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Abstract

In this paper, for the genus-2 hyperelliptic curve y2 = x5 − αx (α = ±2)
defined over finite fields of characteristic five, we construct a distortion
map explicitly, and show the map indeed gives an input for which the
value of the Tate pairing is not trivial. Next we describe a computation
of the Tate pairing by using the proposed distortion map. Furthermore,
we also see that this type of curve is equipped with a simple quintuple
operation on the Jacobian group, which leads to giving an improvement
for computing the Tate pairing. We indeed show that, for the computation
of the Tate pairing for genus-2 hyperelliptic curves, our method is about
twice as efficient as a previous work.
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1 Introduction

The Tate pairing was originally used as a tool for reducing the discrete
logarithm problem on algebraic curves over a finite field to that on the
multiplicative group on an extension field of the base field [9]. However,
as is well known, the properties of the pairing (i.e., bilinearity and nonde-
generacy) give also various cryptographic applications, for example one-
round tripartite Diffie-Hellman protocol [11], ID-based encryption scheme
[2] and short signature [3].

In order to realize these pairing-based protocols, we need a choice of
curves suitable for ones. The main considerations we should notice are as
follows:

1. the parameter, called embedding degree, is not too large,

2. an efficient Jacobian group arithmetic is equipped,



3. a distortion map, that is, a method for giving an input for which the
value of the pairing is not trivial, is equipped.

The first topic concerns the computable feasibility of the Tate pairing,
and the second one the efficient computation of the pairing, and the third
one the practical use of pairing based protocols.

The main theme of this paper is about the third topic (i.e., the con-
struction of a distortion map). For a class of supersingular elliptic curves,
a distortion map for each of them can be explicitly constructed [1]. How-
ever, distorsion maps for only a few classes other than the one above have
been explicitly constructed as long as we know. Especially, for curves of
genus g ≥ 2, it is hard to construct a distortion map as compared with
g = 1 because the subgroup of l-torsion points of the Jacobian group is
isomorphic to (Z/lZ)2g for a prime l different from the characteristic of
the base field. In other words, giving an endomorphism not defined over
the base field is not sufficient to obtain a distortion map. Here is a remark
that the paper [10] shows there exists a distortion map for supersingular
algebraic curves.

In this paper, we explicitly construct a distortion map for the genus-
2 supersingular hyperelliptic curve y2 = x5 − αx (α = ±2) over finite
fields of characteristic five, and show that the map indeed gives an input
for which the value of the Tate pairing is not trivial. And we describe a
computation of the Tate pairing by using the proposed distortion map.

Note that, for a class of curves y2 = xp − x + d over finite fields of
characteristic p, the paper [8] gives an endomorphism not defined over
the base field, but does not prove the endomorphism indeed becomes a
distortion map. Furthermore, for a class of curves y2 = x5 + a over prime
fields Fp with p ≡ 2, 3 (mod 5), the paper [5] constructs a distortion
map and the paper [10] gives the proof that the map indeed becomes a
distortion map under a certain condition which seems to hold in almost
all cases.

We further see that the curve y2 = x5 −αx is equipped with a simple
formula of quintuple operation (a variant of [7]). This fact leads to giving
an improvement for computing the Tate pairing. We indeed show that,
for the computation of the Tate pairing for genus-2 hyperelliptic curves,
the computational cost using our method is about a half of that using the
method of [5]. The reason why we compare our method with the one in [5]
is that both of them consider genus-2 hyperelliptic curves with embedding
degree four.

The remainder of this paper is organized as follows: In Section 2, we
describe the mathematical facts required in this paper. In Section 3, we



construct a distortion map for the hyperelliptic curve y2 = x5 − αx. In
Section 4, we describe some improvements of the computation of the Tate
pairing by using the proposed distortion map. In Section 5, we estimate
the cost for computing the Tate pairing by using the method. In Section
6, we give the conclusions.

2 Preliminaries

In this section, we describe the mathematical facts required in this paper.
For more details, see [4] [9] [12] [14].

2.1 Hyperelliptic Curves

Let p > 2 be an odd prime and q = pr with r a positive integer. Let Fq be
a finite field with q elements, and C/Fq a hyperelliptic curve of genus g
defined by y2 = F (x) with deg F (x) = 2g +1, and O the point at infinity.

