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Abstract. Simulatable security is a security notion for multi-party protocols that implies strong com-
posability features. The main definitional flavours of simulatable security are standard simulatability,
universal simulatability, and black-box simulatability.All three come in “computational,” “statistical”
and “perfect” subflavours indicating the considered adversarial power. Universal and black-box simu-
latability, in all of their subflavours, are already known toguarantee that the concurrent composition
even of a polynomial number of secure protocols stays secure.
We show that computational standard simulatability doesnot allow for secure concurrent composition
of polynomially many protocols, but we also show that statistical standard simulatabilitydoes. The first
result assumes the existence of an interesting cryptographic tool (namely time-lock puzzles), and its
proof employs a cryptographic multi-party computation in an interesting and unconventional way.
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1 Introduction

There are several ways to define what it means for a multi-party protocol to be secure. A very
elegant and general way is the concept of simulatable security. With simulatable security, one first
states what the protocol should do by specifying a single trusted host that completes the protocol
task ideally and securely by construction. For instance, a trusted host for tossing a common coin
for a set of parties would simply uniformly and randomly sample a bit b and then sendb to
each party. A simulatably secure protocol for coin toss mustnow be indistinguishable (in a well-
defined sense) from this ideal setting. More specifically, noprotocol environment must be able to
detect differences between executions with the real protocol and executions with the trusted host
in feasible time.

Thus, simulatable security actually establishes a security relation that considers a protocol se-
curerelativeto a suitable idealisation. However, when the idealisationfor the considered protocol
class is obvious, then a protocol is simply called secure, implicitly meaning security relative to
that idealisation. Consequently, simulatable security captures the notion of a secure refinement
of one system by another. In particular, it proved useful as aplatform to show that a crypto-
graphic implementation of a symbolic protocol is secure against cryptoanalytic attacks (see, e.g.,
[9, 5, 1, 23]). But simulatable security also helps to analyse the information-theoretic security
guarantees of a one-time pad in a nice and convenient manner,cf. [42].

For defining and analysing a large protocol, a divide-and-conquer approach is generally help-
ful and sometimes even necessary. However, to allow for a modular protocol analysis, it is crucial
that the composition of secure protocols stays secure. Secure composition of security properties
should not be taken for granted: E.g., [37, 38] shows that several notions of non-interference are
not preserved under composition. (This can be rectified, e.g., by deriving properties sufficient



for non-interference-preserving composition [46] or adjusting the non-interference notion [35].)
Similarly, most definitions of the cryptographic tool of Zero-Knowledge proof systems do not
allow for securely composing even only two systems [28]. Since it is a difficult and laborious
task to prove the different composability properties anew for each and every security property, it
can be of great advantage to simply show that a protocol is simulatably secure. From this, many
different security properties can be derived: e.g., preservation of integrity properties [40, 3], non-
interference [4, 6], liveness properties [8], or key and message secrecy [7]. One can then make
use of the composability guarantees simulatable security gives.

As just hinted, all flavours of simulatable security give certain composition guarantees. Namely,
all flavours guarantee that aconstantnumber of secure protocols can be composed in an arbitrary,
concurrent manner without loss of security. Due to these composability guarantees, simulatable
security could be used for defining and analysing protocol constructions for a very large class
of protocol tasks in a modular way. Examples include a computationally sound analysis of the
Needham-Schroeder-Lowe protocol [5], an electronic payment system [2], and a cryptographic
construction for realizing a large class of protocol tasks [24].

However, in some scenarios, it might be desirable to composemore protocols at once. In
fact, many commonly deployed cryptographic protocol constructions use a polynomial number of
instances of primitives (i.e., subprotocols), e.g. [45, 29, 25]. The analysis of such constructions is
generally reduced to analysing only one instance of each used primitive typeat once. For deriving
security of the whole construction, of course secure composability of a polynomial number of
instancesof each primitive type is needed.

So in this contribution, we investigate how simulatable security behaves under composition of
apolynomialnumber of secure protocols. The flavours “universal simulatability” and “black-box
simulatability” of simulatable security are already knownto allow for this type of composition
(see [18, 10]). However, whether this also holds for the other main flavour “standard simulatabil-
ity”, which is the default security notion in the Reactive Simulatability framework [41, 11], was
explicitly posted as an open question in [10].

We show that computational standard simulatability (in which adversaries are computation-
ally bounded) does not allow for secure composition of a polynomial number of protocols. We
also show that statistical and perfect standard simulatability (which capture information-theoretic
security and in which adversaries are unbounded) do allow for this type of composition, and we
give a general composition theorem for that case. Below, we give a more detailed explanation.

Note that although this shows that the default notion of security in the Reactive Simulatability
framework does not imply polynomially bounded concurrent composability, this has no impact
on existingsecurity proofs in that framework. These all show black-boxsimulatability, which is
known to imply polynomially bounded concurrent composability.

Related Work/Technical Overview.The concept of simulatability has a long history (see, e.g.,
[44, 30, 29, 14, 39, 16, 40, 17, 41, 18, 11, 21]). In recent years, in particular the simulatability
frameworks of Reactive Simulatability [41, 11] and Universal Composability [18, 21] proved
useful for analysing security properties of protocols in distributed systems.

In both frameworks, a protocol̂M1 is consideredas secure asanother protocolM̂2 (usually an
idealisation of the respective protocol task), ifM̂1 is indistinguishable fromM̂2 in every protocol
context. This should hold also in the presence of attacks, i.e., we should have that every attack on
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M̂1 can be simulated by an attack on̂M2. (So every weakness of̂M1 must be already present in
the ideal specification̂M2.)

A little more formally, this means that for everyadversaryA attackingM̂1, there is an adver-
saryS (usually referred to as thesimulator) that attacksM̂2, such that from an outside view, both
attacks and protocols “look the same.” For capturing what “looking the same” means, a designated
entity called thehonest userH is run with protocolM̂1 (together with adversaryA) and protocol
M̂2 (with simulatorS). The honest userH represents a protocol context and may interact with
protocol participants and even with the adversary. For security, every possibleH must experience
indistinguishable views witĥM1 and withM̂2.

One might now chooseS in dependence ofH; this leads to thestandard simulatabilitydefini-
tion, which is the default in the Reactive Simulatability framework. Alternatively, the userH may
be allowed to depend on the respective simulatorS; this is calleduniversal simulatabilityand is
the default security notion in the Universal Composabilitymodel.

Both simulatability variants allow for some form of secure composition of protocols. We can
distinguish two important types of composition. First,simple composabilityguarantees that if a
protocolM̂1 is as secure as another protocolM̂2, then a protocolN̂M̂1 that uses a single instance
of M̂1 is as secure as the protocolN̂M̂2 which usesM̂2 instead. Further, we havepolynomially
bounded concurrent composabilitywhich guarantees for every polynomialp, thatM̂p

1 is as secure
asM̂

p
2 , whereM̂p

1 andM̂
p
2 denote the concurrent execution ofp instances ofM̂1 andM̂2, respec-

tively. One can show that if simpleand polynomially bounded concurrent composability hold,
one can securely substitute a polynomial number of subprotocols at a time in a larger protocol.

It is known that standard simulatability implies simple composability, cf. [40, 41]. Also known
is that universal and black-box simulatability additionally allow polynomially bounded concur-
rent composability, see [18, 10]. Furthermore, [36] investigated which further relationships be-
tween the notions of standard/universal simulatability and simple composability/polynomially
bounded concurrent composability hold and found the interesting fact that simple composability
and standard simulatability are equivalent. However, the following was given as open questions
in [36]: Does standard simulatability imply polynomially bounded concurrent composability, and
do simple and polynomially bounded concurrent composability together already imply universal
simulatability? Or do even standard and universal simulatability coincide?

For a modified definition of standard simulatability, this question was answered in [20, 22]. In
this definition, the runtime of the honest userH may depend on the length of its non-uniform input,
which again may depend on the simulator. They showed that using this modification, standard,
universal, and black-box simulatability all coincide. However, this modification of standard simu-
latability breaks the proof of [36] that standard simulatability and simple composability coincide.
So even the modified definition of standard simulatability left open whether simple composability
implies universal simulatability.

Further progress was then made by [33] who showed that computational standard simulatabil-
ity (in the original formulation) does not imply computational universal simulatability. However,
their separating counterexample is not only secure w.r.t. standard simulatability, but also composes
concurrently even a polynomial number of times, so simple and polynomially bounded concurrent
composability together donot already imply universal simulatability. Also, [33] show that their
result depends on the computational model: while they give separating examples in case of com-
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Fig. 1. Implications and separations between the various securitynotions. For the presentation of these relations, we
adopt the taxonomy of [36] who additionally has the notion of(polynomially bounded) general composability, which
means thatbothsimple composability and polynomially bounded concurrentcomposability hold. The references
next to the arrows indicate where this was proven. The results from this paper are given by bold arrows.

putational and statistical security, they show that in caseof perfect security, standard/universal
simulatability (and thus also simple/polynomially bounded concurrent composability) coincide.
However, the open question of [36] whether standard simulatability is sufficient for polynomially
bounded concurrent composability was still left unanswered.

A note concerning the nomenclature: Universal simulatability is also often called UC secu-
rity [18], standard simulatability is called specialised-simulator UC in [36], the honest user is
also known as the environment [18], simple composability as1-bounded general composability
[36], and simple and polynomially bounded concurrent composability together are also called
polynomially-bounded general composability [36].

Our Work. In this work, we answer the remaining open questions and provide the missing im-
plications and separations among standard/universal simulatability and the different notions of
composability. More specifically, we show that computational standard simulatability doesnot
imply polynomially bounded concurrent composability. Further, we show that in contrast, sta-
tistical standard simulatabilitydoesimply polynomially bounded concurrent composability. An
overview over the implications and separations is given in Figure 1.

Our results hold both in the Reactive Simulatability and theUniversal Composability frame-
work (as in [18]). The main difference between these security notions is that Reactive Simulatabil-
ity considers uniform machines, while with Universal Composability, the honest user has access to
a non-uniform input that is chosen after honest user and simulator. We prove the results using the
Reactive Simulatability formalism, but additionally cover the case that the honest user gets such
a non-uniform input, so that it is easy to reformulate the proof using Universal Composability.

Finally, we discuss the impact of recent developments in simulatability-based security defini-
tions on our work. Namely, in [22] and in [32], (different) alternative definitions of polynomial-
time adversarial entities were introduced. We point out whyour separating example does not work
with these definitions.
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Organization.After recalling the Reactive Security framework in Section2, we show in Section 3
that computational standard simulatability does not implypolynomially bounded concurrent com-
posability. We also investigate in Section B to what extent some newer development concerning
the definition of polynomial-time influences our results. InSection 4, we prove polynomially
bounded concurrent composability for the statistical and perfect case. Section 5 concludes this
work. The full proofs of our theorems are found in AppendicesA and C.

