Conditional Reactive Simulatability Michael Backes¹, Markus Dürmuth¹, Dennis Hofheinz², and Ralf Küsters³ ¹ Saarland University, {backes|duermuth}@cs.uni-sb.de ² CWI, Cryptology and Information Security Group, Prof. Dr. R. Cramer, Dennis.Hofheinz@cwi.nl ³ Christian-Albrechts-Universität zu Kiel, kuesters@ti.informatik.uni-kiel.de **Abstract.** Simulatability has established itself as a salient notion for defining and proving the security of cryptographic protocols since it entails strong security and compositionality guarantees, which are achieved by universally quantifying over all environmental behaviors of the analyzed protocol. As a consequence, however, protocols that are secure except for certain environmental behaviors are not simulatable, even if these behaviors are efficiently identifiable and thus can be prevented by the surrounding protocol. We propose a relaxation of simulatability by conditioning the permitted environmental behaviors, i.e., simulation is only required for environmental behaviors that fulfill explicitly stated constraints. This yields a more fine-grained security definition that is achievable i) for several protocols for which unconditional simulatability is too strict a notion or ii) at lower cost for the underlying cryptographic primitives. Although imposing restrictions on the environment destroys unconditional composability in general, we show that the composition of a large class of conditionally simulatable protocols yields protocols that are again simulatable under suitable conditions. This even holds for the case of cyclic assume-guarantee conditions where protocols only guarantee suitable behavior if they themselves are offered certain guarantees. Furthermore, composing several commonly investigated protocol classes with conditionally simulatable subprotocols yields protocols that are again simulatable in the standard, unconditional sense. ### 1 Introduction As a tool to define and prove the security of cryptographic protocols, the concept of simulatability has a long history, e.g., [34, 23, 22, 10, 30]. In recent years, in particular the general simulatability frameworks of reactive simulatability [7, 5] and universal composability [13, 15] proved useful for analyzing security properties of cryptographic protocols in distributed systems. In such a simulatability framework, a protocol is compared to an ideal specification of the respective protocol task, usually given by a single machine called trusted host that is immune to any adversarial attacks by construction. A protocol is said to be secure, if for every adversary interacting with the real protocol there exists another adversary interacting with the ideal specification such that no protocol environment can distinguish the ideal specification (with the ideal adversary) from the real implementation (with the real adversary). This essentially means that every attack that an adversary may successfully mount against the real implementation can be mounted as well against the ideal specification. In that sense, the real protocol is at least as secure as the ideal specification. This definition is very appealing due to its simplicity, and at the same time it provides very strong security guarantees. Specifically, both mentioned frameworks allow for very general composition theorems (see, e.g., [32, 13, 6]). In a nutshell, these theorems guarantee that a secure protocol can be composed with arbitrary other protocols and still retains its security. These strong results are essentially entailed by the universal quantification over all protocol environments. However, such strong compositionality properties are bought at the price that several protocol tasks are not securely realizable at all in the sense of simulatability. This includes important cryptographic tasks such as bit commitment, zero-knowledge, oblivious transfer [16, 13], and (authenticated) Byzantine agreement [29], classes of secure multi-party computation [17], classes of functionalities that fulfill certain game-based definitions [18], and Dolev-Yao style abstractions of symmetric encryption, XOR, and hash functions [2, 3, 8]. This nuisance led to several attempts to weaken the simulatability definition, either by strengthening the ideal adversary or by limiting the attack capabilities of the real adversary, which, however, results in restricted adversary models and thus in less realistic scenarios. A more detailed review of related work is given below. Our Contribution. In this paper, we also endeavor to circumvent a specific class of the aforementioned impossibility results, namely those that arise due to certain environmental behaviors that cannot be properly simulated. The prime example contained in this class is Dolev-Yao style symmetric encryption, i.e., symbolic abstractions of symmetric encryption as constructors of a term algebra with a small set of algebraic properties. This kind of encryption can only be correctly simulated if the protocol using the encryption scheme does not cause a so-called commitment problem. Our approach for circumventing impossibility in these cases does however not follow the prevalent idea of augmenting or constraining the capabilities of the adversary. Instead, we limit the number of protocol environments in which a protocol is required to be secure. This idea applies particularly nicely to protocols that can be securely realized except for certain distinguished environmental behaviors, especially if these behaviors are efficiently identifiable and thus can be prevented by the surrounding protocol; among others, Dolev-Yao style symmetric encryption is of this kind. The resulting security notion is named *conditional reactive simulatability*. In addition to circumvent known impossibility results for unconditional simulatability, the notion of conditional reactive simulatability may also allow for securely realizing ideal functionalities at lower cost on the underlying cryptographic primitives. For instance, if Dolev-Yao style symmetric encryption permits the construction of key cycles, e.g., encrypting a key with itself, it is only securely realizable by encryption schemes that fulfill certain strong, non-standard assumptions such as dynamic KDM security [4]. When, however, conditioning the functionality to those cases that exclude key cycles, successful simulation based on weaker, more standard security notions such as IND-CCA2 security is possible. Despite imposing restrictions on the surrounding protocol and thus giving up the universal quantification of environments that allows for general compositionality, we show that the notion of conditional reactive simulatability still entails strong compositionality guarantees. More specifically, we prove that if one composes protocols each of which is conditionally simulatable provided that their surrounding protocol fulfills an arbitrary trace property, and if these properties do not give rise to cyclic dependencies, then the composition of these protocols is conditionally simulatable under natural conditions on the (overall) surrounding protocol. Technically, the theorem establishes a cryptographic statement on the acyclic composition of assume-guarantee specifications, i.e., specifications that guarantee suitable behaviors only if they themselves are offered suitable guarantees. Assume-guarantee specifications have been well investigated in the past, mostly for non-security-specific contexts [31, 26, 1, 20] but also specifically for security aspects [24] (but without investigations of simulatability and composition). The postulation of acyclicity applies to most cases in practice, e.g., to protocols that provide specific security guarantees to their subprotocols without making these guarantees dependent on the outputs they obtain from these subprotocols. Interestingly, we can even prove compositionality for cyclic dependencies of such specifications, i.e., compositions of protocols that mutually promise to adhere to a certain behavior only if they mutually receive guarantees from each other. This case is technically more demanding since an inductive proof by proceeding through the acyclic dependency graph as done in the proof of the acyclic case is no longer possible. In fact, it is easy to show that for cyclic dependencies, subprotocols that are