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Abstra
t

We introdu
e a 
omputational problem of distinguishing between two spe
i�
 quantum states

as a new 
ryptographi
 problem to design a quantum 
ryptographi
 s
heme that is \se
ure" against

any polynomial-time quantum adversary. Our problem QSCD

�

is to distinguish between two types

of random 
oset states with a hidden permutation over the symmetri
 group of �nite degree. This

naturally generalizes the 
ommonly-used distin
tion problem between two probability distributions

in 
omputational 
ryptography. As our major 
ontribution, we show three 
ryptographi
 properties:

(i) QSCD

�

has the trapdoor property; (ii) the average-
ase hardness of QSCD

�


oin
ides with its

worst-
ase hardness; and (iii) QSCD

�

is 
omputationally at least as hard in the worst 
ase as the

graph automorphism problem. These 
ryptographi
 properties enable us to 
onstru
t a quantum

publi
-key 
ryptosystem, whi
h is likely to withstand any 
hosen plaintext atta
k of a polynomial-

time quantum adversary. We further dis
uss a generalization of QSCD

�

, 
alled QSCD


y


, and

introdu
e a multi-bit en
ryption s
heme relying on the 
ryptographi
 properties of QSCD


y


.
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1 Introdu
tion

Sin
e DiÆe and Hellman [16℄ �rst used a 
omputationally intra
table problem to design a key ex
hange

proto
ol, 
omputational 
ryptography has been extensively studied; espe
ially, a number of pra
ti
al


ryptographi
 systems (e.g., publi
-key 
ryptosystems (PKCs), bit 
ommitment s
hemes (BCSs), pseu-

dorandom generators, and digital signature s
hemes) have been proposed under popular intra
tability

assumptions, su
h as the hardness of the integer fa
torization problem (IFP) and the dis
rete loga-

rithm problem (DLP), for whi
h no eÆ
ient 
lassi
al (i.e., deterministi
 or probabilisti
) algorithm

have been found. Using the power of quantum 
omputation, however, we 
an eÆ
iently solve various

number-theoreti
 problems, in
luding IFP (and the quadrati
 residuosity problem) [45℄, DLP (and

the DiÆe-Hellman problem) [11, 28, 45℄, and the prin
ipal ideal problem [23℄. Therefore, a quantum

adversary (i.e., an adversary who runs a quantum 
omputer) 
an easily break the 
ryptosystems whose

se
urity proofs heavily rely on the 
omputational hardness of these problems.

Fighting against su
h a powerful quantum adversary, a new area of 
ryptography, so-
alled quantum


ryptography, has emerged in the past two de
ades. In 1984, Bennett and Brassard [8℄ proposed a

quantum key distribution s
heme via a quantum 
ommuni
ation 
hannel. Its un
onditional se
urity

was later proven by Mayers [35℄. Nonetheless, as Mayers [34℄ and Lo and Chau [32℄ independently

demonstrated, quantum me
hani
s 
annot make all 
ryptographi
 s
hemes information-theoreti
ally

se
ure as we had hoped; in parti
ular, they proved that no quantum BCS 
an be both 
on
ealing

and binding un
onditionally. Therefore, \
omputational" approa
hes are still important in quantum


ryptography. Along this line, a number of quantum 
ryptographi
 properties have been dis
ussed

from the 
omplexity-theoreti
 point of view [1, 13, 14, 15, 17, 41℄.

A quantum 
omputer is known to be 
apable of breaking the RSA 
ryptosystem and other well-

known 
lassi
al 
ryptosystems. It is therefore imperative to dis
over 
omputationally-hard problems

from whi
h a se
ure quantum 
ryptosystem is 
onstru
ted against any polynomial-time quantum

adversary. For instan
e, the subset sum (knapsa
k) problem and the shortest ve
tor problem are a

basis to knapsa
k-based 
ryptosystems [26, 41℄ as well as latti
e-based 
ryptosystems [4, 42℄. Sin
e

it is 
urrently unknown whether these problems withstand any atta
k of quantum adversaries, we

need to 
ontinue sear
hing for better intra
table problems that 
an guard their asso
iated quantum


ryptosystems against any powerful quantum adversary.

This paper introdu
es the new notion of 
omputational indistinguishability between quantum states,

whi
h generalizes the 
lassi
al indistinguishability notion between two probability distributions [9, 19,

48℄. In parti
ular, we present a distin
tion problem, 
alled QSCD

�

(quantum state 
omputational

distin
tion with fully 
ipped permutations), between spe
i�
 ensembles of quantum states. QSCD

�

enjoys remarkable 
ryptographi
 properties as a building blo
k of a se
ure quantum 
ryptosystem.

De�nition 1.1 The advantage of a polynomial-time quantum algorithm A that distinguishes be-

tween two ensembles f�

0

(l)g

l2N

and f�

1

(l)g

l2N

of quantum states is the fun
tion Æ

A

(l) de�ned as:

Æ

A

(l) =

�

�

�

�

Pr

A

[A(�

0

(l)) = 1℄� Pr

A

[A(�

1

(l)) = 1℄

�

�

�

�

for two l-qubit quantum states �

0

(l) and �

1

(l), where the subs
ript A means that any output of
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A is determined by measuring the �nal state of A in the standard 
omputational basis. We say

that two ensembles f�

0

(l)g

l2N

and f�

1

(l)g

l2N

are 
omputationally indistinguishable if the advantage

Æ

A

(l) is negligible for any polynomial-time quantum algorithm A; namely, for any polynomial p, any

polynomial-time quantum algorithm A, and any suÆ
iently large number l, it holds that Æ

A

(l) <

1=p(l). The distin
tion problem between f�

0

(l)g

l2N

and f�

1

(l)g

l2N

is said to be solvable with non-

negligible advantage if these ensembles are not 
omputationally indistinguishable; that is, there exist

a polynomial-time quantum algorithm A and a polynomial p su
h that

�

�

�

�

Pr

A

[A(�

0

(l)) = 1℄� Pr

A

[A(�

1

(l)) = 1℄

�

�

�

�

>

1

p(l)

for in�nitely many numbers l.

