (a), (b)
or (c¢) applies to them for each curve. The most critical situation arises when
100,000 < p,q < 774,593, as this maximizes the probability of (a) or (b) being
applicable. Those p and ¢ lead to 1,377,153,921 squarefree composites n = p - q.
We analyzed all 84 curves for all those composites and searched for critical n



which would fail the primality test. Table 1 shows the number and percentage of
those composites n which will not be factored after the given number of curves.
If we assume that every cofactor output by the sieving process leads to four
composites of the form p-q as discussed above and if we assume that every such
composite passes at least 12 curves then Table 1 shows that at most a fraction
of (1+7.3-1077)8 —1) < 6-107% of the relations get lost because of semi-
smooth cofactors which remain composite after the ECM processing. In reality
this number should be even smaller.

# curves 6 12 18 24 30 84
missed || 7.4-10° [ 1,009 3.5 0.03 <1.7-107% 10
% 54-1072(7.3-107°[25-1077]2.2-107 %< 1.2-1071%] 0

Table 1. Average number and percentage of squarefree composites n = p - ¢ missed.

Performance of ECM The performance of ECM as a primality test has al-
ready been discussed above. Software simulations give evidence that 84 curves
suffice to factor most candidates possible. With a set of 84 curves we expect
to be able to factor the norms successfully for at least 99.5% of all candidates
meeting both the algebraic and the rational semi-smoothness criteria.

4 Hardware Estimates and Implementation
Considerations

The objective of our architecture is an AT-efficient design of ECM that for
parameters of interest can be implemented with existing technology. In this
section we briefly describe the area and time complexity resulting from our
choice of algorithms and derive estimates for the overall performance of our
design when being applied to the above NFS parameters for RSA-1024.

4.1 Modular Arithmetic

The proposed design requires modular multiplication, squaring, addition, sub-
traction, and ged computations. For performing the modular arithmetic opera-
tions, we choose Montgomery residues that enable an efficient method for mod-
ular multiplication [18]. Montgomery’s algorithm replaces divisions by simple
shift operations and, thus, is very efficient in hard- and software. The method is
based on a representation of the residue class modulo an integer n. The corre-
sponding n-residue of an integer x is defined as ' = - r mod n where r = 2™
with 21 < n < 2™ such that ged(r,n) = 1. Since it is costly to switch al-
ways between integers and their n-residue and vice versa, we will perform all
computations in the residue class.



Modular subtraction and addition can be computed with a single circuit using
simple carry ripple adders (CRA). To guarantee a low latency, operations are
done word-wise at an appropriate word size and corresponding number of words.
An efficient architecture for modular multiplication is described in [24] and seems
suitable for our design. Squaring will be realized with the multiplication circuit
since a separate squaring circuit would unnecessarily increase the overall area-
time (AT) product. A variant with carry ripple adders has been implemented
and analyzed for the use with ECM in [20]. The architecture enables a word-wise
multiplication and is scalable regarding operand size, word size, and pipelining
depth.

For the required gcd computations and modular inversions, we adopt the
(extended) binary euclidean algorithm [17] which can easily be implemented
with the presence of a subtraction hardware and some registers. As additional
functionality, two registers must perform a simple shift operation (equivalent to a
division by two). Since the (extended) gcd operations are always performed after
the actual point operations, we can use internal registers for the computation
and do not need additional hardware.

4.2 Factorization Unit

A detailed analysis of the modular arithmetic underlying a hardware implemen-
tation of ECM can be found in [20] and its modification for this contribution is
summarized in Appendix A.

ECM Cluster Excluding the time for pre- and post-processing, for the 1024-
bit parameters discussed above a single candidate requires a total of 14 ms on
the rational and 29 ms on the algebraic side if we assume a (realistic) clock
frequency of 240 MHz. For the rational and algebraic ECM unit, the overall
transistor count amounts approximately to 290,000 and 340,000, respectively.
Assuming standard 0.13 pm CMOS technology, the silicon area required for an
ECM cluster, i. e., 6 ECM units together with the reduction unit, is no more than
4.92 mm? (rational) and 5.76 mm? (algebraic). For details on the complexity
estimate of the required area and time, we refer to Appendix A. Figure 1 shows
the basic layout of a factorization unit consisting of the norm evaluation, the
division pipeline, a central control unit with memory, and the ECM clusters.