By Jac(C) (resp. Jac
Fq (C)) we denote the Jacobian group of C (resp.

the Jacobian group of C defined over Fq). As is well known, each ele-
ment of Jac(C) is represented as the form, called Mumford’s represen-
tation, D = div(a(x), b(x)) with deg a(x) ≤ g, deg b(x) < deg a(x), and
a(x)|b(x)2 − F (x). If we set a(x) =

∏
i(x − αi) and Pi = (αi, b(αi)) for

D = div(a(x), b(x)), then it is well known that D corresponds to the
divisor

∑
i(Pi) − deg a(x) (O).

Let πq denote the q-th power Frobenius endomorphism of Jac(C).
Then its characteristic polynomial, say φq(t), is of the form

φq(t) =
∑

0≤i≤2g

ait
i (ai ∈ Z).

For the ai’s above, it satisfies that a2g = 1, a0 = qg, and for 1 ≤ i ≤ g,
ia2g−i −

∑
1≤k≤i(#C(Fqk) − qk − 1)a2g−i+k = 0, ai = a2g−iq

g−i, where
C(Fqk) denotes the set of Fqk-rational points on C. Furthermore, if we set

φq(t) =
∏

1≤i≤2g(t−wi), then it turns out that φqk(t) =
∏

1≤i≤2g(t−wk
i )

and #Jac
F

qk
(C) = φqk(1).

2.2 Tate Pairing

Let C/Fq be an algebraic curve and l an odd prime with l 6 |q and
l|#Jac

Fq (C). The embedding degree is defined as the smallest positive



integer k such that l|qk − 1. Then there exists a nondegenerate bilinear
map (so-called the Tate pairing)

tl : Jac
F

qk
(C)[l] × Jac

F

qk
(C)/l Jac

F

qk
(C) −→ µl,

via

tl(D,E) = fD(E′)
qk−1

l ,

where Jac
F

qk
(C)[l] is the subgroup consisting of l-torsion points of Jac

F

qk
(C),

µl ⊂ Fqk the set of l-th roots of unity, fD a function such that (fD) = lD,
and E′ a divisor such that E′ ∼ E and suppD ∩ suppE′ = ∅.

For D,E as above, an endomorphism φ of Jac(C) is said to be a
distortion map if tl(D,φ(E)) 6= 1 holds.

In general, we use Miller’s algorithm [13] for computing the Tate pair-
ing.

3 Distortion Map for y2 = x5 − αx

3.1 Character of y2 = x5 − αx

From now on, except for Theorem 2, we set p = 5 and q = pr. Now we
consider the genus-2 hyperelliptic curve defined by

C/Fq : y2 = x5 − αx (α = ±2).

Firstly, there exists a simple quintuple operation on Jac(C) as follows,
which is a variant of [7]:

Theorem 1.

For P = (a, b) ∈ C, we have

p((P ) − (O)) = ((−ap2

, αbp2

)) − (O) + (hP (x, y)/kP (x)),

where we define hP (x, y) = bpy + (αx − ap)
p+1

2 and kP (x) = x + ap2

.

This theorem gives the following formulae:

p div(x + a0, b0) = div(x − ap2

0 , αbp2

0 )+((bp
0y + (αx + ap

0)
p+1

2 )/(x − ap2

0 )),

p div(x2 + a1x + a0, b1x + b0) = div(x2 − ap2

1 x + ap2

0 , −αbp2

1 x + αbp2

0 )

+ ((γy2 + f1(x)y + f0(x))/(x2 − ap2

1 x + ap2

0 )),



where

γ := ((a0b1 − a1b0)b1 + b2
0)

p,

f1(x) := α(a1b1 − 2b0)
px3 − 2(2a0b1 − a1b0)

px2

+ 2α(a0a1b1 − (a2
1 − 2a0)b0)

px

− ((a2
1 − 2a0)a0b1 − (a2

1 + 2a0)a1b0)
p,

f0(x) := (−x2 + αap
1x + ap

0)
3.

Hence we need ten multiplications (i.e., a0b1, a1b0, (a0b1−a1b0)b1, b2
0,

a1b1, a0(a1b1), a2
1, (a2

1 − 2a0)b0, (a2
1 − 2a0)(a0b1), (a2

1 + 2a0)(a1b0)) and
seven p-th power operations to compute γ, f1(x) and f0(x).

Theorem 1 comes from the following theorem.

Theorem 2.
Let p be an odd prime, and Fp a fixed algebraic closure of Fp, and

C/Fp a hyperelliptic curve defined by y2 = xp + αx + β with α 6= 0.

For P = (a, b) ∈ C, we set Q = (α−(p+1)(ap2

+βp −αpβ), α−p(p+1)/2 bp2

),
denoted by Q = (xQ, yQ) for short, and h(x, y) = bpy−(αx+ap+β)(p+1)/2.
Then we have

p((P ) − (O)) = (Q̃) − (O) + (h(x, y)/(x − xQ)),

where we define Q̃ = (xQ,−yQ).

