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Abstract. In this work, we consider privacy in Radio Frequency IDentification (RFID)
systems. Our contribution is threefold: (1) We propose a simple, formal definition of strong
privacy useful for basic analysis of RFID systems, as well as a different (weaker) definition
applicable to multi-verifier systems; (2) We apply our definition to reveal vulnerabilities
in several proposed privacy-enhancing RFID protocols; and (3) We formally analyze and
suggest improvements to “Hash-Locks,” one of the first privacy-enhancing RFID protocols
in the literature.
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1 Introduction

Radio Frequency IDentification (RFID) systems offer improved efficiency in inventory control,
logistics, and supply chain management. As such, they are of great interest to enterprises intensively
reliant on supply chains, particularly large retailers and consumer product manufacturers. The long-
term goal of these organizations is to integrate RFID on the retail level. Without proper protection,
widespread adoption of retail RFID could raise privacy concerns for everyday consumers.

Briefly, RFID systems consist of two main components: tags and readers. Tags are radio
transponders attached to physical objects. Radio transceivers, or readers, query these tags for
some (potentially unique) identifying information about the objects to which tags are attached.
Although readers are often regarded as a simple conduit to a back-end database, for simplicity we
treat a reader and a back-end database as a single entity.

Historically, tags have been expensive, bulky devices used for tagging objects like shipping
containers, munitions, automobile parts, or even live cattle. The high value of such objects justifies
relatively expensive RFID devices that may perform complex computations, store ample data, and
initiate their own communications. Since people do not typically carry cattle or shipping containers
around with them, individual privacy is not an issue in these applications.

Concerns about privacy and security do arise, however, in new consumer applications of RFID.
RFID technology is present in proximity cards or “prox cards” for physical access control, autombile
keys, and in a variety of contactless payment systems. Many—if not the majority—of consumers in
industrialized countries today make regular use of such systems. One pervasive future application
will be “electronic product code” (EPC) tags. EPC tags will serve on consumer products as a
successor to optical “UPC” bar codes.

In the case of EPC tags, private information might be read from tags attached to products
like clothing, books, or prescription drugs. An insecure prox card payment system might leak
information about the movements of its users. But even if the semantic meaning of information



on tags is well protected, tags may still be recognizable between appearances, and thus subject to
tracking. This could violate individual “location privacy” for consumers, or could reveal strategic
information about an enterprise or military supply chain.

Because of their intentionally simple design, EPC tags cannot support expensive, traditional
cryptography and security functions—not even basic ciphers. Tight economic considerations sug-
gest that this will remain the case for the foreseeable future. Next-generation EPC tags (such
as the emerging, more expensive “Class 2” type) and other RFID tags, though, may be capable
of performing symmetric-key cryptography. While some of the RFID literature, e.g., [10, 15] ad-
dresses privacy in tags that cannot perform cryptography, we focus in this paper on privacy in
RFID systems where symmetric-key cryptographic operations are possible.

1.1 Privacy-preserving RFID protocols in the literature

Fortunately, much attention has been devoted to RFID security and privacy in recent years. Juels
offers a survey of much of the related literature in [14] and Avoine maintains a current online
bibliography at [3]. Rather than reviewing the literature here, we refer the reader to those sources.
While many RFID security schemes have been proposed, there has been little formal analysis.
Lacking formal security definitions, much existing work offers ad hoc notions of security.

1.2 Previous RFID-privacy definitions

Our proposed definition is similar in flavor to those of Avoine [2], who proposes very general
and flexible definitions of RFID privacy. The aim of Avoine, however, is to capture a range of
adversarial abilities, while we seek to characterize a very strong adversary with a relatively simple
definition. Thus, we aim for specificity and simplicity over flexibility. For example, the Avoine
definitions distinguish between adversarial eavesdropping on the reader-to-tag channel, i.e., reader
transmissions to tags, and the tag-to-reader channel, i.e., tag transmissions to the reader. (In
practice, the former is easier to eavesdrop on than the latter, as readers emit more power than
tags.) In contrast, we simply assume the ability of an adversary to eavesdrop on both channels.

On the other hand, our model is more general than the Avoine models in one important respect:
Ours characterizes the privacy of systems in which tags carry correlated secrets, as in the proposed
system of Molnar, Soppera, and Wagner (MSW) [19, 18]. This feature is lacking in the Avoine
models.

Consider the following scheme. Suppose that x is a secret value; let h represent a hash function
(modeled as a random oracle) and E represent a symmetric-key cipher in the ideal-cipher model.
At time step t, tag 1 outputs (Ex[1, t], h(1, t, x)); tag 2 similarly outputs (Ex[2, t], h(2, t, x)). Tag
3 outputs (Ex[3, t], x⊕ h(1, t, x)⊕ h(2, t, x)). Any pair of tags may be seen to offer strong privacy:
An adversary cannot distinguish among different outputs of a given tag. But clearly an adversary
capable of obtaining the outputs of the three tags at a given time t can completely break the privacy
of this system by recovering x. The Avoine definitions, however, permit adversarial interaction with
only two tags. They would classify this system as providing strong privacy (“Existential-UNT”).

While this three-tag construction is slightly artificial, it actually reflects a feature in realistic
RFID architectures. In the MSW system [18], for example, tags contain overlapping sets of secret
keys derived from a tree structure.

In other work, Juels [13] presents what he calls a “minimalist” model for tag privacy and
security. This model is geared at low-cost tags that cannot perform symmetric-key cryptography.
The accompanying formal privacy definition may be regarded as a specialized narrowing of our



definitions here. The Juels definition specifically assumes bounds on the number of queries that an
adversary can make in mounting a man-in-the-middle attack. Thus, that definition does not aim to
capture RFID privacy in a strong sense. Similarly, Golle et al. [11] define privacy is a sense specific
to a cryptographic primitive they propose called “universal re-encryption” of which they mention
RFID as a possible application. Their definition excludes certain forms of active adversarial attack.

Organization

In section 2, we present our formal definition for strong RFID privacy. In section 3, we examine
several different privacy-preserving RFID systems proposed in the literature. We show how each of
these systems falls short of our strong definition of privacy; we demonstrate practical attacks that
undermine important privacy characteristics. In section 4, we briefly examine a privacy-preserving
RFID idea called “Hash-Locks” that meets our definitional requirements. We prove that one variant
meets our privacy definition and propose a simple improvement that achieves privacy in a broader
sense. We conclude in Section 5.