Division Pipeline For the pre-processing of presumably semi-smooth numbers,
we perform a trial division by 9592 primes and 108 prime powers up to 100,000
which is realized by a pipelined structure. Once the pipeline is filled it can handle
all divisors at a rate of approximately 330 (rational) and 210 (algebraic) numbers
per second at a clock rate of 240 MHz. This is sufficient since trial division is
done on each chip. The estimated area consumption of the architecture is approx.
60,000 and 75,000 equivalent logic transistors (0.17 mm? and 0.21 mm?) on the
rational and algebraic side, respectively.



norm
evaluation

l memory central control unit
trial division
pipeline

reduction reduction reduction
unit unit unit
ECM cluster ECM cluster ECM cluster

Fig. 1. Basic layout of a factorization unit

Central Control Unit Per chip, we assume a central control unit taking care
of all incoming pairs (a, b), the respective factors found during trial division, the
computation of the curve parameters, and the corresponding results from the
ECM stages. The central control unit can be realized with a standard CPU core
attached to some memory for keeping track of the numbers coming from the trial
division pipeline and their factorization. We estimate such a unit to consume no
more than 1 mm? of silicon area.

For a moderate chip size of 147 mm?, the size of a Pentium 4 processor, we
can group 174 rational or 150 algebraic ECM units (29 rational or 25 algebraic
clusters) on a single chip.

4.3 Application to TWIRL

For the discussed NFS parameters, when combining our design with TWIRL
we estimate that it suffices to handle about 1000 sieve locations per second (cf.
Section 2.1). Basing on software simulations, we assume that on the rational side
on average 61 curves are used for the factorization of one norm. This requires
a computing time of 0.8 seconds per norm. On the algebraic side on average 70
curves are used, this results in a factorization time of 2.0 seconds per algebraic
norm. With 5 chips of the size of 147 mm? (each including 29 ECM clusters) up
to 1080 rational norms can be factored per second. With 6 chips of the same size
(each including 25 ECM clusters) up to 440 resulting candidates can be checked
on the algebraic side. Thus, for the discussed parameters, about 11 chips of



standard size should suffice to substitute the diary logic from TWIRL and to
compute almost all of the occurring cofactor factorizations.

5 Conclusion

The above discussion shows that the integration of ECM with a diary-free
TWIRL results in a sieving design with a significantly simpler layout, but basi-
cally the same performance as the original TWIRL. For parameters as currently
expected for an NFS-based factorization of RSA-1024, the additional circuitry
can be expected to fit on about 11 chips of standard size and moderate complex-
ity. Due to its moderate technological requirements, our design might also be of
interest for being used in connection with “classical” sieving implementations.

Acknowledgments

We thank Adi Shamir and Eran Tromer for valuable discussions on TWIRL and
Thorsten Kleinjung for helpful discussions on the NFS.

References

1. A. Oliver L. Atkin and Frangois Morain. Finding suitable curves for the elliptic
curve method of factorization. Mathematics of Computation, 60(201):399-405,
1993.

2. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time
of writing available electronically at http://cr.yp.to/papers/nfscircuit.pdf,
2001.

3. Richard P. Brent. Factorization of the tenth and eleventh Fermat Numbers. Com-
puter Science Laboratory, Australian National Univ., Canberra, Report TR-CS-96-
02:1-25, 1996.

4. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and
Colin Stahlke. SHARK: A Realizable Special Hardware Sieving Device for Factor-
ing 1024-Bit Integers. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 119-130. Springer, 2005.

5. Willi Geiselmann, Hubert Kopfer, Rainer Steinwandt, and Eran Tromer. Improved
Routing-Based Linear Algebra for the Number Field Sieve. In Proceedings of ITCC
05 — Track on Embedded Cryptographic Systems. IEEE Computer Society, 2005.

6. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, and Eran Tromer. Scalable
Hardware for Sparse Systems of Linear Equations, with Applications to Integer
Factorization. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 131-146. Springer, 2005.

7. Willi Geiselmann and Rainer Steinwandt. A Dedicated Sieving Hardware. In
Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of
Lecture Notes in Computer Science, pages 254-266. Springer, 2003.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Willi Geiselmann and Rainer Steinwandt. Hardware for Solving Sparse Systems of
Linear Equations over GF(2). In Colin D. Walter, Cetin K. Kog, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems; CHES 2003 Proceedings,
volume 2779 of Lecture Notes in Computer Science, pages 51-61. Springer, 2003.
Willi Geiselmann and Rainer Steinwandt. Yet Another Sieving Device. In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 278-291. Springer, 2004.

Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, and Takeshi Shimoyama. Analysis on
the Clockwise Transposition Routing for Dedicated Factoring Devices. In Jooseok
Song, Taekyoung Kwon, and Moti Yung, editors, Information Security Applica-
tions: 6th International Workshop, WISA 2005, volume 3786 of Lecture Notes in
Computer Science, pages 232-242. Springer, 2006.

Fabian Januszewski. Ein dedizierter Faktorisierungsalgorithmus auf Basis elliptis-
cher Kurven. Diplomarbeit, Universitét Karlsruhe (Germany), Fakultét fiir Infor-
matik, Institut fiir Algorithmen und Kognitive Systeme, 2005.

RSA Laboratories. The RSA Challenge Numbers. http://www.rsasecurity.com/
rsalabs/node.asp?id=2093.

Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The development of the
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, 1993.
Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of
Bernstein’s Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology
— ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
1-26. Springer, 2002.

Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James
Hughes, and Paul C. Leyland. Factoring Estimates for a 1024-Bit RSA Modulus.
In Chi-Sung Laih, editor, Advances in Cryptology — ASIACRYPT 2003, volume
2894 of Lecture Notes in Computer Science, pages 55-74. Springer, 2003.

Hendrik W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathe-
matics, 126(2):649-673, 1987.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

Peter L. Montgomery. Modular Multiplication without Trial Division. Mathematics
of Computation, 44(170):519-521, April 1985.

Peter L. Montgomery. Speeding up the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48:243-264, 1987.

Jan Pelzl, Martin Simka, Thorsten Kleinjung, Jens Franke, Christine Priplata,
Colin Stahlke, Milo§ Drutarovsky, Viktor Fischer, and Christof Paar. Area-Time
Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve
Method. IEE Proceedings Information Security, 152(1):67-78, October 2005.
John M. Pollard. A Monte Carlo Method for Factorization. Nordisk Tidskrift for
Informationsbehandlung (BIT), 15:331-334, 1975.

Carl Pomerance. A Tale of Two Sieves. Notices of the ACM, pages 1473-1485,
December 1996.

Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device.
In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 1-26. Springer, 2003.

Alexandre F. Tenca and Cetin K. Ko¢. A Scalable Architecture for Modular Mul-
tiplication Based on Montgomery’s Algorithm. IEEE Trans. Comput., 52(9):1215—
1221, 2003.



A Detailed Cost Estimates

To derive detailed cost estimates for our design, if possible, we provide the exact
area and time complexity for the chosen algorithms. However, some algorithms
have a non-deterministic runtime and upper bounds on the time complexity are
assumed. Hence, the overall estimate should be seen as an upper bound on the
time and area complexity. In the sequel, let m = [log, n] be the bitlength of
the modulus and let e be the number of words of size w, required to represent a
number of size of m bit.

A.1 Complexity of the Basic Building Blocks

For each operation, the area and time complexity is given with respect to the
parameters m, e, and p. We will include T}, = 2 cycles for initialization of the
ALU at the beginning of the actual computation.

Memory and Registers We will take the quite realistic area estimates for an
0.13 pm CMOS process from [23]: For logic, the area per transistor is assumed to
be 2.8 ym?. Due to the highly regular structure, DRAM requires approximately
0.2 um? per bit, equivalent to 0.07 of the area per transistor for logic”. For our
implementation, we also require SRAM cells which can be clocked with higher
frequencies than DRAM and do not need any refresh cycles. SRAM requires less
clock cycles for reading and writing but has the disadvantage of an increased area
demand for which we will assume 1.5 gate equivalent (NAND) or 6 transistors.

We assume an Arithmetic Logic Unit (ALU) with a certain amount of in-
ternal registers which are used frequently as input and output to the arithmetic
functions. For our estimate, we pick SRAM at the cost of 6 transistors per bit for
the implementation of such. For tables and larger memory blocks for which we
can tolerate a higher latency we choose simple DRAM. For the relatively large
memory blocks, we take care of the additional area for address, row, and column
decoding by introducing some overhead.