The problemQSCD

�

asks whether we 
an distinguish between two sequen
es of identi
al samples of

�

+

�

(n) and of �

�

�

(n) for ea
h �xed hidden permutation � for ea
h length parameter n of a 
ertain form.

Let S

n

be the symmetri
 group of degree n and let K

n

= f� 2 S

n

: �

2

= id and 8i 2 f1; :::; ng[�(i) 6= i℄g

for n 2 N , where id stands for the identity permutation.

De�nition 1.2 Let N = f2(2n

0

+ 1) : n

0

2 Ng. For ea
h � 2 K

n

, let �

+

�

(n) and �

�

�

(n) be two

quantum states de�ned by

�

+

�

(n) =

1

2n!

X

�2S

n

(j�i+ j��i)(h�j + h��j) and �

�

�

(n) =

1

2n!

X

�2S

n

(j�i � j��i)(h�j � h��j):

The problem QSCD

�

is the distin
tion problem between two quantum states �

+

�

(n)


k(n)

and

�

�

�

(n)


k(n)

for ea
h parameter n in N , where k is a polynomial. For ea
h �xed polynomial k, we

use the su

in
t notation k-QSCD

�

instead.

To simplify our notation, we often drop the parameter n whenever n is 
lear from the 
ontext. For

instan
e, we write �

+
k

�

for �

+

�

(n)


k(n)

. More generally, k-QSCD

�


an be de�ned for any integer-valued

fun
tion k. Note that De�nition 1.2 uses the parameter n to express the \length" of the quantum

states instead of the parameter l of De�nition 1.1. There is, however, essentially no di�eren
e for

polynomial-time indistinguishability sin
e �

+

�

and �

�

�


an be expressed with O(n logn) qubits and

k(n) is a polynomial in n. This parameter n is used to measure the 
omputational 
omplexity of our

problem and is often referred to as the se
urity parameter in the 
ryptographi
 
ontext.

1.1 Our Contributions

This paper shows three 
ryptographi
 properties of QSCD

�

and its appli
ation to quantum 
ryptog-

raphy. These properties are summarized as follows. (i) QSCD

�

has the trapdoor property; namely,

for any given hidden permutation � 2 K

n

, we 
an eÆ
iently distinguish between �

+

�

and �

�

�

. (ii) The

average-
ase hardness of QSCD

�

over a randomly 
hosen permutation � 2 K

n


oin
ides with its

worst-
ase hardness. (iii) QSCD

�

is 
omputationally at least as hard in the worst 
ase as the graph

automorphism problem (GA), where GA is the graph-theoreti
al problem de�ned as:

3



Graph Automorphism Problem (GA):

input: an undire
ted graph G = (V;E);

output: YES if G has a non-trivial automorphism, and NO otherwise.

Sin
e there is no known eÆ
ient algorithmi
 solution for GA, the third property suggests that QSCD

�

should be hard to solve. In a 
ertain restri
ted 
ase, we 
an a
tually show without any assumption

that no time-unbounded quantum algorithm 
an solve o(n logn)-QSCD

�

. Making use of the afore-

mentioned three 
ryptographi
 properties, we 
an design a 
omputationally-se
ure quantum PKC

where its se
urity relies on the worst-
ase hardness of GA. The following subse
tion dis
usses in depth

numerous advantages of using QSCD

�

as a basis of se
ure quantum 
ryptosystems.

Furthermore, we give a generalization of QSCD

�

, 
alled QSCD


y


, and show its 
ryptographi


properties: (i) the trapdoor property and (ii) the equivalen
e between its average-
ase and worst-
ase

hardness. This new problem be
omes a basis for another publi
-key 
ryptosystem that 
an en
rypt

messages longer than those in QSCD

�

.

1.2 Comparison between Our Work and Previous Work

In re
ent literature, 
omputational-
omplexity aspe
ts of quantum states have been spotlighted in


onne
tion to quantum 
ryptography. For instan
e, the notion of statisti
al distinguishability between

two quantum states was investigated byWatrous [47℄ and also Kobayashi [29℄ in the 
ontext of quantum

zero-knowledge proofs. They proved that 
ertain problems of statisti
ally distinguishing between two

quantum states are promise-
omplete for quantum zero-knowledge proof systems. Aharonov and

Ta-Shma [2℄ also studied the 
omputational 
omplexity of quantum-state generation and showed its


onne
tion to quantum adiabati
 
omputing as well as statisti
al zero-knowledge proofs. Note that

our distin
tion problem QSCD

�

is also rooted in 
omputational 
omplexity theory.

In what follows, we brie
y dis
uss various advantages of using QSCD

�

as a basis of quantum


ryptosystems in 
omparison with existing 
ryptosystems and their underlying problems.

Average-Case Hardness versus Worst-Case Hardness. The eÆ
ient solvability of any given

problem on average, in general, does not guarantee the problem to be solved eÆ
iently in worst


ase. This makes it desirable to satisfy the following property: the average-
ase hardness of the

problem is \equivalent" to its worst-
ase hardness under a 
ertain type of polynomial-time redu
tion.

Unfortunately, few 
ryptographi
 problems are known to enjoy this property.