Proof of Theorem 2. First, we see from the direct computation
that y2

Q = xp
Q + αxQ + β, that is, Q is a point on C.

In the case b = 0, we have p((P )− (O)) = (P )− (O)+ ((x−a)(p−1)/2)
because of 2((P )− (O)) = (x−a). Therefore we obtain the desired result.

In the case b 6= 0, we consider the support of h(x, y). To do this, we
compute h(x, y)h(x,−y) as follows:

h(x, y)h(x,−y) = (ap + αx + β)p+1 − b2py2

= (b2 + α(x − a))p+1 − b2py2

= b2p(b2 − y2 + αx − αa) + αp+1(x − a)p+1 + αpb2(x − a)p

= b2p(−xp + ap) + (x − a)p(αp+1(x − a) + αpb2)

= αp+1(x − a)p(x − xQ),

and obtain y = b (resp. yQ) by solving h(a, y) = 0 (resp. h(xQ, y) = 0).
Therefore, it turns out that (h(x, y)) = p(P ) + (Q) − (p + 1)(O). From



this result and (x− xQ) = (Q) + (Q̃) − 2(O), we complete the proof. ✷

From Theorem 1, we immediately obtain the following result, which
plays an important role for an efficient computation of the Tate pairing
for y2 = xp − αx.

Proposition 1.
Let D = div(f(x), g(x)) be a reduced divisor with degf(x) = 2, and

Di the reduced divisor such that Di ∼ piD (especially D0 = D). For i ≥ 1,
we set pDi−1 = Di + (ℓi(x, y)/hi(x)), where ℓi(x, y) can be represented as
ℓi(x, y) = γiy

2 +(six
3 + tix

2 +uix+vi)y+(−x2 + cix+di)
3 (see Theorem

1). Then, for each coefficient of ℓi, we have

γi+1 = −γp2

i , si+1 = αsp2

i , ti+1 = −αtp
2

i , ui+1 = αup2

i ,

vi+1 = −αvp2

i , ci+1 = −cp2

i , di+1 = dp2

i .

Next we consider the characteristic polynomial φq(t) of the q-th power
Frobenius endomorphism of Jac(C). Since the map x 7→ xp − αx turns
out to be an automorphism of both Fp and Fp2 as additive groups, we
have #C(Fp) = p + 1, #C(Fp2) = p2 + 1, which implies

φq(t) =





(t −√
q)4 ( r ≡ 0 (mod 8)),

(t +
√

q)4 ( r ≡ 4 (mod 8)),
(t2 + q)2 ( r ≡ 2, 6 (mod 8)),
t4 + q2 ( r: odd).

(1)

Therefore, if r is odd and l 6= p an odd prime with l|#Jac
Fq (C) =

q2 + 1, then the embedding degree is four.
For the remainder of this paper, we set r and l as above because the

other cases have the embedding degrees smaller than four, which gets less
cryptographic interest.

3.2 Construction of a Distortion Map

Let the notation be the same as in the previous subsection. In this sub-
section, we construct a distortion map for C/Fq : y2 = x5 − αx in
characteristic five.

Firstly, it is easy to see that there exist morphisms πp, ζ8, ζ5 from the
curve above to itself defined by

πp : (x, y) 7→ (xp, yp) (p-th power Frobenius),

ζ8 : (x, y) 7→ (αx, α
1

2 y),

ζ5 : (x, y) 7→ (x + α
1

4 , y),



where α
1

4 is a fixed fourth root of α and α
1

2 = (α
1

4 )2. Note that α
1

4 is

an element of Fq4 \ Fq2 because (α
1

4 )q
2

= −α
1

4 . Here we write the same
symbol for the endomorphism of Jac(C) induced from each morphism
above.

By definition, we see that ζ8 (resp. ζ5) is regarded as a primitive eighth
(resp. fifth) root of unity in the endomorphism ring of Jac(C), and that
the following relations are satisfied:





πi
p ◦ ζj

8 = (−1)ijζj
8 ◦ πi

p ,

πp ◦ ζ5 = ζα
5 ◦ πp ,

ζ8 ◦ ζ5 = ζα
5 ◦ ζ8 ,

π2
p = −ζ2

8 ◦ p .