Modular Addition and Subtraction: With the algorithms and architectures
specified in [20], subtraction requires in the worst case 2 - (e + 1) clock cycles,
addition 3 - (e 4 1) clock cycles, where e = [%] is the number of words. Hence,

the maximum time for an addition or subtraction is bounded by
tadd/sub =3 (6 + 1) + Tinit

clock cycles. A single full adder (FA) can be built of 3 NAND and 2 XOR gates,
summing up to 24 transistors in standard CMOS technology. With w being the
the required number of FAs, we can construct the CRA for approximately

Aadd/sub =24. w + 500

" This corresponds to the average area usage of a transistor of a Pentium 4 processor

with 55 - 10° transistors on a silicon area of 147 mm?.



transistors with an assumed overhead of 500 transistors for the internal control
logic.

Modular Multiplication: The number of clock cycles per multiplication is
given by

m
tmul/squ = ’7;—‘ . (6 + 1) + 2p+ T%nity

where p is the pipelining depth of the design [24]. For standard CMOS technology,
the area consumption of the multiplier is

transistors. Note that not all values for p are reasonable (see [24] for possible
kernel configurations). A word-width of w = 64 bit and a pipelining-depth of
p = 4 processing elements seems to be a good trade-off for speed and area
consumption and is chosen in our context.

(Extended) GCD Computation The binary ged architecture for bitlength
m requires in the worst case 2m subtractions and some cycles for multiplexing
(shifting can be hard-wired). For the sake of simplicity, we leave out a detailed
analysis of the average runtime of the binary gcd and assume as upper bound

tgcd =2m - ((6 + 1) + T””t)

clock cycles to finish. Prior to each ECM iteration, the precomputation of the
required curve parameters needs two modular inversions, which can be computed
with the binary extended gcd. The runtime for the algorithm in hardware is at
most

clock cycles [17]. We require no additional register since at the time of the ex-
tended ged computation, all registers for ECM phase 2 are available.

Since we use the ALU for performing the gcd, no additional subtraction
circuit or additional registers are required. We assume 2000 transistors for the
additional control logic.

Trial Division Pipeline: The trial division by 9592 primes and 108 prime
powers up to 100,000 can be realized by a pipelined structure of 10 division
circuits. For each division circuit we need two m-bit registers (for the input and
the result), two 17-bit registers (for the intermediate result and for the operand),
and a 17-bit adder. For the actual division, a simple shift and subtract method is
applied, requiring at most m subtractions of 17-bit precision. Since subtractions
are performed by additions of the two’s complement (plus 1), we can directly use
additions by storing the two’s complements of the prime powers. The division
of a candidate of m bit by a prime power of 17 bit requires no more than



taivision = 3 - m + b0 clock cycles, where the 50 clock cycles are an upper bound
on administrative cycles required to initialize the circuit prior computation and
to send the result to the central control unit.

Since the division circuit is “too fast” for our purpose, we suggest to use a
single circuit for 1000 primes and prime powers by adding required control logic
and additional memory to the circuit. Hence, a pipeline of 10 units can handle all
divisors at a rate of approximately 330 (rational) and 210 (algebraic) numbers
per second at a clock rate of 240 MHz.

The estimated area consumption of the pipeline, including internal control
logic, registers, and memory amounts to approx. 60,000 (rational) and 75,000
(algebraic) equivalent logic transistors. Note that the absolute latency of up to
29 ms of the division pipeline is not relevant once the pipeline is filled and a
constant throughput is reached.

Reducing the Curve Parameters The reduction of precomputed parame-
ters for the initialization of ECM requires additional circuitry. We propose to
group the ECM units in clusters of six, with a single reduction circuit per clus-
ter. The reduction circuit prepares the next parameters for ECM and operates
concurrently to the ECM units. It stores the six (fixed) input values, and two
intermediate values of size of 17 kbit in DRAM. With a pipelined DRAM to
SRAM circuit for prefetching memory blocks and with a simple shift and add
circuit based on word-wise addition (word size w), we assume the total area of
such a reduction unit to be no more than A,cquction = 16,100 transistors, in-
cluding memory, required logic for the computation and for the distribution of
the results. The required time per reduction is bounded by t,cquction = 400,000
cycles for the largest input. The six inputs are of different size, and we certainly
can reduce six parameters during the computational phase of ECM.