Roughly, there are two 
ategories of worst-
ase/average-
ase redu
tions dis
ussed in the past lit-

erature. The �rst 
ategory is a strong redu
tion, whi
h transforms an arbitrary instan
e of length

n to a random instan
e of the same length or length polynomial in n. In this strong sense, Ajtai

[3℄ found a remarkable 
onne
tion between average-
ase hardness and worst-
ase hardness of 
ertain

variants of the shortest ve
tor problem (SVP). He gave an eÆ
ient redu
tion from the problem of

approximating the shortest ve
tor in a given n-dimensional latti
e in the worst 
ase to the approxi-

mation problem of the shortest ve
tor in a random latti
e over a 
ertain 
lass of latti
es with a large

polynomial approximation fa
tor. Later, Mi

ian
io and Regev [36℄ gave the average-
ase/worst-
ase


onne
tion fa
tor of approximately n for approximating SVP (see [10℄ and referen
es therein for general

4



worst-
ase/average-
ase redu
tions).

The se
ond 
ategory is a weak redu
tion of Tompa andWoll [46℄, where the redu
tion is randomized

only over a part of its instan
es. A typi
al example is DLP, whi
h 
an be randomly redu
ed to itself

by a redu
tion that maps instan
es to not all instan
es of the same length but rather to all instan
es

of the same underlying group. Nonetheless, unknown is an eÆ
ient redu
tion from DLP with the

worst-
ase prime to DLP with a random prime. Note that Shor's algorithm [45℄ eÆ
iently solves DLP

and the inverting problem of the RSA fun
tion with worst-
ase/average-
ase redu
tions of the se
ond


ategory. The graph isomorphism problem (GI) and GA|well-known graph-theoreti
al problems|

also enjoy su
h redu
tions of the se
ond 
ategory [46℄ although there is no known 
ryptosystem whose

se
urity relies on their hardness.

This paper, to the 
ontrary, shows that QSCD

�

has a worst-
ase/average-
ase redu
tion of the

�rst 
ategory. Our redu
tion depends only on the size of the instan
e unlike the redu
tion of DLP. In

fa
t, our distin
tion problem QSCD

�

is the �rst 
ryptographi
 problem with a worst-
ase/average-


ase redu
tion of the �rst 
ategory. Moreover, there is no known eÆ
ient solution to QSCD

�

on a

quantum 
omputer. Our redu
tion is similar in 
avor to the redu
tions of the aforementioned latti
e

problems.

Computational Hardness of Underlying Computational Problems. The hidden subgroup

problem (HSP) has played a 
entral role in re
ent dis
ussions on the strength and limitation of quantum


omputation. The aforementioned IFP and DLP 
an be viewed as spe
ial 
ases of HSP on Abelian

groups (AHSP). Kitaev [28℄ showed how to solve AHSP eÆ
iently; in parti
ular, he gave a polynomial-

time algorithm for the quantum Fourier transformation over Abelian groups, whi
h is a generalization

of the quantum Fourier transformation used in Shor's algorithm [45℄. Although an eÆ
ient quantum

algorithm exists for AHSP, a simple appli
ation of 
urrently known te
hniques may not be suÆ
ient

to solve HSP on non-Abelian groups. (Note that HSP on 
ertain spe
i�
 non-Abelian groups were

already solved in [6, 18, 21, 25, 31, 38, 43℄.) Another important variant is the HSP on the dihedral

groups (DHSP). Re
ently, Regev [43℄ demonstrated a quantum redu
tion from the unique shortest

ve
tor problem (uSVP) to a slightly di�erent variant of DHSP. Note that uSVP is a basis of the

latti
e-based PKCs given in [4, 42℄. For DHSP, Kuperberg [31℄ found a subexponential-time quantum

algorithm. Although these results do not dire
tly imply a subexponential-time quantum algorithm for

uSVP, they may be a 
lue to �nd the desired algorithm in the end.

Our problem QSCD

�

is 
losely related to a mu
h harder problem: HSP on the symmetri
 groups

(SHSP). Note that no known subexponential-time quantum algorithm exists for SHSP. Hallgren et

al. [25℄ introdu
ed a distin
tion problem between 
ertain two quantum states, similar to QSCD

�

, to

dis
uss the 
omputational intra
tability of SHSP by a \natural" extension of Shor's [45℄ algorithm with

the quantum Fourier transformation. An eÆ
ient solution to this distin
tion problem gives an answer

to a pending question on a 
ertain spe
ial 
ase of SHSP. To solve this distin
tion problem, as they

showed, the so-
alled weak Fourier sampling on a single sample should require an exponential number

of samples. This result was improved by Grigni et al. [21℄, who proved that we need exponentially-

many samples even by a stronger method 
alled the strong Fourier sampling on a single sample along

with a random 
hoi
e of the bases of the representations of S

n

. Kempe and Shalev [27℄ further

5



expanded [21, 25℄ for the 
omputational hardness of SHSP using these quantum Fourier sampling

methods. Moore et al. [39℄, on the 
ontrary, demonstrated that, regardless of methods (like the above

quantum Fourier sampling methods), any time-unbounded quantum algorithm on a single sample

needs exp(
(n)) samples to solve the distin
tion problem. Even for the two sample 
ase, Moore and

Russell [37℄ argued that any time-unbounded quantum algorithm that simultaneously works over two

samples should use exp(
(

p

n= log n)) samples at best. More re
ently, Hallgren et al. [24℄ proved that

no time-unbounded quantum algorithm solves the distin
tion problem even from o(n log n) samples. In

this paper, we further show that the distin
tion problem is polynomial-time redu
ible to QSCD

�

. This

immediately implies that we have no time-unbounded quantum algorithm for QSCD

�

from o(n log n)

samples. Even with suÆ
iently many samples for QSCD

�

, there is no known subexponential-time

quantum algorithms for QSCD

�

and thus �nding su
h an algorithm seems a daunting task. This

situation, on the 
ontrary, indi
ates that our problem QSCD

�

should be more suitable than, e.g.,

uSVP as an underlying intra
table problem founding a se
ure 
ryptosystem similar to the 
lassi
al


ase of DLP over di�erent groups; namely, DLP over Z

�

p

(where p is a prime) is 
lassi
ally solvable in

subexponential time whereas no known 
lassi
al subexponential-time algorithm exists for DLP over


ertain groups in ellipti
 
urve 
ryptography. It is generally believed that DLP over su
h groups is

more reliable than DLP over Z

�

p

.

