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Abstract. In this paper we simplify and extend the Eta pairing, origi-
nally discovered in the setting of supersingular curves by Barreto et al.,
to ordinary curves. Furthermore, we show that by swapping the argu-
ments of the Eta pairing, one obtains a very efficient algorithm resulting
in a speed-up of a factor of around six over the usual Tate pairing, in
the case of curves which have large security parameters, complex mul-
tiplication by an order of Q(

√
−3), and when the trace of Frobenius is

chosen to be suitably small. Other, more minor savings are obtained for
more general curves. 1 2

1 Introduction

A bilinear pairing (or simply pairing) is a map of the form

t̂ : G1 × G2 −→ GT

where G1, G2 are additive groups and GT is a multiplicative group. By bilinear
we mean that the map is linear in each component, i.e.

t̂(P1 + P2, Q) = t̂(P1, Q) · t̂(P2, Q),

t̂(P, Q1 + Q2) = t̂(P, Q1) · t̂(P, Q2).

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability

2 c© 2006 IEEE. personal use of this material is permitted. however, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the ieee.



We only consider pairings, between groups of large prime order r, which are non-
degenerate, i.e. for which there exists P ∈ G1 and Q ∈ G2 such that t̂(P, Q) 6= 1.

Pairings on elliptic curves have, in recent years, become of great research
interest in the cryptographic community. This is due to their application in a
number of protocols with cryptographic functionality that cannot be achieved
using other mathematical primitives, e.g. [6, 7, 16].

Traditionally two types of pairings have been considered, the Weil pairing
and the Tate pairing. It is now accepted that for general curves providing com-
mon levels of security, the Tate pairing is more efficient, [14, 19]. However, other
related pairings are available which in certain situations are more efficient, for
example the Eta-pairing [1] on certain supersingular elliptic curves, which in
itself extended and optimized the Duursma-Lee techniques introduced in [9].

In this paper we present a new pairing, which is closely related to the Eta-
pairing but which can be used efficiently with ordinary elliptic curves. In ad-
dition we show that for the types of curves for which our new pairing applies,
one achieves further performance improvements due to the fact that one can
represent the group G2 more efficiently than one can normally.

We call our new pairing the Ate pairing, pronounced eight. This is for two
reasons, firstly it is like the Tate pairing, but faster (hence the missing ‘T’), it
is also like the Eta pairing but it reverses the order of the arguments (and Ate
is Eta spelled backwards).

Much of the results in this paper are based on the use of properties of twists
of elliptic curves. Many of the results we use are well known to the experts, but
we have been unable to locate them in the literature. Hence, we will also present
these results related to twists.

2 Background on Tate Pairing

This section briefly recalls the definition of the Tate pairing and sets notation
used in the remainder of the paper. An excellent survey of pairings can be found
in [11].

Let Fq be a finite field with q = pn elements where p is prime and let E be
an elliptic curve defined over Fq. Consider a large prime r such that r | #E(Fq)
and denote the embedding degree by k, i.e. the smallest positive integer such
that r divides qk − 1. For technical reasons we assume that r2 does not divide
qk − 1, which is not a problem in practice. The embedding degree k is chosen
in this way so as to ensure that the full r-torsion E[r] of the elliptic curve is
defined over the field Fqk , i.e. E[r] ⊂ E(Fqk).

Let P ∈ E[r] and Q ∈ E(Fqk), and consider the divisor D = (Q + R) − (R)
with R a random point in E(Fqk). For every integer s, let fs,P be a function
with divisor

(fs,P ) = s(P ) − ([s]P ) − (s − 1)O ,

then the Tate pairing is a well-defined, non-degenerate, bilinear pairing

〈·, ·〉r :

{

E[r] × E(Fqk)/rE(Fqk ) → F∗
qk/(F∗

qk)r

(P, Q) 7→ 〈P, Q〉r = fr,P (D).
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The output of this pairing is only defined up to a coset of (F∗
qk)r, however for

protocols we will require a unique element of F∗
qk . Hence to obtain a unique

representative, one defines the reduced Tate pairing as

e(P, Q) = 〈P, Q〉(qk−1)/r
r = fr,P (D)(q

k−1)/r ∈ GT .

It is not difficult to show [2] that if k > 1 one can in fact ignore working
with the divisor D and simply work with the point Q, i.e. one can define the

reduced Tate pairing as e(P, Q) = fr,P (Q)(q
k−1)/r. A second useful property

[12] is that r can be replaced by any integer N such that r | N | qk − 1, i.e.

e(P, Q) = fN,P (Q)(q
k−1)/N .