(2)

In order to construct a distortion map, it is crucial to find a basis of
Jac

F

q4
(C)/l Jac

F

q4
(C) over Z/lZ. To achieve this, we begin with consid-

ering the eigenvalues of the q-th power Frobenius πq on Jac(C)[l].
For our curve y2 = x5 − αx, the characteristic polynomial of πq is

t4 + q2. In this case, the following fact is known:

Lemma 1 [10].
Let C/Fq be a genus-2 hyperelliptic curve for which the characteristic

polynomial of πq is t4 + q2, and l an odd prime with l|q2 + 1. Then the
eigenvalues of πq on Jac(C)[l] are ±1, ±q.

Proof of Lemma 1. Since q2 ≡ −1 (mod l), we have

t4 + q2 ≡ (t2 − 1)(t2 + 1)

≡ (t + 1)(t − 1)(t + q)(t − q) (mod l). ✷

Next, for each eigenvalue given in Lemma 1, we find its corresponding
eigenspace. When we define η = (ζ5−ζ−1

5 )+q◦(ζαr

5 −ζ−αr

5 ), the following
lemma holds:

Lemma 2.
For D ∈ Jac

Fq (C), we have

πq ◦ η(D) = −q ◦ η(D).

Proof of Lemma 2. Let m be the order of D. Then m divides
#Jac

Fq (C) = q2 + 1. Hence, from (2), we have

πq ◦ η(D) = {(ζαr

5 − ζ−αr

5 ) + q ◦ (ζα2r

5 − ζ−α2r

5 )}(πq(D))



= {(ζαr

5 − ζ−αr

5 ) + q ◦ (ζ−1
5 − ζ5)}(D)

(by α2 ≡ −1 (mod 5))

= {−q2 ◦ (ζαr

5 − ζ−αr

5 ) − q ◦ (ζ5 − ζ−1
5 )}(D)

(by 1 ≡ −q2 (mod m))

= −q ◦ η(D). ✷

From (2) and Lemma 2, we can obtain a basis of Jac
F

q4
(C)/lJac

F

q4
(C)

over Z/lZ as follows:

Theorem 3.
Let id be the identity element of Jac(C). We assume l||q2 + 1 and

D ∈ Jac
Fq (C)[l] \ {id}. Then the set {D, ζ8(D), η(D), ζ8 ◦ η(D) } forms

a basis over Z/lZ of both Jac(C)[l] and Jac
F

q4
(C)/lJac

F

q4
(C).

Proof of Theorem 3. It is sufficient to show η(D) 6= id. Indeed,
if it holds, then we see from (2) and Lemma 2 that 〈D〉, 〈ζ8(D)〉, 〈η(D)〉,
〈ζ8◦η(D)〉 are the eigenspaces corresponding to the distinct πq-eigenvalues
1, −1, −q, q, respectively. Therefore, they are linearly independent over
Z/lZ, which implies that they form a basis of Jac(C)[l] because Jac(C)[l]
is isomorphic to (Z/lZ)4. Furthermore, the characteristic polynomial of
the q4-th power Frobenius is (t+q2)4 from (1), which implies Jac

F

q4
(C) ∼=

(Z/(q2 +1)Z)4 [15]. From this fact and the assumption l||q2 +1, we obtain
the desired result for Jac

F

q4
(C)/lJac

F

q4
(C).

Let D ∈ Jac
Fq (C)[l] ∩ Ker η, and λ = 2(ζ5 + ζ−1

5 ) + 1. Since

N :=
∏

σ∈Gal(Q(ζ5 )/Q)

ησ

=
∏

i=1, 2

{(ζi
5 − ζ−i

5 ) + q(ζiαr

5 − ζ−iαr

5 )}2

=

{
λ2(q2 + q − 1)2 (αr ≡ 2 (mod 5)),
λ2(q2 − q − 1)2 (αr ≡ −2 (mod 5)),

=

{
5{q2 + 1 + (q − 2)}2 (αr ≡ 2 (mod 5)),
5{q2 + 1 − (q + 2)}2 (αr ≡ −2 (mod 5)),

and gcd(l,N) = gcd(l, q∓2) = 1, we obtain D ∈ Jac
Fq (C)[l]∩Jac(C)[N ] =

{id}, which completes the proof of the theorem. (Indeed, if l|q ∓ 2, then
l|(q + 2)(q − 2) = (q2 + 1) − 5, which implies l|5. This contradicts with
l|q2 + 1.) ✷



From Theorem 3 above and Lemma 3.3 of [10], we can obtain the
following result:

Theorem 4.
With the notation above, if l is an odd prime with l||q2 + 1, then the

map
t̃l : Jac

Fq (C)[l] × Jac
Fq (C)[l] −→ µl,

via
t̃l(D, E) = tl(D, ζ8 ◦ η(E))

is bilinear and has the property that t̃l(D,E) 6= 1 holds whenever D,E 6=
id.