We prove that the 
omputational 
omplexity of QSCD

�

is lower-bounded by that of GA. Note that

well-known upper bounds of GA are NP\ 
o-AM [20, 44℄, SPP [5℄, and UAP [12℄ but GA is not yet

known to be inNP\
o-NP. Sin
e most 
ryptographi
 problems fall inNP\
o-NP, few 
ryptographi


systems are lower-bounded by the worst-
ase hardness of problems outside of NP \ 
o-NP.

Quantum Computational Cryptography. Apart from PKCs, quantum key distribution gives

a foundation to symmetri
-key 
ryptology; for instan
e, the quantum key distribution s
heme in [8℄

a
hieves un
onditionally se
ure sharing of se
ret keys in symmetri
-key 
ryptosystems (SKCs) through

an authenti
ated 
lassi
al 
ommuni
ation 
hannel. Undoubtedly, both SKCs and PKCs have their own

advantages and disadvantages. Compared with SKCs, PKCs require less se
ret keys in a large-s
ale

network; however, they often need 
ertain intra
tability assumptions for their se
urity proofs and are

typi
ally vulnerable to, e.g., the man-in-the-middle atta
k. As an immediate appli
ation of QSCD

�

,

we propose a new 
omputational quantum PKC whose se
urity relies on the 
omputational hardness

of QSCD

�

.

Of many existing PKCs, few make their se
urity proofs solely rely on the worst-
ase hardness of

their underlying problems. Quantum adversaries 
an break many PKCs whose underlying problems

are number-theoreti
 be
ause fast quantum algorithms 
an solve these problems. Based on a 
ertain

subset of the knapsa
k problem, Okamoto et al. [41℄ proposed a quantum PKC, whi
h withstands


ertain well-known quantum atta
ks. Our proposed quantum PKC also seems to fend a polynomial-

time quantum adversary sin
e we 
an redu
e the problem GA to QSCD

�

, where GA is not known to

be solved eÆ
iently on a quantum 
omputer.

6



2 Cryptographi
 Properties of QSCD

�

Through this se
tion, we want to show three 
ryptographi
 properties of QSCD

�

: (i) the trapdoor

property, (ii) the equivalen
e between average-
ase hardness and worst-
ase hardness, and (iii) a

redu
tion from QSCD

�

to other 
omputationally-hard problems. These properties help us 
onstru
t

a quantum PKC in Se
tion 3.

All the 
ryptographi
 properties of QSCD

�

are 
onsequen
es of the following remarkable 
har-

a
teristi
s of the set K

n

of the hidden permutations (although the de�nition of K

n

seems somewhat

arti�
ial). (i) Ea
h permutation � 2 K

n

is of order 2. This dire
tly provides the trapdoor property

of QSCD

�

. (ii) For any � 2 K

n

, the 
onjuga
y 
lass of � is equal to K

n

. This property enables

us to prove the equivalen
e between the worst-
ase hardness and average-
ase hardness of QSCD

�

.

(iii) The problem GA is (polynomial-time Turing) equivalent to its subproblem with the promise that

any given graph has a unique non-trivial automorphism in K

n

or none at all. This equivalen
e is used

to give a 
omplexity-theoreti
 lower bound of QSCD

�

; that is, the average-
ase hardness of QSCD

�

is

lower-bounded by the worst-
ase hardness of GA. For these proofs, we introdu
e two new te
hniques:

(i) a variant of the so-
alled 
oset sampling method , whi
h is broadly used in extensions of Shor's

algorithm (see, e.g., [43℄) and (ii) a quantum version of the hybrid argument, whi
h is a strong tool

for many se
urity redu
tions used in 
omputational 
ryptography.

Now, let us assume the reader's familiarity with basi
s of quantum 
omputation [40℄ and re
all the

two quantum states �

+

�

=

1

2n!

P

�2S

n

(j�i+j��i)(h�j+h��j) and �

�

�

=

1

2n!

P

�2S

n

(j�i�j��i)(h�j�h��j)

given for a permutation � 2 K

n

. For 
onvenien
e, let �(n) (or simply �) denote the maximally mixed

state

1

n!

P

�2S

n

j�ih�j over S

n

, whi
h will appear later as a te
hni
al tool.

2.1 Trapdoor Property

The �rst property to prove is that QSCD

�

enjoys the trapdoor property, whi
h has played a key role in

various 
ryptosystems in use. To prove this property, it suÆ
es to present an eÆ
ient distinguishing

algorithm between �

+

�

and �

�

�

without knowing their hidden permutation � 2 K

n

.

Theorem 2.1 (Distinguishing Algorithm) There exists a polynomial-time quantum algorithm

that, for a hidden permutation � 2 K

n

, distinguishes between �

+

�

(n) and �

�

�

(n) for any n 2 N with

probability 1.

Proof. Fix n arbitrarily. Let � be any given unknown state, whi
h is either �

+

�

or �

�

�

. The desired

distinguishing algorithm for � works as follows.

(D1) Prepare two quantum registers. The �rst register holds a 
ontrol bit and the se
ond register

holds �. Apply the Hadamard transformation H to the �rst register. The state of the system

now be
omes

Hj0ih0jH 
 �:

(D2) Apply the Controlled-� operator C

�

to the two registers, where the operator C

�

satis�es

C

�

j0ij�i = j0ij�i and C

�

j1ij�i = j1ij��i for any given � 2 S

n

. Sin
e �

2

= id for every

7



� 2 K

n

, the state of the entire system 
an be expressed as

1

n!

X

�2S

n

j 

+

�;�

ih 

+

�;�

j if � = �

+

�

, and

1

n!