conditionally simulatable under *arbitrary* trace properties might not be securely composable. However, we show that the theorem for the acyclic case can be carried over to the cyclic case if one constraints the protocols to be conditionally simulatable under safety properties. Safety properties arguably constitute the most important class of properties for which conditional simulatability is used, especially since liveness properties usually cannot be achieved unless one additionally constraints the adversary to fair scheduling. Finally, we stress that composing several commonly investigated protocol classes with conditionally simulatable subprotocols yields protocols that are again simulatable in the standard, unconditional sense. Our results are formalized in the Reactive Simulatability framework. However, we do not use any specific characteristics of this framework, so our results can naturally be carried over to the Universal Composability framework. Related Work. As mentioned already, there have been several attempts to relax simulatability to avoid impossibility results. The work closest to ours is the work on proving Dolev-Yao style symmetric encryption sound in the sense of simulatability [2]. There it was shown that Dolev-Yao style symmetric encryption can be securely realized if the environmental protocol does not cause the commitment problem and in addition key cycles are excluded. This definition thus constitutes a special case of conditional reactive simulatability yet without investigating more general conditions or corresponding compositionality aspects. Nevertheless, our work is inspired by their idea of
augmenting simulatability with conditions on environments. The impossibility of simulating a specific bit commitment was shown in [16]. The remedy proposed there was to augment the real protocol with certain "helping trusted hosts" which are, by definition, immune to any attack on the real protocol; thus, effectively this weakens the real adversary. More specifically, [16] presented simulatably secure protocols for bit commitment and zero-knowledge. However, these protocols rely on a so-called Common Reference String (CRS), which is a form of a trusted setup assumption on the protocol participants. In a similar vein, [17] shows that basically every trusted host can be realized using a CRS as a helper functionality. One point of criticism against the CRS approach is that the proposed protocols lose security in a formal and also very intuitive sense as soon as the CRS setup assumption is invalidated. The related approach [25] uses a Random Oracle (RO) instead of a CRS to help real protocols achieve simulatable security. The benefit of their construction is that the proposed protocols retain at least classical (i.e., non-simulatable) security properties when the RO assumption is invalidated. However, also there, simulatability in the original sense is lost as soon as this happens. In [33], the real and ideal adversaries are equipped with a so-called imaginary angel. This is an oracle that (selectively) solves a certain class of hard computational problems for the adversary. Under a very strong computational assumption, this notion could be shown to avoid known impossibility results for simulatability. Yet, as the imaginary angels behave in a very specific way tailored towards precisely circumventing these impossibility results, e.g., these angels make their response dependent on the set of corrupted parties, the model might be considered unintuitive. In [9], it is shown how to realize any trusted host in a simulatable manner, if the ideal adversary is freed from some of its computational restrictions. In the process, several highly sophisticated constructions are used to implement, e.g., a simulatably secure Zero-Knowledge proof system. The eventual result of their construction is a class of protocols for, in the style of [17], realizing basically any trusted host. However, it is substantial that in their security notion, the ideal adversary is not restricted to polynomial-time, but the real adversary is. So in particular, the security notion they consider is not transitive and it is generally not easy in their framework to construct larger protocols modularly. Outline. We first review the underlying Reactive Simulatability framework in Section 2 and subsequently define the more fine-grained version of conditional reactive simulatability in Section 3. The bulk of the paper is dedicated to the investigation of the compositionality aspects of this new security notion for both acyclic and cyclic assume-guarantee conditions, which is done in Section 4. The usefulness of conditional reactive simulatability is further exemplified in Section 5 by showing how this notion can be exploited to cryptographically justify common idealizations of cryptography. Section 6 concludes. ## 2 Review of the Reactive Simulatability Framework Our work builds upon the Reactive Simulatability framework. We will briefly review relevant definitions and refer the reader to [7] for details. #### 2.1 Overall Framework A protocol is modeled as a *structure* (M,S) consisting of a set of protocol *machines* and a set of *service* ports, to which the protocol user connects¹. Machines are probabilistic, polynomial-time I/O automata, and are connected by ports. The model differentiates in-ports and out-ports, where each out-port is connected to exactly one in-port by naming convention. Moreover, in- and out-ports may be service or non-service ports. In what follows, by S^{in} we denote the service in-ports of S and by $S^{C,out}$ the complement of S0 service out-ports, i.e., the set of service in-ports of machines S1 connects to. Two structures (M_1, S_1) and (M_2, S_2) are *composable* iff they connect through their respective service ports only. Their *composition* is given by $(M_1 \cup M_2, S)$ where S includes all ports from S_1 and S_2 that are not connected to another machine in $M_1 \cup M_2$. A set of machines M is *closed* iff all ports are connected to corresponding ports of machines that are in the same set. A structure can be complemented to a closed set by a so-called *honest user* H and an *adversary* A, where H connects to service ports only, and A connects to all remaining open ports, and both machines may interact. The tuple (M, S, H, A) is then called a *configuration* of (M, S) where one of the machines H or A plays the role of the master scheduler, i.e., if no machine was activated by receiving a message, the master schedule is activated. A closed set C is a runnable system. The transcript of a single run is called a trace (often denoted by t and decorations thereof) and is defined to be a sequence of transitions performed by the machines. A transition of a machine M is of the form $(\overline{p}, s, s', \overline{p}')$ where \overline{p} describes the in-ports of M along with the current message written on these ports, s is the current configuration of M, s' is a successor configuration (computed depending on \overline{p} and s), and \overline{p}' are the out-ports along with the output produced. We denote by $run_{C,k}$ the distribution of traces induced by runs of C with security parameter k. The restriction $\mathbf{t}[S]$ of a trace \mathbf{t} to a set of in-ports S is defined in the obvious way. (Note that $\mathbf{t}[S]$ only depends on the first component (\overline{p}) of the transitions of t). Now, $run_{C,k}[S]$ denotes the distribution of the traces induced by runs of C with security parameter k when restricted to S. The restriction of a trace t to a machine M is obtained from t by removing all transitions not done by M. Now, the distribution of such traces given k is denoted by $view_{C,k}(M)$. We refer to the k-indexed family $\{view_{C,k}(M)\}_k$ of these views by $view_C(M)$. ### 2.2 Simulatability Simulatability is used in different areas of cryptography. Informally speaking, for reactive systems it says that whatever might happen to a protocol (M,S) can also happen to another protocol (M',S). Here both protocols need to have the same set of service ports S to allow for a meaningful comparison. Typically, (M',S) is an idealization, or specification, of the protocol task that (M,S) is to implement. We therefore call (M,S) the *real* and (M',S) the *ideal protocol*. For