
A New Cryptanalyti
 Time/Memory/Data Trade-o� Algorithm

Sourav Mukhopadhyay and Palash Sarkar

Cryptology Resear
h Group

Applied Statisti
s Unit

Indian Statisti
al Institure

203, B.T. Road, Kolkata

India 700108

e-mail:fsourav t,palashg�isi
al.a
.in

Abstra
t

In 1980, Hellman introdu
ed a time/memory trade-o� (TMTO) algorithm satisfying the

TMTO
urve TM

2

= N

2

, where T is the online time, M is the memory and N is the size

of the sear
h spa
e. Later work by Biryukov-Shamir in
orporated multiple data to obtain the

urve TM

2

D

2

= N

2

, where D is the number of data points. In this paper, we des
ribe a

new table stru
ture obtained by
ombining Hellman's stru
ture with a stru
ture proposed by

Oe
hslin. Using the new table stru
ture, we design a new multiple data TMTO algorithm

both with and without the DP method. The TMTO
urve for the new algorithm is obtained

to be T

3

M

7

D

8

= N

7

. This
urve is based on a
onje
ture on the number of distin
t points

overed by the new table. Support for the
onje
ture has been obtained through some emperi
al

observations. For D > N

1=4

, we show that the trade-o�s obtained by our method are better

than the trade-o�s obtained by the BS method.

Keywords: one-way fun
tion, time/memory trade-o�,
ryptanalysis.

1 Introdu
tion

One-way fun
tions are fundamental primitives in the design of
ryptographi
 algorithms. Conse-

quently, from a
ryptanalyti
 point of view, it is of fundamental importan
e to study methods for

inverting one-way fun
tions.

Hellman [7℄ in 1980, introdu
ed a generi
 method of inverting one-way fun
tions. Let f :

f0; 1g

n

! f0; 1g

n

be the one-way fun
tion to be inverted. (Hellman originally
onsidered f to be

obtained from a blo
k
ipher by mapping the key spa
e to the
ipher spa
e for a �xed message.)

Using pre-
omputation time of N , Hellman showed that the online time T and memory M satisfy

the relation TM

2

= N

2

, where N = 2

n

. Consequently, the atta
k is
alled a time/memory trade-o�

(TMTO) algorithm and the last equation is
alled a TMTO
urve. Note that in the TMTO set-up,

the pre-
omputation time of N is not
onsidered sin
e this is an o�ine one-time a
tivity \whi
h

an be performed at the
ryptanalyst's leisure"(quotation from [7℄).

In the
ontext of stream
iphers, the fun
tion from state to a substring of the keystream
an be

onsidered to be a one-way fun
tion. The di�eren
e from the blo
k
ipher s
enario is that in this

1

ase, the obtained keystream provides multiple data points, inverting any of whi
h yields a state

of the stream
ipher and
onstitutes an atta
k. Independent works by Babbage [1℄ and Goli�
 [6℄,

investigated this situation and obtained the so-
alled birthday atta
k satisfying the relations TM =

N and T = D, where D is the number of available data points.

Later work by Biryukov and Shamir [2℄, in
orporated multiple data into the Hellman atta
k

and obtained the TMTO
urve TM

2

D

2

= N

2

and 1 � D

2

� T . This
urve
annot be dire
tly

ompared to the BG
urve, sin
e the appli
ability ranges are di�erent.

Hellman's method requires a number of look-ups into a relatively large table. The
ost of these

look-ups
an be signi�
antly high. The number of table look-ups
an be brought down by using

the te
hnique of distinguished points (DPs) attributed to Rivest. This idea has also been used in

the
ontext of stream
iphers. The atta
k on A5/1 uses this idea along with a di�erent kind of

sampling
alled the BSW sampling [3℄.

Our Contributions: We
ombine the table stru
ture used by Hellman and the one used by

Oe
hslin [10℄ to propose a new table stru
ture. This table stru
ture is then used to design a new

time/memory trade-o� algorithm. We provide the sear
h algorithms both for the
ases when DP

method is used and when it is not used. The number of distin
t points
overed in the new table is

diÆ
ult to analyse

1

. At present we make a
onje
ture on the
overage in the table. Support for the

onje
ture has been obtained by us through
ertain
omputer experiments whi
h makes us believe

the
onje
ture to be true. Further work is required to settle it. Based on the
onje
ture, we obtain

a TMTO
urve for the new table. The
urve that we obtain is T

3

M

7

D

8

= N

7

. This
urve is better

than the BS
urve when D > N

1=4

.

Related Work: In an earlier work, Fiat-Naor [5℄ des
ribed a TMTO algorithm (for D = 1) satis-

fying the TMTO
urve TM

3

= N

3

. This is worse than the Hellman
urve, but
an be proved to hold

for any one-way fun
tion. On the other hand, Hellman's (also BS and our) method requires
ertain

randomness assumptions, whi
h are reasonable to expe
t from standard
ryptographi
 fun
tions.

