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Abstract

For the Tate pairing computation over hyperelliptic curves, there are developments by Duursma-
Lee and Barreto et al., and those computations are focused on degenerate divisors. As divisors
are not degenerate form in general, it is necessary to find algorithms on general divisors for
the Tate pairing computation. In this paper, we present two efficient methods for computing
the Tate pairing over divisor class groups of the hyperelliptic curves y2 = xp − x + d, d = ±1
of genus 3. First, we provide the pointwise method, which is a generalization of the previous
developments by Duursma-Lee and Barreto et al. In the second method, we use the resultant
for the Tate pairing computation. According to our theoretical analysis of the complexity, the
resultant method is 48.5% faster than the pointwise method in the best case and 15.3% faster
in the worst case, and our implementation result shows that the resultant method is much
faster than the pointwise method. These two methods are completely general in the sense that
they work for general divisors with Mumford representation, and they provide very explicit
algorithms.

keywords: Tate pairing; hyperelliptic curves; divisors; resultant; pairing-based cryptosystem

Introduction

In recent years the Tate pairing and the Weil pairing have been getting a lot of attentions for
designing various protocols in cryptosystem [4, 5, 14, 13, 22, 25, 26]. It is therefore important
to develop an efficient implementation of the pairings for the practical applications. The recent
papers by Barreto et al. [1] and Galbraith et al. [11] provided the fast computation of the Tate
pairing over the supersingular elliptic curves y2 = x3 − x ± 1 in characteristic three. In 2003,
Duursma and Lee [9] provided a closed formula for the efficient computation of the Tate pairing on
y2 = xp−x±1, p = 3 (mod 4) in characteristic p. After then, Barreto et al. [2] improved Duursma
and Lee’s result and proposed a general technique for the efficient computation of the Tate pairing
on supersingular abelian varieties using Eta pairing approach [2, 20]. They also described efficient
pairing algorithms on Fq-rational points for elliptic and hyperelliptic curves over Fq.
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number R01-2005-000-10713-0. This work was also done while the last authorc was visiting KIAS in Seoul during
the summers of 2004 and 2005. The author expresses their gratitude to the institute.
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In fact, generally divisor operations over hyperelliptic curves are more complicated than point
operations over elliptic curves. Therefore, it has been pointed out that Elliptic Curve Cryptosystem
(ECC) is more efficient than Hyperelliptic Curve Cryptosystem (HCC) [25]. The Tate pairing
computation uses the Miller algorithm, and the Miller algorithm relies on divisor operations. Thus
one expects that the Tate pairing computation over hyperelliptic curves may not be as efficient
as that over elliptic curves. However, in some special cases, it was shown that HCC can be made
more efficient than ECC by giving the explicit formula for divisor operations [6, 19, 23]. For the
higher genus, preserving the same security level, we can decrease the size of the defining field. In
fact, some examples given in [6, 19] show that for the efficiency of cryptosystems, the size of the
defining field is more important than the complexity of group operation formula. For the Tate
pairing, Barreto et al. [2] presented implementation results over elliptic curves and hyperelliptic
curves of genus 2, where both are defined over F2n . The running time for the Tate pairing over
hyperelliptic curves was faster than that of elliptic curves. For the Tate pairing computation it is
therefore certainly worthwhile to work over some special types of hyperelliptic curves.

Recent developments [2, 9] on the Tate pairing computation on hyperelliptic curves over a finite
field Fq have focused on the case of degenerate divisors. However, in the pairing-based cryptography,
the efficient Tate pairing implementation over general divisors is significantly more important. For
instance, in the Boneh-Franklin identity-based encryption scheme, the private keys are general
divisors, and therefore the decryption process requires computing a pairing of general divisors. For
the case of genus 2, the result in [6] presents both divisor-wise and pointwise approach, and it
turns out that the divisor-wise approach is more efficient than the pointwise approach. For the
case of genus ≥ 3, when divisors are general, there has been no Tate pairing computation method
developed so far.

In this paper, we develop general methods of computing the Tate pairing for the genus 3 case.
We present two feasible methods by pointwise approach and the resultant approach for computing
the Tate pairing over divisor class groups of the hyperelliptic curves Hd : y2 = xp − x + d, where
d = ±1 and p = 7. Those methods are completely general in the sense that they work for general
divisors with Mumford representation [21], and we give very explicit and feasible algorithms over
Hd. Furthermore, we analyze the complexities of two methods and show implementation results of
proposed algorithms. For our two methods, we use the Eta pairing for reducing the computation
cost. We used SINGULAR [12] software package for symbolic computations in this paper.

In Section 2, we present the pointwise method for computing the Tate pairing over general
divisors. This method is a generalization of the pointwise method developed in [2] and [9]. In
Section 3, we use resultant to compute the Tate pairing with Mumford representation. In Section 4,
we compare the complexities of two methods and show that the resultant method is 48.5% faster
than the pointwise method in the best case and 15.3% faster in the worst case. In Section 5, we
report experiment results based on our implementation using NTL [24] software package. According
to the implementation, we conclude that the Tate pairing computation by using the resultant is
much faster than the pointwise approach. We point out that this is the first implementation over
a genus 3 curve.