Proof of Theorem 4. The proof is the same as in Lemma 3.3 of
[10]. We describe only the outline (see Lemma 3.3 of [10] for more details).
The bilinearity follows from the definition of t̃l. For the second assertion,
since it turns out tl(D

′, E′)q = tl(πq(D
′), πq(E

′)) for D′ ∈ Jac
F

qk
(C)[l]

and E′ ∈ Jac
F

qk
(C), we see tl(D, E) = tl(D, ζ8(E)) = tl(D, η(E)) = 1.

Hence the desired result follows from Theorem 3 and the non-degeneracy
of the Tate pairing. ✷

As a result, from Theorem 4, the endmorphism ζ8 ◦ η becomes a dis-
tortion map for Jac

Fq (C)[l] \ {id}.

3.3 Image of the Distortion Map ζ8 ◦ η

In this subsection, we explicitly describe the image of Jac
Fq (C) under the

distortion map ζ8 ◦ η constructed in the previous subsection.
When we represent each element of Jac

Fq (C) as div (a(x), b(x)) =∑
i (αi, βi)−deg a(x) (O) (deg a(x) ≤ 2), it is easy to see that each (αi, βi)

becomes an Fq2-rational point on C. Therefore, in order to describe the
image of ζ8 ◦ η, it is sufficient to consider only ζ8 ◦ η((P ) − (O)) for
P ∈ C(Fq2).

Theorem 5.
For P = (a, b) ∈ C(Fq2), we have

ζ8 ◦ η
(
(P ) − (O)

)
∼





(
(0, 0)

)
− (O) (a = 0),

(φ(P )) +
(
(0, 0)

)
− 2 (O) (a 6= 0),

where φ(P ) := (−a−5α
1

2 , −2a−15b5αα
3

4 ) for a 6= 0.



Proof of Theorem 5. We set four points Pi (1 ≤ i ≤ 4) on C as
follows:

P1 = (αa + αα
1

4 , α
1

2 b), P2 = (αa − αα
1

4 , −α
1

2 b),

P3 = (−αa + αr+1α
1

4 , αrα
1

2 b), P4 = (−αa − αr+1α
1

4 , −αrα
1

2 b).

Then, from the definition of the endomorphism ζ8 ◦ η and the fact q =
(ζ2

8 ◦ π2
p)

r = π2
q ◦ ζ2r

8 (see (2)) and (α
1

4 )q
2

= −α
1

4 , we see

ζ8 ◦ η((P ) − (O)) =
∑

1≤i≤4

(Pi) − 4(O).

Here we should notice that x-coordinates of the Pi’s are distinct because
αr 6= ±1 and a ∈ Fq2.

In the case a = 0, we can obtain the desired result from (y) =∑
1≤i≤4(Pi) − 4(O) + ((0, 0)) − (O).
In the case a 6= 0, there exists a unique function of the form h(x, y) =

y − (c3x
3 + c2x

2 + c1x + c0) such that h(Pi) = 0 (1 ≤ i ≤ 4). And

when we set A = (a4 − α)αrα
1

2 6= 0 1, it turns out Ac3 = −2a2bαr+1α
3

4 ,

Ac2 = −abαr+1α
1

4 , Ac1 = −2a4bαr+1α
3

4 − bαrα
3

4 , and Ac0 = 0.
Since we have

A2h(x, y)h(x,−y) = −(a9αα
1

2 + a5α
1

2 )x6 + (a4 − α)x5

− (2a11αα
1

2 + 2a7α
1

2 )x4 − (a10α − a6 + 2a2α)x3

− (a13αα
1

2 + 2a9α
1

2 + aα
1

2 )x2 + (a8 − 2a4α − 1)x

= −(a4 − α)(x2 − 2aαx − a2 + α
1

2 )

(x2 + 2aαx − a2 − α
1

2 )(a5αα
1

2 x − 1)x,

we obtain (h(x, y)) =
∑

1≤i≤4(Pi)−4(O)+(φ̃(P ))+((0, 0))−2(O), which
completes the proof (see Theorem 2 for the symbol ˜). ✷

4 Computation of the Tate Pairing

We use the same notation as in the previous section unless we specify.
In this section, for the actual computation of the Tate pairing on y2 =
x5 − αx, we remark there exist some improvements in the same way as
those proposed so far.