Thus, the Fiat-Naor te
hnique is mainly of theoreti
al interest. A more re
ent work by Oe
h-

slin [10℄, des
ribes a
onstru
tion whi
h has the same asymptoti
 behavior as the Hellman method

but improves the runtime by a fa
tor of one-half. But the rainbow method is inferior to the Hellman

method in the presen
e of multiple data points (see [4℄).

2 New Algorithm

An idea of the table
onstru
tion methods of Hellman [7℄ and Oe
hslin [10℄ is helpful in under-

standing the new method and its su

ess probability. We present brief des
riptions of these two

methods in the Appendix.

In this se
tion, we des
ribe the new method. This has two parts { o�ine table preparation

and online sear
h algorithm. These two algorithms are des
ribed in Se
tions 2.1 and 2.2. The

1

Our analysis in an earlier version of the paper submitted to Asia
rypt 2005 was in
orre
t as was pointed out by

a reviewer for that
onferen
e. The
urrent
onje
ture on the
overage follows from
ertain suggestions made by the

reviewer.

2

ombination of the online sear
h with the DP method of Rivest substantially brings down the

number of table look-ups. This variation of the online sear
h algorithm is des
ribed in Se
tion 2.3.

2.1 Table Preparation

Let f : f0; 1g

n

! f0; 1g

n

be the one-way fun
tion to be inverted and N = 2

n

be the size of the

sear
h spa
e. Elements of f0; 1g

n

will be
alled points. We will be given a point y and will have to

�nd a point x su
h that f(x) = y.

We follow the
onvention (f

1

Æ f

0

)(x) = f

1

(f

0

(x)) and similarly for extension to
omposition of

more than one fun
tions. Let f

0

; : : : ; f

r�1

be r fun
tions obtained from the one-way fun
tion f to

be inverted, i.e.,

f

i

= g

i

Æ f (1)

where g

i

is the ith output modi�
ation (bije
tive) fun
tion. The standard assumption in the

area (originally
onsidered by Hellman [7℄) is that if f behaves like a random fun
tion (as a proper

ryptographi
 fun
tion should), then for simple
hoi
es of the g

i

's, the fun
tions f

i

's
an be assumed

to be pairwise independent random fun
tions.

In the pre-
omputation phase, we
onstru
t one table M of size m� (rt + 1). Let the entries

of the table be x

i;j

with 0 � i � m � 1 and 0 � j � rt. For 0 � i � m� 1, the elements x

i;0

are

hosen randomly. For 1 � j � rt, we de�ne,

x

i;j+1

= f

j mod r

(x

i;j

): (2)

The set of pairs of points (x

i;0

; x

i;rt

) for 0 � i � m� 1 are stored in a list L sorted on the se
ond

omponents. The �rst
omponent is
alled a start-point and the se
ond
omponent is
alled an

end-point. Thus, the list of pairs is sorted on the end points, as is usual in TMTO algorithms. (If

r = 1, then we obtain a single Hellman table, while if t = 1, then we obtain a single rainbow table.)

Suppose we are given D � 1 many data points and it is required to invert any of these points.

Our aim during the table preparation stage is to
over a
onstant fra
tion of N=D many data

points, so that by the birthday bound, with a
onstant probability of su

ess we will be able to

invert one of the D data points. For this, we
hoose m, r and t to be su
h that mrt = N=D. If

a single m � (rt + 1) table
overed a
onstant fra
tion of N=D points, then we would be done.

Unfortunately, this is not the
ase and there are repetitions in a table whi
h redu
e the
overage.

We have the following
onje
ture on the
overage of a single table.

Conje
ture 1: Let m and t be
hosen su
h that, mt

2

� N in the above des
ription.

Also note that mrt = N=D. Then the number of distin
t points in the �rst rt
olumns

of M is at least a
onstant fra
tion of mr

1

2

t.

Note:

1. Due to the fall in
overage, we have to use r

1

2

random tables ea
h of size m � (rt + 1). By

the above
onje
ture, the total
overage in all the tables be
omes a
onstant fra
tion of mrt

as desired.

3

2. If mt

2

� N , then the above
onje
ture does not hold. In usual TMTO method, mt

2

� N is

usually taken to be the matrix stopping rule based on the birthday bound. This is not the

intrepretation of this
onstraint in the above
onje
ture. We would like to emphasize that

the
ondition mt

2

� N is important for the
onje
ture to be true.

3. If mt

2

� N , then the
overage
an be better. In fa
t, in our simulations, we have observed

the
overage to be mrt=r

�

, where � varies between 1=3 and 1=2. In this paper, we will be

working only with � = 1=2.

4. An earlier version of this paper had been submitted to Asia
rypt 2005, where we had mistak-

enly assumed the
overage of the table to be mrt, whi
h gives a mu
h better result
ompared

to the Hellman method. Anonymous reviewers had pointed out that the
overage assumption

was in
orre
t and one reviewer had mentioned the fall in
overage by the fa
tor r

1=2

based

on the experiments done by him/her. Comments by this reviewer was the starting point for

arriving at Conje
ture 1.