2 Formal Privacy Definition

In this section we give a formal definition of privacy in RFID systems that can model a variety
of security protocols and attacks. We regard a system as comprising a single reader R and a set
of n tags T1, . . . , Tn. Each party is a probabilistic interactive Turing machine with an independent
source of randomness and unlimited internal storage. Tags and readers are modeled as “ideal func-
tionalities,” similar to entities in Canetti’s Universal Composability paradigm [8]. Functionalities
have a well-defined interface, may receive messages, and may respond with messages of their own.

We do not use the term “oracle” to describe tags and readers, since it sometimes implies a
deterministic function where inputs always have the same output. In our model, tags and readers
may maintain internal state, are randomized, and may adaptively change their output. We also
want to avoid confusion when we later use “oracle” in the context of the random oracle model.

2.1 Tag Functionalities

Each tag functionality Ti stores an internal secret key and a session identifier sid. A tag can be
assigned a new key via a SetKey message. A tag responds to a SetKey message by disgorging its
current key. The caller may then send an arbitrary new key to replace the prior key. A tag SID can
be set to a new value sid via the message (TagInit, sid). TagInit messages delete information
associated with an existing sid. In other words, a tag may be involved in only one protocol session
at a time.

A tag may respond to a protocol message or challenge, denoted cj , with a response rj . The tag
functionality interface is illustrated in Figure 1. We explain it further below.

2.2 Reader Functionality

The reader R is initialized with private key material. For the purposes of this model, this key
material is immutable and internal to the reader. Tag data may be thought of as residing in
a back-end database containing records of the tags “owned” by a particular reader. The reader
functionality initializes a new session upon receipt of a message of the form ReaderInit. When
receiving a ReaderInit message, R generates a fresh session identifier, sid, and the first challenge
of an interactive challenge-response protocol, c0.
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Fig. 1. Illustration of the Tag functionality interface.

For each ReaderInit received, the reader creates a new internal entry of the form (sid, “open”, c0).
Any responses containing sid are appended to that entry, as well as subsequent challenges, or any
other auxilliary data. This entry is marked as “closed” and becomes read-only when the reader
ultimately accepts or rejects a session. The interface to a reader functionality R is illustrated in
Figure 2; further explanation will follow.

R

R

A reader initializes a new 
session and returns the first 
challenge.

A reader receives a response 
and either accepts, rejects, or 
returns a new challenge.

READERINIT

(sid, c0 )

(sid, rj )

Accept, Reject, or cj+1

Fig. 2. Illustration of the Reader functionality interface.

2.3 Functionality Interaction

The sid values generated by passing ReaderInit messages to R may be passed as a TagInit
message to some T . Once a tag is initialized with a sid, it can respond to challenge cj with response
rj . This response can be a function of the key, sid, the j − 1 previous challenge-response pairs,
and locally generated randomness. The tag may internally log both the latest received cj and the



response rj . This protocol log and any other data except key are deleted by a tag upon receipt of
a TagInit message. Thus, a tag’s responses can only depend on that particular session.

Similarly, reader functionality R responds to messages of the form (sid, rj) by first searching
for a (sid, “open”, c0, r0, . . . , cj) session entry, if any exists. At this point, R performs a verification
step by computing a function over its entire internal state, including all open and closed sessions
and any internal key material. R can output an “accept” or “reject” and mark the session entry as
(sid, “closed”, c0, r0, . . . , cj , rj). Alternatively, R can compute the next challenge cj+1 and append
it to the corresponding session entry.

2.4 Parameterized Adversaries

An adversary A can issue its own SetKey, TagInit, ReaderInit, challenge, and response mes-
sages. We parameterize the number of ReaderInit messages sent by A with r, the number of
computational steps it performs by s, and the number of TagInit messages sent by t.

We do not parameterize the number of explicit challenge and response messages an adversary
may issue because it will be determined by the number of TagInit and ReaderInit messages.
That is, communication costs are entirely determined by r and t.

Nor do we parameterize the number of SetKey messages sent by A. An adversary able to issue
SetKey messages essentially models both the ability to corrupt a tag, since adversaries obtain its
internal tag keys, and to manufacture arbitrary tags, since adversaries can then set tag’s key to
an arbitrary value. For this reason, we will consider any tag that receives a SetKey message from
the adversary as “corrupted.” We assume an adversary is able to send as many SetKey messages
as it likes (within its computational step bound s), at any time, to any set of at most n− 2 tags.
The rationale for this n− 2 bound will be explained in the following section.

2.5 Privacy Experiment

We now present a “privacy experiment” reminiscent of the classic indistinguishability under chosen-
plaintext attack (IND-CPA) and under chosen-ciphertext attack (IND-CCA) cryptosystem security
experiments. The idea is that an RFID protocol may be considered private for some parameter
values if no adversary has a significant advantage in this experiment.

The goal of the adversary in this experiment is to distinguish between two different tags within
the limits of its computational power and functionality-call bounds.

That is why at least two tags need to be uncorrupted. In the first phase of this experiment, an
adversary A will be able to issue any messages and perform any computation within its parameter
bounds. The adversary A controls the communication channel between R and each Ti, and may
obtain or corrupt any sid, cj , or rj values at will.

The adversary selects two uncorrupted tags as challenge candidates. These challenge candidates
are removed from the pool of tags at large. One of these challenge candidates is then randomly
selected and presented to A (effectively as a tag oracle). A may then issue any messages and
perform any computation it likes within its parameter bounds, except issuing a SetKey command
to the tag oracle. (For most protocols, that would make the experiment trivial, although later we
briefly explore variants allowing corruption of challenge candidates.)

All key material is generated using a randomized function Gen(1k) → (key0, . . . , keyn). This
function is considered part of the overall RFID system and thus privacy depends on its charac-
teristics. This function is computable by an adversary. Obviously, its output in the experiment is
kept secret from A.

We denote our privacy experiment for an RFID system by Exppriv
A,S [k, n, r, s, t]. Here, S =

(Gen, R, {Ti}), where {Ti} contains n tags. We let k be a security parameter. Adversary A with



parameters r, s, and t is denoted by A[r, s, t], where r, s and t are respective parameters for reader
initializations, computation steps, and tag initializations. We detail our experiment in Figure 3.
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RFID Privacy Experiment

Experiment Exppriv
A,S [k, n, r, s, t]:

Setup:

(1) Gen(1k)→ (key0, . . . , keyn).
(2) Initialize R with (key0, . . . , keyn).
(3) Set each Ti’s key to keyi with a SetKey call.
Phase 1 (Learning):
(4) A may do the following in any interleaved order:

(a) Make ReaderInit calls, without exceeding r overall calls.
(b) Make TagInit calls, without exceeding t overall calls.
(c) Make arbitrary SetKey calls to any (n− 2) tags.
(d) Communicate and compute, without exceeding s overall steps.