2 Reactive Simulatability

Here we review the notion of Reactive Simulatability (RS). This introduction only sketches the
definitions, and the reader is encouraged to read [11] for more detailed information and formal
definitions.

Reactive simulatability (in the “standard” flavour) is a definition of security which defines a
protocolM̂1 (the real protocol) to beas secure asanother protocolM̂2 (the ideal protocol, the
trusted host, the ideal functionality), iff the following holds: for any adversaryA (also called the
real adversary), and anyhonest userH (that represents a possible protocol environment), there is
an adversaryS (also calledsimulatoror ideal adversary), s.t. the view ofH is indistinguishable
in the following two scenarios:

– The honest userH runs together with the real adversaryA and the real protocol̂M1

– The honest userH runs together with the simulatorS and the ideal protocol̂M2.

Note that there is a security parameterk common to all machines, so that the notion of indistin-
guishability makes sense.

This definition allows to specify some trusted host—whichby definitionis asecureformalisa-
tion of some cryptographic task—as the ideal protocol, and then to consider the question whether
a real protocol is as secure as the trusted host (and thus alsoa secure implementation of that task).

In order to understand the above definitions in more detail, we have to specify what is meant
by machines “running together”. Consider a set of machines that may send messages throughcon-
nectionsto each other. Whenever a machine sends a message, the receiving machine is activated
with that message.4

At the start of arun of these machines, a designated machine called themaster scheduleris
activated. This machine is always the honest user or the adversary. Afterwards, the next machine
to be activated is determined by the message sent by the current machine as described above. If
the current machine decides not to send a message, the masterscheduler is activated again. The
transcript of all communication and all internal states of the machines in such a run gives us a
random variable which we call simply therun. By restricting the run to the internal states of and
the communication sent or received by a machineH, we get theviewof the machineH. We write

4 In the model of [11] there is additionally the concept of so-called clock-ports. These allow to model asynchronous
communication. We have opted to omit these clock-ports hereand to assume that all messages are delivered im-
mediately (or sent to the adversary in case of an insecure connection). This greatly simplifies the presentation and
does not principally restrict the expressibility of the model, since asynchronous communication can also be mod-
elled by introducing functionalities for communication which deliver messages only upon request by the adversary.
However, all our results can also be stated in the more general setting of [11].
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view
M̂,k

(H) for the view ofH given security parameterk. The indexk can be omitted, then we
mean the family consisting of all the random variablesview

M̂,k
(H).

A protocol is simply a set of machines (e.g., protocol parties, trusted hosts) together with a
specification over which connections an honest user can talkto the protocol. The latter is impor-
tant, because there usually are connections that reflect theinternal communication of the protocol
which should not be accessible directly by the honest user. Aprotocol cannot run by itself, it can
only run together with an honest user and an adversary.

Given the above definitions, we can now state the definition ofsecurity more formally: Let
M̂1 andM̂2 be protocols. We say that̂M1 is as secure asM̂2 if for any adversaryA and any
honest userH there is a simulatorS s.t.view

H,A,M̂1
(H) andview

H,S,M̂2
(H) are indistinguishable.

The meaning of “indistinguishable” depends on the exact notion of security. Forperfectsecu-
rity, the views must be identically distributed. Forstatisticalsecurity, their statistical distance must
be negligible (in the security parameterk). For computationalsecurity, they must be computa-
tionally indistinguishable by polynomial-time algorithms; in that case, also only polynomial-time
users and adversaries/simulators are considered.

A further interesting point is the order of quantifiers. In the above definition we have allowed
the simulatorS to depend on the honest userH. We call this the standard order of quantifiers
(because it is the default order in the RS framework) and speak of standard simulatability. Another
possibility is to chooseH afterS, i.e.,H may depend onS. Since in this case the simulatorS has
to be universal for all honest usersH we speak ofuniversal simulatability. Yet another possibility
black-box simulatability, which demands the existence of anS that is even independent ofA (but
may useA as a black box).

Composition. A major advantage of a security definition by simulatabilityis the possibility of
composition. There are two major flavours of composability, namelysimple composabilityand
polynomially bounded concurrent composability. To sketch simple composability, let̂NM̂1 be an
arbitrary large protocol that uses (one instance of) another protocol̂M1 as subprotocol. Simple
composability means that in any sucĥNM̂1 , any secure realisation̂M2 of M̂1 can substituteM̂1

without losing security. More precisely, ifM̂2 is as secure aŝM1, thenN̂M̂2 (in which M̂1 has
been replaced bŷM2) is as secure aŝNM̂1 . Both standard and universal have this property ofsim-
ple composability. Simple composition could be used, e.g., to modularise the proof of protocols
for secure message transmission using public-key [41, 18] or secret-key encryption schemes [42].

A natural extension is to consider substitutingmultiple instances of one subprotocol at once.
In other words, one can ask for the same property as above evenif N̂M̂1 uses several instances
of M̂1. This stronger notion has been used, e.g., to modularise thesecurity proof of the general
protocol construction [24] for secure function evaluation. Given that simple composition holds,
this concept can be reduced to what is known aspolynomially bounded concurrent composability
: roughly, this means that̂Mp

2 (i.e., p copies ofM̂2 run concurrently) is as secure aŝM
p
1 when-

everM̂2 is as secure aŝM1. (Commonly, the numberp of allowed instances is restricted to be
polynomial in the security parameter, since this is usuallysufficient for many applications—in
particular, for the important class of polynomial-time protocols—and, in particular for statistical
security, often the best one can hope for.)
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As sketched in the introduction, it is known that universal simulatability already has the fea-
ture of polynomially bounded concurrent composability (cf. [18, 10]). In this contribution, we
are interested whether this also holds for standard simulatability. Thus, to express polynomially
bounded concurrent composability formally, we need a definition for the “concurrent composi-
tion” M̂p of a protocolM̂ .

Intuitively, whenM̂ is a protocol andp = p(k) a polynomial in the security parameter, then
M̂p is the protocol where each machine has been replaced byp copies of the original machine.
To avoid complicated definitions, instead ofp copies we will introduce a single machine that
simulatesp copies which are accessed by a session ID that precedes each message.5

Definition 1 (Polynomially Bounded Concurrent Composability). Let M be a machine and
p = p(k) be a polynomial in the security parameter. ThenMp simulatesp copiesM1, . . . ,Mp of
M. Upon receiving a message(sid ,m) with 1 ≤ sid ≤ p, Mp handsm to Msid . When a simulated
Msid sends a messagem, thenMp sends(sid ,m).

For a protocolM̂ , the protocolM̂p consists of all machinesMp with M ∈ M̂ .

Given this definition, we can now formulate polynomially bounded concurrent composability: say
thatM̂1 is as secure aŝM2. ThenM̂

p
1 should be as secure aŝM

p
2 for any given polynomialp in

the security parameter.

3 The Computational Case

Consider the case of computational standard simulatability. We give protocolsM̂1 andM̂2 such
that M̂1 is as secure aŝM2, but thek-fold concurrent composition̂Mk

1 is not as secure aŝMk
2 .

(As usual,k denotes the security parameter.)

3.1 Time-lock puzzles

As a tool, we need means to express one’s computational strength. Such a tool is provided by
time-lock puzzles [43, 33]. Intuitively, solving a time-lock puzzlet of hardnesss ∈ N is a strong
indication that the prover has done computational work polynomial ins.

A more formal definition (taken from [33]) looks like this:

Definition 2. A PPT-algorithm6 G (called the problem generator) together with a PPT-algorithmV
(the solution verifier) is called asystem for time-lock puzzlesiff the following holds:

– hardness condition:for every PPT-algorithmB and everye ∈ N, there is somec ∈ N with

sup
s≥kc,|h|≤ke

Pr
[

(q, a)← G(1k, s) : V(1k, a,B(1k, q, h)) = 1
]

(1)

negligible ink.

5 A more general methodology can be found in [10], where parametrised families of protocols are used to formulate
a variable number of machines. The results given here can also be stated in their formalism.

6 Probabilistic polynomial time algorithm. Here, we assume aPPT-algorithm to be polynomial in the length of its
first argument1k.
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– easiness condition:there is someb ∈ N such that for everyd ∈ N there is a PPT-algorithm
C such that

min
s≤kd

Pr
[

(q, a)← G(1k, s); t← C(1k, q) : V(1k, a, t) = 1 ∧ |t| ≤ kb
]

(2)

is overwhelming ink.

Less formally, a system for time-lock puzzles consists of a generatorG that can generate
puzzlesq of hardnesss, and a verifier that (using auxiliary informationa the generator provided)
can check solutions. The hardness condition requires, thatno for any algorithmB attempting to
solve the puzzles, we can choose the hardness so high thatB cannot solve the puzzle, while the
hardness is still bounded by a polynomial (depending onB) in the security parameterk. On the
other hand, for polynomial hardness, there is a machine thatcan solve these puzzles. Note that
there is a “polynomial gap” between the hardness and the easiness condition, i.e., a solverC that
solves puzzles thatB just cannot solve may have to be much (but polynomially) morepowerful
thanB. Though this may be a drawback for practical application, itis sufficient for our purposes.
Note additionally, that in the hardness condition,B has an auxiliary inputh, while in the easiness
conditionC has no auxiliary input. Due to this, time-lock puzzles can beused both in a uniform
and a non-uniform setting.

A more detailed discussion on the definition of time-lock puzzles can be found in [33].

3.2 The General Idea

The idea behind our example is as follows. Both protocolsM̂1 andM̂2 consist only of one ma-
chineM1 (resp.M2) that expects to take part in ak-party secure function evaluation (SFE) of a
specific functionf . Here,k is the security parameter, so the number of parties actuallyincreases
for larger security parameters. Such a securek-party function evaluation is possible under reason-
able computational assumptions (namely, the existence of enhanced trapdoor permutations) using
the construction of [29, 26, 27]. SinceM1 executes the program of onlyoneparty of the SFE, all
internal messages of the SFE are sent to and expected fromthe honest userH.

The machineM1 differs fromM2 only in its way of choosing the inputs to the function eval-
uation. More specifically,M1 chooses all of its inputs on its own, whereasM2 chooses only some
inputs on its own (in a different way thanM1) and lets the simulatorS decide upon the remaining
inputs. The specific choice off ensures that a simulatorS that is fixed after the protocol userH is
able to deliver inputs toM2 such that the function output off is the same in real and ideal model.
Using the secrecy property of the function evaluation construction, this means that̂M1 andM̂2

are indistinguishable from the point of view ofH, even thoughH sees the internal messages of the
SFE.