Emperi
al Observations: For 0 � j � rt, de�ne C

j

to be jth
olumn of the table M. For

0 � k � r � 1, the fun
tion f

k

is applied to the points in the
olumns C

k

; C

r+k

; : : : ; C

(t�1)r+k

.

Let M

k

be the m � t sub-matrix formed by the
olumns C

k

; C

r+k

; : : : ; C

(t�1)r+k

: By the table

onstru
tion pro
edure, the
olumn C

lr+k

is obtained from C

(l�1)r+k

as

C

lr+k

= (f

k+(r�1) mod r

Æ � � � Æ f

k

)(C

(l�1)r+k

):

If we de�ne �

k

= (f

k+(r�1) mod r

Æ � � � Æ f

k

), then C

lr+k

= �

k

(C

(l�1)r+k

). In other words, in M

k

,

the next
olumn is obtained from the previous
olumn by applying �

k

. By the table
onstru
tion

pro
edure, we have

M

0

;M

1

= f

0

(M

0

);M

2

= f

1

(M

1

); : : : ;M

r�1

= f

r�2

(M

r�2

): (3)

The
olumns of M

0

are C

0

; C

r

; : : : ; C

(t�1)r

where C

lr

= �

0

(C

(l�1)r

).

We have observed the following through
omputer experiments.

1. The number of distin
t points
overed by M

0

is

mt

r

�

for some � in the range

1

3

� � �

1

2

.

The a
tual value of � depends on the values of m; t and r. The value � =

1

2

is attained for

relatively small values of m.

2. If M

0

is
hosen to be a random
olle
tion of mt points (with mt

2

� N), then the union of

M

0

;M

1

; : : : ;M

r�1

overs a
onstant fra
tion of mrt points.

3. When M

0

;M

1

; : : : ;M

r�1

are
onstru
ted using the suggested method, the total number of

distin
t points in the union ofM

0

;M

1

; : : : ;M

r�1

is

mrt

r

�

for some � in the range

1

3

� � �

1

2

.

From emperi
al observations, the
overage drop is explained by the �rst point above, i.e., M

0

overs

mt

r

�

distin
t points. The fun
tion applied to the
olumns ofM

0

is �

0

whi
h is a
omposition

of r many pairwise independent random fun
tions f

0

; f

1

; : : : ; f

r�1

. At this point, we do not have

a good understanding of the behaviour of �, ex
ept for the emperi
al observations of its range.

Explaining the value of � and settling the
onje
ture requires further study.

4

2.2 Sear
h Algorithm

We des
ribe the sear
h in a single table for the pre-image of a single element y in the range of f .

The sear
h algorithm requires an online memory of r elements of f0; 1g

n

. We de�ne

 = �

0

= f

r�1

Æ f

r�2

Æ � � � Æ f

0

: (4)

Note that the
ost of applying on
e is equal to r invo
ations of f . The fun
tions g

k

whi
h are

used to de�ne f

k

from f are easy to
ompute and do not add to the
ost.

Algorithm Sear
h(y)

1. for i = 0 to r � 1 do

2. v

i

= g

i

(y);

3. for j = i+ 1 to r � 1 do

4. v

i

= f

j

(v

i

);

5. end do;

6. Pro
ess(r � 1� i; v

i

);

7. end do;

8. for i = 1 to t� 1 do

9. for j = 0 to r � 1 do

10. v

j

= (v

j

);

11. Pro
ess(r � 1� j + ir; v

j

);

12. end do;

13. end do;

14. return \failure".

end Sear
h.

For 0 � k � r � 1, let w

k

= g

k

(y), i.e., w

k

is the initial value of v

k

(set by Sear
h in Line 2). If a

pre-image for y is present in the table, then one of the w

k

's must be present in the table. To see

this, suppose x

i;j

is su
h that f(x

i;j

) = y. Let k = j mod r. Then

x

i;j+1

= f

k

(x

i;j

) = g

k

(f(x

i;j

)) = g

k

(y) = w

k

:

Thus, if none of the w

0

; : : : ; w

r�1

is present in the table, then no pre-image of y is present in the

table and the sear
h is unsu

essful.

The fun
tion Pro
ess(k; u) performs the following task. The �rst input to Pro
ess(;) is the

number of appli
ations of the f

i

's whi
h have already been applied to obtain u. The algorithm

�rst looks up u in the end points of L. If no mat
h is found, then it returns nothing and the

Sear
h
ontinues as usual. If a mat
h is found, then it goes to the
orresponding start point and

starts generating the relevant row. The parameter k denotes that a pre-image of y is (possibly) at the

(rt�1�k)th position in the row. Thus, the row is generated upto this point and then f is applied to

the last generated point to see if we obtain y. If this veri�
ation is
orre
t, then Pro
ess(;) outputs

the pre-image it has found and the whole algorithm (in
luding Sear
h) stops. If the veri�
ation

fails, then we have a false alarm. Again Pro
ess(;) returns nothing and Sear
h
ontinues as usual.