simulatability one requires that for every configuration (M,S,H,A), with honest user H and real adversary A, there is a configuration (M',S,H,A') of (M',S), with the same honest user H and a (possibly different) ideal adversary A', such that H cannot distinguish both scenarios. This is illustrated in Figure 1. The notion that H cannot distinguish both scenarios is captured by the notion of computational indistinguishability: Two families $(\mathsf{var}_k)_{k\in\mathbb{N}}$, $(\mathsf{var'}_k)_{k\in\mathbb{N}}$ of random variables on common domains D_k are computationally indistinguishable (" \approx ") if no polynomial-time algorithm can distinguish both distributions with non-negligible probability, i.e., if for all polynomial-time algorithms Dis the following holds: $$\left| \Pr \left[\mathsf{Dis}(1^k, \mathsf{var}_k) = 1 \right] - \Pr \left[\mathsf{Dis}(1^k, \mathsf{var}_k) = 1 \right] \right| \text{ is negligible in } k,$$ ¹ Actually, a structure represents a protocol in a specific corruption situation. To handle different corruption situations, *systems* (i.e., sets of structures) are used. However, in the style of [7, 19], we concentrate on a given specific corruption situation for ease of presentation. Fig. 1. Simulatability: The two views of H must be indistinguishable where a function $g: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is said to be *negligible* iff for all positive polynomials $Q, \exists k_0 \forall k \geq k_0: g(k) \leq 1/Q(k)$. **Definition 1** (Reactive Simulatability). Let structures (M,S) and (M',S) with identical sets of service ports be given. We write $(M,S) \geq_{\mathsf{sec}}^{\mathsf{poly}} (M',S)$, where $\geq_{\mathsf{sec}}^{\mathsf{poly}}$ is read as computationally at least as secure as or securely realizes, if for every configuration $conf = (M,S,\mathsf{H},\mathsf{A})$, there exists a configuration $conf' = (M,S,\mathsf{H},\mathsf{A}')$ (with the same H) such that $$view_{conf}(\mathsf{H}) \approx view_{conf'}(\mathsf{H}).$$ \Diamond One also defines *universal simulatability*, where A' in *conf'* does not depend on H, i.e., the order of quantifiers is reversed, and *blackbox simulatability*, where A' is the composition of a fixed part Sim (the *simulator*) and A. In the sequel, we omit the superscript poly. ### 3 Conditional Reactive Simulatability Reactive simulatability (Definition 1) permits configurations with arbitrary honest users H (satisfying some syntactic requirements on ports). In other words, reactive simulatability requires a faithful simulation of the combination of the real adversary and real protocol by the ideal adversary and ideal protocol for *every* honest user. This universal quantification over all honest users allows for a general composition theorem [32, 6], which says that if protocol (M, S) is as secure as protocol (M', S), then (M, S) can be substituted for (M', S) in *any* larger protocol without invalidating simulatability. For this type of compositional property, simulatability can even be shown to be necessary [28]. However, reactive simulatability may be too strict in certain practical scenarios: The simulation might fail for certain honest users, but in the application under consideration such users may not occur since the protocol in
question may always be used in a certain (secure) way. For example, consider Dolev-Yao style symmetric encryption. It was shown in [2] that this kind of encryption is not securely realizable in the sense of reactive simulatability, due to the so-called commitment problem: If an encrypted message is sent to the adversary, where the adversary neither knows the message nor the key, the best the simulator can do is to create a new key and encrypt a random message with this key. If later the message becomes known, indistinguishability guarantees that the simulation is still correct. However, if later the key becomes known, the simulator has to come up with a suitable key that decrypts the chosen ciphertext to the correct message. This is not possible in general. However, in the application under consideration the way Dolev-Yao style symmetric encryption is used, e.g., by a larger protocol (representing the honest user), may guarantee that the encryption key is never exposed. It turns out that in this situation faithful simulation is still possible. Following this idea, we propose a relaxation of reactive simulatability, called conditional reactive simulatability, where instead of quantifying over all honest users, we quantify only over those honest users which satisfy a certain condition. In this way troublesome honest users which would not occur in the application anyway can be ruled out. The conditions on honest users are expressed in terms of what we call predicates. A predicate, which is defined with respect to a set S of ports (typically service in-ports), is a set of sequences of bit strings for every port of S. Using predicates, we can restrict the kind and the order of messages on ports of S in a run of a system. To formally define these predicates, we need the following notation: For sets S and S, we denote by S the set of mappings from S to S. If S is a finite set, then the elements of S can be considered to be tuples where every component corresponds to an element of S. For S and a set S, we denote by S the set of all words over S of length S. Now, predicates are defined as follows: **Definition 2** (Predicates). Let S be a set of ports. We call a set π with $$\pi \subseteq \bigcup_{i \ge 0} ((\{0,1\}^*)^S)^i.$$ a predicate π over S if the following conditions are satisfied: - 1. If $\pi = s_1 \cdots s_i$, $s_j \in (\{0,1\}^*)^S$, then we have that for every $j \in \{1,\ldots,n\}$ there exists $p \in S$ such that $s_j(p) \neq \varepsilon$, i.e., for every s_j at least one port contains a non-empty message. - 2. π is decidable in polynomial-time, i.e., there is a probabilistic polynomial-time algorithm that, on input t, outputs whether or not $t \in \pi$. We call $t \in \pi$ an S-trace. \diamond Instead of a single predicate, one could also consider a family of predicates indexed by the security parameter. However, for the application presented in this paper, simple predicates suffice. Also, all results presented in this paper easily carry over to the case of families of predicates. We will use the following notation. We write $\pi = \text{true}$ for a predicate π over S with $\pi = \bigcup_{i \geq 0} ((\{0,1\}^*)^S)^i$. Furthermore, for two predicates π_1 and π_2 over two disjoint port sets S_1 and S_2 , we write $\pi_1 \wedge \pi_2$ for the predicate containing all $(S_1 \cup S_2)$ -traces such that for every trace in $\pi_1 \wedge \pi_2$ its restriction to S_1 and S_2 belongs to π_1 and π_2 , respectively. Intuitively, $\pi_1 \wedge \pi_2$ represents the conjunction of π_1 and π_2 . An S-trace t' is a prefix of an S-trace t if there exist t'' such that $t = t' \cdot t''$ where '·' denotes concatenation. A predicate π over S is prefix-closed iff for every S-trace $t \in \pi$ every prefix of t belongs to π as well. We also call such a predicate a safety property since once it is violates it stays violated. Now, we say that a set of machines M fulfills a predicate π over a set of ports S, if in runs of M with any other set of machines the sequences of messages written on ports in S belong to π . More precisely, it suffices if this is true with overwhelming probability: **Definition 3 (Predicate Fulfillment).** Let M be a set of machines with service ports S and let π be a predicate over a subset S' of $S^{C,out}$. Then, M fulfills π if for any set of machines \overline{M} such that $C:=\{M,\overline{M}\}$ is closed, $\Pr_{t \leftarrow run_{C,k}} [t \lceil s' \in \pi]$ is overwhelming as a function in k. \Diamond We are now ready to present the definition of conditional reactive simulatability. ² Recall the definition of $S^{C,out}$ from Section 2. **Definition 4 (Conditional Reactive Simulatability).** Let structures (M,S) and (M',S) with identical set S of service ports be given, and let π be a predicate over a subset of the service in-ports of S. We say that (M,S) is at least as secure as (or realizes) (M',S) under condition π (written $(M,S) \geq_{\mathsf{sec}}^{\pi} (M',S)$) if for every configuration conf = (M,S,H,A) such that H fulfills π , there exists a configuration conf' = (M',S,H,A') (with the same H) such that $$view_{conf}(\mathsf{H}) \approx view_{conf'}(\mathsf{H}).