Phase 2 (Challenge):
(5) A selects two tags Ti and Tj to which it did not send SetKey messages.
(6) Let T ∗0 = Ti and T ∗1 = Tj and remove both of these from the current tag set.

(7) Let b
R← {0, 1} and provide A access to T ∗b .

(8) A may do the following in any interleaved order:
(a) Make ReaderInit calls, without exceeding r overall calls.
(b) Make TagInit calls, without exceeding t overall calls.
(c) Make arbitrary SetKey calls to any tag in the current tag set except T ∗b .
(d) Communicate and compute, without exceeding s overall steps.

(9) A outputs a guess bit b′.
Exp succeeds if b = b′.

Fig. 3. The parameterized privacy experiment for the RFID system (Gen, R, {Ti}).

2.6 Privacy Definition

A protocol run within an RFID system S =(Gen,R, {Ti}) is defined to be private if no adversary
A[r, s, t] has a non-negligible advantage in successfully guessing b in the experiment in Figure 3.

We now define the notion of (r, s, t)-privacy for RFID systems. The variables r, s, and t can
be functions of system parameters like k, if desired, as we shall see in our analyses. We use the
notation poly(k) to represent any polynomial function of k.

Definition 1 (RFID (r, s, t)-Privacy).
A protocol initiated by R in an RFID system S = (Gen,R, {T1, . . . , Tn}) with security param-

eter k is (r,s,t)-private if:

∀A[r, s, t] Pr
[
Exppriv

A,S [k, n, r, s, t] succeeds in guessing b.
]
≤ 1

2
+ 1/poly(k).

2.7 Implications of (r, s, t)-Privacy

A few observations on our privacy definition are in order. Definition 1 requires that R not differ
significantly in its acceptance rate across tags. Otherwise, A could just pick, for example, one tag



that R accepts frequently and one that it accepts less frequently as its challenge candidates. R
must essentially “own” all the tags in {Ti}, or at least treat them all equally.
R also cannot be trivially history-dependent nor can its acceptance be influenced significantly

by A. For example, an R which accepts each tag only a fixed number m times cannot be private
in the face of an A able to make more than m + 1 ReaderInit calls. Such an adversary could
simply complete m legitimate queries to a tag Phase 1, and see if the reader accepts T ∗b in Phase
2. We discuss exactly this attack in Section 3.

Our definition treats protocol-level privacy issues only. In the real world, there are effectively
many possible side channels. As Avoine and Oechslin observe [5], for example, if tags emit a distinc-
tive “radio fingerprint,” then no protocol-level countermeasures can prevent privacy infringement.
And of course, bearers of privacy-preserving RFID tags are vulnerable to tracking if they addi-
tionally carry wireless devices that lack privacy protections.

An important implication of Definition 1 is that the Gen function cannot output low-entropy
or strongly correlated keys. Otherwise, A might have a significant advantage in guessing keys given
the output from SetKey calls. This illustrates how privacy by our definition depends on the entire
RFID system (Gen, R, {Ti}). There are classes of R and Gen that simply cannot be private under
this definition.

Remarks: (1) A superficial difference between the Avoine model and our own is that the target
tags in the Avoine model are determined not by the adversary, but by a “Challenger.” This
Challenger has unspecified functionality, but presumably selects target tags uniformly at random.
In an asymptotic sense, adversarial and random selection of target tags are equivalent: Random
selection will yield any desired pair of target tags with non-negligible probability.
(2) One may consider a variant of Exppriv

A,S experiment with a stronger adversary A that is allowed
to corrupt T ∗b in Phase 2 of the experiment, i.e. removing the words “except T ∗b ” from experiment
step (8c). In most schemes, this will trivially violate privacy. It is worthwhile, however, to consider
this definition of forward (r,s,t)-privacy. In a scheme with forward privacy of this kind, corrupting
a tag does not link it to its past output. (Forward privacy is a goal of the OSK/AO scheme that we
analyze below.) Forward privacy is strictly stronger than (r, s, t)-privacy as defined in Definition
1.

2.8 Cross-reader (r, s, t)-privacy

A limitation of our definition is that it models a world in which a reader R “owns” every tag,
i.e., a monolithic and closed system. While this model provides important insights into the privacy
properties of an RFID system, different (weaker) definitions can be useful for analyzing real-world
scenarios.

Consider an RFID system that contains two types of tags, type A and type B. The reader R
recognizes, i.e., accepts valid tags of type A. But it rejects all tags of type B. Our definition above
suggests that such a system can never be privacy preserving. An attacker can break the privacy of
the system by distinguishing between type A and type B tags.

In the real world, though, such scenarios frequently arise. There are many, independent RFID
systems; people carry heterogeneous constellations of tags, such as SpeedPass tags, contactless
credit-cards, proximity cards, automobile immobilizer chips, and so forth. The very diversity of
tag types leaks information. An unusual collection of tags could even be uniquely identifying. Thus,
while our privacy definition is useful for characterizing privacy within a single RFID system, an
extended or variant definition is needed to analyze multi-verifier privacy—and capture its inherent
limitations.



For this purpose, a different (weaker) privacy definition is useful. An attacker capable of mount-
ing unrestricted man-in-the-middle attacks can determine whether or not a given tag is recognized
by a given reader R. Such an attacker can, of course, easily violate the privacy of an RFID-tag
bearer by determining the presence of type A and type B tags on her person. For this reason—and
also because man-in-the-middle attacks can be tricky to mount in RFID environments—we propose
a variant of our privacy definition. This variant excludes man-in-the-middle attacks by means of a
very simple restriction on the adversary in Exppriv

A,S [k, n, r, s, t]: When A emits a ReaderInit call,
the system first emits TagInit calls with random sids to all tags. We call the modified experi-
ment Expcross−read−priv

A,S [k, n, r, s, t], and characterize a system in the obvious way as cross-reader
(r, s, t)-private.

Cross-reader (r, s, t)-privacy is useful in analyzing an environment with multiple, independent
verifiers (RFID readers). We can model such a system as an environment with just one reader R;
we simply assume type A and type B tags as above. Again, type A tags are those that lie within
the closed system for reader R, and type B tags are those in other, independent systems.