A.2 Area and Time Complexity of a Single ECM Unit

The precomputation of the curve parameters Z, Z and (t+2)/4 can be done with
the functionality discussed above, together with some of the registers available
from phase 2. Prioritizing the use of additions and, conservatively, estimating
the time for a multiplication by 2 or 4 (shifting) as t4q4/sus, the computation of
Z,Z and (¢t + 2)/4 amounts to

tprecomp =6- tmul/squ +14- tadd/sub + 2 tiny

clock cycles.

Following [20], phase 1 requires a total of 12 registers. With ¢ = 30, the pre-
computation of the table in phase 2 requires a total of 32 = 2 - 16 registers of
length of m bit for 2r-Q with r € {1,4,6,7,9,10,12,15,16, 19,21, 22,24, 25,27, 30}.
We need additional 15 registers for building the tree according to Section 3.2,
amounting to a total of 59 registers of SRAM, i.e.,

ASRAM:59'6'TI’L



equivalent logic transistors. The precomputation time for the table amounts to
8 point duplications and 10 point additions:

table = 8- tpoint_dup +10- tpoint_add =100 - (tmul/squ + 2‘:add/sub)

We can determine the runtime and area consumption of both phases on
basis of the underlying ring arithmetic and the corresponding upper bound of
the runtimes. A setting with m, = 216, m, = 350,w = 64,p = 4,e, = 4, and
eq = 6 yields togar = 3(e+ 1) + Tinit = 17 (e = 4), tadd,e = 3(e + 1) + Tinit = 23
(e = 6) and teup,r = 12, and tgyp, = 16 clock cycles. For this configuration, a
modular multiplication of full length takes ¢, = 280 and ¢4, = 626 clock
cycles for the rational bit length m, = 216 and for the algebraic bit length
mg = 350, respectively.

For a single ged we require at most t4cq,» = 2160, tgcq,o = 4900 cycles. Hence,
the total cycle count for both phases and for a single curve is no more than

tecm = 6500 - tadd/sub + 10700 - tmul/squ +5- tgcd + tprecomp

clock cycles including the precomputation time for the table (cf. [11]). Exclud-
ing the time for pre- and post-processing, a single candidate on the rational and
algebraic side requires a total of tgcnr, = 3.2+ 10% and tpepr,e = 6.9 - 10° clock
cycles, respectively. If we assume a frequency of 240 MHz, checking a candidate
with one curve requires approximately 14 ms on the rational side and 29 ms on
the algebraic side. For reading values from the DRAM in phase 2, we assume an
efficient SRAM-based prefetch circuit.

For implementing a single ECM unit capable of testing a single curve at a
time, we need

AECM = Amul/squ + Aadd/sub + Agcd + ASRAM + ADRA]\/I + Ak + Acontrol

equivalent logic transistors, where A.ontror i the additional logic required to
control both phases of ECM, the internal gcd, and fast DRAM to SRAM logic.
We assume the control logic to consume no more than A.ontror = 100,000 equiv-
alent logic transistors which is a fairly conservative estimate®. The ECM unit
includes a barrel shifter composed of D-flip-flops (48 transistors per bit) for the
589-bit scalar k required for the point multiplication k- P in phase 1. Further-
more, a DRAM memory block stores the (s',7') pairs for all primes between the
last prime of the scalar k and C' = 9680 for phase 2. The pairs (1, s’) are se-
quentially read from memory and are used to control the second phase of ECM.
Note that we can compress the information of (r,s) to smaller values (r/,s’):
The actual value of s is stored in a small 7-bit counter and is simply increased
when the 1-bit value s’ is equal to '1’, leading to a point addition of 2st - Q) in
phase 2. Hence, only a single bit of memory is required for s’. The value of r’
points to the corresponding table entry for 2r - @Q . With ¢ = 30, we require only

8 For comparison: A simple microcontroller such as an 8051 derivate can be realized
with 40,000 transistors.



4 bit for /. A total of 5120 bit DRAM for a total of 1024 pairs (resulting from
1116 primes) is required. For the rational and algebraic ECM unit, the overall
transistor count amounts approximately to 290,000 and 340,000, respectively.
Assuming a standard 0.13 ym CMOS process, a single ECM processor requires
no more than 0.81 mm? (rational) and 0.95 mm? (algebraic) area of silicon.