However, when considerinĝMk
1 andM̂k

2 , a suitable protocol userH can simply “intermediate”
between the function evaluation parties (i.e., thek copies ofM1, resp.M2). Thus, in the real
model,H forces a secure function evaluation withk copies ofM1, and in the ideal model, it forces
a secure function evaluation withk copies ofM2. Because there are nowk different function
evaluation parties that give all different inputs in the real, resp. the ideal model, the choice off

guarantees that now the simulatorS is unable to enforce indistinguishable function outputs inthe
real, resp. ideal model.
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3.3 The Evaluated Function

Of course, the choice of the functionf is crucial, so we will begin by presentingf . The function
f proceeds in two rounds. In the first round,f expects input(bi, si) with bi ∈ {real, ideal},
si ∈ N from each partyi = 1, . . . , k (we will call these thefirst inputs). Then time-lock puzzles
qi of hardnesssi are (independently) chosen, and the output to partyi is qi (we call these thefirst
outputs). The information for checking the solution is stored. In the second round,f expects a
solutionti to the puzzleqi from each partyi. The final outputout of f (which is the same for all
parties) is then calculated as follows:

1. Sort allsi with bi = ideal in order of ascendingsi into a list si1, si2 , . . . , sin such that
sij ≤ sij+1 for all j.

2. Letout := true if the predicate

∀j = 1, . . . , n : sij ≥ 2j andtij is a correct solution forqij

holds, and letout := false otherwise.

Obviously, only the set of values(si, ti) with bi = ideal is relevant for the output off . In
particular,out = true implies that a time-lock puzzle has been solved that has a hardness that is
exponential in the number of inputs withbi = ideal. Or, put differently, no polynomial machine
can give inputs such thatbi = ideal for all i and hope to achieve an evaluation toout = true

with non-negligible probability.

3.4 The Protocols

Using the construction of [29, 26, 27], denote byP1, . . . Pk parties that securely evaluatef in a
k-party function evaluation. That is, eachPi takes as local first input a tuple(bi, si) as above and
eventually—after having communicated withk − 1 other parties—outputs a time-lock puzzleqi

as specified byf . ThenPi expects a second inputti and finally—after further communication—
outputsout as prescribed byf . (More details on the multi-party function evaluationP1, . . . , Pn

and the security properties we use here can be found in the full proof in Appendix A.)
Using the programs of these parties, we define the protocol machinesM1 andM2 which make

up the protocolsM̂1, resp.M̂2.7 Namely, letM1’s program be as follows:

1. Ask the protocol userH for a party indexi ∈ {1, . . . , k}.
2. Run the programPi internally, where

– Pi’s first inputs are set tobi := real andsi := 0, and the second input isti := ε (where
ε denotes the empty word). The first output ofPi is simply ignored.

– All outgoing messages are sent toH (prefixed with the recipient party index or indicated
as a broadcast).

– Messages coming fromH that are prefixed with a party indexj 6= i are forwarded to the
internalPi as if coming fromPj .

3. As soon asPi generates its final outputout , forward this output toH and halt.

7 In our example, each protocol consists of only one machine.
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In other words,M1 asksH for a party indexi and then expects to take part in an evaluation of
f in the role ofPi. Here,Pi’s local inputs are fixed tobi := real, si := 0, andti := ε, and all
network communication is relayed overH. The evaluated function output is eventually forwarded
to H.

As mentioned earlier, the protocol̂M1 then consists only of this single machineM1. On the
other hand, protocolM̂2 consists of only one machineM2 that is defined—very similarly—as
follows:

1. Ask the protocol userH for a party indexi ∈ {1, . . . , k}.
2. Run the programPi internally, where

– Pi’s first inputs are set tobi := ideal, and the simulator is asked for the value ofsi.
When the first outputqi has been generated, it is sent to the simulator, and a second input
ti is expected.

– All outgoing messages are sent toH (prefixed with the recipient party index or indicated
as a broadcast).

– Messages coming fromH that are prefixed with a party indexj 6= i are forwarded to the
internalPi as if coming fromPj .

3. As soon asPi generates its final outputout , forward this output toH and halt.

The only difference betweenM1 andM2 lies in the way the local inputs toPi are determined:
M1 fixes these inputs as above, andM2 only setsbi := ideal and lets the simulator determine
the inputssi andti.

3.5 Security of the Single Protocol

We show thatM̂1 is as secure aŝM2 (with respect to computational standard simulatability. For
this, we may assume a given protocol userH and adversaryA and need to construct a simulatorS

such thatH cannot distinguish running witĥM1 andA from running withM̂2 andS. Intuitively, H
can distinguish only if the respective function evaluationoutputs inM̂1 andM̂2 differ. SoS must
only ensure that the function outputs in̂M2 are as they would have been in̂M1 (where the inputs
of M1 are different from those of the ideal-model machineM2).

More specifically,S runsA as a black box, so that communication betweenA andH is the
same in the real and in the ideal model. The only thing thatS needs to do on its own is to answer
M2’s question for the strengthsi and the solutionti. When asked for these inputs,S chooses and
solves a puzzle of hardnesssi more than twice as large as the largest hardnessH could solve.8

(Definition 2 guarantees that such anS exists for fixedH.) The situation is depicted in Figure 2.
This way,S solves a puzzle of such large hardnesssi that when evaluatingf , this puzzle ap-

pears in the last position in the sorted list(si1, si2 , . . . , sin) (cf. the definition off in Section 3.3)
and is at least twice as hard as the preceding puzzlesin−1 (or there is an invalid solutiontij with
overwhelming probability). Thus, ifsin = si < 2n, then alreadysin−1 < 2n−1. So intuitively, it
is never the “fault” ofM2 whenf evaluates tofalse; the same would have happened in the real
model with a machineM1. Conversely, if already one of thesij (j < n) is smaller than2j or does

8 In the formal proof, we need a larger, yet still polynomial bound for technical reasons.
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Fig. 2. Left-hand side: a single execution of protocol̂M1 with adversaryA and userH; right-hand side: a single
execution of protocolM̂2 with simulatorS and userH. The simulated partiesP1, . . . , Pk perform a secure function
evaluation protocol both in̂M1 and inM̂2.

not have a valid solution, thenf will return false independently ofsin . So it is never the “fault”
of M2 whenf evaluates totrue, either.

In other words, the output of the SFE off has the same distribution, regardless of whether
H runs withM̂1 andA, or with M̂2 andS. Due to the secrecy of the SFE, this implies that the
internal messages of the SFE and therefore the views ofH are also indistinguishable in these two
scenarios.

So we get the following lemma:

Lemma 3. Assume enhanced trapdoor permutations and systems for time-lock puzzles exist.
Then protocolM̂1 from above is as secure as protocol̂M2 from above with respect to compu-
tational standard simulatability.

This also holds when the honest user has access to an auxiliary input (that may even be chosen
after the simulator).

A proof for this lemma is given in Appendix A.

3.6 Insecurity under k-fold Concurrent Composition

Lemma 4. Assume that systems for time-lock puzzles exist. Then for the protocolsM̂1 and M̂2

from above, we have that̂Mk
1 is not as secure aŝMk

2 with respect to computational standard
simulatability.

This does not depend on whether the honest user has auxiliaryinput or not.

Proof. We show thatM̂k
1 is not as secure aŝMk

2 . For this, we give a special adversaryA and
protocol userH such that no simulatorS can mimicA in the ideal model.

Let A be a machine that does nothing at all (note that sinceM̂1 is a one-party-protocol, the
adversary does not need to deliver any messages). LetH be such that, when running withk
protocol machines (eitherk copies ofM1 or k copies ofM2), it behaves as follows:
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1. FOR i := 1 TO k: Tell thei-th protocol machine (i.e., thei-th copy of eitherM1 or M2) to take
the role ofPi. END FOR

2. Whenever thei-th protocol machine wants to send a message to thej-th protocol machine,
relay this message. (When thei-th protocol machine wants to broadcast a message, deliver
that message to all protocol machines.)

3. As soon as the first protocol machine generates output, halt.

By definition off , in the real model, running withA andk copies ofM1, this honest userH
will experience a function evaluation outputout = true (i.e., at least one copy ofM1 will output
true to the honest userH). Thus, a successful simulatorS has to achieve a function evaluation
output out = true as well with overwhelming probability. By definition off and the ideal
machinesM2, this means that it has to supply valid solutionsti to puzzles of hardnesssi where at
least one satisfiessi ≥ 2k (since allbi = ideal). However, this directly contradicts the hardness
requirement in Definition 2, sinceS has to be polynomial-time. Therefore no such simulator exists
andH can always distinguisĥM1 andM̂2.

Combining Lemmas 3 and 4, we can summarize:

Theorem 5. Assume that enhanced trapdoor permutations and systems fortime-lock puzzles ex-
ist. Then computational standard simulatability does not guarantee polynomially bounded con-
current composability. That is, there are protocolŝM1 andM̂2, such that with respect to compu-
tational standard simulatability,M̂1 is as secure aŝM2, but the composed protocol̂Mk

1 is not as
secure asM̂k

2 .
This holds regardless of whether the honest user has access to an auxiliary input or not.

The existence of time-lock puzzles is a somewhat non-standard assumption. Although one
finds a candidate in [43], and although it is fairly easy to construct time-lock puzzles in the
random-oracle-model,9 one might want to replace the assumptions in Corollary 5 by less de-
manding ones. In Appendix A.1 we shortly sketch, how this could be done.

4 The Statistical Case

In contrast to the case of computational security, we will show that for statistical (i.e., information
theoretical) security a concurrent composition theorem indeed holds.

First some investigation of the actual definition of statistical security is necessary. The defini-
tion of statistical security for the RS framework in [11] requires the following:Polynomial prefixes
of the views of the honest user in the ideal and real model shall be statistically indistinguishable.
However, in [34] it was shown that this notion is problematic. It was shown that due to the restric-
tion to polynomial prefixes of views not even the simple composability holds, even in the case of
universal security. Further it was shown in [34] that the natural correction of the problem, namely
removing the restriction to polynomial prefixes, fixes the (simple) composition theorem.