X

�2S

n

j 

�

�;�

ih 

�

�;�

j if � = �

�

�

,

where j 

+

�;�

i and j 

�

�;�

i are de�ned by

j 

�

�;�

i = C

�

�

1

2

j0i (j�i � j��i) + j1i (j�i � j��i)

�

=

1

2

j0i(j�i � j��i) +

1

2

j1i(j��i � j�i):

(D3) Apply the Hadamard transformation to the �rst register. If � is either �

+

�

or �

�

�

, then the state

of the system be
omes either

(H 
 I)j 

+

�;�

i =

1

p

2

j0i (j�i+ j��i) or (H 
 I)j 

�

�;�

i =

1

p

2

j1i (j�i � j��i) :

Measure the �rst register in the 
omputational basis. If the result is 0, then output YES;

otherwise, output NO.

Clearly, the above pro
edure gives the 
orre
t answer with probability 1. 2

2.2 Redu
tion from Worst Case to Average Case

We want to redu
e the worst-
ase hardness of QSCD

�

to its average-
ase hardness. Su
h a redu
tion

implies that QSCD

�

with a random permutation � is at least as hard as QSCD

�

with the permutation

� of the highest 
omplexity. Sin
e the 
onverse redu
tion is trivial, the average-
ase hardness of

QSCD

�

is, in fa
t, polynomial-time Turing equivalent to its worst-
ase hardness.

Theorem 2.2 Let k be any polynomial. Assume that there exists a polynomial-time quantum algo-

rithm A that solves k-QSCD

�

with non-negligible advantage for a uniformly random � 2 K

n

; namely,

there exists a polynomial p su
h that, for in�nitely many se
urity parameters n in N ,

�

�

�

�

Pr

�;A

[A(�

+

�

(n)


k(n)

) = 1℄� Pr

�;A

[A(�

�

�

(n)


k(n)

) = 1℄

�

�

�

�

>

1

p(n)

;

where � is 
hosen uniformly at random from K

n

. Then, there exists a polynomial-time quantum

algorithm B that solves k-QSCD

�

with non-negligible advantage for any permutation � 2 K

n

.

Proof. Fix an arbitrary parameter n 2 N that satis�es the assumption of the theorem. For ea
h

i 2 f1; 2; :::; k(n)g, let �

i

be the ith state of the given k(n) states. Note that �

i

is in f�

+

�

; �

�

�

g. We

build the desired worst-
ase algorithm B from the average-
ase algorithm A in the following way.

(R1) Choose a permutation � 2 S

n

uniformly at random.
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(R2) Apply � to ea
h �

i

, where i 2 f1; :::; kg, from the right. If �

i

= �

+

�

, then we obtain the quantum

state

�

0

i

=

1

2n!

X

�2S

n

(j��i + j���

�1

��i)(h�� j + h���

�1

�� j)

=

1

2n!

X

�

0

2S

n

(j�

0

i+ j�

0

�

�1

��i)(h�

0

j+ h�

0

�

�1

�� j):

When �

i

= �

�

�

, we instead obtain �

0

i

=

1

2n!

X

�

0

2S

n

(j�

0

i � j�

0

�

�1

��i)(h�

0

j � h�

0

�

�1

�� j).

(R3) Invoke the average-
ase quantum algorithm A on the input

N

k

i=1

�

0

i

.

(R4) Output the out
ome of A.

Note that �

�1

�� belongs to K

n

for any � . Moreover, there exists a � 2 S

n

satisfying that �

�1

�� = �

0

for ea
h �

0

2 K

n

. Hen
e, the 
onjuga
y 
lass of � is equal to K

n

. In addition, the number of all

permutations � 2 S

n

for whi
h �

�1

�� = �

0

is independent of the 
hoi
e of �

0

2 K

n

. These properties

implies that �

�1

�� is indeed uniformly distributed over K

n

. Therefore, by feeding the input

N

k

i=1

�

0

i

to the algorithm A, we a
hieve the desired non-negligible advantage of A. 2

2.3 Computational Hardness

The third property of QSCD

�

relates to the 
omputational hardness of QSCD

�

. We want to present

two 
laims that witness its relative hardness. First, we prove that the 
omputational 
omplexity of

QSCD

�

is lower-bounded by that of GA by 
onstru
ting an eÆ
ient redu
tion from GA to QSCD

�

.

Se
ond, we dis
uss a relationship between QSCD

�

and SHSP and prove that QSCD

�


annot be solved

from o(n log n) samples.

Now, we prove the �rst 
laim on the redu
ibility of GA to QSCD

�

. Our redu
tion from GA to

QSCD

�


onsists of two parts: a redu
tion from GA to a variant of GA, 
alled UniqueGA

�

, and

a redu
tion from UniqueGA

�

to QSCD

�

. To des
ribe the desired redu
tion, we �rst introdu
e two

variants of GA. Earlier, K�obler et al. [30℄ introdu
ed the following unique graph automorphism problem

(UniqueGA).

Unique Graph Automorphism Problem (UniqueGA):

input: an undire
ted graph G = (V;E);

promise: G has either a unique non-trivial automorphism or no non-trivial automorphism;

output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that UniqueGA is 
alled (1GA, GA) as a promise problem in [30℄. To establish a dire
t 
onne
-

tion to QSCD

�

, we further introdu
e the unique graph automorphism with fully-
ipped permutation

(UniqueGA

�

).

Unique Graph Automorphism with Fully-Flipped Permutation (UniqueGA

�

):

input: an undire
ted graph G = (V;E), where jV j = n 2 N ;

9



promise: G has either a unique non-trivial automorphism � 2 K

n

or no non-trivial auto-

morphism;

output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that the instan
e G of UniqueGA

�

is de�ned only when the number n of nodes belongs to the

set N = f2(2n

0

+ 1) : n 2 Ng.