$$ \Diamond Conditional universal simulatability and conditional blackbox simulatability are defined with the obvious modifications. ### 4 Composition Under Conditional Reactive Simulatability In this section, we present composition theorems for conditional reactive simulatability. As mentioned in the introduction, when composing protocols which assume certain conditions (predicates) to hold on their service in-ports and in turn guarantee certain conditions (predicates) to hold on service in-ports of other protocols, cyclic dependencies may occur. In what follows, we first introduce the general setting (Section 4.2) and then present general composition theorems both for the acyclic and cyclic case (Section 4.2 and 4.3). While for the acyclic case no restrictions on predicates are put, for the cyclic case we require predicates to be safety properties. ### 4.1 The General Setting One would expect that a protocol M_0 (for brevity we omit the service ports) that is simulatable under condition π can be securely composed with a protocol M_1 that fulfills π . In some applications, the larger protocol M_1 may fulfill π only if M_1 itself is used in a "sane" way, i.e., a predicate, say τ , is fulfilled on the service in-ports of M_1 . Then, one would expect that M_0 securely composes with M_1 as long as τ is fulfilled. More generally, we consider the composition of several protocols with assume-guarantee conditions among them. In what follows, this is formalized. Let π and τ be predicates over S_{π} and S_{τ} , respectively, and let \mathbf{t} be a trace. We say that \mathbf{t} satisfies $\tau \to \pi$ if $\mathbf{t} \lceil_{S_{\tau}} \in \tau$ implies $\mathbf{t} \lceil_{S_{\pi}} \in \pi$. **Definition 5** (Conditional Predicate Fulfillment). Let M be a set of machines with service ports S, τ be a predicate over a subset S_{τ} of S^{in} , and π be a predicate over a subset S_{π} of $S^{C,out}$. Then, M fulfills π under condition τ if $\tau \to \pi$ is satisfied with overwhelming probability no matter with which machines M interacts, i.e., for all sets \overline{M} of machines such that $C := \{M, \overline{M}\}$ is closed, we have that $$\mathsf{Pr}_{t \leftarrow run_{C,k}} [t \text{ satisfies } \tau \to \pi] \text{ is overwhelming as a function in } k.$$ \Diamond In what follows, for every i = 1, ..., n, let $P_i := (M_i, S_i)$ and $P'_i := (M'_i, S_i)$ be real and ideal protocols, respectively. We consider the following predicates for these protocols. Let τ_i^j be a predicate over $S_j^{C,out} \cap S_i^{in}$ (service in-ports of P_i to which P_j connects) and τ_i^{H} be a predicate over $S_i^{in} \setminus \bigcup_{j=1}^n S_j^{C,out}$ (service in-ports of P_i to which no other protocol connects). Intuitively, τ_i^j denotes the guarantees the *i*th protocol expects from the *j*th one. Analogously, τ_i^{H} specifies the guarantees the *i*th protocol expects from H. (Note that H may connect to all service in-ports of P_i the other protocols do not connect to.) We denote by $$\tau_i = \tau_i^{\mathsf{H}} \wedge \bigwedge_{j \neq i} \tau_i^j \tag{1}$$ the guarantees the ith protocol expects from other protocols. Note that τ_i is a predicate over S_i^{in} . Similarly, we now define the guarantees the *i*th protocol provides to other protocols. Let π_i^j be a predicate over $S_i^{C,out} \cap S_j^{in}$ (service in-ports of P_j to which P_i connects). Intuitively, π_i^j denotes the guarantees the *i*th protocol gives to the *j*th one. Note that we do not consider a predicate π_i^H . This simplifies our presentation and is without loss of generality since we are only interested in the compositionality properties of the composed protocol. We denote by $$\pi_i = \bigwedge_{j \neq i} \pi_i^j. \tag{2}$$ the guarantees the *i*th protocol provides to other protocols. Note that π_i is a predicate over $\bigcup_{j\neq i} (S_i^{C,out} \cap S_j^{in})$. In order for the composition theorems to hold, we clearly need that $$\pi_i^i \subseteq \tau_i^j,$$ (3) i.e., the guarantees τ_i^j the ith protocol expects from the jth one are actually met by the guarantees π_j^i the jth protocol offers to the ith protocol. Obviously, in the setting above the guarantees among the protocols may be cyclic: the ith protocol provides guarantee π_i^j (and hence, τ_j^i) to the jth protocol only if the jth protocol guarantees τ_i^j , and vice versa, i.e., the jth protocol provides guarantee π_j^i (and hence, τ_i^j) to the ith protocol only if the ith protocol
guarantees τ_j^i . Hence, in case $\tau_j^i \neq \text{true}$ and $\tau_j^i \neq \text{true}$ the dependencies between the ith and jth protocol are cyclic. The following is a concrete example. Example 1. Say that an encryption system P_1 guarantees that the secret key is not output in plain as long as this secret key is not submitted as part of a plaintext for encryption. However, a larger protocol P_2 that uses that encryption system might want to encrypt plaintexts multiple times, possibly tagged with some syntactic type information. In particular, as long as no ciphertext itself contains the secret key in plain, this secret key will not be submitted for encryption. In other words, there is a mutual dependency between P_1 and P_2 . (Obviously, in this particular case secure composition is possible.) More generally, cyclic dependencies are defined as follows: Let the (directed) dependency graph G=(V,E) be given by $$V = \{V_1, \dots, V_n\}, \quad E = \{(V_i, V_i) : \tau_i^j \neq \text{true}\}.$$ (4) If G is acyclic, we say that the dependencies between the protocols are *acyclic* or *non-mutual*, and otherwise, we say that they are *cyclic* or *mutual*. In the following two subsections, we prove theorems for securely composing protocols, both in the case of acyclic and cyclic dependencies between the protocols. In these theorems we need to argue that the condition τ_i the *i*th protocol expects to be satisfied are in fact fulfilled when composing all protocols. In case of acyclic dependencies between the protocols, this is possible because the fulfillment of τ_i can be traced back to the conditions satisfied by other protocols or the honest users. In case of cyclic dependencies this is in general not possible because one runs into cycles. However, as we will see, if the predicates involved are safety properties, cyclic dependencies can be resolved. We note that the predicates informally stated in Example 1 are in fact safety predicates. ### 4.2 Composition in the Acyclic Case In this section, we prove the following general composition theorem for the case of acyclic dependencies between the protocols. **Theorem 1.** For every i = 1, ..., n, let $P_i = (M_i, S_i)$ and $P'_i = (M'_i, S_i)$ be protocols as introduced above with $P_i \ge_{\text{sec}}^{\tau_i} P'_i$, and assume that M'_i fulfills π_i under condition τ_i where π_i and τ_i are defined as above and condition (3) is satisfied. If the dependencies between the protocols are acyclic, we have, for every i, that $$P_1 || \dots || P_n \ge_{\text{sec}}^{\tau} P_1 || \dots || P_{i-1} || P_i' || P_{i+1} || \dots || P_n,$$ (5) where $\tau := \bigwedge_{j=1}^n \tau_j^{\mathsf{H}}$. Moreover, $$P_1||\dots||P_n \geq_{\text{sec}}^{\tau} P_1'||\dots||P_n'. \tag{6}$$ Before we prove this theorem, we present useful corollaries of this theorem. The first corollary considers the case of two protocols and it easily follows from Theorem 1 using that $P_2 \ge_{\text{sec}} P_2$. Corollary 1 (Conditional Subroutine Composition). Assume that $P_1 \ge_{\text{sec}}^{\pi} P_1'$. Let $P_2 = (M_2, S_2)$ be a protocol such that M_2 i) connects to all ports over which π is defined and ii) fulfills π under condition τ where τ is a predicate over the service in-ports of P_2 to which P_1 does not connect. Then, $$P_1||P_2 \ge_{\text{sec}}^{\tau} P_1'||P_2.$$ If $\tau = \text{true}$, i.e., M_2 fulfills π unconditionally, we obtain $$P_1||P_2 \ge_{\text{sec}} P_1'||P_2.$$ Theorem 1 also allows to combine two protocols that are not connected via service ports: **Corollary 2** (Parallel Composition). Assume that $P_1 \ge_{\text{sec}}^{\pi_1} P_1'$ and $P_2 \ge_{\text{sec}}^{\pi_2} P_2$ such that P_1 and P_2 are not connected via service ports. Then, $$P_1||P_2 \ge_{\text{sec}}^{\pi_1 \wedge \pi_2} P_1'||P_2'.