Therefore, we will adapt the following definition of statistical standard security:

9 By simply choosing random numbersq = (r1, . . . , rk) as a puzzle of hardnesss and requiring a solutiont =
(x1, . . . , xk) with O(xi) ≡ r1 mod s for all i. HereO denotes the random oracle.
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Definition 6 (Strict statistical security (as in [34], slightly simplified)). Let M̂π and M̂τ be
protocols. We say that̂Mπ is as secure aŝMτ with respect to standard statistical securityiff the
following holds:

For every honest userH and real adversaryA, there is a simulatorS, s.t. the statistical dis-
tance between the following families of views is negligiblein k:

{view
H,A,M̂π,k

(H)}k, {view
H,S,M̂τ ,k

(H)}k

(HereviewX(H) denotes the view ofH in a run ofX.)
When the simulatorS does not depend on the adversaryA, we speak ofstatistical universal

security.

We define the statistical distance∆(X,Y ) between two random variables with the same range
as∆(X,Y ) := maxT |P (X ∈ T ) − P (Y ∈ T )| (whereT ranges over measurable sets). Note
that this maximum always exists. If the range ofX andY is countable, this is equivalent to the
better-known definition∆(X,Y ) := 1

2

∑

a|P (X = a) − P (Y = a)|, but the latter is not well-
defined for uncountable ranges. Since the view ofH can be an infinite sequence, and the set of
all sequences is uncountable, we will therefore use the firstdefinition here (see [34] for a more
detailed discussion of the definition of statistical distance in this setting).

When referring to Def. 6 we will simply speak ofstatistical securityfor brevity.

4.1 Proving Polynomially Bounded Concurrent Composability

Here, we first review the idea of how to show concurrent composability in the case of universal
security, and argue why the proof idea doesn’t apply to standard security.

When investigating proofs of concurrent composability (inthe case of universal security, for
more details see e.g., [18, 10]), we see that the main proof idea is approximately the following:
Consider as real adversary only a dummy adversary, i.e., an adversary that simply follows all
instructions received from the honest user.10 To proveM̂

p
1 as secure aŝMp

2 assumingM̂1 is as
secure asM̂2, let a simulatorS for that dummy adversary attacking the single protocol be given.
Note that since we assume universal security,S does not depend on the honest user.

It might be reasonable to expect that a “parallelised version” Sp of the simulatorS (so that
Sp internally keepsp simulations ofS, one for each protocol instance) is a good simulator for the
dummy adversary that attacks the composed protocolM

p
1. To support this intuition, we reduce

honest users of the composed protocol to honest users of the single protocol. (Note that since we
can restrict to the dummy adversary as real adversary, this is all we need for showing our claim.)

Namely, for each honest userH∗ of the composed protocol̂Mp
1 , we construct a new honest

userHp of a single copyM̂1 as follows (cf. also Figure 3):Hp simulatesH∗. For each copy of
the protocol thatH∗ expects,Hp does one of the following: (i) the real protocol and real (dummy)
adversary are simulated (we will call this a “real copy”), (ii) the ideal protocol and simulatorS are
simulated (we call this an “ideal copy”), or (iii) communication fromH∗ is rerouted to the outside
of Hp, where either one copy of the real or of the ideal protocol resides (we speak of an “external

10 Maybe somewhat surprisingly, this dummy adversary is the “worst possible adversary” in the sense that it suffices
to give a simulator for the real dummy adversary to show security, cf. [18]and Lemma 10 .
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M̂2 S1H∗
sid = 1

M̂1 D
sid = l + 1

sid = l

sid = p(k) M̂1 D

... ...
...

sid = l − 1 M̂2 Sl−1

... ...
...

Hi

l ∈ {1, . . . , i}

M̂1 D

Fig. 3. Construction of the honest userHi (the dashed box). The variablel is drawn from the set{1, . . . , i}. Messages
from and toH

∗ are rerouted according to their session IDsid as depicted. (The fact that the adversaries/simulators
are only connected toMi is only for graphical reasons, in reality, they are of courseconnected toH∗ as well.) The
machines shown outsideHi are only exemplary,Hi might of course be connected to other machines, e.g.M2 andSi.

copy”). The number of “real” and “ideal copies” is chosen randomly (and there will be exactly
one “external copy”).Hp choosing to simulatel “real copies” and running with the real protocol is
equivalent toHp choosing to simulatel + 1 “real copies” and running with the ideal protocol and
simulator. This again is indistinguishable (by assumptionof the security of a single protocol copy)
from Hp choosing to simulatel+1 copies and running with the real protocol. So we get a chain of
polynomial length of indistinguishable views11 from Hp choosing to simulate0 “real copies” to
Hp choosing to simulatep “real copies”, so these two settings are again indistinguishable (by the
simulatedH∗). These two scenarios again correspond toH∗ running with only ideal copies of the
protocol (and copies of the ’dummy adversary) andH∗ running with only real copies (and copies
of S for each protocol-copy), soH∗ can indeed not distinguish between real and ideal model.

But when we consider standard security, the following problem occurs: We have relied on the
fact that the simulatorS is a “good” simulator forHp. But for standard security, such a “good”
S would depend onHp, which in turn depends onS. It is not clear that this mutual dependency
should have a fixpoint (and in fact, it does not have such a fixpoint in the counterexample presented
in Section 3 for the computational case).

While it is unknown whether such a fixpoint exists in the case of statistical standard security,
a variation of the above construction yields a proof. We firststate the theorem:

Theorem 7 (Polynomially Bounded Concurrent Composition Theorem).Let M̂1 andM̂2 be
protocols s.t.M̂1 is as secure aŝM2 (with respect to standard statistical security as in Def. 6). Let
further p be a polynomial.

ThenM̂
p
1 is as secure aŝMp

2 (whereM̂
p
i denotes the polynomially bounded concurrent com-

posability as in Def. 1).
This also holds when the honest user has access to an auxiliary input.

11 With a commonnegligible bound on the statistical distance.
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Note that the limitation to a polynomial number is not a limitation of our proof, indeed, it can
easily be seen that the concurrent composition of a superpolynomial number of protocol instances
can be insecure, even if the single instance is secure. This condition is usually not explicitly stated
in the computational case: Since with polynomial-time machines only a polynomial number of
protocol instances can be created, the condition is automatically fulfilled.

We will now give a proof sketch for Theorem 7. The full proof isgiven in Appendix C.

Proof (sketch).Like in the approach sketched above, given an honest userH∗ for the composed
protocolM̂p

1 , we construct honest usersHi for the single protocolM̂1. These choose a random
numberl and then simulatel− 1 “ideal copies” with session IDs1, . . . , l− 1, have one “external
copy” with session IDl and simulatep(k)− l − 1 “real copies” with session IDsl + 1, . . . , p(k)
(cf. also Figure 3).

There are however some noteworthy differences to the construction of Hp in the approach
above:

– Instead of having a single honest userHp which chooses a randoml ∈ {1, . . . , p(k)}, Hi

choosesl ∈ {1, . . . , i− 1}.
– The numberl is chosen randomly with a fixed distribution s.t. any numberl has a probability

to be chosen whose inverse is polynomial inl. Then, if l ≥ i, the honest userHi aborts.
Therefore, effectively a numberl ∈ {1, . . . , i} is chosen, but in a way that anyHi with i > l

choosesl with the same probability. This gives us a kind of “compatibility” between the
different honest users which will prove necessary to construct a common simulator for all
theseHi.

– Most importantly, the “ideal copies” do not all contain the same simulator, since in the case of
standard security there is no universal simulator to be usedhere. Instead, in the “ideal copy”
with session IDsid has a simulatorSsid , whereSsid is defined in dependence ofHsid (see
below). This of course seems to be a cyclic definition. However, closer inspection reveals that
Hi only invokes “ideal copies” with session IDssid < i, soHi only depends onSsid with
sid < i. Therefore we have a mutually recursive definition of theHi and theSi.

The simulatorSi is defined to be a simulator forHi. However, we require the simulator to be near-
optimal in the following sense: For any security parameterk and any simulatorS′, the statistical
distance among the real and ideal view ofHi when running with simulatorSi is by at most2−k

larger than the statistical distance between those views when running withS′. The existence of
such near-optimal simulators can easily be shown when unbounded simulators are allowed.

Further, we defineH∞ to be constructed likeHi with the exception that the numberl is chosen
without any limit(cf. the full proof for the existence of such anH∞) . And, as before,S∞ is a near-
optimal simulator forH∞.

Since we have constructed all the simulators to be “compatible” in the sense that anyl ≤ i will
be chosen byHi with a probability not depending oni, we can argue as follows: When we ignore
the protocol runs in whichl is chosen asl > i, the view of the simulatedH∗ in Hi andH∞ is the
same (independent of further machines involved).S∞ is a simulator forH∞ that achieves that the
statistical distance betweenH∞’s real and ideal view is bounded by some negligible function, say
ε. By ignoring runs withl > i, the distance of the views cannot increase. Therefore also the views
of Hi have a distance of at mostε when running withS∞. SinceSi was a near-optimal simulator,
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the statistical distance when running withSi is bounded byε + 2k. Therefore we have a uniform
bound for the distance of views for all pairs of honest userHi and simulatorSi.

Now, if we modifyHi to always choosel = i (and call the result̃Hi), the statistical distance
of views of this honest user (with simulatorSi) increases by a factor of at most the inverse prob-
ability that l = i is chosen. Since this probability was polynomial inl (and independent ofi), the
statistical distance of the views of these modifiedH̃i is bounded by a functionεi(k) negligible in
i andk.

Finally, fix a security parameterk. By construction,̃Hi+1 simulatesi “ideal” andp(k)− i− 1
“real copies”. So when running witĥM1 andD as the “external copy”, this is equivalent to having
H̃i run withM̂2 andSi. This again has only a statistical distance ofεi(k) (in the view ofH∗) from
theH̃i running withM̂1 andD. So by repeatedly applying that equation, we see that between H̃0

and H̃p(k)+1 there is a distance of at most
∑p(k)

i=0 εi(k) =: ν(k), which is negligible ink. But

H̃0 just simulatesH∗ together withp(k) “real copies”, which corresponds exactly toH∗ running
with the composed real protocol̂M

p
1 (and the dummy adversary). Similarly,H̃p(k)+1 simulatesH∗

with p(k) “ideal copies”, corresponding toH∗ running with the composed ideal protocol̂M
p
2 and

a simulatorS resulting from combining all the individual simulatorsSi. So the statistical distance
between the views ofH∗ bounded byν(k).