The details of the algorithm is given below.

5

Algorithm Pro
ess(k; u)

1. Look-up u among the end-points of the list L;

2. if not found then return;

3. else

4. let (x

i;0

; x

i;rt

) be su
h that u = x

i;rt

;

5. set w = x

i;0

;

6. for j = 0 to rt� k � 2 do

7. w = f

j mod r

(w);

8. end do;

9. if f(w) = y then \output w" and stop;

10. else return;

11. end if;

end Pro
ess.

The des
ription of Pro
ess(,) ensures that it does not terminate on a false alarm. This is usually

impli
it in previous des
riptions of sear
h algorithms appearing in the literature.

The online memory requirement
onsists in storing the points v

0

; : : : ; v

r�1

. The total number

of invo
ations of f in Pro
ess(;) is at most rt in the
ase a mat
h is found else it is zero. We now

ount the total number of invo
ations of f made in Sear
h(). The total number of invo
ations made

in Lines 1 to 7 is (r� 1) + (r� 2) + � � �+1 = r(r� 1)=2 and the total number of invo
ations made

in Lines 8 to 13 is (t� 1)r

2

. Hen
e, overall the maximum number of invo
ations made by Sear
h()

is rt+ r(r � 1)=2 + (t� 1)r

2

� tr

2

.

Note that false alarms (as tested in Line 9 of Pro
ess(;)) in
reases the number of invo
ations of

f . Ea
h false alarm in
urs a
ost of rt invo
ations. It was shown by Hellman [7℄, that the expe
ted

number of false alarms per table is bounded above by mt(t+ 1)=2N . By the matrix stopping rule

mt

2

� N and hen
e the number of false alarms per table is upper bounded by half. Sin
e there are

r tables and ea
h false alarm in
urs a
ost of at most rt invo
ations of f , the total
ost due to the

false alarms is at most r

2

t=2. Hen
e, as in the
ase of Hellman's original method, the false alarms

in
rease the expe
ted
omputation by at most 50%.

Table look-ups are only made inside Pro
ess(;). Ea
h
all to Pro
ess(;) results in exa
tly one

table look-up. Sin
e at most r + (t � 1)r = rt
alls to Pro
ess() are made, the number of table

look-ups is also at most rt.

The idea of the sear
h algorithm is to determine whether one of the w

k

is present in the table.

For ea
h w

k

, Sear
h
he
ks if it is in one of
olumns

C

rt�(r�1�k)

; C

r(t�1)�(r�1�k)

; : : : ; C

k+1

:

The
he
king in C

rt�(r�1�k)

is done by su

essively applying (f

r�1

Æ � � � Æ f

k+1

) to w

k

(the initial

value of v

k

) to obtain the new value of v

k

. This v

k

is sear
hed among the set of end-points (
olumn

C

rt

) of the table. If a mat
h is found, then w

k

is in
olumn C

rt�(r�1�k)

. If no mat
h is found,

then = f

r�1

Æ � � � Æ f

0

is applied to v

k

to get the new value of v

k

and again this is sear
hed in

olumn C

rk

. If a mat
h is found, then v

k

is in
olumn C

r(t�1)�(r�1�k)

and if a mat
h is not found,

the pro
edure is repeated by applying su

essively to v

k

to
he
k if w

k

is in one of the
olumns

6

C

r(t�2)�(r�1�k)

; : : : ; C

r�1�k

. More pre
isely, the test of whether w

k

is in C

rj�(r�1�k)

(1 � j � t) is

done by
he
king if the v

k

obtained after applying (

(t�j)

Æ (f

r�1

Æ � � � Æ f

k+1

)) to w

k

is in C

rt

.

Suppose it has been determined that (

(t�j)

Æ (f

r�1

Æ � � � Æ f

k+1

))(w

k

) 2 C

rt

(i.e., w

k

2

C

rj�(r�k�1)

). Let p = rj � (r � k � 1). Then, for some 0 � i � m� 1, we have

f

rt�1 mod r

(� � � (f

p+1 mod r

(f

p mod r

(w

k

)) � � �) = x

i;rt

:

Also, by table
onstru
tion we have,

f

rt�1 mod r

(� � � (f

1

(f

0

(x

i;0

)) � � �) = x

i;rt

:

The two equalities suggest that

w

k

= f

p�1 mod r

(f

p�2 mod r

(� � � (f

1

(f

0

(x

i;0

)) � � �)):

Note that this might not always hold, giving rise to a false alarm. (If f is a bije
tion, then this will

always hold.) If the equation holds, then we have

g

k

(y) = w

k

= f

p�1 mod r

(f

p�2 mod r

(� � � (f

1

(f

0

(x

i;0

)) � � �))

= f

p�1 mod r

(x

i;p�1

)

= f

k

(x

i;p�1

)

= g

k

(f(x

i;p�1

)):

Sin
e g

k

is invertible, this implies y = f(x

i;p�1

), i.e., x

i;p�1

is a pre-image of y under f .