$$ *Proof of Theorem 1.* The proof relies on the following definition: **Definition 6.** Let M, τ, π be as in Definition 5. Then, M fulfills π under enforced condition τ if the predicate π is true with overwhelming probability when M interacts with machines that fulfill τ , i.e., for all sets \overline{M} of machines that fulfill τ and such that $C := \{M, \overline{M}\}$ is closed, it holds that $\Pr_{t \leftarrow run_{C,k}}[t \text{ satisfies } \pi] \text{ is overwhelming as a function in } k.$ \Diamond Obviously, if M fulfills π under condition τ , then M fulfills π under enforced condition τ . As a preparation for our proof, note that for $i=1,\ldots,n$, both M_i' and M_i fulfill π_i under enforced condition τ_i . For M_i' , this is clear by assumption, and for M_i it follows from $M_i \geq_{\mathsf{sec}}^{\tau} M_i'$. (Assuming that it is not true for M_i , one obtains an honest user which cannot be simulated, contradicting the assumption that $M_i \geq_{\mathsf{sec}}^{\tau} M_i'$.) Now fix $i \in \{1,\ldots,n\}$ and set $$\tilde{P}_i := P_1 || \dots || P_n \text{ and } \tilde{P}'_i := P_1 || \dots || P_{i-1} || P'_i || P_{i+1} || \dots || P_n.$$ Theorem statement (5): We need to show that for every configuration $conf = (\tilde{P}_i, H, A)$ of \tilde{P}_i , where H fulfills τ , there is a valid configuration $conf' = (\tilde{P}'_i, H, A')$ of \tilde{P}'_i with the same H such that $$view_{conf}(\mathsf{H}) \approx view_{conf'}(\mathsf{H}).$$ (7) Step 1: We construct a new user H_i as a combination of H with all protocol machines M_j except for M_i . Note that H_i is polynomial-time, so in any case, $conf_i := (P_i, H_i, A)$ is a configuration of P_i . H_i fulfills τ_i : Note that this statement makes sense because H_i connects to all of M_i 's service ports. The somewhat technical proof can be found in the appendix (Lemma 2). In this proof we use that M_i fulfills π_i under enforced condition τ_i . Step 2: Now, since H_i fulfills τ_i , the conditional simulatability of M_i guarantees the existence of a configuration $conf'_i := (P'_i, H_i, A')$ with $$view_{conf_i}(\mathsf{H}_i) \approx view_{conf_i'}(\mathsf{H}_i).$$ In particular, this yields $$view_{conf_i}(\mathsf{H}) \approx view_{conf'}(\mathsf{H})$$ (8) for the submachine H of H_i . Step 3: Decomposing H_i into H and the machines M_j $(j \neq i)$ yields a valid configuration (\tilde{P}'_i, H, A') of protocol \tilde{P}'_i such that (7) follows from (8) as desired. Theorem statement (6): We show $$P'_1||\dots||P'_{i-1}||P_i\dots||P_n \ge_{\text{sec}}^{\tau} P'_1||\dots||P'_i||P_{i+1}\dots||P_n$$ (9) for i = 1, ..., n by repeatedly applying (5). The case i = 1 is directly implied by (5), and for i > 1, all P_j with j < i can be set to P'_j . Then by transitivity, (9) implies (6), which completes the proof. ## 4.3 Dealing with Mutual Dependencies – Composition in the Cyclic Case In this section, we show that protocols can securely be composed even in case of cyclic dependencies given that the predicates considered are safety properties. **Theorem 2.** For every i = 1, ..., n, let $P_i = (M_i, S_i)$ and $P'_i = (M'_i, S_i)$ be protocols as introduced in Section 4.1 with $P_i \geq_{\mathsf{sec}}^{\tau_i} P'_i$, and assume that M'_i and M_i fulfills π_i under condition τ_i where π_i and τ_i are defined as in Section 4.1 and condition (3) is satisfied. Also, assume that all predicates τ_i^j , τ_i^H , and π_i^j are safety properties. Then, for all i, we have: $$P_1 || \dots || P_n \ge_{\text{sec}}^{\tau} P_1 || \dots || P_{i-1} || P_i' || P_{i+1} || \dots || P_n,$$ (10) where $\tau := \bigwedge_{j=1}^n \tau_j^H$. Moreover, $$P_1||\dots||P_n \geq_{\mathsf{sec}}^{\tau} P_1'||\dots||P_n'. \tag{11}$$ We note that in Theorem 2 the requirement that M_i fulfills π_i under condition τ_i can be dispensed with if service out-ports are scheduled locally (which in most scenarios is the case): The reason is that, as in the proof of Theorem 1, it easily follows that if M_i' fulfills π_i under condition τ_i , then M_i fulfills π_i under enforced condition τ_i . Now, it is not hard to see that if service out-ports are scheduled locally, then the notion of Definition 6 implies the one of Definition 5. Hence, M_i fulfills π_i under condition τ_i . *Proof of Theorem* 2. For the proof of Theorem 2, we need some terminology. For a trace \mathbf{t} and predicates τ and π such that τ and π are safety properties, we say that \mathbf{t} satisfies $\tau \to \pi$ at any time if \mathbf{t}' satisfies $\tau \to \pi$ for every prefix \mathbf{t}' of \mathbf{t} . **Definition 7.** Let M, π, τ be as in Definition 5 such that π and τ are safety properties. Then, M fulfills π under condition τ at any time if the predicate $\tau \to \pi$ is satisfied at any time with overwhelming probability, no matter with which machines M interacts, i.e., for all sets \overline{M} such that $C := \{M, \overline{M}\}$ is closed, it holds that $$\mathsf{Pr}_{t \leftarrow run_{C,k}} [t \ satisfies \ \tau \rightarrow \pi \ at \ any \ time] \ is \ overwhelming \ as \ a \ function \ in \ k.$$ (12) \Diamond We can show that the above notion is equivalent to the one defined in Definition 5. **Lemma 1.** Let M, π , and τ be as in Definition 7, and such that M contains no master scheduler. Then we have that M fulfills π under condition τ at any time iff M fulfills π under condition τ . Proof. The implication from left to right is obvious. To see the converse direction, let \overline{M} be a set of machines such that $C = \{M, \overline{M}\}$ is closed and let the polynomial p(k) bound the runtime of \overline{M} . (Note that \overline{M} necessarily contains a master scheduler.) First, by definition, if a trace \mathbf{t} of C does not satisfy $\tau \to \pi$ at any time, then there exists a prefix
\mathbf{t}' of \mathbf{t} which does not satisfy $\tau \to \pi$, i.e., $\mathbf{t}' \lceil_{S_{\tau}} \in \tau$ but $\mathbf{t}' \lceil_{S_{\pi}} \notin \pi$. Let \mathbf{t}' be of minimal length with this property. It is easy to see that the last transition of \mathbf{t}' must be a transition of \overline{M} . Now, assume that (12) is not satisfied, i.e., $\Pr_{\mathbf{t} \leftarrow run_{C,k}} [\mathbf{t} \text{ does not satisfy } \tau \to \pi \text{ at any time}]$ is a non-negligible function in k. Consider the machine \overline{M}^* which simulates \overline{M} but at the beginning randomly chooses a position $i \in \{1, \dots, p(k) + 1\}$ and when activated for the ith time it stops (simulating \overline{M}). Let $C^* = \{M, \overline{M}^*\}$. Intuitively, \overline{M}^* has a high probability to stop a run of C^* exactly when the trace produced so far does not satisfy $\tau \to \pi$. In fact, using that (12) is not satisfied it is easy to verify that $\Pr_{\mathbf{t} \leftarrow run_{C^*,k}} [\mathbf{t} \text{ does not satisfy } \tau \to \pi]$ is a non-negligible function in k. This implies that M does not fulfill π under condition τ . We can now prove Theorem 2. For an overview of the proof, see Figure 2. We first prove (10), from which then (11) follows as in the proof of Theorem 1. Fix $i \in \{1, ..., n\}$ and set $$\tilde{P}_i := P_1 || \dots || P_n \text{ and } \tilde{P}'_i := P_1 || \dots || P_{i-1} || P'_i || P_{i+1} || \dots || P_n.$$ We need to show that for every configuration $conf = (\tilde{P}_i, \mathsf{H}, \mathsf{A})$ of \tilde{P}_i , where H fulfills τ , there is a valid configuration $conf' = (\tilde{P}_i', \mathsf{H}, \mathsf{A}')$ of \tilde{P}_i' with the same H , such that $$view_{conf}(\mathsf{H}) \approx view_{conf'}(\mathsf{H}).$$ (13) Step 1: We construct a new user H_i as a combination of H with all protocol machines M_j except for M_i . Note that H_i is polynomial-time, so in any case, $conf_i := (P_i, H_i, A)$ is a configuration of P_i . Fig. 2. Overview of the proof of Theorem 2. Step 2: We modify H_i into a new user H_i^* such that H_i^* fulfills τ_i . This is done by substituting all sets of submachines M_j ($j \neq i$) of H_i by sets of machines M_j^* that fulfill their respective predicates π_j without any preconditions. More specifically, M_j^* simulates M_j and in addition checks whether τ_j is fulfilled, i.e., whether the observed sequence of inputs on in-ports of M_j lies in τ_j . By assumption, this can be done efficiently. If τ_j is not fulfilled, then M_j^* halts immediately. First claim regarding H_i^* : We claim that the view of the submachine H of H_i is not changed (non-negligibly) by this modification, i.e., we claim $$view_{conf_{:}}(\mathsf{H}) \approx view_{conf_{:}}(\mathsf{H})$$ (14) where $conf_i^* = (P_i, \mathsf{H}_i^*, \mathsf{A}).