Sincek was chosen arbitrarily, this holds for anyk, i.e., the views ofH∗ in real and ideal
composed protocol have a distance of at mostν which is negligible. Since the proof was done for
arbitraryH∗, it follows thatM̂p

1 is as secure aŝMp
2 . ⊓⊔

4.2 The Perfect Case

The above proof can easily be modified to show concurrent composition in the case of perfect
security (i.e., the views of the honest user must be identical and not only statistically close).
However, there is a simpler argument using the results of [33]. They show that in the perfect
case, standard and universal security coincide. Since for universal security, secure polynomially
bounded concurrent composability is possible [18, 10], we immediately get

Theorem 8 (Polynomially Bounded Concurrent Composition Theorem, perfect case).The
Polynomially Bounded Concurrent Composition Theorem 7 also holds in the case of perfect stan-
dard security.

5 Conclusions

Composability properties of notions of simulatable security are of great importance when design-
ing and analysing protocols modularly. Here, already some results are known, but the practically
very significant question of polynomially bounded concurrent composability has not been an-
swered in the case of standard simulatability. In this work,we have answered this open question
for all flavours of standard simulatability. This clarifies all previously unknown relations among
the different flavours of simulatability and compositionalproperties as depicted in Figure 1.

More specifically, we have shown that computational standard simulatability does not im-
ply polynomially bounded concurrent composability. This does not only settle an open problem
from [10]. It also has practical implications: many cryptographic protocol constructions in the
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spirit of [45, 29] make use of a polynomial number of subprotocols. Our results show that due
to the lack of polynomially bounded concurrent composability, computational standard security
is not well suited to analyse such constructions modularly.Hence, computational universal or
black-box security should be preferred over computationalstandard security wherever possible,
especially since all practical protocol constructions known to the authors are already proven se-
cure with respect to these stronger notions.

On the other hand, we showed that in the statistical case, polynomially bounded concurrent
composability is indeed guaranteed by standard simulatability. However, we still recommend the
use of universal or black-box simulatability even in the statistical case, since the simulator con-
structed in our proof needs much more computational power than the simulator for the uncom-
posed protocol. In contrast to this, universal and black-box simulatability guarantee the existence
of a simulator whose complexity is polynomial in the complexity of the real adversary.
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partially funded by the EC project PROSECCO under IST-2001-39227. Most of this work was
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A Proof of the counterexample

Proof (of Lemma 3).We formulate the proof in the modelling of the RS framework [11]. All
constructions can be transferred one-to-one to the UC framework of [18].

Let f be as described in Section 3.3, and letk denote the security parameter. Then [27,
Sections 7.5 and 7.7.1.3] gives us a construction for a protocol consisting of Turing machines
P1, . . . , Pk using a broadcast channel for securely evaluatingf with respect to active adversaries
(the “first malicious model” in the notation of [27]) given the existence of enhanced trapdoor
permutations). The security against active adversaries (for an exact definition see [27]) directly
implies the following properties:

– Privacy upon corruption ofk − 1 parties.For any polynomial-time attacker12 C there is a
polynomial-time simulatorB s.t. for all PPT algorithmsI (which choose the inputs for the
second round) it is

{REALI
C,k(x, z)}x,z,k

c

≈ {IDEALI
B,k(x, z)}x,z,k

HereREALI
C,k(x, z) denotes the output of the attackerC getting auxiliary inputz and new(the

second output of) the uncorrupted party in the following case: The attacker may first choose
which party is uncorrupted and control all other parties. The uncorrupted party gets as first
input. When the uncorrupted party gives its second output, the attackerC learns that output.
The second input of the uncorrupted party is chosen asI(o1) whereo1 is the first output of
that party.

12 We will use the wordattackerfor an attacker on the secure function evaluation in the sense of [27], and the word
adversaryfor adversaries in the RS framework. This distinction has been made for reasons of presentation only, in
the hope of reducing confusion.
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FurtherIDEALI
B,k(x, z) denotes the output of the simulatorB getting auxiliary inputz and

the uncorrupted party in the following case: The simulator may first choose which party is
uncorrupted and choose inputs for all other parties (the second inputs may be chosen in de-
pendence of the first results, of course). Thenf is evaluated with the inputs chosen by the
simulatorB and withx as the first input for the uncorrupted party. The second inputof the
uncorrupted party is again chosen asI(o1) whereo1 is its first output. The simulator learns
the second result of the function evaluation.
Finally

c

≈ stands for computational indistinguishability of the two ensembles.
Note that our formulation of privacy is weaker then what is usually considered. Although
we allow a non-uniform first inputx for the uncorrupted party, the second input is computed
using a uniform algorithmI that has no access to the initial auxiliary inputx. Although such
a definition may be too weak for many applications, it is sufficient for our proof and we have
chosen it for the sake of simpler notation. This privacy-property can be easily derived from
the results given in [27].
(Interestingly, for our proof we only need the case where oneparty is uncorrupted. The con-
struction of [27] is secure against other corruptions, too,of course.)

– Correctness in the uncorrupted case.When no party is corrupted and the parties have first
inputsx1, . . . , xk and second inputsx′

1, . . . , x
′
1, then the protocol eventually terminates and

each party outputs the result of evaluatingf on first inputsx1, . . . , xk and second inputs
x′

1, . . . , x
′
1. (This property is only used in the proof of Lemma 4, but we state it here for

completeness.)

Let nowM1 andM2 be as described in Section 3.4.
To show that the protocol̂M1 (consisting of the single machineM1) is as secure aŝM2 (con-

sisting of the single machineM2) with respect to computational standard security, we need to
show that for every polynomial-time honest userH and adversaryA there is a polynomial-time
simulatorS s.t.

view
H,A,M̂1

(H)
c

≈ view
H,S,M̂2

(H) (3)

even whenH has access to an auxiliary inputz that depends onS.
We will first construct a family of polynomial-time simulators Sp and then show that one of

these indeed fulfils (3). For any polynomialp let thereforeSp be as follows:Sp behaves exactly
asA, but has additional ports that connect toM2 (remember thatM2 does—in contrast toM1—
connect to the simulator to ask for inputssi and ti). WhenSp is asked forsi, it answers with
si := p(k), and when the simulatorSp gets a puzzleqi it solves it with overwhelming probability
(w.o.p.) (unless it has hardness greater thanp(k)). The solutionti is then sent toM2 as second
input.

Because of the easiness condition for time-lock puzzles, the simulator is able to solve puzzles
of hardness at mostp(k) in polynomial time. Since further the adversary is polynomial-time, the
simulatorSp is polynomial-time, too, for any given polynomialp.

See Figure 2 for an overview of the situation.
Now honest userH and adversaryA can be combined into one machineC. This machine first

gives a party identityi ∈ {1, . . . , k} to M1 and then takes part in a multiparty-computation of
f with M1 (where the input of the uncorrupted party is(real, 0, ε)). Further we assume thatC1
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outputs the view of the simulatedH. ThenC1 is a valid attacker for the protocolP1, . . . , Pk in the
sense above, and we get

{REALI
C,k((real, 0), z)}k,z

c

≈ {view
H,A,M̂1,k

(H(z))}k,z . (4)

whereI(x) = ε for all x. We have writtenview
H,A,M̂1,k

(H(z)) instead of the usual notation
view

H,A,M̂1,k
(H) to capture the fact that we allowH to get an auxiliary inputz. In a setting where

H does not get such an input, one can assume thatH just ignoresz.
Consider the construction ofSp. Note thatSp behaves as doesA except for choosing the inputs

thatM2 uses as inputssi andti. By the same reasoning as above we therefore get

{REALJ
C,k((ideal, p(k)), z)}k,z

c

≈ {view
H,Sp,M̂2,k

(H(z))}k,z (5)

whereJ(x) is an efficient algorithm that solves the time-lock puzzlex if and only if it has hardness
at mostp(k) (and otherwiseJ(x) = ⊥). Note thatC is the same machine as in (4).

By the privacy property of the protocolP1, . . . , Pk there is a simulatorB depending onC s.t.,

{REALI
C,k(x, z)}x,z,k

c

≈ {IDEALI
B,k(x, z)}x,z,k and

{REALJ
C,k(x, z)}x,z,k

c

≈ {IDEALJ
B,k(x, z)}x,z,k

which in particular implies

{REALI
C,k((real, 0), z)}k,z

c

≈ {IDEALI
B,k((real, 0), z)}k,z (6)

and
{REALJ

C,k((ideal, p(k)), z)}k,z

c

≈ {IDEALJ
B,k((ideal, p(k)), z)}k,z . (7)

If we can further show that for somep it holds

{IDEALJ
B,k((real, 0), z)}k,z

c

≈ {IDEALJ
B,k((ideal, p(k)), z)}k,z (8)

then it follows

{IDEALI
B,k((real, 0), z)}k,z

c

≈ {IDEALJ
B,k((ideal, p(k)), z)}k,z (9)

since if the first input tof of the uncorrupted party hasbi = real, the result off does not depend
on the second input of the uncorrupted party.

We can conclude by combining (4,6,9,7,5) and using the transitivity of
c

≈ that

{view
H,A,M̂1,k

(H(z))}k,z

c

≈ {view
H,Sp,M̂2,k

(H(z))}k,z

which by settingS := Sp gives us (3) and thus concludes the proof. So we will now proceed to
prove (8).

By the hardness assumption of Definition 2 there is a polynomial pB (which w.l.o.g. satisfies
pB ≥ 1), s.t. the probability is negligible thatB finds a (correct) solutiontj for a time-lock puzzle
of hardnesssj ≥ pB(k) even whenB has access to an auxiliary inputz. So setp := 2pB .
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We now examine the argumentsbi, si, ti given tof in IDEALJ
B,k((ideal, Sp(k)), z). Let

s′i := si if ti is a correct solution to the time-lock puzzleqi output as the first output off for party
i, ands′i := 0 otherwise. Lets′i1 ≤ · · · ≤ s′in be thes′i satisfyingbi = ideal in ascending order.
Since w.o.p.s′i = 2pB(k) for the inputs of the uncorrupted party ands′i < pB(k) for the other
inputs, it is w.o.p.s′in = sin the input of the uncorrupted party ands′in > 2s′in−1

. From this it
follows that w.o.p.

s′ij > 2j for j = 1, . . . , n ⇐⇒ s′ij > 2j for j = 1, . . . , n− 1.

By definition ofs′i this implies w.o.p.

sij > 2j andti is correct forj = 1, . . . , n

⇐⇒ sij > 2j andti is correct forj = 1, . . . , n− 1.