We now argue that if a pre-image of y is indeed present in the table, then it will be found by

the sear
h algorithm. So suppose that x

i;j

is a pre-image of y, i.e., y = f(x

i;j

). Let k = j mod r.

Then by de�nition

x

i;j+1

= f

j mod r

(x

i;j

) = f

k

(x

i;j

) = g

k

(f(x

i;j

)) = g

k

(y):

Note that Sear
h() sets v

k

= g

k

(y) in Line 2. Also, by de�nition,

x

i;rt

= (f

rt�1 mod r

Æ f

rt�2 mod r

Æ � � � Æ f

j+1 mod r

)(x

i;j+1

)

= (f

rt�1 mod r

Æ f

rt�2 mod r

Æ � � � Æ f

j+1 mod r

)(g

k

(y))

= (Æ � � � Æ)

| {z }

l

(f

r�1

Æ � � � Æ f

k+1

)(g

k

(y)):

Here l 2 f0; : : : ; t � 2g. If l = 0, the value of v

k

passed to Pro
ess(;) on Line 6 is equal to x

i;rt

.

If l > 0, then after l iterations of the loop starting on Line 8, the value of v

k

passed to Pro
ess()

on Line 11 is equal to x

i;rt

. Hen
e, the look-up with v

k

in Pro
ess(;) on Line 1 will be su

essful

and hen
e the value of w on Line 7 of Pro
ess(;) will equal x

i;j

. Sin
e w is returned, the sear
h is

su

essful.

7

2.3 Distinguished Point Method

The idea of using distinguished points is attributed to Rivest. A point is
alled distinguished if it

satis�es some simple property, say the �rst q bits are zero. Rivest's idea was to generate a row of a

Hellman table only upto a distinguished point. Thus, the rows are of variable lengths. The online

sear
h te
hnique is suitably modi�ed to ta
kle the DPs. The net e�e
t is that the number of table

look-ups redu
es signi�
antly.

We
onsider the use of the DP method to bring down the number of table look-ups in the

new algorithm. During table preparation, a row is generated for at most rt steps or until a DP is

rea
hed. Thus, the end points of the table are DPs and the rows are of varying lengths. The triples

(start-point, end-point, length) are stored sorted on end-points in the list L. The third
omponent

(length) denotes the number of appli
ations of the f

i

's before rea
hing the end-point whi
h is a DP.

We require a bit ve
tor �[℄. The new Sear
h() algorithm is as follows.

Algorithm DPSear
h(y)

1. for i = 0 to r � 1 do �

i

= 0;

2. for i = 0 to r � 1 do

3. v

i

= g

i

(y);

4. if (v

i

is DP) then

5. �

i

= 1; DPPro
ess(0; v

i

);

6. end if;

7. j = i+ 1;

8. while (�

i

== 0) and (j � r � 1) do

9. v

i

= f

j

(v

i

);

10. if (v

i

is DP) then

11. �

i

= 1; DPPro
ess(j � i; v

i

);

12. end if;

13. j = j + 1;

14. end do;

15. end do;

16. for i = 0 to t� 2 do

17. for j = 0 to r � 1 do

18. k = 0;

19. while (�

j

== 0) and (k � r � 1) do

20. v

j

= f

k

(v

j

);

21. if (v

j

is DP) then

22. �

j

= 1; DPPro
ess(r � j + ir + k; v

j

);

23. end if;

24. k = k + 1;

25. end do;

26. end do;

27. end do;

28. return \failure".

8

end DPSear
h.

The basi
 idea of the sear
h te
hnique is the following. As before let w

k

= g

k

(y), i.e., the initial

value of v

k

. The algorithm starts r (parallel) sear
hes starting from the points w

0

; : : : ; w

r�1

. On

w

k

, we su

essively apply f

k+1 mod r

; f

k+2 mod r

; : : : : After ea
h appli
ation, we
he
k whether a DP

has been obtained. If a DP has been obtained, then we dis
ontinue the
hain starting at w

k

and

pro
ess v

k

.

The new DPPro
ess(k; u) algorithm is the following. The
hanges are lesser. We only have

to ta
kle the variable length rows. As before, the �rst input to DPPro
ess(;) is the number of

appli
ations of the f

i

's that have already been applied to obtain u.

Algorithm DPPro
ess(k; u)

1. Look-up u in the list L;

2. if not found then return;

3. else

4. let (x

i;0

; x

i;l�1

; l) be su
h that u = x

i;l�1

;

here l is the length of the row starting at x

i;0

;

5. set w = x

i;0

;

6. for j = 0 to l � k � 1 do

7. w = f

j mod r

(w);

8. end do;

9. if f(w) = y then \output w" and stop;

10. else return;

11. end if;

end DPPro
ess.

The online memory requirement is to store the elements v

0

; : : : ; v

r�1

, whi
h is r elements as before.