1 Tate pairing on divisors

Let Fq be a finite field with q elements, and H/Fq be a hyperelliptic curve over Fq. We denote
by JH the group of degree zero divisor classes of H. Note that each divisor class can be uniquely
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represented by the reduced divisor using the Mumford representation [21]. Reduced divisors of the
curve H can be found as discussed in [17] and [21], and most of reduced divisors in JH with genus
3 are written as D = [UD, VD] = [x3 + uD,2x

2 + uD,1x + uD,0, vD,2x
2 + vD,1x + vD,0].

We recall the definition of the Tate pairing [10]. Let ` be a positive divisor of the order of
JH(Fq) with gcd(`, q) = 1, and k be the smallest integer such that ` | (qk − 1); such k is called the
embedding degree. Let JH [`] = {D ∈ JH | `D = O}. The Tate pairing is a map

〈 · 〉` : JH [`]× JH(Fqk)/`JH(Fqk) → F∗qk/(F∗qk)`

〈D, E〉` = fD(E′),

where div(fD) = `D and E′ ∼ E with support(E′) ∩ support(div(fD)) = ∅. We define the Tate

paring value by t(D,E) = 〈D, E〉
qk−1

`
` so that the pairing value is defined uniquely. We write x(i)

for xpi
.

We consider a hyperelliptic curve Hd over Fq defined by y2 = xp − x + d, d = ±1, for p ≡ 3
(mod 4), where q = pn with gcd(2p, n) = 1, and we let F/Fq and K/Fq be the extensions of degree
[F : Fq] = p and degree [K : Fq] = 2p, respectively. Over the extension field K, the curve is
the quotient of a hermitian curve, hence it is Hasse-Weil maximal. And the class group over K
is annihilated by ppn + 1; this can be also seen from the following Lemma 1.1. It shows that for
P ∈ Hd(K), (ppn + 1)((P )− (O)) is principal [8].

Lemma 1.1 ([8]). Let P = (α, β) ∈ Hd. The function

hP = βpy − (αp − x + d)
p+1
2

has divisor (hP ) = p(P ) + (P ′)− (p + 1)O, where P ′ = (α(2) + 2d, β(2)).

From Lemma 1.1, we observe that p((P )−(O)) ≡ ([p]P )−(O), thus the multiplication by p over
Hd has an extremely special form such as [p] = φπ2, where φ = (x + 2d,−y) and π is a Frobenius
map of pth power.

Let m = (n + 1)/2, then from [8] we have

|JH+1(Fq)| = (1 + pn)3 + (
p

n
)pm(1 + pn + p2n), |JH−1(Fq)| = (1 + pn)3 − (

p

n
)pm(1 + pn + p2n). (1)

1.1 Eta pairing on Hd

We discuss the Eta pairing introduced in [2] which is very useful for efficient computation of the
Tate pairing. We consider a hyperelliptic curve Hd over some finite field Fpn , and let ψ be an
endomorphism on the curve Hd given by

ψ : Hd(K) → Hd(K), ψ(x, y) = (ρ− x, σy), (2)

where ρ ∈ F is a root of ρp − ρ + 2d = 0, and σ, σ̄ ∈ K are the roots of σ2 + 1 = 0.
For efficient Tate pairing computation, we concern with the twisted Tate pairing

t̂ : JHd
[`]× JHd

(Fp2pn)/`JHd
(Fp2pn) −→ F∗p2pn

t̂(D, E) = fD(ψ(E))ppn−1,
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where (fD) = (ppn + 1)D from [9, Theorem 4].
For two divisors D and E in JHd

, the Eta pairing is defined by

η(D,E) =
n−1∏

i=0

hDi(ψ(E))pn−1−i
, (3)

where Di+1 + (hDi) = pDi with a divisor D0 = D and some rational function hDi . By Lemma 1.1,
Hd has a property that

q(P )− q(O) = (γ(P ))− (O) + (gP ), (4)

for some automorphism γ on Hd and some function gP . Thus γ can be given by γ = φnπ2n. The
following theorem is crucial for efficient computation of the Tate pairing on divisors.

Theorem 1.2 ([2], [20]). Let q = pn, p ≡ 3 (mod 4), γ = φnπ2n on JHd
induced from Eq. (4), and

ψ be an endomorphism on the curve Hd over Fq. Assume that

φnψ[q] = ψ, (5)

where ψ[q] denotes a map obtained by raising the coefficients of ψ by qth power. Then for divisors
D and E in JH(Fq), we have η(qD, E) = η(D, E)q.

For any divisor E = [UE , VE ] in JHd
(Fq), the endomorphism ψ in Eq. (2) on divisors are easily

deduced as follows: ψ(E) = [Uψ(E), Vψ(E)], where

Uψ(E) = x3 − (3ρ + uE,2)x2 + (3ρ2 + 2uE,2ρ + uE,1)x− (ρ3 + uE,2ρ
2 + uE,1ρ + uE,0),

Vψ(E) = σ(vE,2x
2 − (2ρvE,2 + vE,1)x + vE,2ρ

2 + vE,1ρ + vE,0).
(6)

Using Eq. (6), a straightforward verification shows that Hd satisfies the crucial condition in Eq. (5).
From Theorem 1.2, it thus follows that

t̂(D, E) = η(D, E)7
6n+1(77n−1). (7)

It is therefore enough to compute η(D, E) to obtain t̂(D, E) for any divisors D, E ∈ JHd
(Fq).