$ Assume for contradiction that (14) does not hold. Then the probability that some τ_j $(j \neq i)$ is not fulfilled in a run of $conf_i$ is non-negligible (since otherwise, $conf_i$ and $conf_i^*$ behave identical). Let j be such that τ_j is with non-negligible probability the *first* of all predicates τ_ℓ $(1 \leq \ell \leq n)$ to become false in a run of $conf_i$. By "first", we mean that there is a prefix of the considered run that does not lie in τ_j , but all shorter prefixes lie in $all \ \tau_\ell$. (Note that by the prefix-closeness of all τ_ℓ such a prefix must exist for some j.) Because of (1), there is thus a τ_j^r (with $r \in \{1, \dots, n, H\} \setminus \{j\}$) such that with non-negligible probability, τ_j^r becomes false before any other predicate τ_ℓ , $\ell \neq j$, and $\tau_j^{r'}$, $r' \neq r$, does. As r = H directly contradicts the assumption on H, we may assume $r \neq H$. Now by assumption, M_r fulfills π_r , and thus, by (3) and (1), also τ_j^r under condition τ_r (in the sense of Definition 5). By Lemma 1 and the just derived statement about τ_j^r , this implies that with non-negligible probability, τ_r is false *before* τ_j is. This is a contradiction to the choice of j. Second claim regarding H_i^* : We claim that H_i^* fulfills τ_i (without any precondition). By (1) and the assumption on H, it suffices to prove that for any $j \neq i$, M_j^* fulfills τ_i^j without any precondition. Now since M_j fulfills π_j under condition τ_j , it also does so at any time (Lemma 1). That is, it holds with overwhelming probability that at any point during a run of M_j , π_j is true unless τ_j becomes false. By construction, M_j^* and M_j behave identically unless τ_j becomes false. That is, also M_j^* fulfills π_j under condition τ_j at any time. In particular, by definition of M_j^* , with overwhelming probability π_j is true when M_j^* halts. It is also easy to see that π_j cannot become false after M_j^* has halted. Hence, M_j^* fulfills π_j , and thus, τ_j^j unconditionally. Step 3: As H_i^* fulfills τ_i , the conditional simulatability of M_i guarantees the existence of a configuration $conf_i^{*\prime} := (P_i', \mathsf{H}_i^*, \mathsf{A}')$ with $$view_{conf_i^*}(\mathsf{H}_i^*) \approx view_{conf_i^{*'}}(\mathsf{H}_i^*).$$ In particular, this yields $$view_{conf_{i}^{*}}(\mathsf{H}) \approx view_{conf_{i}^{*}}(\mathsf{H})$$ (15) for the submachine H of H_i^* . Step 4: We substitute H_i^* again by H_i . Since, by assumption, M_i' fulfills π_i under condition τ_i , analogously to Step 2 we can show that $$view_{conf_{i}^{*}}(\mathsf{H}) \approx view_{conf_{i}^{\prime}}(\mathsf{H})$$ (16) where $conf'_i = (P'_i, H_i, A')$. Step 5: Decomposing H_i into H and the machines M_j $(j \neq i)$ yields a valid configuration (\tilde{P}'_i, H, A') of protocol \tilde{P}'_i such that (10) follows from (14), (15) and (16) as desired. ## 5 Applications and Examples In this section, we provide examples substantiating the claim that conditional reactive simulatability constitutes a suitable security notion for circumventing known impossibility results of simulating interesting abstractions of cryptography. In addition, we illustrate that imposing suitable constraints on the environment may allow for a simulation proof based on much weaker assumptions on the underlying cryptography. Generally speaking, conditional reactive simulatability allows for exploiting knowledge of which protocol class will use the protocol under investigation, resulting in more fine-grained reasoning about cryptographic protocols. More specifically, we prove that Dolev-Yao style abstractions of symmetric encryption can be correctly simulated by conditioning environments to those cases that do not cause a so-called commitment problem. For unconditional simulatability, Dolev-Yao style symmetric encryption is known not to be simulatable at all [2]. If one further constraints the environment not to create key cycles, e.g., encrypting a key with itself, we can even establish conditional simulatability based on considerably weaker assumptions on the underlying cryptographic encryption scheme. Finally, we show that conditional simulatability may naturally entail unconditional simulatability for composed protocols again. ### 5.1 Conditional Simulatability of Dolev-Yao Style Symmetric Encryption For Dolev-Yao style symmetric encryption, the following so-called commitment problem inherently prevents the successful application of unconditional reactive simulatability. The ideal encryption system must somehow allow that secret keys are sent from one participant to another. This is used for example in key-exchange protocols. If the ideal system simply allows keys to be sent at any time (and typical Dolev-Yao models do allow all valid terms to be sent at any time), the following problem can occur: An honest participant first sends a ciphertext such that the adversary can see it, and later sends both the contained plaintext and the key. This behavior may even be reasonably designed into protocols, e.g., the ciphertext might be an encrypted bet that is later opened. The simulator will first learn in some abstract way that a ciphertext was sent and has to simulate it by some bitstring, which the adversary sees. Later the simulator sees abstractly that a key becomes known and that the ciphertext contains a specific application message. It cannot change the application message, thus it must simulate a key that decrypts the old ciphertext bitstring (produced without knowledge of the application message) to this specific message. We omit a rigorous definition of the absence of the commitment problem for Dolev-Yao style symmetric encryption as given in [2, 4] but only give an informal definition for the sake of readability: **Definition 8** (No Commitment Property of Dolev-Yao Style Symmetric Encryption, informally). The No Commitment property NoComm of Dolev-Yao style symmetric encryption consists of those traces of Dolev-Yao style symmetric encryption that satisfy the following trace predicate: If a term is encrypted at time t_1 in this trace by an honest user u with secret key sk, and at this time sk is not known to the adversary, then the adversary does not learn the key sk at any future time t_2 in this trace. Technically, the requirement that an adversary does not learn certain keys relies on the state of the Dolev-Yao model which keeps track of who knows which term; thus Definition 8 is syntactically not a predicate in the sense of Definition 2. However, those parts of the state that capture if an adversary already knows keys generated by honest users are uniquely determined by the preceding inputs at the service in-ports. Thus NoComm can naturally be recast as a property that is only defined at the service in-ports of the