The maximum number of invo
ations of f (ignoring false alarms) is � tr

2

as before. The advantage

is that the number of table look-ups redu
e substantially from rt to r. This is be
ause, we perform

at most one table look-up for ea
h of v

0

; : : : ; v

r�1

. For ea
h v

i

, we apply the f

i

's iteratively until a

DP is rea
hed. Only then is a table look-up performed. Also the bit �

i

is set to one and v

i

is not

pro
essed thereafter by DPSear
h().

The sear
h algorithm using DP is similar to the sear
h algorithm without DP. There are two

main di�eren
es. First, the rows are of variable lengths and ea
h row ends in exa
tly one DP.

Se
ond, there are r parallel sear
hes starting at points w

0

; : : : ; w

r�1

. If any of these sear
hes end

in a DP whi
h is not among the end-points of the table, then we dis
ontinue the
orresponding

sear
h. The
orre
tness of the sear
h algorithm will follow, if we
an only argue that none of the

dis
ontinued sear
hes
ould have led to a pre-image.

Let w

0

; : : : ; w

r�1

be the intial values of v

0

; : : : ; v

r�1

respe
tively (set by DPSear
h in Line 3).

Suppose the sear
h starting at w

k

ends in a DP whi
h is not among the set of end-points of the

table. Then there
annot be any x

i;j

in the table su
h that k = j mod r and y = f(x

i;j

). To see

this �rst note that by table
onstru
tion, the row
ontaining x

i;j

ends in a DP. Also,

w

k

= g

k

(y) = g

k

(f(x

i;j

)) = f

k

(x

i;j

) = f

j mod r

(x

i;j

) = x

i;j+1

9

i.e., the next element after x

i;j

in the ith row is w

k

and hen
e the sear
h starting at w

k

will end in

the DP of the ith row. By an extension of this argument, if all the sear
hes starting at w

0

; : : : ; w

r�1

end in DPs whi
h are not in the end-points of the table, then there is no pre-image of y in the

table.

2.4 Parallelism

Pra
ti
al implementations of TMTO will require some amount of parallel pro
essing. Hen
e, it is

important to identify the inherent parallelism present in the algorithms.

The table preparation stage
an be fully parallelised in the sense that the generation of two

distin
t rows require no intera
tion and
an be done in parallel.

During the online sear
h, we
onsider the r di�erent sear
hes starting at the points w

0

; : : : ; w

r�1

.

These sear
hes are independent of ea
h other and
an be
arried out in parallel for both the methods

with and without DP. Thus, if we have r pro
essors, then we
an keep these busy for the entire

sear
h
omputation algorithm.

3 TMTO Curve

Suppose we have to �nd the pre-image of one of the D distin
t points y

1

; : : : ; y

D

. This
onstitutes

a set of size at least D of pre-images (we say at least, sin
e ea
h y

i

may have more than one

pre-image). Based on Conje
ture 1 in Se
tion 2, we assume the set of domain points
overed by a

single table with size m� (rt+1) to be

mrt

r

1=2

. To
over mrt points, we
onstru
t r

1=2

many random

tables with size m � (rt + 1) ea
h. If mrt = N=D, then by the birthday bound, with
onstant

probability of su

ess, we have an interse
tion between the set of pre-images
overed by the table

and the set of possible pre-images of y

1

; : : : ; y

D

. Hen
e, the method will �nd a pre-image for at

least one of the y

i

's.

The memory required for storing the pairs of points does not depend on D. Also the runtime

memory of r points
an be reused for ea
h data point. Hen
e, this also does not in
rease with

D. On the other hand, the online time (the number of invo
ations of f and the number of table

look-ups) in
reases linearly with an in
rease in the number of data points. We now de�ne the

following parameters and
onstraints.

N = 2

n

(size of sear
h spa
e);

P = r

1+

1

2

mt (pre-
omputation time);

M = r

1

2

m (�xed memory size);

Mr = r (runtime memory);

T = tr

2+

1

2

D (number of invo
ations of f);

Tt = tr

1+

1

2

D (number of table look-ups without DP);

TDP = r

1+

1

2

D (number of table look-ups with DP);

mt

2

= N (
onstraint in Conje
ture 1).

Note that for a feasible atta
k, we should have M;Mr; T;Tt;TDP < N .

10

In previous TMTO algorithms, the parameter Mr was not present. In this algorithm, we have

to take this into
onsideration. In general, the total
overage of distin
t points in all the tables is

1

r

1=2

times mrt, i.e., the
overage drops by a fra
tion of r

1

2

. Hen
e, we will not
hoose r to be too

large and
ertainly assume that m > r. Hen
e, the online memory will be less than the memory

required to store the tables. Thus, if we perform the analysis only usingM , then the a
tual memory

requirement is at most twi
eM . Sin
e we ignore
onstants (and logarithmi
 fa
tors) in the analysis,

this does not a�e
t the asymptoti
 nature of the analysis.