What is especially interesting about cross-reader (r, s, t)-privacy is its intersection with tag
authentication. As we show below, in a system where R recognizes all tags, i.e., all tags are of type
A, the original Weis et al. “hash-lock” system [26] is (r, s, t)-private and cross-reader (r, s, t)-private
for polynomial r, s, t. In a system with tags of types A and B, however, the Weis et al. system is
not cross-reader private. This is true because the system does not provide strong authentication for
tags. Without mounting a man-in-the-middle attack, an adversary can simulate a target RFID tag
and determine whether it is of type A or B, thereby undermining privacy. As we show, however, by
adding strong authentication to the Weis et al. system, we can confer cross-reader (r, s, t)-privacy
for polynomial r, s, t in a multi-verifier environment.

Remark: Even cross-reader privacy definition is unachievable when type A and type B tags may
be distinguished outside the protocol layer. For example, if the two types operate at different
frequencies, an attacker can distinguish between them without reference to any valid reader. In
such cases, the best privacy that can be hoped for is indistinguishability, i.e., cross-reader privacy
among tags of a given physical type.

3 Analysis of Several Proposed RFID Schemes

We now examine several RFID privacy schemes proposed in the literature: (1) That of Ohkubo,
Suzuki, and Kinoshita (OSK) [23] and a variant proposed by Avoine and Oechslin (AO) [6] (with
a follow-up by Avoine, Dysli, and Oechslin [4]); (2) That of Nohara, Inoue, Baba, and Yasuura
(NIBY) [20]; (3) The YA-TRAP scheme of Tsudik [25]; and (4) A recent “zero-knowledge” scheme
of Engberg, Harning, and Jensen (EHJ) [9] (EHJ).

In our analyses of OSK/AO and NIBY, we demonstrate an adversarial algorithm that shows
that the algorithms do not achieve strong privacy according to our definition. We believe that
this adversarial algorithm is practical and that it reveals a privacy vulnerability that has gone
unnoticed in the literature. The vulnerability is similar in both OSK/AO and NIBY. It involves an
adversary interacting with a target tag and modifying its state. The aim of the modification is to
“mark” the target tag so that it is recognizable by the adversary at a later time. The “mark” takes
the form of state that is invalid in the view of a legitimate RFID reader. The adversary effectively
plants a timestamp in a tag that is too far in the future to be treated as valid by the reader.

We believe that this vulnerability in tags that do not accept reader input has been overlooked
in the literature because it bypasses the natural intuitive view of privacy modeling. For example,
in the OSK/AO system, tags do not accept input from a querying reader (apart from a trivial read



command). The only state change in tags is the incrementing of an internal counter. Thus, these
systems appear to reduce an adversary to strictly passive attacks. Our formal definition of privacy,
however, highlights the fact that an adversary can in fact mount an active attack by aggressively
changing the internal state of tags.

Tags in OSK/AO and NIBY systems are counter based and output-only. We also examine two
systems in which readers modify tag state by means of timestamps.

The YA-TRAP system is a new proposal by Tsudik that has not yet received formal security
analysis. Tsudik already notes that the system does not withstand the full range of possible active
attacks. With these limitations in mind, Tsudik has designed YA-TRAP for settings in which RFID-
tag information is batched, as in warehouses, rather than for consumer applications. Our analysis
gives firmer shape to this design aim. We show a privacy limitation in which, as in OSK/AO, a tag
may be “marked” by being invalidated. More interestingly, an extension of this attack can “mark”
a tag with a unique timestamp that may be indirectly read by an adversary. Our analysis confirms
Tsudik’s view of the circumscribed settings for which YA-TRAP is appropriate.

The EHJ system is particularly interesting because it is under commercial development, with
privacy being emphasized as its distinguishing feature. The vulnerability we highlight in the EHJ
system is of a different nature than the others. In that system, an adversary can intercept a flow in
the authentication protocol between a tag Ti and the reader, and interrupt the associated session.
By resuming the session at a later time using the intercepted flow, the adversary can uniquely
identify Ti.

There is one common thread across all of the vulnerabilities we explore. As our formal definition
shows, even a single bit of information—namely whether a tag functions or malfunctions—has an
important bearing on RFID-system privacy.

3.1 OSK/AO schemes

Ohkubo, Suzuki and, Kinoshita (OSK) [23] propose a simple scheme for privacy-preserving tag
identification in the face of active attacks; the OSK scheme also provides forward security. Suppose
that tag i is initialized with secret xi; let h1 and h2 be independent one-way functions (most
conveniently modeled as random oracles). When queried, the tag updates its secret key by applying
h1. The tag outputs IDi,t = h2(h

(t)
1 (xi)).

Readers in the OSK scheme share secrets with tags. On input IDi,t, a reader determines i by
brute-force search. OSK propose a fixed upper bound m on the number of time steps over which
tags operate. (After m time steps, presumably a tag yields no output or random output while it
awaits re-initialization or retirement.) OSK propose that readers pre-compute a giant table T =
{[IDi,t, (i, t)]} where 1 ≤ i ≤ n and 1 ≤ t ≤ m. When structured appropriately, T can support
rapid look-up of a tag identifier.

Kinoshita et al. have implemented the OSK protocol in an active RFID tag [17].

Avoine, Dysli, and Oechslin (AO) [6, 4] propose use of Hellman tables as a special form of
pre-computation on T . Hellman [12] originally studied the problem of breaking symmetric keys. He
considered the resource requirements of an attacker seeking to recover secret key k from a ciphertext
C = ek(M) on a pre-determined message M . Of course, the attacker might simply perform a brute-
force key search, investing computational effort O(n), where n is the size of the full key space. Or
she might pre-compute and store a table of size O(n) consisting of C = {Ci = eki(M)}ki∈K , and
simply look up C in the table; this is what OSK originally proposed.

Hellman, however, identified a useful time-space trade-off. An attacker can pre-compute a
table of size O(N2/3), now known as a Hellman table, that permits successful key search with
computational effort only O(N2/3). Loosely speaking, the idea is to group sequences of ciphertexts



in C into deterministically traversable chains of size O(N2/3). Within the Hellman table are stored
only the first and last elements of these chains. Starting with a ciphertext C, the attacker can
traverse the induced chain until she locates the last element. By consulting the Hellman table, she
can then determine the first element in the chain; on traversing the chain from this point, she can
determine ki.

AO cleverly observed that the problem of symmetric-key search for readers in privacy-preserving
RFID systems is nearly identical with that of breaking keys. For a reader to determine which tag it
is communicating with, the reader can “crack” the ciphertext Ci to determine ki and thus Ti. AO
apply a variant of the Hellman technique to the OSK system, yielding a scheme with considerably
more practical look-up costs. (They in fact propose use of a variant called rainbow chains put forth
by Oechslin [22].) Rather than constructing a simple look-up table T , a reader can make use of a
Hellman table T̃ .