Dolev-Yao model and thus as a predicate in the sense of Definition 2 (however with a much more tedious notation). The main result of [4] provides a simulation for those cases in which NoComm is fulfilled provided that the cryptographic encryption scheme fulfills the notion of dynamic KDM security [4]. We can now rephrase their result in our formalism to benefit from the compositionality guarantees entailed by our composition theorems. In the following, let $(\{TH_{\mathcal{H}}^{\text{cry_sym,id}}\}, S_{\mathcal{H}})$ and $(\{M_{\mathcal{E},u}^{\text{cry_sym,real}} \mid u \in \mathcal{H}\}, S_{\mathcal{H}})$ denote the Dolev-Yao model of symmetric encryption and its cryptographic realization from [2, 4], respectively, for a set $\mathcal{H} \subseteq \{1, \ldots, n\}$ of honest users, and an encryption scheme \mathcal{E} . Theorem 3 (Conditional Reactive Simulatability of Dolev-Yao Style Symmetric Encryption). For all symmetric encryption schemes \mathcal{E} that satisfy dynamic KDM security, and for all sets $\mathcal{H} \subseteq \{1,\ldots,n\}$ of honest users, the realization of the Dolev-Yao model is at least as secure as the Dolev-Yao model under condition NoComm, i.e., $(\{M_{\mathcal{E},u}^{\mathsf{cry_sym,real}} \mid u \in \mathcal{H}\}, S_{\mathcal{H}}) \geq_{\mathsf{sec}}^{\mathsf{NoComm}} (\{\mathsf{TH}_{\mathcal{H}}^{\mathsf{cry_sym,id}}\}, S_{\mathcal{H}})$. ### 5.2 Securely Realizing Dolev-Yao Style Symmetric Encryption with Weaker Cryptography While Theorem 3 shows that Dolev-Yao style symmetric encryption can be conditionally simulated by excluding the commitment property, it still relies on the strong assumption that the underlying encryption scheme satisfies dynamic KDM security – a very strong, non-standard notion for which no realization in the standard model of cryptography is known. However, it turns out that this strong notion is only necessary to deal with the quite exotic case that symmetric keys are encrypted in a cyclic manner, e.g., a key with itself. Most protocols however avoid such constructions by definition, and indeed further constraining simulatability to traces that do not contain key cycles yields a simulatability result based on considerably weaker assumptions on the underlying encryption scheme. More precisely, it suffices that the encryption scheme satisfies indistinguishability under adaptive chosen-ciphertext attacks as well as integrity of ciphertexts. This is the standard security definition of authenticated symmetric encryption [12, 11], and efficient symmetric encryptions schemes provably secure in this sense exist under reasonable assumptions [21, 27]. **Definition 9** (No Key Cycles for Dolev-Yao Style Symmetric Encryption, informally). The No Key Cycles property NoKeyCycles of Dolev-Yao style symmetric encryption consists of those traces of Dolev-Yao style symmetric encryption in which honest users do not create encryptions $E(sk_i, m_i)$ such that sk_{i+1} is a subterm of m_i for $i = 0, \ldots, j-1$ for some j, and sk_0 is a subterm of m_j . Theorem 4 (Conditional Reactive Simulatability of Dolev-Yao Style Symmetric Encryption w/o Key Cycles). For all authenticated symmetric encryption schemes \mathcal{E} and all sets $\mathcal{H} \subseteq \{1,\ldots,n\}$ of honest users, the realization of the Dolev-Yao model is at least as secure as the Dolev-Yao model under condition NoComm \land NoKeyCycles, i.e., $(\{M_{\mathcal{E},u}^{\text{cry_sym,real}} \mid u \in \mathcal{H}\}, S_{\mathcal{H}}) \geq_{\text{sec}}^{\text{NoComm} \land \text{NoKeyCycles}} (\{TH_{\mathcal{H}}^{\text{cry_sym,id}}\}, S_{\mathcal{H}})$. ### 5.3 Simulatable Protocols from Conditionally Simulatable Subprotocols We finally illustrate, exploiting Corollary 1, that conditional simulatability can often be turned into unconditional simulatability again (and in fact, this seems rather the rule than the exception). Consider a secure channel between two parties that uses Dolev-Yao style symmetric encryption as a subprimitive, which itself is only conditionally simulatable. The secure channel consists of two machines M_1 and M_2 . M_1 expects a message m as input at a service port in?, and encrypts this message with a symmetric key k shared with M_2 . The encryption is computed using Dolev-Yao style symmetric encryption as a subprimitive, i.e., m is output at a service port enc_out_1! and the resulting encryption e is obtained at a service port enc_in_1?. M_2 outputs the message at a service port out!. We do not give a rigorous definition of this behavior here since this would presuppose introducing a significant amount of notion from [2] but it should be clear already that this secure channel neither causes a commitment problem nor any key cycles by construction. Let $(M^{sc}, S^{sc}) := (\{M_1, M_2\}, \{in?, out!, enc_out_1!, enc_in_1?\})$ denote the secure channel. **Theorem 5.** For all authenticated symmetric encryption schemes \mathcal{E} , and for $\mathcal{H} = \{1,2\}$, the secure channel based on the realization is unconditionally at least as secure as the secure channel based on the Dolev-Yao model, i.e., $(M^{\text{sc}}, S^{\text{sc}})||(\{\mathsf{M}^{\mathsf{cry_sym,real}}_{\mathcal{E},u} \mid u \in \mathcal{H}\}, S_{\mathcal{H}}) \geq_{\mathsf{sec}} (M^{\mathsf{sc}}, S^{\mathsf{sc}})||(\{\mathsf{TH}^{\mathsf{cry_sym,id}}_{\mathcal{H}}\}, S_{\mathcal{H}}).$ ### 6 Conclusion We presented a relaxation of simulatability, one of the central concepts of modern cryptography for defining and analyzing the security of multi-party protocols, by permitting to constrain environments to adhere to certain behaviors. The resulting notion is called conditional reactive simulatability. It constitutes a more fine-grained security notion that is achievable i) for several protocols for which traditional simulatability is too strong a notion, and ii) based on weaker requirements on the underlying cryptography. In addition, conditional reactive simulatability maintains the interesting property that for various protocol classes, composition of conditionally simulatable protocols yield protocols that are simulatable in the traditional sense. We furthermore showed that despite imposing restrictions on the surrounding protocol and thus giving up the universal quantification of environments that naturally allowed for compositionality proofs in earlier works, the notion of conditional reactive simulatability still entails strong compositionality guarantees. In particular, this holds for the common case of composing so-called assume-guarantee specifications, i.e., specifications that are known to behave properly if offered suitable inputs, provided that these assumptions and guarantees constitute arbitrary trace properties that do not give rise to cyclic dependencies. We further investigated the theoretically more demanding (but arguably practically less interesting) case of cyclic dependencies among such specifications and proved a similar composition theorem under the additional assumption that conditions are expressible as safety properties. Acknowledgments. We thank Martín Abadi for interesting discussions. ### References Martín Abadi and Leslie Lamport. Conjoining specifications. ACM Transactional on Programming Languages and Systems., 17(3):507–534, 1995. - 2. Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In *17th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2004*, pages 204–218. IEEE Computer Society, 2004. Online available at http://eprint.iacr.org/2004/059.ps. - 3. Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, *Computer Security, Proceedings of ESORICS* 2005, number 3679 in Lecture Notes in Computer Science, pages 178–196. Springer-Verlag, 2005. Online available at http://eprint.iacr.org/2005/220.ps. - Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message security under active attacks. ePrint Archive, 2005/421, 2006. - 5. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library with nested operations. In 10th ACM Conference on Computer and Communications Security, Proceedings of CCS 2003, pages 220–230. ACM Press, 2003. Extended abstract, extended version online available at http://eprint.iacr.org/2003/015.ps. - 6. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for secure reactive systems. In Moni Naor, editor, *Theory of Cryptography, Proceedings of TCC 2004*, number 2951 in Lecture Notes in Computer Science, pages 336–354. Springer-Verlag, 2004. Online available at http://www.zurich.ibm.com/security/publications/2004/BaPfWa2004MoreGeneralComposition.pdf. - 7. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asynchronous reactive systems. Cryptology ePrint Archive, Report 2004/082, 2004. http://eprint.iacr.org/. - 8. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the Reactive Simulatability/UC of Dolev-Yao models with hashes. Cryptology ePrint Archive 2006/068, 2006. - 9. Boaz Barak and Amit Sahai. How to play almost any mental game over the net concurrent composition via super-polynomial simulation. In *46th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2005*, pages 543–552. IEEE Computer Society, 2005. Extended version online available at http://eprint.iacr.org/2005/106.ps. - 10. Donald Beaver. Foundations of secure interactive computing. In Joan Feigenbaum, editor, *Advances in Cryptology, Proceedings of CRYPTO '91*, number 576 in Lecture Notes in Computer Science, pages 377–391. Springer-Verlag, 1992. - 11. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In *Advances in Cryptology ASIACRYPT 2000*, pages