Solving from mrt = N=D, mr

1

2

=M and T = tr

5

2

D we get,

m =

N

1

4

M

3

4

T

1

4

; r =

�

MT

N

�

1=2

; t =

N

5

4

DM

5

4

T

1

4

: (5)

Substituting the values of m and t in mt

2

= N we have T

3

M

7

D

8

= N

7

. The
ondition r � 1 must

hold, i.e., N � MT . We
an now write the following relations the �rst one of whi
h is usually

alled the TMTO
urve.

T

3

M

7

D

8

= N

7

;

N � MT:

)

(6)

Note: Assuming the
overage to be

mrt

r

�

, the tradeo�
urve is T

2��

M

�+3

D

2(1+2�)

= N

�+3

3.1 Comparison

The original TMTO
urve TM

2

= N

2

is due to Hellman [7℄ for the
ase D = 1. We will
all

this the Hellman
urve. Later Oe
hslin [10℄, des
ribed a method for redu
ing the online runtime

by one-half. TMTO was applied to stream
iphers by Babbage [1℄ and Goli�
 [6℄. This is a
tually

the birthday atta
k and the
urve obtained was MT = N and T = D. We will
all this the BG

urve. (BS [2℄ writes the last
ondition as 1 � T � D, whi
h is a
hieved by ignoring some of the

data during the online phase. However, this is misleading, sin
e the table
ontains N=D points and

if we ignore some of the online data, then the birthday bound no longer applies and the su

ess

probability goes down.)

Hellman atta
k in the presen
e of multiple data was analysed by Biryukov and Shamir [2℄.

They obtained the
urve TM

2

D

2

= N

2

with 1 � D

2

� T . We will
all this the BS
urve. (For

the BS
urve, r = t=D, T = t

2

, M = mr = mt=D and mt

2

= N . Using the last two equations,

t = N=(MD) and r = t=D = N=(MD

2

). Sin
e r � 1 must hold, we have MD

2

� N . Also, sin
e

TM

2

D

2

= N

2

, we have N=(MT) = (MD

2

)=N � 1, i.e., MD

2

� N � MT . The last inequality is

not expli
itly mentioned in the literature.) In the presen
e of multiple data the rainbow method is

inferior than the Hellman method (see [4℄). For D = 1, the BS
urve redu
es to the Hellman
urve.

Also, a dire
t
omparison of the BG and BS
urves is not possible sin
e in the BG
urve, T = D

and in the BS
urve T � D

2

.

We do not perform a dire
t
omparison to the BG method, sin
e (as for the BS method) the two

methods hold for di�erent ranges of T and D. We next
ompare to the BS
urves. For
omparison,

we �x the values of N and D, i.e., the size of the sear
h spa
e and the amount of available data

are �xed.

11

Substituting T = M and D = N

a

where 0 < a < 1 in the new
urve, we get T = M =

N

7�8a

10

= T

new

(say) whereas from BS
urve we get T = M = N

2(1�a)

3

= T

BS

(say). If a >

1

4

, then

T

new

< T

BS

. Hen
e, we
on
lude that the trade-o�s obtained from the new
urve is better than

the BS
urve when the number of data points D > N

1

4

.

4 Con
lusion

In this paper, we have des
ribed a new time/memory trade-o� algorithm to invert one-way fun
-

tions. Our algorithm
an use multiple data and satis�es the TMTO
urve T

3

M

7

D

8

= N

7

based on

a
onje
ture. We show that the trade-o�s of the new algorithm is better than the
urve obtainable

from the Biryukov-Shamir [2℄ trade-o� TM

2

D

2

= N

2

for D > N

1=4

. We also
onsider the number

of table look-ups and show that the use of the DP method of Rivest
an be
ombined with the new

sear
h algorithm to
onsiderably bring down the required number of table look-ups.

Referen
es

[1℄ S. Babbage. A Spa
e/Time Tradeo� in Exhaustive Sear
h Atta
ks on Stream Ciphers, Euro-

pean Convention on Se
urity and Dete
tion, IEE Conferen
e Publi
ation No. 408, May 1995.

[2℄ A. Biryukov and A. Shamir. Cyptanalyti
 Time/Memory/Data Tradeo�s for Stream Ciphers,

in the pro
eedings of Asia
rypt 2000, LNCS, vol 1976, pp 1-13, 2000.

[3℄ A. Biryukov, A. Shamir and D. Wagner. Real Time Cryptanalysis of A5/1 on a PC, Pro
eed-

ings of FSE 2000, LNCS, vol 1978, pp 1-18, 2000.

[4℄ A. Biryukov, S. Mukhopadhyay and P. Sarkar. Improved Time-Memory Trade-o�s with Mul-

tiple Data, in the pro
eedings of SAC 2005, LNCS, to appear.

[5℄ A. Fiat and M. Naor. Rigorous time/spa
e tradeo�s for inverting fun
tions, In STOC 1991,

pp 534-541, 1991.

[6℄ J. Goli�
. Cryptanalysis of Alleged A5 Stream Cipher, Pro
eedings of Euro
rypt 1997, LNCS,

vol 1233, pp. 239-255, 1997.