1 The value A is the determinant of the coefficient matrix for the simultaneous equa-
tions with unknown ci’s. And the assumption a ∈ Fq2 implies a4 − α 6= 0.



We first introduce the following method for an efficient computation
of the Tate pairing on genus-2 hyperelliptic curves with the embedding
degree k ≥ 2.

Theorem 6 [5].
Let C/Fq be a genus-2 hyperelliptic curve, l an odd prime with l|#Jac

Fq (C)
and l 6 |q. We assume that the embedding degree k ≥ 2. Let D (resp. E) be
an element of Jac

Fq (C)[l] (resp. Jac
F

qk
(C)). Setting E = div(a(x), b(x)),

we assume deg a(x) = 2 and suppD∩ suppE′′ = ∅, where E′′ = E +2(O).

Then tl(D,E) = fD(E′′)
qk−1

l holds, where fD is a function such that
(fD) = lD. In other words, we do not need the process of finding a di-
visor E′ such that E′ ∼ E and suppD ∩ suppE′ = ∅. Furthermore, we
can decrease the number of points substituted into functions required in
Miller’s algorithm.

Remark 1.
In the computation of fD(E′′) of Theorem 6, the degrees in x and y of

the functions into which we substitute E′′ can be reduced to at most one,
because the points (x, y) in suppE′′ satisfy the defining equation of the
form y2 = F (x) and the x-coordinates of those points are roots of a(x).

From Theorem 6, we can simplify the Tate pairing t̃l(D, E) (Theorem
4) by using the distortion map ζ8 ◦ η as follows:

Theorem 7.
Let D, E ∈ Jac

Fq (C)[l]\{id}. We represent E as E =
∑

1≤i≤w ((αi, βi))−
w(O) (w = 1 or 2), and set Pi = (αi, βi). Let fD be a function such that
(fD) = lD. Since l is odd, we may assume α1 6= 0 without loss of gener-
ality. Then we have

t̃l(D, E) =





∏
1≤i≤w, αi 6=0 fD(φ(Pi))

q4−1

l

(α2 6= 0 or (0, 0) 6∈ supp(fD)),

±fD(φ(P1))
q4−1

l (otherwise),

where φ is the same map as in Theorem 5 and the signature ± is deter-
mined to satisfy t̃l(D, E) ∈ µl. (Note that z ∈ µl implies −z 6∈ µl because
l is odd.)



Proof of Theorem 7.
(i) The case α2 6= 0 : From Theorem 5, we have ζ8 ◦ η(E) ∼

(φ(P1)) + (φ(P2)) − 2(O). And the fact that φ(Pi) is not an Fq2-rational
point implies that φ(Pi) does not belong to supp(fD). Therefore, the
desired result follows from Theorem 6.

(ii) The case (0, 0) 6∈ supp(f
D

) and w = 1 : We have t̃l(D, E) =

fD

(
(φ(P1))+((0, 0))

) q4−1

l
from Theorem 5. Hence we obtain the desired

result by using fD((0, 0)) ∈ F∗
q and q − 1|q4−1

l .

(iii) The case (0, 0) 6∈ supp(f
D

) and α2 = 0 : It is obvious that
t̃l(D, E) = t̃l(D, (P1) − (O)) t̃l(D, ((0, 0)) − (O)) by the linearity of the
map t̃l. From (ii) above and ((0, 0)) − (O) ∈ Jac

Fq (C)[2], it follows that

t̃l(D, (P1)− (O)) = fD(φ(P1))
q4−1

l and t̃l(D, ((0, 0))− (O)) ∈ µl ∩ µ2 =
{1}, which implies the first assertion of the theorem.

(iv) The case (0, 0) ∈ supp(f
D

) and “ w = 1 or α2 = 0” :
From Theorem 5, it is easy to see that ζ8◦η(E) = (φ(P1))+((0, 0))−2(O)
for w = 1, and that ζ8 ◦ η(E) ∼ (φ(P1))− (O) for α2 = 0. Then, for both
cases, ζ8 ◦ η(2E) ∼ 2(φ(P1)) − 2(O) holds. Hence we obtain t̃l(D, E)2 =

{fD(φ(P1))
q4−1

l }2 from Theorem 6, which implies the second assertion of
the theorem. ✷

Remark 2.

In the actual computation of fD(φ(Pi)) for the function fD =
∏

i,j

hi(x, y)

kj(x, y)

(the product of elements of Fq(C)), we can omit hi’s and kj’s which be-
long to Fq(x), because the x-coordinate of φ(Pi) is an element of Fq2 and

q2 − 1 divides q4−1
l .