The left-hand-side is true if and only iff evaluates in the above scenario totrue. The right-hand-
side is true if and only iff evaluates totrue when the uncorrupted party gives inputbi = real

(as in IDEALJ
B,k((real, 0), z)). So w.o.p. the evaluation off has the same output in the left-

hand- and in the right-hand-side of (8). Obviously, the sameholds for the first outputs of the
corrupted parties. Since the simulator may choose its output depending only on the corrupted
parties’ outputs, (and not the in- or outputs of the uncorrupted party), (8) follows. This concludes
the proof of Lemma 3. ⊓⊔

A.1 Weakening the assumptions

Assume that there is a functionT that has the following properties: (i)|T (s, q)| is polynomial in
|q|+log s for s ∈ N andq ∈ {0, 1}∗. (ii) There is a deterministic algorithm that evaluatesT (s, q)
in time polynomial ins + |q|. (iii) There is an efficiently samplable distributionµs depending on
s, s.t. for any non-uniform algorithmB running in time polynomial ink there is a polynomialr,
s.t.B has negligible probability of outputtingT (s, q) whens ≥ r(k) andq is chosen according
to µs.

Note that this assumption is much more realistic than that oftime-lock puzzles, since we
do not require that the solution can efficiently be checked. So a candidate for such a function
would be:T (s, x) := Hs(x), i.e., thes-fold application ofH to x whereH is a suitable one-
way-function. (We do not claim that this works for any one-way function, we just propose that
one-way functions are the most promising candidates.)

The existence of such a functionT is made even more realistic by the various Time Hierarchy
Theorems in complexity theory. Such a theorem shows (unconditionally) that for some functionf
there is a slightly larger functionf ′ and a languageL, s.t. the membership inL can be decided in
timef ′, but not in timef . Such Time Hierarchy Theorems exists for various machine models and
runtime definitions, e.g. for deterministic time [31], average time [15], and probabilistic time [12].
These results make it realistic that it may be possible to usetheir techniques to prove the existence
of the above functionT .

Given such a function, we can reduce the assumptions needed for Corollary 5 using techniques
from [13]:
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Theorem 9. Assume that enhanced trapdoor functions and collision-free hash functions exist
and that a functionT with the above properties exist. Then computational standard security
resp. specialised-simulator UC does not imply polynomially-bounded general composability. This
holds in both in the UC framework [18] and the RS framework [11].

We only roughly sketch how to adapt the proof of Lemmas 3 and 4:

Proof (sketch).The main change concerns the functionf from Section 3.3. As before, the func-
tion expects an inputsi ∈ N from each partyi. Then—instead of choosing time-lock puzzles—for
eachi the functionf chooses a random and independentqi according to the distributionµsi

. This
qi is given to partyi. Thenf expects a solutionti satisfyingti = T (si, qi). So far, we have a
similar situation as we had using time-lock puzzles. However, f cannot efficiently check whether
ti = T (si, qi), so it cannot decide which solutions were correct and which were not.

So partyi will additionally have to prove thatti = T (si, qi). We cannot prove this by simply
sending some witness tof , since such a witness may be as long as the computation ofT (si, qi)
itself, which is to large forf to check. Instead, we willuniversal argumentsas introduced in [13].
These universal arguments are constant-round arguments that can proveti = T (si, qi) and have
the following additional properties: (i) efficient verification: the verifier runs in time polynomial
in log si + |qi|, (ii) relatively-efficient provers: the prover runs in timepolynomial in the number
of steps required to verifyti = T (si, qi). [13] showed, that universal arguments exist under the
assumption of collision-free hash functions.

So we introduce additional rounds (a constant number, sincethe universal arguments are
constant-round protocols) to the functionf , in which f expects the each partyi to prove (us-
ing the universal argument) thatti = T (si, qi).

Then, as before,f sorts thesi with bi = ideal into a listsi1, . . . , sin and checks for eachj
whethersij ≥ 2j and whetherthe proofti = T (si, qi) succeeded. If this holds for allj, the final
output off is true.

Due to the property of efficient verification,f can again be described as a uniform polynomial
size circuit, so we can perform a secure evaluation off .

We now construct the machinesMπ andMτ analogously as before.Mπ gives bi = real,
si = 0 andti = ε as input toPi and performs a dummy-proof instead of the correct universal
argument (since itti = T (si, qi) does not hold anyway). On the other handMτ setsbi = ideal,
and lets the simulator choosesi andti and also relays the messages to the simulator to perform
the universal argument.

Now, as in the proof of Lemma 3 we see, that for any honest userH, there is a polynomial
p(k) so thatH cannot evaluateT (si, qi) for si ≥ p(k) (and thus in particular not successfully
perform the universal argument). The simulator then can choose hissi = 2pB(k) (wherepB is a
polynomial depending onp, see the proof of Lemma 3). Since2pB is polynomial, and due to the
existence of relatively-efficient provers, the simulator can findti = T (si, qi) and even prove this
fact. This allows to conclude, as in the proof of Lemma 3, thatπ is as secure asτ with respect to
computational standard security aka specialised-simulator UC.

On the other hand, in the situation of the proof of Lemma 4, thesimulator has to find and
prove ati = T (si, qi) with si ≥ 2k. This he clearly cannot do, soπk is not as secure asτk. ⊓⊔
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B Other modellings of polynomial time

The notions of computational simulatable security discussed in this paper all assume that all
machines are polynomially bounded, i.e., that there is a fixed polynomialp (depending only on
the machine) s.t. the machines terminates after at mostp(k) steps (wherek denotes the security
parameter). It has turned out, that for some applications this is too restrictive a notion [22, 32].
Therefore models have been developed with the aim that machines can consume more running
time than their a-priori polynomial would allow, dependingon the amount of messages received.
It turns out that this is non-trivial, and two independent approaches have been proposed in [22]
and [32]. We will now discuss the impact of these new definitions on our results.

The model of [22].Here, roughly, the adversary/simulator can run polynomially in the total
length of all messages it receives (and not only in the security parameter). Further, the environment
may run polynomially in the length of its auxiliary input, which is chosen last. Now, in the case
of specialised-simulator UC this creates an interesting situation: The length of the auxiliary input
is bounded by a polynomial that is chosenafter the simulator. Therefore our separating example
fails since we assume in the proof of Lemma 3 that there is a polynomial upper bound on the
runtime of the environment, and that the simulator may choseits actions in dependence of that
polynomial. Indeed, as pointed out in [22], specialised-simulator UC and UC coincide in this
modelling: If the environment is chosen as a universal Turing machine that reads its program and
its runtime-bound from its auxiliary input, then choosing the auxiliary input at the end effectively
means choosing the environment at the end.

The model of [32].Here, another approach has been taken. Both the honest user aka environ-
ment and the adversary/simulator do not have an a-priori runtime bound. However, it is guaranteed
that the adversary does not run more than polynomially faster than the honest user, and of the lat-
ter’s possibly unbounded “life-time” only a polynomial prefix is considered for distinguishing
real and ideal model. The length of that prefix is chosen afterthe simulator. Here, our proof fails
to similar reasons as in the above modelling. In fact, if the environment does not choose a fixed
si, but indeed randomly selects it,13 then the simulator would be unable to choose its strength
accordingly, since it cannot know up to which size ofsi the outcome of the experiment will be
considered for distinguishing. (This depends on the lengthof the prefix of the honest user’s “life”,
which is chosen after the simulator.)

However, we do not know whether standard and universal simulatability (UC and specialised-
simulator UC) coincide in this model. Furthermore, both newmodellings invalidate the results
mentioned in the introduction (with exception of the composition theorems that guarantee that
UC implies polynomially-bounded general composability and that specialised-simulator UC im-
pliesO(1)-bounded general composability). Therefore it would be an interesting question which
implications and non-implications hold in these new modellings. Note that the fact that for the
[22] modelling UC and specialised-simulator UC coincide doesnot necessarily directly solve all
other implications, since we do not know whether the proof of[36] that specialised-simulator UC
andO(1)-bounded general composability coincide still holds.

13 A distribution that is suitable for our example would be to choosesi = n with a probability proportional to1
n2 .
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C Proof of the composition theorem

We formulate the proof in the modelling of the RS framework [11]. All construction can be
transferred one-to-one to the UC framework of [18].

In order to prove the Concurrent Composition Theorem 7, we first need to state the following
auxiliary lemma:

Lemma 10 (Completeness of the dummy adversary).Let D denote the adversary that simply
forwards all messages betweenH and the protocol.D does not have a master clock port.

Then statistical standard security with respect to the dummy-adversaryD (i.e., in thereal
model, the dummy adversary is the only allowed adversary, the set of simulators is not restricted)
is equivalent to statistical standard security with respect to all adversaries.

Proof (sketch).Security with respect to all adversaries trivially impliessecurity with respect to
the dummy-adversary.

The other direction is easily proven using the same method asgiven in [22, Claim 8, “Doing
without the real-life-adversary”]. Note that in our case the proof is especially simple, since being
in the statistical case we do not need to show that the dummy-adversary is in any way bounded
(which usually is one of the main problems when showing the completeness of the dummy adver-
sary). ⊓⊔

Now we can proceed to prove the main theorem (Theorem 7).

Proof. By Lemma 10, to showM̂p
1 ≥ M̂

p
2 it is sufficient to show that for any honest userH∗ there

is a simulatorS, s.t.
view

H∗,D,M̂
p
1
(H∗) ≈ view

H∗,S,M̂
p
2
(H∗),

i.e., in words that the view ofH∗ is indistinguishable when running with the dummy-adversary D

and the real protocol and when running with the simulatorS and the ideal protocol.
Now we define the machineHi for all i ∈ N0 ∪ {∞}: In its first activationHi randomly

chooses an integerl > 0, where the probability for a givenl is 1
cl2

with c :=
∑

l
1
l2

(c is chosen
such that the probabilities add to1). If l > i, Hi terminates immediately. We writeview(H) = ⊥
for this case. In the other casel ≤ i, Hi simulatesH∗. WhenH∗ sends a message(sid ,m) to the
protocol copysid or the adversary, we distinguish the following cases

– If sid is an invalid session ID (i.e., not a positive integer or greater p(k)), the message is
ignored.

– If sid < l, the message is sent to a simulated copy of the ideal protocolM̂2 or to a simulated
copy of the simulatorSl, respectively (see below for the definition ofSl).

– If sid > l, the message is sent to a simulated copy of the real protocolM̂1 or to a simulated
copy of the dummy-adversaryD.

– If sid = l, the messagem is sent to the protocol or adversary (not to a simulated copy).

The behaviour ofHi is summarised in Figure 3.
Let furtherH̃i be constructed likeHi, except thatl is always chosen deterministically asl = i.