The AO approach can thus render the original OSK more practical.3

Privacy vulnerability in OSK/AO: Avoine analyzes the OSK (and, by extension, the AO)
scheme for tag identification, and concludes that it affords the strongest form of privacy [2]. As we
now explain, however, OSK is in fact vulnerable to an attack that undermines strong privacy in
the system.4

Very simply, an adversary can exploit the upper bound m on the number of tag time steps
accommodated in the look-up table T or T̃ . The adversary queries a tag until its counter value
exceeds m. In essence it mounts a denial-of-service attack against the tag: The adversary exhausts
the supply of valid output values stored in the tag.

This strategy depends upon the ability of the adversary to obtain a single bit of information from
a reader, namely whether or not it recognizes the output of a given tag as valid. For most natural
RFID tag applications, such information will be easily obtainable. For example, a proximity card
either opens or fails to open a door, a payment card is either accepted or rejected by a point-of-sale
device, and so forth.

The adversarial algorithm in Figure 4 demonstrates that OSK/AO does no achieve (r, s, t)-
privacy for t > m and r ≥ 1 (and s > m). Indeed, for these parameters, Exppriv

A,S [n, k, r, s, t] = 1.
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OSK/AO Adversarial Algorithm

1. In Phase 1, A selects a pair of distinct tags Ti and Tj uniformly at random.
2. A sends m queries to Ti (sends m TagInits).
3. A submits Ti and Tj as its challenge candidates.
4. In Phase 2, A initializes a protocol between T ∗b and R.
5. If R accepts T ∗b , A guesses b = 1, i.e. T ∗ = Tj . Else A guesses b = 0, i.e. T ∗ = Ti.

Fig. 4. Adversarial algorithm for OSK/AO

A simple modification of the adversarial algorithm in Figure 4 allows an adversary to distinguish
among multiple tags by desynchronizing them in different degrees. The adversary queries Ti a total

3 Note, however, that because a Hellman table T̃ requires pre-computation over a fixed number of entries,
it is unclear how to modify the table to accommodate new entries. Insertion of new entries into a simple
table T is more straightforward.

4 The vulnerability we demonstrate appears to exist even within the Avoine privacy model. The analysis
in [2] may simply represent an oversight.



of qi times to “mark” it; the adversary lets qi be unique for each tag. On later sighting a target
tag T , the adversary queries T a total of m times. Let r1, r2, . . . , rm be the resulting outputs. The
adversary feeds these outputs to the reader in reverse order rm, rm−1, . . . until the reader accepts
some rk. The adversary concludes that the counter value for the tag q = m − k. Assuming that
no normal reading has taken place during the interval of time between the “marking” and the
sighting of the tag, the adversary concludes that if q = qi, the sighted tag is Ti. Note that it the
adversary staggers qi values sufficiently, this strategy works even when some limited amount of
normal reading has effected changes in tag counter values.

The adversarial algorithm we describe here would appear to be feasible in a practical setting.
In [6], Avoine and Oechslin propose m = 1024 as an example parameter for a practically realizable
AO system. As EPC tags (Class 1 Gen 2) have a theoretical read rate of up to 1000 per second
[1], the adversarial algorithm we describe could well be feasible in many systems. In the original
OSK system, which is less efficient than the AO variant, m would have to be considerably smaller
to permit practical deployment, and the vulnerability we describe more easily exploitable.

Remarks: (1) The adversarial strategy we describe for OSK/AO here induces desynchronization
between tags and the reader. It is tempting to try to evade this problem with a protocol modification
in which the reader rejects input from a Ti if the current tag counter qi differs by more than d from
the previous counter perceived by the reader. This does not solve the privacy problem, however:
It is equivalent to setting m = d. Moreover, if d is small, then the system becomes vulnerable to
denial-of-service attacks. Another possible countermeasure is simply to cause tags to stop yielding
output after the mth query. Again, this creates a vulnerability to denial-of-service attacks.

In a natural setting, the adversary might not always have access to fresh tags, i.e., tags whose
counters are equal to 0. A simple modification of the adversarial algorithm in Figure 4, however,
can still distinguish between tags. By querying a target tag a sufficient number of times, the
adversary can “mark” it. For example, suppose that m = 1024, and suppose that prior to the
testing phase of our definition experiment, Ti and Tj have each been queried qi and qj times, where
qi, qj ∈U [0, 1, 2, . . . , 50]. Then the adversary merely has to submit 51 queries to Ti to “mark” it
such that it may be distinguished from Tj in the guessing phase 2.

One possible countermeasure to such attacks is “throttling,” i.e., deliberate slowing of the rate
of tag response. A rather different privacy model for tags would be needed to accommodate the
effect of this countermeasure, however [13].
(2) MSW carries a similar vulnerability in principle, as tags can support only a pre-determined num-
ber of queries, as observed by [18]. Under realistic parameterization, however, a privacy-infringing
attack would require an infeasibly large number of queries. In a practical sense, therefore, MSW
is not vulnerable.

3.2 Unlinkable ID-Matching Scheme

At WPES ’05, Nohara, Inoue, Baba, and Yasuura (NIBY) [20] proposed a scheme similar in flavor
to MSW. Their basic protocol permits leaves of potentially non-uniform depth within a tree T of
maximum depth d. A tag is presumed to output random values when depth-first-search queries
exceed the depth of its corresponding leaf.

An adversary can undermine strong privacy in this scheme in much the same manner as
OSK/AO; non-uniformity in the NIBY scheme, however, renders it more vulnerable. In partic-
ular, for a given tag Ti, an adversary can learn the depth di of the corresponding leaf in the
identifier tree with overwhelming probability using the following algorithm:

Algorithm Probe(d, Ti)



1. Send d queries to Ti (send d TagInits).; let Ze = {z(i)
e }de=1 denote the sequence of d outputs

yielded by the eth query, for 1 ≤ e ≤ d.
2. For every e, 1 ≤ e ≤ d, replace z

(d)
e , z

(d−1)
e , . . . , z

(e)
e with random values.

3. Feed Ze, Ze−1, . . . to R until R accepts some Ze′ .
4. Output e′.

Suppose that the probability that two leaves in the tree T differ in depth is non-negligible. With
use of the Probe algorithm as a subroutine, we can construct an adversarial algorithm that breaks
(r, s, t)-privacy in NIBY for r, t > 3d (and s > 2d). This algorithm is depicted in Figure 5.
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NIBY Adversarial Algorithm

1. In Phase 1, A selects a pair of distinct tags Ti and Tj uniformly at random.
2. A computes di = Probe(d, Ti) and dj = Probe(d, Tj).
3. A submits Ti and Tj as its challenge candidates.
4. In Phase 2, A computes d′ = Probe(d, T ∗b ).
5. If d′ = dj , A guesses b = 1, i.e. T ∗ = Tj . Else, A guesses b = 0, i.e. T ∗ = Ti.