To compute the function fs,P for s > 0, one can simply use Miller’s algo-
rithm [17]. For s < 0 it suffices to remark that (fs,P ) = −(f−s,P ) − (vsP ) with
vsP the vertical line through sP , so we can take fs,P = 1/(f−s,P vsP ). If k is
even, then vsP can be ignored due to the final powering operation.

3 The Ate Pairing

In this section we introduce the Ate pairing and show that it extends and sim-
plifies the Eta pairing introduced in [1]. Indeed, the conditions stated in [1,
Theorem 1] are in fact automatically satisfied.

Although the Tate pairing as defined in the previous section allows arguments
P ∈ E[r] and Q ∈ E(Fqk), in practice one often works with specific subgroups to
speed-up the pairing computation. Let πq be the Frobenius endomorphism, i.e.
πq : E → E : (x, y) 7→ (xq , yq), then the following choice seems to be optimal:

– the group G1 = E[r] ∩ Ker(πq − [1]),
– the group G2 = E[r] ∩ Ker(πq − [q]).

Although in practice one has always used the Tate pairing on G1 × G2, from a
theoretical point of view, the Tate pairing on G2×G1 has a much nicer structure.

3.1 The Ate Pairing on G2 × G1

The main result of this section is summarised in the following theorem.

Theorem 1. Let E be an elliptic curve over Fq, r a large prime with r | #E(Fq)
and denote the trace of Frobenius with t, i.e. #E(Fq) = q +1− t. For T = t− 1,
Q ∈ G2 = E[r] ∩ Ker(πq − [q]) and P ∈ G1 = E[r] ∩ Ker(πq − [1]), we have the
following:

– fT,Q(P ) defines a bilinear pairing, which we call the Ate pairing
– let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding degree,

then
e(Q, P )L = fT,Q(P )c(qk−1)/N (1)

where c =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r
– for r ∤ L, the Ate pairing is non-degenerate
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The proof of Theorem 1 follows immediately from the following three short
lemma’s.

Lemma 1. Using the notation of Theorem 1, we have

e(Q, P )L = f
(qk−1)/N

T k,Q
.

Proof: By definition of the reduced Tate pairing, we have to compute

e(Q, P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N ,

for any N with r | N | qk − 1. Note that indeed r | N : by definition of t we have
#E(Fq) = q + 1 − t, therefore q ≡ t − 1 mod r and thus (t − 1)k ≡ 1 mod r.
Consider the equalities

e(Q, P )L = fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

= fT k−1,Q(P )(q
k−1)/N ,

where the first follows from the definition of the reduced Tate pairing, the sec-
ond holds since we can take fLN,Q = fL

N,Q and the third equality follows from
the definition of L and N . Furthermore, note that (fT k−1,Q) = (fT k,Q) since
Q ∈ E[r], so without loss of generality we can take fT k−1,Q = fT k,Q, which ends
the proof. �

An easy calculation [1, Lemma 2] proves the following lemma.

Lemma 2. Using the notation of Theorem 1 we can choose fT k,Q such that

fT k,Q = fT k−1

T,Q fT k−2

T,TQ · · · fT,T k−1Q . (2)

The crucial point is now that each of the factors in the right hand side of (2)
can be expressed in terms of fT,Q. To see this, note that since Q ∈ G2, we have
πq(Q) = [q]Q = [t − 1]Q = [T ]Q and similarly πi

q(Q) = [T i]Q, so it suffices to
relate fT,πi

q(Q) with fT,Q as in the following lemma.

Lemma 3. For all Q ∈ G2, we can take fT,πi
q(Q) = fσi

T,Q, with σ the q-th power

Frobenius automorphism of Fq.

Proof: By definition we have (fT,πi
q(Q)) = T (πi

q(Q)) − (πi+1
q (Q)) − (T − 1)(O)

and since πq is purely inseparable of degree q we have

(πi
q)

∗(fT,πi
q(Q)) = qiT (Q)− qi(πq(Q)) − qi(T − 1)(O)

= (f qi

T,Q) .

Furthermore, (πi
q)

∗(fT,πi
q(Q)) = (fT,πi

q(Q) ◦ πi
q), so we can take

fT,πi
q(Q) ◦ πi

q = f qi

T,Q .

Rewriting f qi

T,Q = fσi

T,Q ◦ πi
q then shows that we can take fT,πi

q(Q) = fσi

T,Q. �
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Note that there is also a much easier proof of the above lemma; however
the technique in the above proof will be used later, which is why we have given
the more complicated version above. For completeness, the easier proof goes as
follows: the coefficients of fT,Q are polynomial functions of the coefficients of
the curve and the coordinates of Q. Since the curve is defined over Fq, the q-th
power Frobenius σ only acts on the coordinates of Q, so we can indeed take
fT,πi

q(Q) = fσi

T,Q.