We prove two useful lemmas regarding UniqueGA

�

. The �rst lemma uses the so-
alled 
oset

sampling method, whi
h has been largely used in many extensions of Shor's algorithm.

Lemma 2.3 There exists a polynomial-time quantum algorithm that, given an instan
e G of

UniqueGA

�

, generates a quantum state �

+

�

if G is an \YES" instan
e with its unique non-trivial

automorphism �, or generates � =

1

n!

P

�2S

n

j�ih�j if G is a \NO" instan
e.

Proof. Given an instan
e G of UniqueGA

�

, we �rst prepare the quantum state

1

p

n!

P

�2S

n

j�ij�(G)i; where �(G) is the graph resulting from relabeling its nodes a

ording to ea
h

permutation �. By dis
arding the se
ond register, we obtain the unique quantum state � in the �rst

register. This � satis�es � = �

+

�

if G is an \YES" instan
e with the unique non-trivial automorphism

�, and � = � otherwise, as requested. 2

The se
ond lemma requires a variant of the 
oset sampling method as a te
hni
al tool. The lemma

in essen
e relies on the fa
t that the hidden � is an odd permutation. This is one of the spe
ial

properties of K

n

.

Lemma 2.4 There exists a polynomial-time quantum algorithm that, given an instan
e G of

UniqueGA

�

, generates the quantum state �

�

�

if G is an \YES" instan
e with the unique non-trivial

automorphism � or generates � if G is a \NO" instan
e.

Proof. Similar to the algorithm of Lemma 2.3, we start with the quantum state

1

p

n!

P

�2S

n

j�ij�(G)i

in two registers. Compute the sign of ea
h permutation in the �rst register and then invert

its phase exa
tly when the permutation is odd. Consequently, we obtain the quantum state

1

p

n!

P

�2S

n

(�1)

sgn(�)

j�ij�(G)i; where sgn(�) = 0 if � is even, and sgn(�) = 1 otherwise. By dis-


arding the se
ond register, we obtain a 
ertain quantum state, say, � in the �rst register. Note that,

sin
e � is odd, if � is odd (even, resp.) then �� is even (odd, resp.). Therefore, it follows that � = �

�

�

if G is an \YES" instan
e with the unique non-trivial automorphism �, and � = � otherwise. 2

We are now ready to present a redu
tion from GA to QSCD

�

. This 
on
ludes that QSCD

�

is


omputationally at least as hard as GA for in�nitely-many input lengths n.

Theorem 2.5 If there exist a polynomial k and a polynomial-time quantum algorithm that solves

k-QSCD

�

with non-negligible advantage, then there exists a polynomial-time quantum algorithm that

solves GA in the worst 
ase for in�nitely-many input lengths n.

Proof. We �rst show that GA is polynomial-time Turing equivalent to UniqueGA

�

and then give a

redu
tion from UniqueGA

�

to QSCD

�

. The redu
tion from GA to UniqueGA

�

is similar to the one

given by K�obler et al. [30℄, who presented a polynomial-time Turing redu
tion from GA to UniqueGA.
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Their polynomial-time algorithm for GA invokes UniqueGA as an ora
le on a promised input, whi
h

is a graph of even number of nodes with either the unique non-trivial automorphism without any �xed

point or no non-trivial automorphism at all. Modifying the 
onstru
tion of their redu
tion, we 
an

easily obtain our redu
tion from GA to UniqueGA

�

. Furthermore, it is possible to make the length

n satisfy the equation n = 2(2n

0

+ 1) for a 
ertain n

0

2 N by a slight modi�
ation of their argument.

Therefore, we obtain the following lemma.

Lemma 2.6 UniqueGA

�

is polynomial-time Turing equivalent to GA.

A
tually, a mu
h stronger statement holds. When a Turing redu
tion to a promise problem makes

only queries that satisfy the promise, the redu
tion is 
alled smart [22℄. Su
h a smart redu
tion is

desirable for a se
urity redu
tion of a 
ryptosystem. Sin
e the redu
tion from GA to UniqueGA in

[30℄ is indeed smart, so is our redu
tion. For readability, we postpone the proof of Lemma 2.6 until

Appendix.

From Lemma 2.6, it suÆ
es to 
onstru
t a redu
tion from UniqueGA

�

to QSCD

�

. Assume that

there exist two polynomials k; p and a polynomial-time quantum algorithm A su
h that, for in�nitely

many n's, A solves k-QSCD

�

with advantage 1=p(n). Let us �x an arbitrary n for whi
h A solves

k-QSCD

�

with advantage 1=p(n). For any given instan
e G of UniqueGA

�

, we perform the following

pro
edure:

(S1) Generate two sequen
es S

+

= (�

+
k

; :::; �

+
k

) and S

�

= (�

�
k

; :::; �

�
k

) of 8p

2

(n)n instan
es

from G using the algorithms of Lemmas 2.3 and 2.4, respe
tively.

(S2) Invoke A on ea
h 
omponent in S

+

and S

�

as an input. Let R

+

= (A(�

+
k

); :::;A(�

+
k

))

and R

�

= (A(�

�
k

); :::;A(�

�
k

)) be the resulting sequen
es.

(S3) Output YES if the di�eren
e between the number of 1's in R

+

and that in R

�

is at least 4p(n)n;

output NO otherwise.

Note that if G is an \YES" instan
e, then we have S

+

= (

8p

2

(n)n

z }| {

�

+
k

�

; :::; �

+
k

�

) and S

�

= (

8p

2

(n)n

z }| {

�

�
k

�

; :::; �

�
k

�

);

otherwise, we have S

+

= S

�

=

8p

2

(n)n

z }| {

(�


k

; :::; �


k

). Therefore, as far as G is an \YES" instan
e, the numbers

of 1's in R

+

and in R

�

are 
learly di�erent.