When all the points in support(D) and support(E) are Fq-rational points, using Eq. (7) makes the
Tate pairing computation very efficient as mentioned in [2]. In Section 2, we will extend the concept
of the Eta pairing on the general divisors, that is, the supports of D and E are not necessarily
Fq-rational points.

Throughout this paper, we focus on the hyperelliptic curve Hd : y2 = xp−x + d, d = ±1, p ≡ 3
(mod 4) of genus g = 3, therefore we work on the case p = 7; this case is cryptographically useful [9].

2 Pointwise computation of the Tate pairing

This section presents a generalization of the pointwise method developed in [2] and [9], and this
method can be used for any divisors, not only for Fq-rational points. The Eta pairing is used for
reducing the computation cost as well.

As mentioned in Eq. (7), for divisors D, E in JHd
, the Tate pairing can be computed by

t̂(D, E) = η(D, E)7
6n+1(77n−1), (8)
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where D and E have the form D = (P1) + (P2) + (P3)− 3(O), E = (Q1) + (Q2) + (Q3)− 3(O) for
points Pk and Qj contained in Hd(F73n) with k, j = 1, 2, 3.

From Eq. (3) we have

η(D, E) =
n−1∏

i=0

hDi(ψ(E))7
n−1−i

.

For i ≥ 1, let Di = (Pi,1) + (Pi,2) + (Pi,3)− 3(O), then hDi(ψ(E)) can be computed by

hDi(ψ(E)) =
3∏

k,j=1

hPi,k
(ψ(Qj)), (9)

where (hPi,k
) = 7(Pi,k) + (Pi,k

′) − 8(O), P0,k = Pk, Pi,k = (α(2i) + i2d, (−1)iβ(2i)) ∼ 7i[P0,k] and
[P ′

i,k] = −[7Pi,k] for i ≥ 1.
Algorithm 1 shows the pointwise computation of Tate pairing.

Algorithm 1 Pointwise computation
INPUT: D, E ∈ JHd

(F7n)
OUTPUT: t̂(D, E)
1. g ← 1
2. Compute Pk = (αk, βk), k = 1, 2, 3 and Qj = (xj , yj), j = 1, 2, 3

which are supporting points for D and E, respectively.
3. For i = 0 to n− 1 do
4. For k, j = 1 to 3 do
5. compute hk,j = β7

k · yj · σ − (α7
k + xj + d− ρ)4

6. set αk ← α72

k + 2d, βk ← β72

k

7. set g ← g7 ·∏3
k,j=1 hk,j

8. Return g76n+1(77n−1), where g = η(D, E).

Let m3 (resp. M3, M) be the time cost for a multiplication in F73n (resp. F73(14n) , F714n).
For simplicity, we assume that a squaring cost is similar to a multiplication cost, and we omit the
computation cost for 7th powering since it is negligible compared with the other operations.

Step 5 requires two multiplications and two squarings in F73n , and Step 7 needs eight multipli-
cations in F73(14n) and one multiplication in F714n . For computing t̂(D, E), the total complexity is
therefore

TP := 2 T3rt + n(9 · 4m3 + 8M3 + 1M) = 2 T3rt + n (36m3 + 8M3 + 1M), (10)

where T3rt is the time for finding all the roots of a cubic polynomial over F73n ; this is required for
obtaining the supporting points of D and E.

3 Computation of the Tate pairing by using the resultant

In this section, our goal is, for given divisor inputs with the divisor representation, to find an efficient
algorithm which provides us the final Tate pairing value over Hd. For evaluating a function at a
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divisor, we apply the resultant for the efficient computation of the Tate pairing, and show that this
approach is much faster than the first method.

According to Eq. (7), for the Tate pairing computation over divisors D, E ∈ JH(F7n), it is
sufficient to compute η(D,E). In the following subsections 3.1 and 3.2, to obtain the value of
η(D, E), we find the explicit formulas for Di = [7i]D and hDi for i ≥ 1, and we also obtain the
evaluation formula of rational function hDi at a divisor in a very explicit way.

3.1 7-multiplication on divisors

Let D be a reduced divisor of Hd such that

D = (P1) + (P2) + (P3)− 3O = [UD, VD],

where Pj = (αj , βj) for j = 1, 2, 3, UD = x3+uD,2x
2+uD,1x+uD,0, and VD = vD,2x

2+vD,1x+vD,0 ∈
F7n [x]. Let D0 = D, Di+1 + (hDi) = 7Di, and Di = [UDi , VDi ] for each positive integer i.

The following lemma provides us with explicit formulas for UDi and VDi in terms of the coef-
ficients of UD and VD for i ≥ 1. The proof can be obtained from the knowledge of Section 5 in
Appendix of [17].