Fig. 5. Adversarial algorithm for NIBY

The authors analyze the security of a restricted case of their scheme in which all leaves are
presumed to have equal depth. The adversarial algorithm we describe here is not applicable in that
case. Our analysis therefore suggests that use of a uniform tree for NIBY is essential to privacy.

3.3 YA-TRAP: Yet Another Trivial RFID Authentication Protocol

Tsudik describes an RFID authentication protocol that he calls YA-TRAP (Yet Another Trivial
RFID Authentication Protocol) [25]. As discussed above, Tsudik aims this protocol at environments
in which tag information is processed in batches, rather than for more fine-grained applications
like access control and tagging of individual consumer items. Tsudik has not yet formally analyzed
the security properties of YA-TRAP; such analysis is forthcoming [24]. In the meantime, our
investigation here confirms the importance of confining YA-TRAP to the limited settings for which
it is designed.

In YA-TRAP, the reader shares a unique key xi with tag Ti. A tag Ti also stores an internal
timestamp ti, namely the time at which it was last interrogated by a reader.

To interrogate a tag, a reader transmits the current time tR. The tag compares tR with ti. If
tR is stale with respect to ti, i.e., tR ≤ t, then the tag outputs a random response. Otherwise, the
tag outputs R = Hxi [tR], where Hxi represents an HMAC computed with secret key xi; the tag
also sets ti ← tR, i.e., updates its timestamp.5

To validate the response of a tag, a reader checks whether R = Hxj
[tR] for any secret key xj

in its database. If so, the reader accepts the tag, otherwise it rejects it.
We consider two adversarial strategies against the YA-TRAP protocol. The first is based on

denial of service. An adversary queries a tag with tmax to “mark” it, where tmax is some time
in the far future. The tag sets its internal time value ti ← tmax, and outputs random values in

5 The premise is that HMAC output is indistinguishable from a random distribution, so successful or
failed tag responses are indistinguishable to an adversary. While this premise is not true of HMAC in
general, it may be achieved with an appropriate underlying hash function.



response to all future queries. Thus, a reader rejects the tag in all future sessions, permitting the
adversary to distinguish the tag from one that is “unmarked.” We outline this adversarial strategy
in Figure 6.
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YA-TRAP Adversarial Algorithm

1. In Phase 1, A selects an arbitrary pair of distinct tags Ti and Tj .
2. A sends a TagInit to Ti and sends c0 = tmax.
3. A submits Ti and Tj as its challenge candidates.
4. In Phase 2, A initializes a query by sending a ReaderInit to R and a TagInit to T ∗b .
5. A relays R’s challenge c0 = tR to T ∗b and the response r0 back to R.
6. If R accepts r0, A guesses b = 0, i.e. T ∗ = Ti, and otherwise guesses b = 1.

Fig. 6. Adversarial DoS algorithm for YA-TRAP

As the adversarial algorithm in Figure 6 demonstrates, the YA-TRAP protocol does not achieve
(r, s, t) = (1, O(k), 2)-privacy. It is worth noting that the phase 1 portion of the attack does not
involve R and can be mounted by an adversary with access to Ti alone. The phase 2 portion
does not require a man-in-the-middle setting. A real-life adversary could wait until R tries to
legitimately query T ∗b , and then eavesdrop, i.e., play a purely passive role.

Building on this first strategy, we arrive at a second and more potent adversarial strategy that
allows an adversary to “mark” a tag uniquely—not simply to invalidate it. To mark a tag Ti in this
way, the adversary selects a future time ui. The adversary queries tag Ti with it, causing ti ← ui.

The time ui serves as a uniquely individuating “mark” for tag Ti. Starting at any time prior to
ui, an attacker can test whether a given, unidentified tag T is in fact Ti. The process involves two
stages:

1. Probing T : The adversary selects two slightly spaced times ubefore
i and uafter

i such that
ubefore

i ≤ ui < uafter
i . The adversary then queries the tag T with ubefore

i and uafter
i , obtaining

responses rbefore and rafter.
2. Testing the results: The adversary interacts with R at time ubefore

i and uafter
i and replays

responses rbefore and rafter. If the reader accepts rbefore and rejects rafter, then it is almost
certain that T = Ti.

Note that this strategy does not require an active man in the middle. A can interact with the tag
and the reader at separate times. This adversarial algorithm can be extended, of course, to mark
multiple tags uniquely. In the real-world, an attacker could identify an individual on the basis of
a single marked tag Ti—regardless of how many other tags the consumer is carrying.

In the setting for which YA-TRAP was designed, where a reader batches tag information
exclusively for processing by a back-end system that does not reveal information to an adversary
about the results of its identification of tags, YA-TRAP is not subject to the attacks we describe.

Remark: If the granularity of time in the system is small, then it may be difficult for A to interact
with R at exactly time ubefore

i or uafter
i . To increase its likelihood of success, A can query the

tag at multiple times around ubefore
i and uafter

i , i.e., harvest a staggered set of responses from the
target tag.



3.4 A “Zero-Knowledge” RFID Protocol

Engberg, Harning, and Jensen [9] (EHJ) have proposed a privacy-preserving RFID protocol that
they call “zero-knowledge device authentication.” (The protocol, as they note, is not zero-knowledge
in the received sense of the term.) Media reports suggest that this protocol is serving as the basis
of a commercial offering by a company called RFIDSec [16]. As we show, their protocol does not
provide strong privacy according to our definition.

The authors do not fully explain a core aspect of their system. Their authentication protocol
involves reader-side initiation, but they do not indicate how a reader is to determine which tag it is
communicating with (and thus which key to use). We therefore assume that the number of tags in
the vicinity of the reader is small, such that it can try all keys in attempting to communicate with
a tag. We also gloss over the question of how a reader singulates a tag, as this has little bearing
on our analysis.

The protocol involves two passes. To use the notation of EHJ, DT is a timestamp, and RSK
is a random nonce selected by the reader. The value SSDK is a tag-specific secret key. We let ⊕
denote the XOR operation:

1. R → T : [DT, (RSK ⊕ h(DT ⊕ SSDK)), h(RSK ⊕ SSDK)]
2. T → R: h(RSK ⊕ SSDK ⊕DT )

A tag stores the timestamp DT ′ that it received in the last successful protocol execution. When it
receives a new authentication message based on some DT , it only responds if the message is valid
(with respect to SSDK) and if DT > DT ′. Otherwise the tag outputs no response.