Proof of Theorem 1: since P ∈ G1 and in particular, P ∈ Ker(πq − 1),
Lemma 3 implies

fT,πi
q(Q)(P ) = fσi

T,Q(P ) = (fT,Q(P ))qi

,

and using Lemma 2, we obtain

fT k,Q(P ) = fT,Q(P )
Pk−1

i=0
T k−1−iqi

.

Substituting the above in Lemma 1, we recover Equation (1)

e(Q, P )L = fT,Q(P )c(qk−1)/N

with c =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r. This equation shows that fT,Q(P )
defines a bilinear pairing (since e(Q, P ) is bilinear), which is non-degenerate if
r ∤ L, since e(Q, P ) itself is non-degenerate. �

For T k − 1 6= 0, the Ate pairing will be non-degenerate since then r ∤ L.
Indeed, since q ≡ T mod r and since we assumed that r2 ∤ qk − 1, we also have
r2 ∤ T k −1 and thus r ∤ L, since r | N . The condition T k −1 6= 0 is easily seen to
be equivalent with t 6= 2 or t 6= 0 for k even. In this case, the Ate pairing fT,Q(P )
defines a non-degenerate, bilinear pairing on G2×G1 −→ GT . Similarly, we have

the reduced Ate pairing fT,Q(P )(q
k−1)/r, which by (1) equals a fixed power of

the reduced Tate pairing. Indeed, let N = rs then r ∤ s since this would again
imply r2 | T k − 1. Note that r ∤ c since r > k and r ∤ q, so we conclude that the
reduced Ate pairing equals e(Q, P )M with M ≡ Lsc−1 mod r. Also note that
the Ate pairing requires a Full-Miller operation, but with a shorter loop than
the Miller-lite operation in the Tate pairing.

3.2 The Ate Pairing on G1 × G2

In this section we study whether the same technique applies to G1×G2. Denote
with π̂q the dual of the Frobenius endomorphism πq (also called Verschiebung),
then since π̂q ◦ πq = [q], we conclude that π̂q acts as

– π̂q(P ) = [q]P = [t − 1]P = [T ]P for P ∈ G1, so G1 = E[r] ∩ Ker(π̂q − [q]),

– π̂q(Q) = Q for Q ∈ G2, so G2 = E[r] ∩ Ker(π̂q − [1]).
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It is clear that Lemma 1 and 2 remain valid when P and Q are swapped. The
main problem arises in Lemma 3 when we try to work with Verschiebung instead
of Frobenius. We now have to make an explicit distinction between supersingular
and ordinary curves, since π̂q has fundamentally different properties in these
cases.

Supersingular Case In the supersingular case, we have E[qi] = {O} and π̂i
q

is purely inseparable of degree qi. The same proof as in Lemma 3 shows that we
can take

fT,π̂i
q(P ) ◦ π̂i

q = f qi

T,P .

Since π̂q acts trivially on Q ∈ G2, we conclude that in fact

(fT,π̂i
q(P ) ◦ π̂i

q)(Q) = fT,π̂i
q(P )(Q) = (fT,P (Q))qi

.

Since this is exactly the same as in the previous section, we conclude that

e(P, Q)L = fT,P (Q)c(qk−1)/N ,

with c =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r. Note that this result corresponds to [1,
Theorem 1], but without the need for an automorphism.

Ordinary Case In the ordinary case, we have E[qi] ≃ Z/qiZ and π̂i
q separable

with kernel Ker(π̂i
q) = E[qi]. If we now try to mimic the proof of Lemma 3, we

run into the following problem. By definition of the pull back on a divisor and
since π̂q is unramified, we have

(π̂i
q)

∗(π̂i
qP ) =

∑

R∈E[qi]

(P + R) ,

and thus

(π̂i
q)

∗(fT,π̂i
q(P )) = T

∑

R∈E[qi]

(P + R) −
∑

R∈E[qi]

(TP + R)

−(T − 1)
∑

R∈E[qi]

(R) .

By properties of the pull back we also have

(π̂i
q)

∗(fT,π̂q(P )) = (fT,π̂q(P ) ◦ π̂i
q) .