[7℄ M. Hellman. A
ryptanalyti
 Time-Memory Trade-o�, IEEE Transa
tions on Information

Theory, vol 26, pp 401-406, 1980.

[8℄ J. Hong and P. Sarkar. New Appli
ations of Time Memory Data Tradeo�s, Pro
eedings of

Asia
rypt 2005, to appear.

[9℄ I.J. Kim and T. Matsumoto A
hieving Higher Su

ess Probability in Time-Memory Trade-O�

Cryptanalysis without In
reasing Memory Size, TIEICE: IEICE Transa
tions on Communi-

ations/Ele
troni
s/Information and System, pp 123-129, 1999.

12

[10℄ P. Oe
hslin. Making a faster Cryptanalyti
 Time-Memory Trade-O�, in the pro
eedings of

Crypto 2003, LNCS, vol 2729, pp 617-630, 2003.

[11℄ M. J. Wiener. The Full Cost of Cryptanalyti
 Atta
ks, Journal of Cryptology 17(2): 105-124

(2004)

A Previous Constru
tions

In this se
tion, we provide brief des
riptions of the Hellman [7℄ and the rainbow
onstru
tion of

Oe
hslin [10℄. This will help in understanding our
onstru
tion. As before, let f : f0; 1g

n

! f0; 1g

n

be the one-way fun
tion to be inverted and N = 2

n

. Elements of f0; 1g

n

are
alled points. This f is

assumed to behave like a random fun
tion and for simple output modi�
ation fun
tions g

0

; : : : ; g

r�1

,

we de�ne f

k

= g

k

Æ f .

A.1 Hellman Method

Ea
h of the fun
tions f

0

; : : : ; f

r�1

is used to
onstru
t one table. Thus, there are r tables

M

0

; : : : ;M

r�1

, where ea
h M

k

is an m� (t+ 1) matrix.

We des
ribe the
onstru
tion of M

k

. Let x

k

0;0

; x

k

1;0

; : : : ; x

k

m�1;0

be a set of points
hosen inde-

pendently and uniformly at random from f0; 1g

n

. These m points form the �rst
olumn of M

k

.

The other entries of M

k

are obtained using the rule

x

k

i;j+1

= f

k

(x

k

i;j

) (7)

where 0 � i � m� 1 and 0 � j � t� 1. Thus, ea
h row is a
hain of the form

x

k

i;0

; x

k

i;1

= f

k

(x

k

i;0

); x

k

i;2

= f

k

(x

k

i;0

); � � � ; x

i;t

= f

k

(x

k

i;t�1

):

For the table M

k

, the pairs of points (x

k

i;0

; x

k

i;t

) are stored sorted on the se
ond
omponents. The

�rst
omponent is
alled a start-point and the se
ond
omponent is
alled an end-point.

During the online phase, a point y is given and we have to �nd an x su
h that f(x) = y. The

sear
h algorithm is as follows. It su

essively sear
hes in the tables M

0

; : : : ;M

r�1

. The sear
h

in the table pro
eeds as follows. First apply g

k

to y to obtain w

k

. Then apply f

k

repeatedly a

maximum of t times to w

k

. After ea
h appli
ation of f

k

, perform a look-up among the end-points

ofM

k

. If a mat
h is found, then go to the
orresponding start point and keep on applying f

k

until

w

k

is rea
hed. The previous point visited is a possible pre-image of y whi
h
an be easily veri�ed.

A.2 Rainbow Method

In 2003, Oe
hslin [10℄ des
ribed a di�erent
onstru
tion method. In Oe
hslin's method, a single

m�(t+1) table
overs N points in the following manner. In this
ase, we use t fun
tions f

0

; : : : ; f

t�1

,

where f

k

= g

k

Æ f and g

0

; : : : ; g

t�1

are output modi�
ation fun
tions as des
ribed above for the

13

Hellman method. The �rst
olumn is a set of random points x

0;0

; : : : ; x

m�1;0

. The ith row of the

table is formed as follows.

x

i;0

; x

i;1

= f

0

(x

i;0

); x

i;2

= f

1

(x

i;1

); � � � ; x

i;t

= f

t�1

(x

i;t�1

):

Ea
h su
h
hain is
alled a rainbow
hain and the method the rainbow method. The set of pairs

(x

i;0

; x

i;t

) is stored sorted on the se
ond
omponent.

During the online phase, the sear
h for a pre-image of y is
arried out in the following manner.

De�ne w

k

= g

k

(y). First, w

t�1

is sear
hed among the end-points of the table; then f

t�1

is applied

to w

t�2

and a look-up is performed among the end-points of the table; next f

t�2

; f

t�1

is applied to

w

t�3

and a look-up is performed. If the look-up for w

k

is su

essful, then we go to the
orresponding

start-point and generate the
hain until w

k

is rea
hed. The point visited prior to w

k

is a possible

pre-image, whi
h is again easily veri�ed by applying f to it.

14