Privacy vulnerability in EHJ: A privacy vulnerability in this system lies in the way that a tag
decides whether or not to respond to a first-flow message. The first flow of the protocol is meant to
permit the reader to authenticate to the tag. This flow, however, is keyed according to the tag with
which the reader communicates. Suppose that adversary intercepts and stores a first flow message
M directed to Ti. If the adversary transmits M to Ti (while M is still fresh), then Ti will output
a response. Any other tag will disregard M .

In Figure 7, we specify an adversarial algorithm that shows that EHJ is not (r, s, t)-private for
any r ≥ 1 and t ≥ 2.
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EHJ Adversarial Algorithm

1. In Phase 1, A selects a pair of distinct tags Ti and Tj uniformly at random.
2. The attacker causes the reader to issue an authentication message M to Ti at time DT ; A stores

M and does not allow it to reach the tag.
3. In Phase 2, the attacker transmits M to tag T ∗b .
4. If T ∗b outputs a response, A guesses b = 0, i.e. T ∗ = Ti. Else A guesses b = 0, i.e. T ∗ = Tj .

Fig. 7. Adversarial algorithm for EHJ

Of course, an adversary can extend this strategy to discriminate easily among multiple tags,
T0, T1, . . . , Tn−1. The adversary need simply harvest first-flow messages M0, . . . Mn−1 for each of
the tags. To identify a given tag, the adversary tests each of its harvested messages.

One might think that if a tag does not respond to a read request that no privacy issue arises.
This idea is misleading for two reasons. First of all, the absence of a tag can be conspicuous. For



example, if the tag is a disabled proximity card, the fact of an individual being unable to enter
a building is an easily observable event. More importantly, though, in the EHJ scheme, a tag
must provide some indication of its existence at the outset. If it does not, then the reader cannot
determine that it should initiate the first flow. Any practical embodiment of EHJ therefore would
probably need at a minimum to involve a “liveness” signal from tags.

Vulnerability in EHJ with shared keys: Even if SSDK is shared across tags (which would
make the protocol more scalable), a privacy-infringing attack is still possible. In particular, the
adversary causes the reader to set timestamps DT0 and DT2 in tags Ti and Tj respectively by
causing two authentication sessions to run to completion. The adversary also causes the reader to
output a first-flow message M at time DT1, where DT0 < DT1 < DT2. The message M will then
be fresh with respect to Ti, but stale with respect to Tj , permitting the adversary to distinguish
between them. This adversarial strategy too can be extended in an obvious manner to distinguish
among multiple tags.

Repairing EHJ: The EHJ protocol can easily be modified to alleviate the privacy vulnerability
we present here. Rather than ignoring an authentication message with a stale timestamp, a tag can
output a random or pseudorandom response (computationally indistinguishable from a legitimate
one). In the absence of a carefully specified protocol, however, we do not make any formal claims
about the security of this variant. Indeed, the inevitable presence of clock skew and the naturally
slow response times of RFID tags make timestamp-based protocols like this one tricky to analyze.

One might think that tag silence confers privacy protection by concealing the presence of RFID
tags on a given person or in a given environment. We note, however, that tag silence probably
confers minimal privacy protection. Even if a tag does not reply to a reader query, its presence is
still likely to be detectable through simple power analysis of reflected RF reader emissions. Recent
work by Oren and Shamir [21] suggests the potency of such attacks. Logical-layer silence does not
necessarily imply RF silence.

4 Hash-Locks

Weis, Sarma, Rivest, and Engels [26] (WSRE) first advanced the general approach of key search for
RFID-tag identification. They proposed two basic schemes dubbed “hash-locks” and “randomized
hash-locks”. We now show that deterministic hash-locks are not private by our definition. We will
show, however, that randomized hash locks are (r, s, t)-private for any r, s, and t polynomial in
k. We propose a new improved randomized hash lock that is both private and resistant to replay
attacks, and also satisfies our cross-reader privacy definition.

4.1 Deterministic Hash-Locks

Hash-locks are an access control mechanism designed for efficiency. The general idea is as follows. A
tag normally resides in a locked state in which it only responds to reader queries with a temporary
metaID, rather than some permanent identifier. This metaID is the hash of some random nonce
selected by R and programmed into the tag. R stores both the metaID and its pre-image for its
later interaction with the tag.
R may unlock a tag by sending it the pre-image of its metaID. The tag verifies that this value

hashes to the metaID. Alternatively, the tag need not use a hash function at all. It can instead
be locked with some secret metaKey. The tag is programmed with a (metaID,metaKey) pair
when locked, and unlocked with the metaKey. The hash-function based scheme may be justified,



however, if the hardware cost of implementing a hash function is less than EEPROM costs of
metaKey storage or if the metaID needs to be assigned in the clear.

Using the notation of this paper, the session identifier sid will play the role of the metaID. Let
h : {0, 1}∗ → {0, 1}2k be a random oracle. Hash-locks work as follows:

Setup:
(1) Gen outputs a uniformly chosen vector of k-bit keys (key1, . . . , keyn).
(2) R is initialized with Gen’s output.
(3) Each Ti is initialized by a SetKey call with a unique keyi.
(4) R makes a TagInit call to each Ti with sid = h(nonce) for a random k-bit nonce.
(5) R stores each (sid, nonce) pair internally.

System execution:
(6) R’s challenge c0 to a tag T is empty.
(7) T ’s response r0 = sid.
(8) R’s challenge c1 = nonce.
(9) If h(c1) = sid, then T ’s r1 is some identifier determined by key.
(10) Otherwise T ’s r1 is empty.

Clearly, this protocol is not private by our definition since a tag’s response r0 is always its
current sid. OrA can simply eavesdrop on the protocol between T ∗b andR to obtain some identifier.
Thus, deterministic hash-locks are not (r, s, t)-private for any non-trivial (r, s, t) values. In fact,
any protocol where tags respond deterministically is necessarily not private by our definition.

4.2 Randomized Hash-Locks

In contrast, WRSE’s randomized hash-lock scheme is a mechanism for private tag identification
that is in fact (r, s, t)-private in the random oracle model. We present a short proof of this fact.
Letting h : {0, 1}∗ → {0, 1}2k be a random oracle, randomized hash-locks work as follows:

Setup:
(1) Gen outputs a uniformly chosen vector of k-bit keys (key1, . . . , keyn).
(2) R is initialized with Gen’s output.
(3) Each Ti is initialized by a SetKey call with a unique keyi.
(4) Tags do not store any session state or sid.