So we have explicitly computed the divisor of fT,π̂q(P ) ◦ π̂i
q and as before, would

like to relate this to the divisor of fT,P , but this seems difficult since π̂q has non-
trivial kernel. Furthermore, it is not very surprising that no easy relation exists,

since any explicit example shows that in the ordinary case fT,P (Q)(q
k−1)/r does

not define a bilinear pairing.
The failure of the above technique also suggest a partial solution: as we will

show in Section 6, for some elliptic curves, there exists an integer e such that π̂e
q

acts as an automorphism on G1. In this case, we will be able to relate e(P, Q)
to fT e,P (Q) using the theory of twists.
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4 Twists of Ordinary Elliptic Curves over Fpn , p ≥ 5

In this section we study the twists of an ordinary elliptic curve E over a finite
field Fq with q = pn and p ≥ 5. We will derive their group orders and show how
the structure of E(Fqd) relates to the various twists of degree d. Much of what
follows is well known to the experts but we have been unable to find a location
where all these relevant facts and proofs are located. Hence, we present the facts
we need and some extensions here.

4.1 Existence of Twists

We begin with the following definition.

Definition 1. Let E and E′ be two elliptic curves over Fq, then E′ is called a
twist of degree d of E if there exists an isomorphism φd : E′ → E defined over
Fqd and d is minimal.

Although not immediate from the above definition, there are only a very
limited number of possible degrees d. To see why, let σ be the q-th power Frobe-
nius automorphism of Fq, then φσ

d ◦ φ−1
d ∈ Aut(E), with φσ

d the isomorphism
obtained by applying σ to the coefficients of φd. Furthermore, since d was chosen
minimal, the order of this automorphism is d. So, if E′ is a degree d twist of E,
then Aut(E) must contain an element of order d. However, Aut(E) always is a
finite group of order dividing 24 [20, Theorem III.10.1] and if p ≥ 5, we have
#Aut(E) | 6. So for p ≥ 5, only d = 2, 3, 4, 6 are possible. Furthermore, all twists
can be described explicitly as in [20, Proposition X.5.4]

Proposition 1. Assume that p ≥ 5, then the set of twists of E is canonically
isomorphic with F∗

q/(F∗
q)

d with d = 2 if j(E) 6= 0, 1728, d = 4 if j(E) = 1728
and d = 6 if j(E) = 0.

Note that in the above cases we have that Aut(E) ∼= µd, with µd the d-th
roots of unity. If we assume that E is given by a short Weierstrass equation
E : y2 = x3 + ax + b with a, b ∈ Fq, then an isomorphism is given by

[·] : µd → Aut(E) : ξ 7→ [ξ] with [ξ](x, y) = (ξ2x, ξ3y) .

Also it is rather easy to find an equation for the twists given an equation for
E. Let D ∈ F∗

q , then the twists corresponding to D mod (F∗
q)

d are given by

d = 2 : y2 = x3 + a/D2x + b/D3, φd : E′ → E : (x, y) 7→ (Dx, D3/2y)

d = 4 : y2 = x3 + a/Dx, φd : E′ → E : (x, y) 7→ (D1/2x, D3/4y)
d = 3, 6 : y2 = x3 + b/D, φd : E′ → E : (x, y) 7→ (D1/3x, D1/2y)

An alternative representation of the quadratic twists, which may be more
convenient from an implementation perspective, is given by

d = 2 : Dy2 = x3 + ax + b, φd : E′ → E : (x, y) 7→ (x, D1/2y)

Note that if we want to construct a twist of degree d, then F∗
q/(F∗

q)
d has to have

d elements or equivalently, q ≡ 1 mod d.
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4.2 Group Orders of Twists

Recall that the number of Fq-rational points on an elliptic curve E over Fq is
related to the Frobenius endomorphism πq : E → E : (x, y) 7→ (xq , yq), since
E(Fq) = Ker(πq − 1). The following theorem summarises the result.

Theorem 2. Let E be an elliptic curve over Fq, then there exists t ∈ Z, called
the trace of Frobenius, with |t| ≤ 2

√
q such that π2

q − [t]◦πq +[q] = [0] in End(E)
and #E(Fq) = q + 1− t. Furthermore, let α ∈ C be a root of X2 − tX + q, then

∀k ∈ N0 : #E(Fqk ) = qk + 1 − αk − ᾱk .

Let E be an elliptic curve over Fq admitting a twist E′ of degree d. Then by
definition E and E′ become isomorphic over Fqd , and in particular #E(Fqd) =
#E′(Fqd). The above theorem shows that α = ξα′ for some ξ ∈ µd, so there are
only d possibilities for #E′(Fq). In fact, since E′ is a twist of degree d (and not
smaller), there are only ϕ(d) possibilities, namely for ξ a primitive d-th root of
unity.