Similarly, if f is a function, let̃Hf(k) choose deterministicallyl = f(k), i.e.,l is chosen depending
on the security parameterk.
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By the random variableview
M̂,k

(H∗, l) we denote the pair consisting of the view of the sim-

ulatedH∗ together with the choice ofl in a run ofM̂ (with security parameterk).
Now we proceed to define the simulatorsSi. We call a simulatorS near-optimal for some

honest userHi, if for all security parametersk and all simulatorsS′ the following holds:

∆
(

view
Hi,D,M̂1,k

(H∗, l); view
Hi,S,M̂2,k

(H∗, l)
)

< ∆
(

view
Hi,D,M̂1,k

(H∗, l); view
Hi,S′,M̂2,k

(H∗, l)
)

+ 2−k, (10)

i.e., in words that the statistical distance betweenH’s view in the real and ideal model is less at
most2−k when usingS than when usingS′.

It is easily seen that such a near-optimal simulator always exists: For each security parameter
k there is a simulatorSk that is near-optimal for thatk. By specifyingS to behave asSk when the
security parameter isk, we get a near-optimal simulator.

Let thereforeSi be a near-optimal simulator forHi.
Note that at a first glance, the definition ofHi andSi seems to be a cyclic definition, since

Hi depends onSl which depends onHl. Closer inspection however reveals that the definition is
simply a recursive definition: For finitei, Hi depends only onSl for l = 1, . . . , i−1, andH∞ only
depends onSl with finite l. Note further that all theseHi andH∞ exist, since in the RS framework
no computational limitations are placed upon machines in the case of statistical security.14

SinceM̂1 ≥ M̂2, the function

ε(k) := ∆
(

view
H∞,D,M̂1,k

(H∞); view
H∞,S∞,M̂2,k

(H∞)
)

is negligible. Since the view of the simulatedH∗ andl are contained in the view ofH∞, it follows
that

∆
(

view
H∞,D,M̂1,k

(H∗, l); view
H∞,S∞,M̂2,k

(H∗, l)
)

≤ ε(k). (11)

Let Γ i(view , l) := (⊥, l) if l > i andΓ i(view , l) = (view , l) otherwise (i.e.,Γ i erases the view
of H∗ if l > i). Then it follows from the definition ofHi that

∆
(

view
Hi,D,M̂1,k

(H∗, l); view
Hi,S∞,M̂2,k

(H∗, l)
)

= ∆
(

Γ i(view
Hi,D,M̂1,k

(H∗, l)); Γ i(view
Hi,S∞,M̂2,k

(H∗, l))
)

= ∆
(

Γ i(view
H∞,D,M̂1,k

(H∗, l)); Γ i(view
H∞,S∞,M̂2,k

(H∗, l))
)

≤ ∆
(

view
H∞,D,M̂1,k

(H∗, l); view
H∞,S∞,M̂2,k

(H∗, l)
) (11)

≤ ε(k) (12)

Note that only the environmentH∞ changes toHi, while the simulatorS∞ is not changed.
The first equality stems from the fact thatHi will have the view⊥ in any case ifl > i, so

applyingΓ i has no effect. The second equality holds, sinceHi andH∞ show different behaviour
only in the casel > i, but in that caseΓ i erases their views. The first inequality holds since
applying a deterministic function to both views can only reduce the statistical distance.

14 They are not even required to be realisable by Turing machines. Cf. the discussion in Section C.1 on how to adapt
this proof to non-uniform unbounded Turing machines.
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SinceSi is near-optimal forHi, it holds that

∆
(

view
Hi,D,M̂1,k

(H∗, l); view
Hi,Si,M̂2,k

(H∗, l)
)

(10)
< ∆

(

view
Hi,D,M̂1,k

(H∗, l); view
Hi,S∞,M̂2,k

(H∗, l)
)

+ 2−k

(12)

≤ ε(k) + 2−k. (13)

Let for brevity

(Hreal

k , lreal ) := view
Hi,D,M̂1,k

(H∗, l)

and (Hideal

k , lideal ) := view
Hi,Si,M̂2,k

(H∗, l).

When we denote by(Hreal

k , lreal )|(lreal = i) the random variable resulting by conditioning on the
eventlreal = i, and analogously forideal . Given a setT of tuples(v, l), we denote byTi the subset
of T consisting only of tuples withl = i. Further letPi := P (lreal = i) = P (lideal = i) = 1

ci2
.

Then we can calculate (where the maximum ranges over all measurable subsetsT of the range of
the random variablesview ...,k(H

∗, l)):

∆
(

(Hreal

k , lreal )|(lreal = i); (Hideal

k , lideal )|(lideal = i)
)

def
= max

T

∣

∣

∣
P

(

(Hreal

k , lreal ) ∈ T | lreal = i
)

−P
(

(H ideal

k , lideal ) ∈ T | lideal = i
)

∣

∣

∣

= max
T

∣

∣

∣

1
Pi

P
(

(Hreal

k , lreal ) ∈ Ti

)

− 1
Pi

P
(

(H ideal

k , lideal ) ∈ Ti

)

∣

∣

∣

= 1
Pi

max
T

∣

∣

∣
P

(

(Hreal

k , lreal ) ∈ Ti

)

− P
(

(H ideal

k , lideal ) ∈ Ti

)

∣

∣

∣

≤ 1
Pi

max
T

∣

∣

∣
P

(

(Hreal

k , lreal ) ∈ T
)

− P
(

(H ideal

k , lideal ) ∈ T
)

∣

∣

∣

def
= 1

Pi
∆

(

(Hreal

k , lreal ); (H ideal

k , lideal )
)

(13)
< (ε(k) + 2−k)ci2 =: εi(k). (14)

SinceHi choosesl independently from any inputs at the beginning of its first activation,
conditioning on the eventlreal = i or lideal = i, resp. is the same as replacingHi by H̃i. Therefore
the previous inequality can be rewritten as

∆
(

view
H̃i,D,M̂1,k

(H∗, l); view
H̃i,Si,M̂2,k

(H∗, l)
)

< εi(k)

from which directly follows

∆
(

view
H̃i,D,M̂1,k

(H∗); view
H̃i,Si,M̂2,k

(H∗)
)

< εi(k). (15)

Note that by construction of̃Hi the following holds: In a run of̃Hi together withM̂2 andSi,
all messages to and fromH∗ with session IDsid = 1, . . . , i are routed to copies of̂M2 andSsid

(in the casesid < i to simulated instances, in the casesid = i to the non-simulated instances
outsideH̃i), while messages withsid = i + 1, . . . , p(k) are sent to instances of̂M1 andD.
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Analogously, we see that in a run ofH̃i+1 together withM̂1 andD, messages withsid =
1, . . . , i are routed to copies of̂M2 andSsid , while messages withsid = i + 1, . . . , p(k) are
routed to instances of̂M1 andD.

Therefore the view ofH∗ in both scenarios is the same and we get

view
H̃i,Si,M̂2,k

(H∗) = view
H̃i+1,D,M̂1,k

(H∗)

By combining this equation and (15), we get for arbitraryk (since∆ is a metric and thus satisfies
the triangle-inequality):

∆
(

view
H̃0,D,M̂1,k

(H∗); view
H̃p(k)+1,D,M̂1,k

(H∗)
)

<

p(k)
∑

i=0

εi(k) =: ν(k). (16)

Sinceν(k) ≤ (ε(k) + 2−k)cp(k)3 by (14) andε is negligible, so isν.
By construction,̃H0 simulatesH∗ andp(k) copies ofM̂1 andD. Sincesid ≤ 0 would not be

a valid session ID, no messages are sent to the machines outsideH. From this it follows that

view
H̃0,D,M̂1,k

(H∗) = view
H∗,D,M̂

p
1 ,k

(H∗).

Similarly we can see that̃Hp(k)+1 simulatesH∗ andp(k) copies ofM̂1 together with simulators
S1, . . . ,Sp(k) and has no outside communication. We defineS∗ to be the simulator resulting from
combiningS1, . . . ,Sp(k), i.e., messages (coming from protocol or honest user) with session ID
sid = j are passed toSj and messages fromSj are given a session IDsid = j. Then we have

view
H̃p(k)+1,D,M̂1,k

(H∗) = view
H∗,S∗,M̂

p
2 ,k

(H∗).

Applying these two equalities to (16), we get

∆
(

view
H∗,D,M̂

p
1 ,k

(H∗); view
H∗,S∗,M̂

p
2 ,k

(H∗)
)

< ν(k)

which is negligible in the security parameterk, soS∗ is indeed a good simulator forH∗. SinceH∗

was chosen arbitrarily, this proves thatM̂
p
1 is as secure aŝMp

2 with respect to standard statistical
security (cf. Def. 6). So Theorem 7 is proven in the case without auxiliary input.

The case where the honest user has access to an auxiliary input is proven completely identi-
cally, except that theHi andH̃i pass their auxiliary input on to the simulator submachineH∗. ⊓⊔

C.1 Turing machines

In the proof above, we showed composability with respect to unbounded honest user and adver-
saries. Following [11], an unbounded machine is allowed to evaluate any probabilistic function,
not only computable ones.

Often, however, unbounded machines are understood to mean unbounded Turing machines,
where further the distinction between uniform and non-uniform ones arises. It is easily verified
that the above proof also holds if honest user, adversary andsimulator are restricted to non-
uniform Turing machines. To see this, note the following twopoints: First, near-optimal simula-
tors exist, they simply take as auxiliary input the program of the simulator that is near-optimal
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for a given security parameter. Second, all machines that simulate a non-constant number of
sub-machines (likeHi, H̃p(k)+1, S∗) are always limited to simulating at mostp(k) different sub-
machines, so the programs and auxiliary inputs of these sub-machines can be provides as auxiliary
input.

An interesting open point however is whether the above proofcan be adapted touniform
Turing machines, since for these it is not clear how to construct a uniform near-optimal simulator.

References

[1] Michael Backes. A cryptographically sound Dolev-Yao proof of the Otway-Rees protocol. In Pierangela Sama-
rati, Peter Y.A. Ryan, Dieter Gollmann, and Refik Molva, editors,Computer Security, Proceedings of ESORICS
2004, number 3193 in Lecture Notes in Computer Science, pages 89–108. Springer-Verlag, 2004. Online avail-
able athttp://www.infsec.cs.uni-sb.de/~backes/papers/Back_04OtwayRees.ps.

[2] Michael Backes and Markus Dürmuth. A cryptographicallysound Dolev-Yao security proof of an electronic
payment system. In18th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2005, pages
78–93. IEEE Computer Society, 2005. Extended version online available athttp://www.zurich.ibm.
com/security/publications/2004/BaDu2004PaymentCL.pdf.

[3] Michael Backes and Christian Jacobi. Cryptographically sound and machine-assisted verification of security
protocols. In Helmut Alt and Michel Habib, editors,20th Annual Symposium on Theoretical Aspects of Com-
puter Science, Proceedings of STACS 2003, number 2607 in Lecture Notes in Computer Science, pages 675–686.
Springer-Verlag, 2003.