Finally, we estimate the above di�eren
e. Let X

+

and X

�

be two random variables respe
tively

expressing the numbers of 1's in R

+

and in R

�

. Assume that G is an \YES" instan
e. The H�o�ding

bound implies Pr[jX

+

�X

�

j > 4p(n)n℄ > 1�2e

�n

sin
e jPr[A(�

+
k

�

) = 1℄�Pr[A(�

�
k

�

) = 1℄j > 1=p(n)

from our assumption. Similarly, when G is a \NO" instan
e, we have Pr[jX

+

� X

�

j < 4p(n)n℄ >

1� 2e

�n

. This guarantees that the above pro
edure solves UniqueGA

�

eÆ
iently. 2

As noted in Se
tion 1, our distin
tion problem QSCD

�

is rooted in SHSP. It is known that a

spe
ial 
ase of SHSP is redu
ed to the distin
tion problem between f�

+

�

(n)g

n2N

and f�(n)g

n2N

. As

Hallgren et al. [24℄ argued, this problem 
annot be solved by any time-unbounded quantum algorithm

over o(n log n) identi
al samples. Regarding our se
ond 
laim, we want to show a 
lose relationship

between QSCD

�

and this distin
tion problem between f�

+

�

(n)g

n2N

and f�(n)g

n2N

.
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Before stating the se
ond 
laim, we present an algorithm that 
onverts �

+

�

to �

�

�

for any �xed

� 2 K

n

. This algorithm is a key to the proof of the 
laim and further to the 
onstru
tion of a

quantum PKC in the subsequent se
tion.

Lemma 2.7 (Conversion Algorithm) There exists a polynomial-time quantum algorithm that,

with 
ertainty, 
onverts �

+

�

(n) into �

�

�

(n) and keeps �(n) as it is for any parameter n 2 N and any

hidden permutation � 2 K

n

.

Proof. First, re
all the de�nition of sgn(�). Let � 2 K

n

be any hidden permutation. For its


orresponding quantum state �

+

�

, the desired algorithm simply inverts its phase a

ording to the sign

of the permutation. This is done by performing the following transformation:

j�i+ j��i 7�! (�1)

sgn(�)

j�i+ (�1)

sgn(��)

j��i:

Note that de
iding the sign of a given permutation takes only polynomial time. Sin
e � is odd, the

above algorithm obviously 
onverts �

+

�

to �

�

�

. Moreover, the algorithm does not alter the quantum

state �. 2

A result similar to [24℄ also holds for QSCD

�

on the distinguishing hardness of two quantum

states. Theorem 2.8 shows that QSCD

�


an be redu
ed to the above distin
tion problem in polynomial

time. As an immediate 
onsequen
e, no time-unbounded quantum algorithm 
an solve QSCD

�

from

o(n log n) samples. The proof of the theorem requires a quantum version of the so-
alled hybrid

argument.

Theorem 2.8 Let k be any polynomial. If there exists a quantum algorithm A su
h that

�

�

�

�

Pr

A

[A(�

+

�

(n)


k(n)

) = 1℄� Pr

A

[A(�

�

�

(n)


k(n)

) = 1℄

�

�

�

�

> "(n)

for any se
urity parameter n 2 N , then there exists a quantum algorithm B su
h that, for ea
h n 2 N ,

�

�

�

�

Pr

B

[B(�

+

�

(n)


k(n)

) = 1℄� Pr

B

[B(�(n)


k(n)

) = 1℄

�

�

�

�

>

"(n)

4

:

Proof. Fix n 2 N arbitrarily and we hereafter omit this parameter n. Assume that a quantum

algorithm A distinguishes between �

+
k

�

and �

�
k

�

with advantage at least "(n). Let A

0

be the

algorithm that applies the 
onversion algorithm of Lemma 2.7 to a given state � (whi
h is either �

+
k

�

or �


k

) and then feeds the resulting state �

0

(either �

�
k

�

or �


k

) to A. Note that A

0

(�

+
k

�

) = A(�

�
k

�

)

and A

0

(�


k

) = A(�


k

) by our de�nition. It thus follows by the triangle inequality that

�

�

�

�

Pr

A

[A(�

+
k

�

) = 1℄� Pr

A

[A(�


k

) = 1℄

�

�

�

�

+

�

�

�

�

Pr

A

0

[A

0

(�

+
k

�

) = 1℄� Pr

A

0

[A

0

(�


k

) = 1℄

�

�

�

�

> "(n)

for any parameter n 2 N . This inequality leads us to either

�

�

�

�

Pr

A

[A(�

+
k

�

) = 1℄� Pr

A

[A(�


k

) = 1℄

�

�

�

�

>

"(n)

2
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or

�

�

�

�

Pr

A

0

[A

0

(�

+
k

�

) = 1℄� Pr

A

0

[A

0

(�


k

) = 1℄

�

�

�

�

>

"(n)

2

:

To 
omplete the proof, we design the desired algorithm B as follows: �rst 
hoose either A or A

0

at

random and then simulate the 
hosen algorithm. It is easy to verify that B distinguishes between

�

+
k

�

and �


k

with advantage at least "(n)=4. 2

3 Appli
ation to a Quantum Publi
-Key Cryptosystem

Se
tion 2 has shown the useful 
ryptographi
 properties of QSCD

�

. Founded on these properties,

we wish to 
onstru
t a quantum PKC where the 
omputational hardness of QSCD

�

(whi
h 
an be

further redu
ed to the hardness of GA) guarantees its se
urity. We start with an eÆ
ient quantum

algorithm that generates �

+

�

from �.

Lemma 3.1 (�

+

�

-Generation Algorithm) There exists a polynomial-time quantum algorithm

that, on input � 2 K

n

, generates the quantum state �

+

�

with probability 1.

Proof. The desired generation algorithm uses two registers and is given below. It is straightforward

to verify the 
orre
tness of the given algorithm and we omit the 
orre
tness proof.