Furthermore, we can consider also the following improvement based
on [8].

Remark 3.
Let the notation be the same as in Theorem 7. If we define the function

h as h = f
q2+1

l

D , then it satisfies that (h) = (q2+1)D. Therefore, we obtain

t̃l(D, E) = ±
∏

1≤i≤w, αi 6=0

h(φ(Pi))
q2−1,

which gives an efficient Tate pairing computation because we use the p-th
power operations on fields of characteristic p and the quintuple operation



on Jac
Fq (C) as the main procedure. Here the signature ± is assigned in the

same way as in Theorem 7. Note that, for the final raising to the (q2−1)-
st power, it requires only one division on Fq4 and two subtructions on Fq

because zq2−1 = zq2

/z = (
∑

0≤i≤3(−1)iaiα
i
4 )/z for 0 6= z =

∑
0≤i≤3 aiα

i
4

(ai ∈ Fq), which might be more efficient than the original method (i.e.,
the repeated square-and-multiply algorithm).

5 Cost of the Tate pairing

In this section, we evaluate the cost taken to compute the Tate pairing
tl(D, ζ8 ◦ η(E)) by using the method of [8] (Remark 3).

We mention that the parameters q and l should be chosen so that
q4 ≥ 21024 and l ≥ 2160 in view of security.

By M (resp. Iqk) we denote the cost of one multiplication on Fq (resp.
the cost of one inversion on Fqk). Applying the Karatsuba method, we
estimate the cost of one multiplication on Fq2 (resp. Fq4) as 3M (resp.
9M), except for some special forms. For example, the multiplication of

aα
1

2 and bα
1

2 for a, b ∈ Fq takes 1M . Note that, for the evaluation in this
paper, we ignore the costs of addition/subtraction (including doubling
and the multiplication by α(= ±2)) and the p-th power operation on Fq,
Fq2 and Fq4 (e.g. using normal bases).

We assume the point (0, 0) does not belong to suppE (cf. Theorem
7), that is, E = div(x2 + L1x + L0, M1x + M0) with L0 6= 0. If L0 = 0
holds, then the computation of the Tate pairing is simpler than that in
the case L0 6= 0.

Now we discuss the cost of the algorithm (Table 1) for computing the
Tate pairing by using our proposed method. Hereafter we use the notation
“distortion map” not only for ζ8 ◦ η but also for the map φ.

5.1 Cost of the Distortion Map

With the notation above, we estimate the cost of the computation of φ(P )
for P ∈ C(Fq2).

Before doing this, we should estimate the cost for decomposing E into
E = (P1) + (P2) − 2(O). This task needs to solve a quadratic equation
over Fq, whose cost is dominated by the computation of square root(s)
of the discriminant. The assumption q ≡ 5 (mod 8) (recall q = 5r with
r odd) gives an efficient method for computing the square root(s) of a
given element in Fq (Table 2), which is a special case of the method in



Table 1. Tate pairing tl(D, ζ8 ◦ η(E))

Input: Reduced divisors D, E ∈ Jac
Fq

(C)[l]
with (0, 0) 6∈ suppE.

Output: Tate pairing tl(D, ζ8 ◦ η(E)).

Step 1: Represent q+3

8
as q+3

8
=
P

0≤i≤k rip
i

with 0 ≤ ri < p and rk > 0.
Decompose E into the form
E = (P1) + (P2)− 2(O).

Step 2: Compute φ(Pi) = (αi, βi)
and α2

i , α3
i , β2

i , αiβi, α2
i βi, α3

i βi (i = 1, 2).

Step 3: Compute the function ℓ(x, y) ∈ Fq [x, y] s.t.
pD = D′ + (ℓ(x, y)/h(x))
with D′ reduced divisor and h(x) ∈ Fq [x].

Step 4: v ← 1, D′ ← D.

Step 5: for i = 1 to 2r (Recall q = pr.)
Compute the function ℓ(x, y) ∈ Fq [x, y] s.t.
pD′ = D′′ + (ℓ(x, y)/h(x))
with D′′ reduced divisor and h(x) ∈ Fq [x].
v ← vp · ℓ(φ(P1)) · ℓ(φ(P2)), D′ ← D′′.

end for

Step 6: v ← (vq2

/v), output v.

[6]. From this, the cost of the decomposition is regarded as that of one
q+3
4 -th power operation on Fq.