Proposition 2. Let E be an ordinary elliptic curve over Fq with #E(Fq) =
q + 1 − t, admitting a twist E′ of degree d, then the possible group orders of
E′(Fq) are given by the following:

d = 2 : #E′(Fq) = q + 1 + t
d = 3 : #E′(Fq) = q + 1 − (3f − t)/2 with t2 − 4q = −3f2

#E′(Fq) = q + 1 − (−3f − t)/2 with t2 − 4q = −3f2

d = 4 : #E′(Fq) = q + 1 + f with t2 − 4q = −f2

#E′(Fq) = q + 1 − f with t2 − 4q = −f2

d = 6 : #E′(Fq) = q + 1 − (−3f + t)/2 with t2 − 4q = −3f2

#E′(Fq) = q + 1 − (3f + t)/2 with t2 − 4q = −3f2

Proof:

– d = 2: since −1 is the only 2-nd primitive root, we get α′ = −α or t′ = −t
and the result follows.

– d = 3: note that µ3 ⊂ End(E) and since E is assumed ordinary, End(E) is an
order in the imaginary quadratic field Q(

√
∆) with ∆ = t2−4q. However, the

only imaginary quadratic field containing µ3 is Q(
√
−3) and thus t2 − 4q =

−3 · f2 for some f ∈ N0. It follows that we can take α = (t + f
√
−3)/2.

The two possibilities for α′ then are α′ = ξ3α and α′ = ξ2
3α with ξ3 =

(−1 +
√
−3)/2. The result follows since t′ = α′ + ᾱ′.

– d = 4: here we have µ4 ⊂ End(E) and since the only imaginary quadratic
field containing µ4 is Q(i), we can write t2 − 4q = −f2 with f ∈ N0. Also,
we can take α = (t + fi)/2 and the only possibilities for α′ are α′ = iα and
α′ = −iα. Again the result follows.

– d = 6: the reasoning is entirely the same as for d = 3, but now α′ = ξ6α or
α′ = ξ5

6α with ξ6 = (1 +
√
−3)/2.

�

8



4.3 A Structure Theorem

Let E be an elliptic curve over Fq admitting a twist E′ of degree d. In this section
we prove a “folklore” result about E(Fqd) being essentially a direct sum of the
Fq-rational points on its d twists over Fq. Whilst we shall only require a much
weaker result, we feel it may be of some independent interest to those working
in elliptic curve cryptography.

Let πq (resp. π′
q) be the Frobenius endomorphism on E (resp. E′). Note that

the isomorphism φd : E′ → E gives rise to a ring isomorphism

Φd : End(E′) → End(E) : f 7→ Φd(f) = φd ◦ f ◦ φ−1
d .

Since for any rational map h : E → E′ we clearly have π′
q ◦ h = hσ ◦ πq, we

conclude that
Φd(π

′
q) = φd ◦ π′

q ◦ φ−1
d = φd ◦ (φ−1

d )σ ◦ πq .

Again since the degree is d, we conclude that φd ◦ (φ−1
d )σ ∈ Aut(E) of order

precisely d, i.e. is a primitive d-th root of unity. Since we have an isomorphism
[·] : µd → Aut(E), we can label the twists Ei (degree dividing d) of E for
i = 0, . . . , d − 1 by Φi(πq,i) = [ξi

d]πq with ξd a fixed primitive d-th root of unity,
πq,i the Frobenius endomorphism on Ei and Φi the ring isomorphism induced
by the isomorphism φi : Ei → E.

Given the d twists Ei of E of degree dividing d, we would like to know
whether

E(Fqd) ∼=
d−1
⊕

i=0

Ei(Fq) .

To see why this is a sensible question, note that the Fqd-rational points on E
are precisely the fixed points of πd

q , i.e. E(Fqd) = Ker(πd
q − 1). Similarly, we

have Ei(Fq) = Ker(πq,i − 1). Since by the labelling Φi(πq,i) = [ξi
d]πq, we have an

immediate isomorphism

Ei(Fq) ≃ Ker([ξi
d]πq − 1) .

Furthermore, we can factor πd
q − 1 = (−1)d−1

∏d−1
i=0 ([ξi

d]πq − 1). Since πd
q − 1

is separable, we simply take the degree of both sides and conclude #E(Fqd) =
∏d−1

i=0 Ei(Fq).

A necessary condition for E(Fqd) ∼= ⊕d−1
i=0 Ei(Fq) to hold, clearly is

Ker([ξi
d]πq − 1) ∩ Ker([ξj

d]πq − 1) = O for all i 6= j , (3)

which is equivalent with E(Fqd) ∩ Ker([ξk
d ] − 1) = O for k = 1, . . . , d − 1. By

taking degrees, it is easy to see that Ker([ξk
d ]−1) ⊂ E[d], with E[d] the d-torsion

points on E. However, a more detailed analysis shows that (3) holds if and only
if:

– d = 2, 4: E(Fqd) ∩ E[2] = O
– d = 3: E(Fqd) ∩ Ker([ξ3] − 1) = O with Ker([ξ3] − 1) ( E[3]

9



– d = 6: E(Fqd) ∩ E[2] = O and E(Fqd) ∩ Ker([ξ3] − 1) = O

Furthermore, translating these conditions back to E(Fq), we get the following
very natural condition: (3) holds if and only if

∀pi | d, pi prime : #E(Fq) 6≡ 0 mod pi . (4)

The following theorem shows that this is in fact also a sufficient condition.