Lemma 3.1. Let [7] be the multiplication map by 7 on the divisor class group of Hd/F7n. Then
we have, for i ≥ 1, [7i]D = Di = [UDi , VDi ] with

UDi = x3 + (u(2i)
D,2 + id)x2 + (u(2i)

D,1 + 3idu
(2i)
D,2 − 2i2)x + u

(2i)
D,0 − 2idu

(2i)
D,1 − 3i2u

(2i)
D,2 − i3d,

VDi = (−1)iv
(2i)
D,2x

2 + (−1)i(3idv
(2i)
D,2 + v

(2i)
D,1)x + (−1)i(−3i2v

(2i)
D,2 − 2idv

(2i)
D,1 + v

(2i)
D,0).

In the following proposition, we find the function hD such that (hD) = 7D + D′ in an explicit
way.

Proposition 3.2. Let hD(x, y) be a function such that (hD) = 7D + D′, and τ be a map

τ : Hd → Ĥd, (x, y) → (X̂, Y ) = (x− ξ7 − d, y).

Then, for appropriate ξ, we have

ĥD̃(X̂, Y ) := hD(x, y) ◦ τ−1 = δ1Y
3 + s(X̂)Y 2 + t(X̂)Y + δ16(X̂),

where δ16(X̂) = −(X̂3 + ũ7
1X̂ + ũ7

0)
4, and δ1, s(X̂) and t(X̂) are described in Table 5 of Appendix.

Proof. Let D = (P1) + (P2) + (P3) − 3(O), and 7((Pj) − (O)) = (hj) − (P ′
j) + (O) for j = 1, 2, 3.

Then

7D = (h1h2h3)− [(P ′
1) + (P ′

2) + (P ′
3)− 3(O)] = (hD)−D′,

where D′ = (P ′
1) + (P ′

2) + (P ′
3)− 3(O). For simplicity, the change of variable

τξ : x → X = x− ξ, y → Y = y

with ξ = −uD,2

3
transforms the curve Hd to a curve H̃d : Y 2 = X7 −X + (ξ7 − ξ + d).
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Let Pj = (αj , βj), P̃j = (αj − ξ, βj), α̃j = αj − ξ and β̃j = βj . From the fact that βj = VD(αj)
and β̃j = VD̃(α̃j) = VD̃(αj − ξ), it follows that UD̃ = x3 + ũ1x + ũ0 and VD̃ = ṽ2X

2 + ṽ1X + ṽ0.

We also have D̃ = (P̃1) + (P̃2) + (P̃3)− 3(O) = [X3 + ũ1X + ũ0, ṽ2X
2 + ṽ1X + ṽ0]. Furthermore,

(h̃j) = 7(P̃j) + (P̃j
′
)− 8(O), where h̃j = hj(X + ξ, Y ). Letting θ = ξ7 − ξ + d, it is easy to see that

h̃j = β̃j
7
Y − (α̃j

7 −X + θ)4 = (ṽ2α̃j
2 + ṽ1α̃j + ṽ0)7Y − (α̃j

7 −X + θ)4. Thus we obtain

hD̃(X, Y ) = h̃1(X,Y )h̃2(X, Y )h̃3(X, Y )

=
3∏

j=1

(
(ṽ2α̃j

2 + ṽ1α̃j + ṽ0)7Y − (α̃j
7 −X + θ)4

)
.

(11)

If we apply the Elimination method in [7] to Eq. (11) with elimination order {α̃1, α̃2, α̃3} >
{ũ1, ũ0}, then we can obtain Eq. (11) as a function of ũ1 and ũ0. The coefficients for ĥD̃(X̂, Y ) =
hD̃(X−θ, Y ) are described in Table 5, where the second column shows the corresponding coefficient
in terms of ṽi

′s and ũi
′s.

3.2 Evaluation at a divisor

In this subsection, we use resultant to evaluate a rational function at a divisor, which is necessary
to achieve our goal. For the definition of resultant and its properties, we refer to [27, Ch. VI].

Theorem 3.3. Let F be a field. For A, B ∈ F [x] with deg A = m, deg B = n, we have

res(A,B) = an
m∏

i=1

B(αi),

where α1, α2, · · · , αm ∈ F̄ (= algebraic closure of F ) are all the roots of A and a is the leading
coefficient of A.

With the same notations as in Theorem 3.3, furthermore, we have

res(A,B) = (−1)mnres(B, A). (12)

In addition, efficient reduction method for computing the resultant is also introduced in [27, Ch.
VI]. When m ≥ n, by Euclidean division algorithm, there exists Q(x), R(x) ∈ F (x) such that
A(x) = Q(x)B(x) + R(x) with deg R < n. Then

res(A,B) = (−1)mnres(B, R). (13)

Now we are ready to apply the resultant to our Tate pairing computation.

Lemma 3.4. For hD(x, y) and E = [UE , VE ], we let HD,E(x) = hD(x, VE(x)). Then we have

hD(E) = res(UE ,HD,E).