System execution:
(5) R’s challenges c0 are empty.
(6) T ’s response r0 = (nonce, h(nonce||key)), for a random k-bit nonce.
(7) R searches for keyi among Gen’s output such that r0 contains h(nonce||keyi).
(8) R accepts if such a keyi exists and rejects otherwise.

A simple illustration is given in Figure 8.

Theorem 1 (Randomized Hash-Lock Privacy). Randomized hash-locks are (r, s, t)-private in
the random oracle model, for any polynomially bounded A, i.e., any r, s, t polynomial in k.



TR
Accept if

∃ keyi , H(n||keyi)=y

c0=ε

r0 = (n,y)

n = nonce
y = H(nonce||key)

Fig. 8. Illustration of the randomized hash-lock protocol.

Proof: We specify a simulator Sim for T ∗b in the privacy experiment Exppriv. Sim does not possess
knowledge of the value of b or any keys ki. A’s interaction with Sim will be computationally
indistinguishable from an interaction with T ∗b . Thus, we demonstrate that A gains no knowledge
from its interaction with T ∗b in the real RFID system S.

Recall that A selects two challenge tags Ti and Tj from the population of uncorrupted tags.
Let L be the full list of pairs {(nonce, h(nonce ‖ key))} output by Ti and Tj during the learning
phase of the experiment. Let H() represent the random oracle for h() in our system.

During the challenge phase, Sim simulates the result of a TagInit call to T ∗b by generating
a random nonce/hash pair (n, y) and appending it to a list L′ (empty at the beginning of the
challenge change). In addition to any valid tag pair, R accepts any pair in L′.

In order for A to distinguish between the simulated challenge phase and a real challenge phase,
A must determine that some pair (n, y) ∈ L′ is invalid for both Ti and Tj . As a necessary condition
for this determination, A must identify a pair (n, z) that is valid for Ti or Tj , but such that z 6= y.
(In other words, A must rule out (n, y) as a valid pair in order to determine that Sim is present.)
Consequently, one of the following three conditions must occur at some point in the course of the
experiment:

1. There is a nonce value n such that (n, y) ∈ L′ and (n, z) ∈ L for some pair (y, z): Since A may
make at most t calls to tags, we have |L′|, |L| ≤ t. As nonces are random k-bit values, and thus
the space of nonces is 2k, it follows that this condition occurs with probability at most t2/2k.

2. A submits to H() a query of the form n ‖ ki or n ‖ kj : Given that H() is a random oracle, its
outputs reveal no information about secret keys. Hence the probability that A can successfully
submit a query of the form n ‖ ki or n ‖ kj is at most 2s/2k, and thus negligible.

3. For a pair (n, y) ∈ L′, A submits and R accepts a pair (n, z), where z 6= y: Barring condition
1 and condition 2, and given that H() is a random oracle, A can submit a pair (n, z) 6∈ L,L′

only by guessing z by brute force. The probability of this event is at most r/2k.

Thus A can distinguish Sim from T ∗b with probability at most (r+2s+t2)/2k, which is negligible
for polynomially bounded A. ut

4.3 Improved Randomized Hash-Locks

Since r0 does not depend on any reader input, tag outputs are vulnerable to replay. Consequently,
as explained in section 2.8, the WRSE system does not provide privacy in a multi-verifier model.
In particular, it does not provide cross-reader (r, s, t)-privacy.

Fortunately, this is an easily addressable flaw. Instead of sending an empty c0, R can instead
send c0 = nonceR, where nonceR is generated uniformly at random. (Alternatively, sid could



contain this nonce value.) A tag will generate its own nonce nonceT and send the value r0 =
(nonceT , h(nonceR||nonceT ||key)). The reader R will then search for a key among Gen’s output
that would generate r0.

Adversaries cannot replay a previously used r0 to a R, since with high probability, it will not
match the nonceR value generated by R for that session. Unlike the OSK/AO or NIBY protocol,
the tag does not store internal state based on nonceR. Thus there is no counter or timestamp that
can be manipulated by an adversary. Unlike EHJ, the tag always yields an output value.

We do not formally analyze this variant protocol here.

5 Conclusion: Further Research Directions

We have proposed new privacy definitions strong enough to capture highly stringent application-
level design requirements for RFID systems in the real world. We believe that the relative simplicity
of these definitions is useful for the design and analysis of privacy-preserving RFID protocols. In
this paper we have examined several published systems that fail to fulfill our privacy definition. In
so doing, we believe that we have highlighted potential design flaws.

That said, our proposed privacy definitions are just a starting point. They certainly do not
capture the full spectrum of real-world needs. We propose two important areas for further work.

Stronger definitions: In one sense, even our definition of strong privacy is not strong enough, as
it does not capture the effects of side information. Side-channel attacks are pertinent to newly
emerging protocol proposals. For example, in independent and contemporaneous work, Burmester,
Le, and de Medeiros [7] propose a new protocol called O-TRAP that is similar in flavor to hash
locks. They propose a definition of privacy and security in the Universal Composability framework
and prove that O-TRAP fulfills their definition. We believe that O-TRAP is also provably secure
with respect to our definition of strong privacy.

O-TRAP, however, is not secure according to a variant of our definition in which the reader
functionality outputs timing information. The reader (or back-end server) in the O-TRAP protocol
performs a single table lookup in the optimistic case where a tag is synchronized with a reader;
otherwise, it performs a search of the full key space for the system. If an adversary can distinguish
between these two cases based on timing—which seems a serious, practical threat—she can “mark”
tags by de-synchronizing them, much as we do in the attacks we describe above for OSK/AO and
NIBY. (The reader in O-TRAP could process tags in uniform time, but then the system would be no
more efficient than brute-force key search, like the improved hash-lock scheme we propose above.)
Thus, a small extension of our model in which the reader outputs information about computation
time can shed critical light on protocol design. Modeling other forms of side information may prove
equally valuable.

Weaker definitions: On the other hand, some aspects of our definitions (even the cross-reader one)
may actually be too strong. For RFID tags capable of only symmetric-key cryptography, we believe
that our definition may require the reader to perform brute-force search to identify tags—at least
in cases of de-synchronization. Such a system scales poorly. Obviously public-key cryptography
would alleviate this burden, but is impractical for the vast majority of RFID devices. (Indeed,
many classes of RFID tags will be incapable of executing even standard symmetric-key protocols
for some years.) While the cryptographic literature often aims at increasingly strong definitions
and protocols, we emphasize like [14] that a fertile and essential area of investigation is definitions
and protocols for RFID privacy that are weaker, but more practical and useful.
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