Theorem 3. Let E be an ordinary elliptic curve over Fq admitting a twist of
degree d and let Ei for i = 0, . . . , d − 1 be the twists of E of degree dividing d.
Assume that #E(Fq) satisfies condition (4), then

E(Fqd) ∼=
d−1
⊕

i=0

Ei(Fq) .

Proof: Let fi = [ξi
d]πq − 1 for i = 0, . . . , d − 1, then as shown above we have

Ker(fi) ∩ Ker(fj) = O for i 6= j and #E(Fqd) =
∏d−1

i=0 #Ker(fi). Furthermore,
since the curve is ordinary, we have fi ◦ fj = fj ◦ fi for all i, j. Now apply
Lemma 4, which finalises the proof. �

Lemma 4. Let G be a finite abelian group and let fi for i = 0, . . . , d − 1 be d
endomorphisms such that fi ◦ fj = fj ◦ fi, Ker(fi) ∩ Ker(fj) = 0G with 0G the

neutral element of G and #G =
∏d−1

i=0 #Ker(fi), then G =
⊕d−1

i=0 Ker(fi).

Proof: Since by assumption the kernels have intersection {0G} and #G =
∏d−1

i=0 #Ker(fi), it suffices to prove that each element g ∈ G can be written

uniquely as g =
∑d−1

i=0 ei with ei ∈ Ker(fi). Equivalently, if 0G =
∑d−1

i=0 ei with
ei ∈ Ker(fi), then ei = 0G.

To see this, first note that fj restricted to Ker(fi) is an isomorphism for
all i 6= j. Indeed, fj ◦ fi = fi ◦ fj implies that fj(Ker(fi)) ⊂ Ker(fi) and
Ker(fi) ∩ Ker(fj) = 0G implies that fj is injective on Ker(fi) and thus also
surjective.

Let gi = ◦j 6=ifj , i.e. the composition of all fj without fi, then gi(ej) = 0G

for i 6= j and thus also gi(ei) = 0G. However, by the above gi is an isomorphism
on Ker(fi) and thus ei = 0G which finishes the proof. �

In practice however, we only need the following result: since the intersection
Ker([ξi

d]πq − 1) ∩ Ker([ξj
d]πq − 1) for i 6= j is contained in E[d], we conclude

immediately that if l > d is a prime with l || #E(Fq) and l2 || #E(Fqd) with d
minimal, then there exists a unique twist Ei of degree d such that l || #Ei(Fq).

5 Representing the Group G2

Recall that the group G2 was defined as G2 = E[r] ∩ Ker(πq − q), i.e. the q-
eigenspace of Frobenius on E[r]. Assume that E admits a twist of degree d and
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let m = gcd(k, d) and e = k/m. Since k is the minimal value such that r divides
qk − 1, we know that the group E(Fqe) has order divisible by r, but not r2.
Furthermore, since r ≥ 7, we know that there is a unique degree m twist E′ of E
over Fqe such that r | #E′(Fqe). This unique degree m twist can be easily found
using Proposition 2, since there will only be one possible group order divisible
by r.

By the analysis in the previous section, there exists a unique primitive m-th
root of unity ξm such that

E′(Fqe) ≃ Ker([ξm]πe
q − 1) .

Since Ker([ξm]πe
q−1) is stable under πq, we conclude G2 = E[r]∩Ker([ξm]πe

q−1).
As such, we obtain a much more efficient representation of G2 as the unique
subgroup G′

2 of E′(Fqe) of order r. Furthermore, as shown above, there is a
monomorphism

φm : E′(Fqe) → E(Fqk) ,

so we in fact obtain a modified pairing ê of an element P ∈ G1 and an element
in Q′ ∈ G′

2 via
ê(P, Q′) = e(P, φm(Q′)) .

When k is even and d = 2 we recover the standard trick of representing G2

as the quadratic twist of E over Fqk/2 . For k = 12, d = 6 and q ≡ 1 (mod 6)
we recover the representation of G2 as an elliptic curve of Fq2 as presented by
Barreto and Naehrig [4].

However, we achieve similar savings for other values of k which are of practical
interest. For example, all curves given by Brezing and Weng [8] have either d = 4
or d = 6 and so one can use the above technique to significantly improve the
performance of arithmetic in G2 over the standard quadratic twist technique.