Proof. In fact, hD(E) = HD,E(x1)HD,E(x2)HD,E(x3), where xi’s are the roots of UE(x). The
assertion thus follows immediately from Theorem 3.3.
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Algorithm 2 Tate pairing computation by using resultant
INPUT: D = [UD, VD], E = [UE , VE ] ∈ JHd

(F7n), endomorphism ψ
OUTPUT: t̂(D, E)
1. Set ξ ← 2uD,2 and θ ← ξ7 − ξ + d.
2. Compute u1 = 3ξ2 + 2ξuD,2 + uD,1 and u0 = ξ3 + uD,2ξ

2 + uD,1ξ + uD,0.
3. Compute δj for j = 1, ..., 15 using Table 5
4. g ← 1,
5. for i = 0 to n− 1 do
6. compute Ê = τξ+θ(ψ(E))
7. compute HD̃,Ê = ĥD̃(x, VÊ) and R = HD̃,Ê (mod UÊ) (Table 6).
8. compute hDi(ψ(E)) = res(UÊ , R).
9. g ← g7 · hDi(ψ(E))
10. set u0 ← u72

0 , u1 ← u72

1

11. set ξ ← ξ72
, θ ← θ72

, δj ← δ72

j if j = 2, 3, 4, 5, 6, and δj ← (−1)iδ72

j otherwise.
12. Return g76n+1(77n−1), g = η(D, E).

Table 6 of Appendix describes the nonzero coefficients of HD,E(x), and the complexity is counted
by using Karastuba’s technique [15].

Now by using the reduction method in Eq. (13), we can compute res(UE ,HD,E) as follows:

Lemma 3.5. Let HD,E(x) = Q(x)UE(x) + R(x) with deg R ≤ 2. Then we have

hD(E) = res(UE , R).

Proof. We observe that the degree of HD,E is 12 and the degree of UE is 3. Thus by using
Eq. (12), we have res(UE ,HD,E) = res(HD,E , UE). From Eq. (13) it follows that res(HD,E , UE) =
res(UE , R), so we get res(UE ,HD,E) = res(UE , R).

3.3 Algorithm for the Tate pairing computation by using the resultant

In this subsection, we describe an algorithm for computing the Tate pairing on divisors, and we also
compute its complexity. From Lemma 3.1, Proposition 3.2 and Lemma 3.4, the Tate pairing given in
Eq. (7) can be computed by using Algorithm 2. Since vÊ,j = σ · (some element in F77n), j = 0, 1, 2,
we note that HD̃,Ê in the step 7 of Algorithm 2 can be written as

HD̃,Ê = −x12 +
10∑

i=0

(diσ + ei)xi, di, ei ∈ F77n for 0 ≤ i ≤ 10.

To find HD̃,Ê (mod UÊ) in the step 7, we use the following recursive relations:

xi ≡ aix
2 + bix + ci (mod UE), 3 ≤ i ≤ 12

a3 = −uÊ,2, b3 = −uÊ,1, c3 = −uÊ,0 ∈ F77n

ai = ai−1a3 + bi−1, bi = ai−1b3 + ci−1, ci = ai−1c3.

Then R can be computed by
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R = HD̃,Ê (mod UÊ)

= (a12 +
10∑

i=3

ai(diσ + ei) + d2σ + e2)x2 + (b12 +
10∑

i=3

bi(diσ + ei) + d1σ + e1)x

+ (c12 +
10∑

i=3

ci(diσ + ei) + d0σ + e0).

(14)

Now we discuss the complexity of Algorithm 2 by counting the number of operations which
are necessary for computing η(D, E). We denote the time for multiplications in F714n ,F77n and
F7n by M, m′ and m, respectively, and a multiplication between F7n and F77n by m̃. Noting
that, in Step 6, uÊ,j , j = 0, 1, 2 and vÊ,0, vÊ,1 belong to F77n , and from Eq. (6) we have vÊ,2 =

σ · (some element in F7n). The computation cost of HD̃,Ê = ĥD̃(x, VÊ) in Step 7 is counted in
Table 6. We need 7m + 18m′ for computing xi (mod UE) since we do not need the computation
x11, and we need 48m′ to compute R in Eq. (14).

The total complexity of this algorithm is therefore

40m + n(29m + 31m̃ + 70m′ + Tres + 1M), (15)

where Tres is the computation cost for the resultant res(UÊ , R) of UÊ and R in F714n . In detail,
we need 3m in the step 2, and 37m in the step 3 from Table 5. For each loop, we need 5m in the
step 6, 17m + 31m̃ + 4m′ in the step 7 from Table 6, and 1M in the step 9.

We calculate the resultant by computing the determinant of two polynomials with degree 2
and 3 in Mumford representation. Then we have Tres = 48m′, where m′ is a multiplication (resp.
squaring) in F77n .

4 Complexity comparison

In this section we compare the complexities of our two methods given in Section 2 and 3.
When an extension degree is of the form k = 2i3j , the computation cost for a multiplication in

Fqk is theoretically 3i5j times of the cost for a multiplication Fq ([16], [18]). From this observation,
we assume that

1 mult. in F73n(m3) ≈ 5m, 1 mult. in F73(14n)(M3) ≈ 5M, 1 mult. in F714n(M) ≈ 3m′ (16)

and we also let m̃ ≈ 7m. With the above assumptions, the pointwise computation cost in Eq. (10)
is TP := 2 T3rt + n (36 · 5m + 123m′), where T3rt is the time for finding all the roots of a cubic
polynomial over F73n . By Berlekamp-Rabin algorithm [3], we have T3rt = O(32 log 3 log 73n) · 5m ≈
27n · 4 ·m3 = 108nm3.