[4] Michael Backes and Birgit Pfitzmann. Computational probabilistic non-interference. In Dieter Gollmann,
Günter Karjoth, and Michael Waidner, editors,Computer Security, Proceedings of ESORICS 2002, num-
ber 2502 in Lecture Notes in Computer Science, pages 1–23. Springer-Verlag, 2002. Online available at
http://www.infsec.cs.uni-sb.de/~backes/papers/BaPf_02ESORICS.ps.

[5] Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-
Lowe public-key protocol. In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors,Foundations of Soft-
ware Technology and Theoretical Computer Science, Proceedings of FSTTCS 2003, number 2914 in Lec-
ture Notes in Computer Science, pages 1–12. Springer-Verlag, 2003. Extended version online available at
http://eprint.iacr.org/2003/121.ps.

[6] Michael Backes and Birgit Pfitzmann. Intransitive non-interference for cryptographic purposes. InIEEE Sympo-
sium on Security and Privacy, Proceedings of SSP 2003, pages 140–152. IEEE Computer Society, 2003. Online
available athttp://www.zurich.ibm.com/~mbc/papers/BaPf_03Oakland.ps.

[7] Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic secrecy. InIEEE Symposium on
Security and Privacy, Proceedings of SSP 2005. IEEE Computer Society, 2005. To be published, extended
version online available athttp://eprint.iacr.org/2004/300.ps.

[8] Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial fairness and liveness.
In 15th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2002, pages 160–174. IEEE
Computer Society, 2002. Online available athttp://www.zurich.ibm.com/~mbc/papers/BPSW_
02Liveness.ps.

[9] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Acomposable cryptographic library with nested
operations. In10th ACM Conference on Computer and Communications Security, Proceedings of CCS 2003,
pages 220–230. ACM Press, 2003. Extended abstract, extended version online available athttp://eprint.
iacr.org/2003/015.ps.

[10] Michael Backes, Birgit Pfitzmann, and Michael Waidner.A general composition theorem for secure reactive sys-
tems. In Moni Naor, editor,Theory of Cryptography, Proceedings of TCC 2004, number 2951 in Lecture Notes
in Computer Science, pages 336–354. Springer-Verlag, 2004. Online available athttp://www.zurich.
ibm.com/security/publications/2004/BaPfWa2004MoreGeneralComposition.pdf.

[11] Michael Backes, Birgit Pfitzmann, and Michael Waidner.Secure asynchronous reactive systems. IACR ePrint
Archive, March 2004. Online available athttp://eprint.iacr.org/2004/082.ps.

[12] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms. In José D.P. Rolim
and Salil P. Vadhan, editors,Randomization and Approximation Techniques,Proceedingsof RANDOM 2002,

27



number 2483 in Lecture Notes in Computer Science, pages 194–208. Springer-Verlag, 2002. Online available
athttp://www.cs.princeton.edu/~boaz/Papers/bptime.ps.

[13] Boaz Barak and Oded Goldreich. Universal arguments andtheir applications. In17th Annual IEEE Confer-
ence on Computational Complexity, Proceedings of CoCo 2002, pages 194–203. IEEE Computer Society, 2002.
Online available athttp://www.cs.princeton.edu/~boaz/Papers/uargs.ps.

[14] Donald Beaver. Foundations of secure interactive computing. In Joan Feigenbaum, editor,Advances in Cryptol-
ogy, Proceedings of CRYPTO ’91, number 576 in Lecture Notes in Computer Science, pages 377–391. Springer-
Verlag, 1992.

[15] Jin-yi Cai and Alan L. Selman. Fine separation of average-time complexity classes.SIAM Journal on Com-
puting, 28(4):1310–1325, 1999. Online available athttp://epubs.siam.org/sam-bin/getfile/
SICOMP/articles/31171.ps.

[16] Ran Canetti.Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute of
Science, 1995. Online available athttp://www.wisdom.weizmann.ac.il/~oded/PS/ran-phd.
ps.

[17] Ran Canetti. Security and composition of multi-party cryptographic protocols.Journal of Cryptology, 3(1):143–
202, 2000. Full version online available athttp://eprint.iacr.org/1998/018.ps.

[18] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In42th Annual
Symposium on Foundations of Computer Science, Proceedingsof FOCS 2001, pages 136–145. IEEE Computer
Society, 2001. Full version online available athttp://www.eccc.uni-trier.de/eccc-reports/
2001/TR01-016/revisn01.ps.

[19] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In42th Annual
Symposium on Foundations of Computer Science, Proceedingsof FOCS 2001, pages 136–145. IEEE Computer
Society, 2001.

[20] Ran Canetti. Personal communication with one of the authors at TCC 2004, February 2004.
[21] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint

Archive, January 2005. Full and revised version of [19], online available athttp://eprint.iacr.org/
2000/067.ps.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint
Archive, January 2005. Online available athttp://eprint.iacr.org/2000/067.ps.

[23] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of cryptographic protocols. IACR
ePrint Archive, September 2005. Online available athttp://eprint.iacr.org/2004/334.ps.

[24] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-
party secure computation. In34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC
2002, pages 494–503. ACM Press, 2002. Extended abstract, full version online available athttp://eprint.
iacr.org/2002/140.ps.

[25] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and private multi-party
computation. In Don Coppersmith, editor,Advances in Cryptology, Proceedings of CRYPTO ’95, number 963
in Lecture Notes in Computer Science, pages 110–123. Springer-Verlag, 1995. Online available athttp:
//www.cs.mcgill.ca/~crepeau/PS/CGT95.ps.

[26] Oded Goldreich. Secure multi-party computation. Unpublished, online available athttp://www.wisdom.
weizmann.ac.il/~oded/PS/prot.ps, October 2002.

[27] Oded Goldreich.Foundations of Cryptography – Volume 2 (Basic Applications). Cambridge University Press,
May 2004. Previous version online available athttp://www.wisdom.weizmann.ac.il/~oded/
frag.html.

[28] Oded Goldreich and Hugo Krawczyk. On the composition ofzero-knowledge proof systems. In Mike Pater-
son, editor,Automata, Languages and Programming, 17th International Colloquium, Proceedings of ICALP90,
number 443 in Lecture Notes in Computer Science, pages 268–282. Springer-Verlag, 1990. Extended version
online available athttp://www.wisdom.weizmann.ac.il/~oded/PS/zk-comp.ps.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game—a completeness theorem for
protocols with honest majority. InNineteenth Annual ACM Symposium on Theory of Computing, Proceedings
of STOC 1987, pages 218–229. ACM Press, 1987. Extended abstract.

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

28



[31] Juris Hartmanis and Richard Edwin Stearns. On the computational complexity of algorithms.Transactions of
the American Mathematical Society, 117(5):285–306, May 1965.

[32] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Polynomial runtime in simulatability defini-
tions. In18th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2005, pages 156–169.
IEEE Computer Society, 2005. Online available athttp://iaks-www.ira.uka.de/home/unruh/
publications/continuously_polynomial.ps.

[33] Dennis Hofheinz and Dominique Unruh. Comparing two notions of simulatability. In Joe Kilian, editor,Theory
of Cryptography, Proceedings of TCC 2005, number 3378 in Lecture Notes in Computer Science, pages 86–103.
Springer-Verlag, 2005.

[34] Dennis Hofheinz and Dominique Unruh. On the notion of statistical security in simulatability definitions. In
Jianying Zhou and Javier Lopez, editors,Information Security, Proceedings of ISC 2005, number 3650 in Lecture
Notes in Computer Science, pages 118–133. Springer-Verlag, 2005. Online available athttp://eprint.
iacr.org/2005/032.ps.

[35] Jan Jürjens. Secure information flow for concurrent processes. In Catuscia Palamidessi, editor,Concurrency
Theory, Proceedings of CONCUR 2000, number 1877 in Lecture Notes in Computer Science, pages 395–
409. Springer-Verlag, 2000. Online available athttp://wwwbroy.in.tum.de/~juerjens/papers/
J00eWeb.ps.gz.

[36] Yehuda Lindell. General composition and universal composability in secure multi-party computation. In44th
Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2003, pages 394–403. IEEE
Computer Society, 2003. Full version online available athttp://eprint.iacr.org/2003/141.ps.

[37] Daryl McCullough. Specifications for multi-level security and a hook-up property. InIEEE Symposium on
Security and Privacy, Proceedings of SSP ’87, pages 161–166. IEEE Computer Society, 1987.

[38] Daryl McCullough. Noninterference and the composability of security properties. InIEEE Symposium on
Security and Privacy, Proceedings of SSP ’88, pages 177–186. IEEE Computer Society, 1988.

[39] Silvio Micali and Phillip Rogaway. Secure computation. In Joan Feigenbaum, editor,Advances in Cryptology,
Proceedings of CRYPTO ’91, number 576 in Lecture Notes in Computer Science, pages 392–404. Springer-
Verlag, 1992. Abstract.

[40] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive systems. In7th
ACM Conference on Computer and Communications Security, Proceedings of CCS 2000, pages 245–254. ACM
Press, 2000. Extended version online available athttp://www.semper.org/sirene/publ/PfWa_
00CompInt.ps.gz.

[41] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application to secure
message transmission. InIEEE Symposium on Security and Privacy, Proceedings of SSP 2001, pages 184–200.
IEEE Computer Society, 2001. Full version online availableathttp://eprint.iacr.org/2000/066.
ps.

[42] Dominik Raub, Jörn Müller-Quade, and Rainer Steinwandt. On the security and composability of the one
time pad. In Peter Vojtás, Mária Bieliková, Bernadette Charron-Bost, and Ondrej Sýkora, editors,Theory and
Practice of Computer Science, Proceedings of SOFSEM 2005, number 3381 in Lecture Notes in Computer
Science, pages 288–297. Springer-Verlag, 2005. Extended version online available athttp://eprint.
iacr.org/2004/113.ps.

[43] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release crypto. Technical
Report MIT/LCS/TR-684, Massachusetts Institute of Technology, February 1996. Online available athttp:
//theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps.

[44] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In23th Annual Symposium on Founda-
tions of Computer Science, Proceedings of FOCS 1982, pages 80–91. IEEE Computer Society, 1982.

[45] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations
of Computer Science, Proceedings of FOCS 1986, pages 162–167. IEEE Computer Society, 1986. Extended
abstract.

[46] Aris Zakinthinos and E. Stewart Lee. The composabilityof non-interference. In8th IEEE Computer Security
Foundations Workshop, Proceedings of CSFW 1995, pages 2–8. IEEE Computer Society, 1995.

29