It is common to implement the finite fields in pairing based systems via so-
called pairing friendly fields [19]. These are finite fields defined by a polynomial

f(X) = Xk + f0

where f0 ∈ Fq. These fields offer good arithmetic, in particular they enable fast
reduction and also enable faster squaring in the cyclotomic subgroup in which
µr is embedded [14]. They also enable the subfields to be implemented relatively
efficiently via the polynomial

Xk/i + f0

for a subfield of index i.
Calculation on the d-th twist can be made simpler by choosing the polynomial

f(X) such that in the subfield defined by the polynomial

g(X) = Xk/d + f0

the value of D which defines the twist is given by the formal root of g(X), i.e.
we take the twist defined by D = (−f0)

d/k. This enables multiplication by D to
be performed by a simple coefficient shift in the polynomial basis.

11



Using pairing friendly fields we can naively quantify the improvement. If we
write k = 2i3j and use Karatsuba and/or Toom-Cook multiplication/squaring
in the extension field, then point addition in E(Fqk) requires time proportional
to 3i5j multiplications in Fq.

If one used the standard quadratic twist representation of G2, then point
addition in G′

2 would require time proportional to 3i−15j. However, if we use
the representation using sextic twists then arithmetic in G2 would require time
proportional to 3i−15j−1. Hence, a five fold performance improvement in the
basic group operations.

If one selects q to maximise d then one achieves the performance improvement
indicated in Table 1 for various practical values of k, when comparing the degree
m twist representation with the standard quadratic twist representation. Note,
in this table we assume that optimal curves can be produced, i.e. curves whose
parameters balance the security of the DLP in the elliptic curve and the finite
field. In practice such curves may not be able to be generated, so the improvement
may not be so pronounced in selecting m = 4 or 6 over m = 2.

Further performance improvements can be made in the case of point mul-
tiplication in G′

2 via the use of the endomorphism coming from the small CM
discriminant, using the techniques of [13]. When performing cofactor multipli-
cation to generate random elements in G2 the performance improvement is even
greater since the cofactor we need to multiply by also shrinks by a factor of
around (k − 1)/(e − 1).

Table 1. Performance Improvement For Various k and m

k m = 4 m = 6

6 1 5
8 3 1
10 1 1
12 3 5
24 3 5

6 Twisted Ate Pairing

In Section 3, we studied the relation between e(P, Q) and fT,P (Q), by exploiting
the definitions of G1 = E[r] ∩ Ker(πq − 1) and G2 = E[r] ∩ Ker(πq − q). For
ordinary curves, we concluded that there was no such relation, basically due to
the non-trivial kernel of the dual of Frobenius π̂q.

In this section, we will assume that E admits a twist of degree d and again
we set m = gcd(k, d) and e = k/m. In this case, we have the alternative repre-
sentation of G2 as

G2 = E[r] ∩ Ker([ξm]πe
q − 1) ,
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for a unique primitive m-th root of unity ξm. Since πq acts as multiplication
by q on G2, we conclude that [ξm] acts as multiplication by q−e on G2. Since
E[r] = G1×G2 and [ξm] has degree 1, we conclude that [ξm] acts as multiplication
by qe on G1.

As in Section 3, let T = t − 1 and recall that T ≡ q mod r. Note that for
P ∈ G1 we have

[qe]P = [T e]P = [ξm]P .

Since [ξm] is an automorphism of the curve and thus has trivial kernel, we are
able to prove the following lemma.

Lemma 5. For all P ∈ G1, we can take fT e,[ξm]P ◦ [ξm] = fT e,P .

Proof: Since [ξm] is an automorphism of the curve and thus separable of de-
gree 1, we have

(fT e,[ξm]P ◦ [ξm]) = [ξm]∗(fT e,[ξm]P )

= [ξm]∗ (T e([ξm]P ) − (T e[ξm]P ) − (T − 1)(O))

= T e(P ) − (T eP ) − (T − 1)(O)

= (fT e,P ).

Which ends the proof. �

Since fT e,P is defined over Fq, we have fT e,[ξm]P ◦ [ξm] ◦ πe
q = f qe

T e,P and thus

for Q ∈ G2, fT e,T eP (Q) = fT e,[ξm]P (Q) = fT e,P (Q)qe

. A similar reasoning as in
Section 3, then finally shows that

e(P, Q)L = fT e,P (Q)c(qk−1)/N , (5)

with N = gcd(T k − 1, qk − 1), T k − 1 = LN , c =
∑m−1

i=0 T e(m−1−i)qei ≡
mqe(m−1) mod r.

For T k−1 6= 0, we have r ∤ L and Equation (5) shows that fT e,P (Q) defines a
non-degenerate bilinear pairing on G1×G2, which we call the twisted Ate pairing.