Counting the cost for T3rt, we finally have

TP ≈ n(1260m + 123m′). (17)

On the other hand, the total time for the resultant method in Eq. (15) is TR := 40m + n(246m +
70m′ + Tres + 1M), where Tres is the time for computing the resultant of two polynomials over
F714n . As mentioned in Section 3.3, we have Tres = 48m′, where m′ is a multiplication in F77n .
Thus, the computation cost of our resultant approach is approximately

TR = 40m + n(246m + 121m′). (18)
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Table 1: Complexity comparison: examples
security (bits) 80 128 192

bitlength of 714n 1140 3072 8192
n 29 79 211

pointwise (TP ) 36540m + 3567m′ 99540m + 9717m′ 265860m + 25953m′

resultant (TR) 7174m + 3509m′ 19474m + 9559m′ 51946m + 25531m′
TP
TR

1.17982 ≤ TP
TR
≤ 1.93808 1.17998 ≤ TP

TR
≤ 1.93963 1.18004 ≤ TP

TR
≤ 1.94019

To compare the complexities of two methods, we summarize TP , TR and the ratio TP /TR in
Table 1, where the examples are chosen for cryptographically meaningful values [18].

According to [16], the ratio of m′ and m is 7 ≤ m′
m ≤ 49, and the last row of Table 1 shows

the range of the ratio of TP
TR

for each fixed value of n. For each n, as m′/m is decreasing, the ratio
TP
TR

is increasing. This implies that as the performance of m′, the multiplication in F77n , is getting
more efficient, the resultant method gets more efficient than the pointwise method. Furthermore,
we observe that when m′/m is fixed, as n is increasing, TP

TR
is also increasing. Thus, for higher

security level, the resultant method gives better efficiency than the pointwise method. Therefore,
we can conclude that the Tate pairing computation by using the resultant is 48.5% faster than the
pointwise computation in the best case and 15.3% faster in the worst case.

5 Experimental results

We have proposed two methods by the resultant and pointwise approach for computing the Tate
pairing over the genus 3 hyperelliptic curve Hd : y2 = x7 − x + d, d = ±1 over Fq. In Section 4, we
compared the complexities of two proposed methods, and it turned out that the resultant approach
is up to 48.5 % faster than the pointwise approach. In this section, we provide experiment results for
the Tate pairing computation over the genus 3 hyperelliptic curve and compare the running time.
Basically our goal in this experimentation is that we verify our theoretical complexity comparison
in Section 4 by actual implementation using one of the standard packages such as NTL. We make
implementations when both input divisors D and E are general divisors, and we use the NTL
software package. We provide implementation for genus 3 hyperelliptic curves for the first time.

We first need to find a prime n for each security level s such that 2s ≈ 73n, and also find a large
prime ` dividing |JHd

(F7n)| such that ` ≈ 2s. The formula for |JHd
(F7n)| is given in Eq. (1). By

searching for good candidates for ` and n from n = 29 through n = 79, we find the four values of
n, namely, 29, 43, 47 and 73 with corresponding primes as given in Appendix.

Table 2 shows the amount of time to perform the field multiplications in F7n , F73n and F77n

using NTL. The table was computed by taking average time of 5000 multiplications of random
elements in each field.

In Section 4, we assumed the ratio m3/m is 5 for the field operations m3 in F73n and m in
F7n . However, in NTL the actual ratio m3/m is approximately 7 or 9 as shown in Table 2, and
m′/m in Table 2 is in the range 7 ≤ m′/m ≤ 49 as we expected. In our implementation M3

is optimized to 56m3. Therefore, each complexity for the Tate pairing computation is given by
TR = 40m + n(246m + 121m′) and

TP = 2 T3rt + n (36m3 + 8M3 + 1M) = 2T3rt + n(36m3 + 56 · 8m3 + 3m′) ≈ n(700m3 + 3m′).
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Table 2: Multiplication timings (in milliseconds)
n 29 43 47 73
F7n (m) 0.2562 0.5686 0.6626 1.6062
F73n(m3) 2.4 4.3218 4.8906 11.1562
F77n (m′) 7.8438 16.672 17.5156 27.8688
m3/m 9.36768 7.60077 7.38092 6.94571
m′/m 30.6159 29.3211 26.4347 17.3508

According to the actual ratio of the field operations in NTL, Table 1 is adjusted to obtain Table 3.
As shown in Table 3, for n ≥ 43, as n increases, TP /TR also increases as we expected in Section 4.

On the other hand, when n increases from 29 to 43, TP /TR decreases, which is opposite to what
we expected, and we guess that the reason is the following: For instance, we observe that when n
changes from 29 to 43, the decrement of m3/m (resp. m′/m) is 1.767 (resp. 1.295). On the other
hand, when n changes from 43 to 47, the decrement of m3/m (resp. m′/m) is 0.220 (resp. 2.886).
So, the decrement of m3/m is much larger than m′/m when n changes from 29 to 43, while m3/m
is much smaller than m′/m when n changes from 29 to 43.