531–545, 2000. - 12. Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in plaintexts for efficient constructions. In *Advances in Cryptology ASIACRYPT 2000*, pages 317–330, 2000. - 13. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pages 136–145. IEEE Computer Society, 2001. Full version online available at http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps. - 14. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In *42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001*, pages 136–145. IEEE Computer Society, 2001. - 15. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint Archive, January 2005. Full and revised version of [14], online available at http://eprint.iacr.org/2000/067.ps. - 16. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, *Advances in Cryptology, Proceedings of CRYPTO 2001*, number 2139 in Lecture Notes in Computer Science, pages 19–40. Springer-Verlag, 2001. Full version online available at http://eprint.iacr.org/2001/055.ps. - 17. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure computation. In *34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002*, pages 494–503. ACM Press, 2002. Extended abstract, full version online available at http://eprint.iacr.org/2002/140.ps. - 18. Anupam Datta, Ante Derek, John C. Mitchell, Ajith Ramanathan, and Andre Scedrov. Games and the impossibility of realizable ideal functionality. In *To appear in Proceedings of Theory of Cryptography (TCC 2006)*, 2006. - 19. Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan. On the relationships between notions of simulation-based security. In *In Theory of Cryptography, Proceedings of TCC 2005*, pages 476–494, 2005. - 20. Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh. Assume-guarantee verification of source code with design-level assumptions. In *Proceedings 26th International Conference on Software Engineering*, pages 211–220, 2004. - 21. Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: Xcbc encryption and xecb authentication modes. In *Proceedings 8th Fast Software Encryption*", pages 82–108, 2001. - 22. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game—a completeness theorem for protocols with honest majority. In *Nineteenth Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1987*, pages 218–229. ACM Press, 1987. Extended abstract. - 23. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. *SIAM Journal on Computing*, 18(1):186–208, 1989. - 24. Heather Hinton. Composing partially-specified systems. In *IEEE Symposium on Security and Privacy, Proceedings of SSP 1998*, pages 27–39. IEEE Computer Society, 1998. Online available at http://www.zurich.ibm.com/~mbc/papers/BaPf_03Oakland.ps. - Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using random oracles. In Moni Naor, editor, *Theory of Cryptography, Proceedings of TCC 2004*, number 2951 in Lecture Notes in Computer Science, pages 58–76. Springer-Verlag, 2004. - 26. C. Jones. Specification and design of (parallel) programs. In *Information Processing 83: Proceedings 9th IFIP World Congress*, pages 321–322, 1983. - Charanjit Jutla. Encryption modes with almost free message integrity. In Advances in Cryptology EUROCRYPT 2001, pages 529–544, 2001. - 28. Yehuda Lindell. General composition and universal composability in secure multi-party computation. In *44th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2003*, pages 394–403. IEEE Computer Society, 2003. Full version online available at http://eprint.iacr.org/2003/141.ps. - 29. Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated byzantine agreement. In *34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002*, pages 514–523. ACM Press, 2002. Full version online available at http://eprint.iacr.org/2004/181.ps. - 30. Silvio Micali and Phillip Rogaway. Secure computation. In Joan Feigenbaum, editor, *Advances in Cryptology, Proceedings of CRYPTO '91*, number 576 in Lecture Notes in Computer Science, pages 392–404. Springer-Verlag, 1992. Abstract. - 31. J. Misra and M. Chandy. Proofs of networks of processes. IEEE Transactions of Software Engineering, 7(4):417-426, 1981. - 32. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application to secure message transmission. In *IEEE Symposium on Security and Privacy, Proceedings of SSP 2001*, pages 184–200. IEEE Computer Society, 2001. Full version online available at http://eprint.iacr.org/2000/066.ps. - 33. Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal composability without trusted setup. In *36th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2004*, pages 242–251. ACM Press, 2004. Extended version online available at http://eprint.iacr.org/2004/139.ps. - 34. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In 23th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 1982, pages 80–91. IEEE Computer Society, 1982. ### **A Postponed Proofs** **Lemma 2.** In the situation of the proof of Theorem 1, user H_i fulfills predicate τ_i . *Proof.* In the situation and using the notation from the proof of Theorem 1, consider running Algorithm 1. We will prove some facts about this algorithm (when run in the situation of the proof of Theorem 1). ### Algorithm 1 - 1: $R \leftarrow \{1, ..., n\}$ - 2: repeat - 3: $S \leftarrow \{s \in R \mid \forall r \in R : \tau_s^r = \mathtt{true}\}$ - 4: $R \leftarrow R \setminus S$ - 5: until $R = \emptyset$ or $S = \emptyset$ First claim: First, we claim that Algorithm 1 always terminates with $R=\emptyset$. It obviously suffices to prove that $S\neq\emptyset$ in each execution of Step 3: $S=\emptyset$ after any execution of Step 3 would imply that every vertex in the graph $G_R:=(V_R,E_R)$ with $$V_R = \{V_r \mid r \in R\}, \quad E_R = \{(V_a, V_b) : \tau_a^b \neq \text{true}\}.$$ has nonzero out-degree, so G_R contains a cycle. But this is a contradiction, since G_R is a subgraph of the graph G (as defined in (4)), and hence, must be acyclic by assumption. Second claim: For any $T \subseteq \{1, ..., n\}$, let $H_{\overline{T}}$ be the combined machine that consists of H and all machines M_t with $t \notin T$. We claim that at any point during a run of Algorithm 1, the machine $H_{\overline{R}}$ fulfills the predicate $$\pi_{\overline{R}} := \left(\bigwedge_{r \not\in R} \pi_r \right) \wedge \left(\bigwedge_{j=1}^n au_j^{\mathsf{H}} \right).$$ Initially, $R = \{1, ..., n\}$, so $H_{\overline{R}} = H$ and $\pi_{\overline{R}} = \bigwedge_{j=1}^n \tau_j^H = \tau$, hence the statement is initially true by assumption about H. So suppose the statement is true at the start of a "**repeat**" loop of Algorithm 1. We need to show that the statement is also true after that loop. In other words, we may assume that $H_{\overline{R}}$ fulfills $\pi_{\overline{R}}$ and need to show that combining the machines M_s $(s \in S)$ with $H_{\overline{R}}$ yields a machine $H_{\overline{R} \setminus S}$ that fulfills $\pi_{\overline{R} \setminus S}$. By definition of combination and property fulfillment, it suffices to show that each newly added submachine M_s ($s \in S$) fulfills π_s , so fix an $s \in S$. Since M_s fulfills π_s under enforced condition τ_s , we only need to show that in all contexts in which $\mathsf{H}_{\overline{R} \setminus S}$ is run, M_s 's precondition τ_s is fulfilled with overwhelming probability. But by (1) and the definition of S, τ_s is fulfilled whenever τ_s^H and all τ_s^r (with $r \notin R$) are fulfilled. Using (3), τ_s^r is implied by π_r^s and thus, using (2), also by π_r . But by assumption, $H_{\overline{R}}$, and hence also $H_{\overline{R}\setminus S}$ fulfills $\pi_{\overline{R}}$ and τ_s^H . Since s was arbitrary, this shows that $H_{\overline{R}\setminus S}$ fulfills all π_s ($s\in S$) and hence $\pi_{\overline{R}\setminus S}$. Conclusion: Using the first claims just proven, we conclude that at some point during the algorithm run, $i\in S$. For the corresponding R at that point, we also have that $H_{\overline{R}}$ fulfills $\pi_{\overline{R}}$. Since $i\in S$, with the same reasoning as for the second claim in this proof, we obtain that $H_{\overline{R}}$ fulfills τ_i . Consequently, also the combined machine H_i , which consists of H and all M_j ($j\neq i$) fulfills τ_i since $i\notin R$ and thus, H_i contains all machines from the combination $H_{\overline{R}}$.