Similarly, the reduced twisted Ate pairing is defined by fT e,P (Q)(q
k−1)/r. Note

that this pairing can only be faster than the Tate pairing when |T e| ≤ r, so
especially when the trace is small compared to r.

7 Efficiency Comparison

We now turn to quantifying the performance of our different pairing algorithms,
for different types of curves and extension degrees. As before we assume E is
an ordinary elliptic curve over Fq with group order divisible by a large prime r,
and we let k denote the embedding degree such that r divides qk − 1. We let
d denote the size of the set of possible twists of the curve over Fq, i.e. d = 6 if
E has complex multiplication by an order of Q(

√
−3), d = 4 if it has complex

multiplication by an order of Q(
√
−1) and d = 2 otherwise. We set m = gcd(k, d),

13



which denotes the size of the twist available to us in our system and we let
e = k/m which denotes the degree of the field over which the twisted curve will
be defined so as to produce the group G′

2. To save space however, we only focus
on the cases which produce m = 2 (as in standard implementations) and m = 6
which produces the greatest performance improvement.

We follow the analysis of [19], which was extended in [14]. We have three
different pairings we need to compare, and since all involve the same final pow-
ering step, we need only focus on the Miller-like part of the algorithm. The final
powering step can be computed efficiently using multi-exponentiation techniques
and the Frobenius map, a technique introduced for pairings in [15] for k = 6 and
applied in [14] to arbitrary k. Our three pairings are given by:

1. The standard Tate pairing, fr,P (Q).
2. The standard Ate pairing fT,Q(P ), with T = t − 1.
3. The twisted Ate pairing fT e,P (Q), with T = t − 1.

However, we also need to consider the size of t, for most curves this is of size√
q, however it could possibly be as small as r1/ϕ(k). See [3, 10] for methods to

construct curves for pairing based systems with k ≥ 12 and such a small value
of t. Hence, we also quantify the size in this case as well.

We let Ms, Ss, Is denote the cost of multiplication, squaring and inversion in
the finite field Fqs . As alluded to earlier, if we are using pairing friendly fields
and s = 2i3j then we have

Ms = 3i5jM1 and Ss = 3i5jS1.

Inversion costs can also be computed via a combination of the rules

I2s = 2Ss + 2Ms + Is and I3s = 3Ss + 11Ms + Is.

We now turn to estimating the cost of evaluating the functions

fN,P (Q) and fN,Q(P ).

Following [19] we refer to the former as a Miller-Lite operation and the latter
as the Full-Miller operation. We denote the cost of the Miller-Lite algorithm
by CLite. Note, a Full-Miller operation can be performed either using projective
coordinates or using affine coordinates, the exact choice as to which is more
efficient depending on the ratio M1/I1. We denote the two different costs of the
Full-Miller algorithm, by CP

Full for the projective version and CA
Full for the affine

version. In computing the cost we only count, again following [19] and [14], the
cost of the doubling part of Miller’s algorithm. This part always needs to be
computed irrespective of the signed Hamming weight of the multiplier N , and
so can be used as a way of comparing algorithms independent of optimisations
on N .

We assume that the elliptic curves are of the form

Y 2 = X3 + AX + B
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where A = −3 if d = 2 and A = 0 when d = 6. A careful analysis of the
Miller-operations then reveals the following costs for each operation

CLite =

{

(4S1 + (2e + 7)M1 + Sk + Mk) log2 N when A = −3,
(5S1 + (2e + 6)M1 + Sk + Mk) log2 N when A = 0.

CP
Full =

{

(4Se + 6Me + 2eM1 + Sk + Mk) log2 N when A = −3,
(5Se + 6Me + 2eM1 + Sk + Mk) log2 N when A = 0.

CA
Full = (2Se + 3Me + Ie + eM1 + Sk + Mk) log2 N any A.

Table 2 represents the costs, in terms of multiplications/squarings in Fq, of the
different algorithms for various security levels. An average trace t is defined to
be t ∼ √

q, whereas a small t is defined as t ∼ r1/ϕ(k). Ate(P) refers to the
Ate pairing implemented with projective coordinates, Ate(A) refers to the Ate
pairing implemented with affine coordinates and Ate(T) refers to the twisted
Ate pairing implemented with projective coordinates. The security levels are the
same as those considered in [19]. In the table we made the assumption that
I1/M1 ≈ 10. We see that when d = 2 and for general t, the fastest method is
almost always the traditional Tate pairing. For other values of d and t we see
that the best choice of algorithm depends on the exact choice of k, p and n.
However, at the high security levels we find that if one can select a trace which
is relatively small one can achieve significant advantages.
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