From Table 3, the resultant method is 40.57%(resp. 29.38%, 34.32%, and 52.26%) faster than
the point-wise method for n = 29 (resp. 43, 47, and 73). These examples support our theoretical
complexity analysis in Section 4, that is, for higher security level the resultant method is more
efficient than the pointwise method for the Tate pairing computation.

Table 3: Complexity comparison: examples in NTL

bitlength of 714n 1140 1690 1847 2869
n 29 43 47 73

pointwise (TP ) 20300m3 + 87m′ 30100m3 + 129m′ 32900m3 + 141m′ 51100m3 + 219m′

resultant (TR) 7174m + 3509m′ 10618m + 5203m′ 11602m + 5687m′ 17998m + 8833m′
TP
TR

1.68254 1.42525 1.52257 2.09465

Table 4 shows the implementation results of the Tate pairing for selected examples. The resul-
tant method is 48.8% (resp. 39.1%, 38.7%, and 43.4%) faster than the pointwise method for n = 29
(resp. 43, 47, and 73). We performed fifty calculations with random samples for each method and
took the average time. The experiments ran on a machine with 2.2Ghz Opteron, and we used
Microsoft Visual C++ 6.0.

Our implementation shows that the performance ratio TP
TR

for n = 29 is larger than the ratio
for n = 73, while the theoretical complexity analysis in Table 3 shows the other way around. This
difference occurs because of the relative time cost T3rt

TP
for computing all the supporting points

of an input divisor. In more detail, in the theoretical complexity analysis, for T3rt
TP

we have a
flat ratio approximately 0.152. On the other hand, in our implementation, T3rt

TP
is 0.447242 (resp.

0.436616, 0.41533, and 0.170231) for n = 29 (resp. 43, 47, and 73). Thus the ratio T3rt
TP

is various
depending on the values of n, and in fact, the ratio is largest when n = 29 and smallest when

11



Table 4: Experiment results (in seconds)
bit-length of ` 237 338 373 608
bit-length of 714n 1140 1690 1847 2869
n 29 43 47 73
pointwise method(TP ) 38.3564 99.2936 120.672 399.962
resultant method(TR) 19.6315 60.4622 73.9278 226.412

TP
TR

1.95382 1.64224 1.63229 1.76652

n = 73.
According to the theoretical complexity analysis and the implementation, we conclude that the

resultant method is faster than the pointwise method for the Tate pairing computation.

Conclusions. In this paper, we have provided two methods by pointwise approach and resul-
tant approach for computing the Tate pairing over divisor class groups of the hyperelliptic curves
Hd : y2 = xp−x+d, d = ±1 of p = 7. From the theoretical analysis of the complexity, the resultant
method is 48.5% faster than the pointwise method in the best case and 15.3% faster in the worst
case, and our implementation results also support our theoretical analysis of the complexity. There
is room for further optimization in the implementation, and using NTL might not be the best
choice. However, our implementation is sufficient enough to conclude that the resultant method is
more efficient than the pointwise method in the Tate pairing computation.
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Appendix.

In Section 5, by searching for good candidates for ` and n from n = 29 through n = 79, we find
the following:

When n = 29, for H(−1) curve,
` = 295427580543981044508742175251656510425218717654351011099430750210650097.

When n = 43, for H(−1) curve,
` = 537186185691863880188217039863742753517055763668500175524814523901957588878744075332862878883563864467.

When n = 47, for H(−1) curve,
` = 13749772461004425111203179773331321128112017469863375270022695103034065149004498912831678964830

780873139729982133.
When n = 73, for H(+1) curve,

` = 105533980645146561990468186060654951766146626712223193723674163198013158899403621841975533231846

9900781285578602047978955194093497651290723475309620425880333576516676980042149532583647.

Table 5: hD formula for 7D
Input D = [UD, VD] ∈ JHd

(k) Cost

Output ĥD̃(X̂, Y ) = δ1Y 3 + s(X̂)Y 2 + t(X̂)Y + δ16(X̂)

s(X̂) = δ2X̂4 + δ3X̂3 + δ4X̂2 + δ5X̂ + δ6
t(X̂) = δ7X̂8 + δ8X̂7 + δ9X̂6 + δ10X̂5 + δ11X̂4 + δ12X̂3 + δ13X̂2 + δ14X̂ + δ15

δ1 (ṽ2ũ0(ṽ2(ṽ2ũ0) + 3ṽ1(ṽ0 + 2ṽ2ũ1)) + ṽ2
1(ṽ0ũ1 − ṽ1ũ0) + ṽ0(ṽ2ũ1 − ṽ0)2)7 8m + 2s

δ2 (4(2ṽ2ũ1 + ṽ0)(−ṽ2ũ1 + ṽ0)− ṽ1(3ṽ2ũ0 + ṽ1ũ1))7 3m
δ3 (−2ṽ2ũ0(2ṽ2ũ1 + ṽ0) + ṽ1(2ṽ2ũ0 + ṽ0ũ1))7 2m
δ4 (3ṽ2