Now we evaluate the cost for computing φ(P ) (P ∈ C(Fq2)). The
detail is described in Table 3. It costs 3 · 3M + 1Iq2 = 9M + 1Iq2 to

compute φ(P ). Since the resulting point is of the form (E1, E2α
1

4 ) , where

Ei ∈ F∗
q2 (i = 1, 2), the computations of E2

1 , E3
1 , (E2α

1

4 )2 and Em
1 (E2α

1

4 )

(1 ≤ m ≤ 3) take 6 · 3M = 18M (the latter part of Step 2 in Table 1).

5.2 Cost of Substitution

In this subsection, we consider the cost of Step 5 in Table 1.
Given a function ℓ(x, y) ∈ Fq[x, y] with the form ℓ(x, y) = γy2 +

(sx3 + tx2 + ux + v)y + (−x2 + cx + d)3 and φ(P ) = (E1, E2α
1

4 ) with
Ei ∈ F∗

q2 (i = 1, 2), we estimate the cost of the computation of ℓ(φ(P )).

We emphasize that ℓ(x, y) can be computed only by performing the p-th
power operations and addition/subtraction operations on Fq if we have
done Step 3 (by Proposition 1), and that we perform Step 5 using the
values obtained in Step 2. By this reason, it costs 6 · 2M + 2 · 3M = 18M
to compute ℓ(φ(P )).



Table 2. Square root(s) for Fq

Input: An element A ∈ Fq with q = 5r and r odd.
Output: Square root(s) of A.

Step 1: If A = 0, then output 0.

Step 2: B ← A
q+3

8 , C ← B2

(Then we have C = A
q+3

4 and A−1C ∈ F

∗
5 .)

Step 3: If C = A, then output ±B.
If C = −A, then output ±2B.

If C = αA, then output ±2Bα
1
2 .

If C = −αA, then output ±Bα
1
2 .

Table 3. Distortion map φ

Input: A point P = (a, b) ∈ C(Fq2 ) with a 6= 0.
Output: The image φ(P ).

Step 1: A← a−1, B ← −Ap.

X ← Bα
1
2 .

Step 2: C ← 2αB3bpα
1
2 .

Y ← Cα
1
4 .

Step 3: Output (X, Y ).

We remark that φ(P ) 6∈ C(Fq2) (by the form of φ(P ) above), and that
supp(ℓ(x, y)) ⊂ C(Fq2) (by the definition of ℓ(x, y) and Theorem 1). This
gives the fact supp(ℓ(x, y)) ∩ φ(P ) = ∅, which means ℓ(φ(P )) 6= 0,∞.

5.3 Total Cost

In this subsection, we evaluate the total cost of the computation of the
Tate pairing by applying the procedure in Table 1.

In Steps 1, 5, we set k = r = 120 (cf. ⌈log5 2256⌉ = 111) and assume
that ri’s in Step 1 are uniformly distributed on the set {0, 1, . . . , p − 1}.

For Step 1, we estimate the cost for computing ri’s as 1M (because it
costs about (log2

q+3
8 )2 bit operations), and the cost for the decomposition

of the reduced divisor E as (3 · 1 + 120 · 9
5)M (by Subsection 5.1). The

former part 3 · 1M corresponds to the cost for the precomputation of the
repeated p-th-power-and-multiply algorithm. Thus, Step 1 takes 220M .

For Step 2, it costs 2(9M +1Iq2 +18M) = 54M +2Iq2 by the argument
of Subsection 5.1.



Table 4. Cost of the Tate pairing

method cost

previous work [5] 19851M + 240Iq

ours 13253M + 2Iq2 + 1Iq4

For Step 3, it costs 10M by Theorem 1.

For Step 5, it costs 2 · 18M + 2 · 9M for rewriting the value v, that
is, the computation of vp · ℓ(φ(P1)) · ℓ(φ(P2)). Therefore, Step 5 takes
240 · 54M = 12960M.

For Step 6, it costs 9M + 1Iq4 (see Remark 3).

Consequently, we estimate the cost for computing the Tate pairing
tl(D, ζ8 ◦ η(E)) as 13253M + 2Iq2 + 1Iq4 . The resulting cost is about
a half of the one in [5] for genus-2 hyperelliptic curves with embedding
degree four (Table 4 2). This situation is the same as that of this paper.

6 Conclusions

In this paper, we constructed a distortion map explicitly (Theorem 4) and
described a computation of the Tate pairing by using the proposed map
(Theorem 7 and Table 3) for a class of genus-2 hyperelliptic curve defined
by y2 = x5 − αx (α = ±2) in the characteristic five. In addition, we
estimated the cost (Section 5) of the Tate pairing by using this method.
Consequently, the cost using our method turned out to be about 50%
saving as compared with that using the method of [5].
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