2 ũ2
0 + ṽ1ũ0(−2ṽ2ũ1 + 3ṽ0) + ṽ0ũ1(2ṽ2ũ1 − 2ṽ0))7 2m + 1s

δ5 (ṽ2ṽ0(2ṽ1ṽ0 − 3ũ1ũ0)− ṽ1ũ1(ṽ0ũ1 − ṽ1ũ0) + 2ṽ2
0 ũ0)7 3m

δ6 (2ũ0(ṽ2ũ0)(ṽ2ũ1 − 2ṽ0)− (ṽ0ũ1 + ṽ1ũ0)(4ṽ1ũ0 + 2ũ1(ṽ0 − ṽ2ũ1)))7 4m
δ7 (−2ṽ2ũ1 + 3ṽ0)7 0m
δ8 (2ṽ2ũ0 − ṽ1ũ1)7 0m
δ9 (2ũ1(ṽ0 − ṽ2ũ1) + 2(2ṽ0ũ1 − ṽ1ũ0))7 0m
δ10 (ũ1(2ṽ2ũ0 + ṽ1ũ1) + ṽ0ũ0)7 1m
δ11 (ũ2

1(−2ṽ2ũ1 + ṽ0) + ũ0(ṽ2ũ0 + 2ṽ1ũ1))7 2m + 1s
δ12 (ũ0(3ũ1(2ṽ2ũ1 + ṽ0)− ṽ1ũ0))7 1m
δ13 (ũ2

0(−ṽ2ũ1 + 2ṽ0) + 3ũ2
1(ṽ1ũ0 − ṽ0ũ1))7 2m + 1s

δ14 (2ũ2
0(ṽ2ũ0 + 2ṽ1ũ1) + 3(ũ0ṽ0)ũ2

1)7 2m
δ15 (ũ1(ũ2

0(−ṽ2ũ1 + 2ṽ0) + 3ũ2
1(ṽ1ũ0 − ṽ0ũ1)) + ũ2

0(2ũ1(ṽ2ũ1 − ṽ0) + 4(ṽ0ũ1 + ṽ1ũ0))7 2m

Total cost Notation: m denotes a multiplication in F7n , and s a squaring in F7n . 32m + 5s
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Table 6: HD,E formula complexity counting
i ith coefficient of HD̃ Cost

12 −1 0
10 δ7vE,2 + 3u7

1 1m
9 δ7vE,1 + δ8vE,2 + 3u7

0 2m̃
8 δ2v2

E,2 + δ7vE,0 + δ8vE,1 + δ9vE,2 + u14
1 1m + 1s + 2m̃

7 2δ2vE,1vE,2 + δ3v2
E,2 + δ8vE,0 + δ9vE,1 + δ10vE,2 + 2u7

0u7
1 2m + 3m̃

6 δ1v3
E,2 + 2δ2vE,0vE,2 + δ2v2

E,1 + 2δ3vE,1vE,2 + δ4v2
E,2 + δ9vE,0 3m + 4m̃ + 1s

+δ10vE,1 + δ11vE,2 + u14
0 + 3u21

1
5 3δ1vE,1v2

E,2 + 2δ2vE,0vE,1 + 2δ3vE,0vE,2 + δ3v2
E,1 + 2δ4vE,1vE,2 7m̃ + 1m

+δ5v2
E,2 + δ10vE,0 + δ11vE,1 + δ12vE,2 + 2u7

0u14
1

4 3δ1vE,0v2
E,2 + 3δ1v2

E,1vE,2 + δ2v2
E,0 + 2δ3vE,0vE,1 + 2δ4vE,0vE,2 + δ4v2

E,1 5m̃ + 2m

+2δ5vE,1vE,2 + δ6v2
E,2 + δ11vE,0 + δ12vE,1 + δ13vE,2 + 2u14

0 u7
1 − u28

1

3 −δ1vE,0vE,1vE,2 + δ1v3
E,1 + δ3v2

E,0 + 2δ4vE,0vE,1 + 2δ5vE,0vE,2 + δ5v2
E,1 1m′ + 5m̃ + 1m

+2δ6vE,1vE,2 + δ12vE,0 + δ13vE,1 + δ14vE,2 + 3u21
0 + 3u7

0u21
1

2 (3δ1v2
E,0vE,2 + 3δ1vE,0v2

E,1 + δ4v2
E,0 + 2δ5vE,0vE,1 + 2δ6vE,0vE,2 + δ6v2

E,1 1m′ + 2m̃ + 1m + 1s

+δ13vE,0 + δ14vE,1 + δ15vE,2 + u14
0 u14

1
1 3δ1v2

E,0vE,1 + δ5v2
E,0 + 2δ6vE,0vE,1 + δ14vE,0 + δ15vE,1 + 3u21

0 u7
1 1m + 1m′ + 1m̃

0 δ1v3
E,0 + δ6v2

E,0 + δ15vE,0 − u28
0 1m′ + 1s

Total cost 4s + 13m + 31m̃ + 4m′
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