(G1) Prepare the state j0ijidi in two quantum registers.

(G2) Apply the Hadamard transformation to the �rst register to obtain the state

1

p

2

(j0i+ j1i)jidi:

(G3) Perform the Controlled-� on the both registers and we obtain the state

1

p

2

(j0ijidi + j1ij�i):

(G4) Subtra
t 1 from the 
ontent of the �rst register exa
tly when the se
ond register 
ontains �.

This pro
ess gives rise to the state

1

p

2

(j0ijidi + j0ij�i):

(G5) Apply a uniformly random permutation � to the 
ontent of the se
ond register from the left.

The whole quantum system be
omes

1

p

2

(j0ij�i + j0ij��i):

(G6) Output the 
ontent of the se
ond register.

2

Hereafter, we des
ribe our quantum PKC and give its se
urity proof. For the se
urity proof, we

need to spe
ify the model of adversary's atta
k. Of all atta
k models dis
ussed in [7℄, we 
hoose a

quantum analogue of the indistinguishability against the 
hosen plaintext atta
k (IND-CPA) and adapt

the following \weakest" s
enario:

Ali
e (sender) wants to send a 
lassi
al single-bit message se
urely to Bob (re
eiver) via

a quantum 
hannel. Assume that Ali
e and Bob are 
apable of running polynomial-time

quantum algorithms. Bob �rst generates a 
ertain quantum state as an en
ryption key.

Ali
e requests him for his en
ryption key and then en
rypts her message using the key. By

making a request to Bob, Eve (adversary) also obtains numerous 
opies of his en
ryption

key. Therefore, we 
an assume that Eve's atta
k 
on
entrates on Ali
e's message trans-

mission phase through the quantum 
hannel. Eve inter
epts Ali
e's en
rypted message via

13



the 
hannel and tries to de
rypt it using polynomially-many 
opies of Bob's en
ryption

key by applying polynomial-time quantum algorithms.

Now, we explain our quantum PKC proto
ol in detail. Note that, in our proto
ol, Ali
e transmits

a single-bit message to Bob using his O(log n)-qubit-long en
ryption key. Our proto
ol 
onsists of two

phases: Bob's key transmission phase and Ali
e's message transmission phase. (See Figure 1.)

����� ���

�	
��	
 ��
����

���

��
�

��
�

��
�

�� ��
������ ���

�	
��	
 ��
����

���

��
�

��
�

��
�

�� ��
�

Figure 1: our publi
-key 
ryptosystem

Here is the pre
ise des
ription of our quantum PKC proto
ol.

[Key transmission phase℄

(A1) Bob 
hooses a de
ryption key � uniformly at random from K

n

.

(A2) Bob generates suÆ
iently many 
opies of the en
ryption key �

+

�

.

(A3) Ali
e obtains a 
opy of the en
ryption key from Bob.

[Message transmission phase℄

(A4) Ali
e en
rypts 0 or 1 into �

+

�

or �

�

�

, respe
tively, and sends the en
rypted message ba
k to Bob.

(A5) Bob de
rypts Ali
e's message using the de
ryption key �.

Step (A1) 
an be implemented by �rst 
hoosing di�erent transpositions uniformly at random and then

letting � to be the produ
t of these 
hosen transpositions. Step (A2) is done by the �

+

�

-generation

algorithm of Lemma 3.1. The 
onversion algorithm of Lemma 2.7 implements Step (A4) sin
e Ali
e

sends Bob either the re
eived state �

+

�

or its 
onverted state �

�

�

. Finally, the distinguishing algorithm

of Theorem 2.1 implements Step (A5).

The se
urity of our PKC is proven by redu
ing GA to Eve's atta
k during the message transmission

phase. Our redu
tion is a simple modi�
ation of the redu
tion given in Theorem 2.5.

Proposition 3.2 Let A be any polynomial-time quantum adversary who atta
ks our quantum PKC

during the message transmission phase. Assume that there exist two polynomials p(n) and l(n)

satisfying that

�

�

�

�

Pr

�;A

[A(�

+

�

; �

+
l(n)

�

) = 1℄� Pr

�;A

[A(�

�

�

; �

+
l(n)

�

) = 1℄

�

�

�

�

>

1

p(n)

for in�nitely many parameters n 2 N . Then, there exists a polynomial-time quantum algorithm that

solves GA in the worst 
ase with non-negligible probability for in�nitely many n's.

Proof. The proposition immediately follows from the proof of Theorem 2.5 by repla
ing �

+
k

�

,

�

�
k

�

, and �


k

in the proof with (�

+

�

; �

+
l(n)

�

), (�

�

�

; �

+
l(n)

�

), and (�; �


l(n)

), respe
tively. 2
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4 Generalization of QSCD

�

In our QSCD

�

-based quantum PKC, Ali
e en
rypts a single-bit message using an O(n logn)-qubit

en
ryption key. We wish to show how to in
rease the size of Ali
e's en
ryption message and 
onstru
t

a multi-bit quantum PKC built upon a generalization of QSCD

�

, 
alled QSCD


y


(QSCD with 
y
li


permutations), whi
h is the distin
tion problem among multiple ensembles of quantum states. Re
all

that De�nition 1.1 has introdu
ed the notion of 
omputational indistinguishability between two en-

sembles of quantum states. This notion 
an be naturally generalized as follows to multiple quantum

state ensembles.

De�nition 4.1 We say that m ensembles f�

0

(l)g

l2N

; :::; f�

m�1

(l)g

l2N

of quantum states are 
ompu-

tationally indistinguishable if, for any distin
t pair i; j 2 Z

m

, the advantage between the two ensembles

f�

i

(l)g

l2N

and f�

j

(l)g

l2N

is negligible for any polynomial-time quantum algorithm A; namely, for any

two ensembles f�

i

(l)g

l2N

and f�

j

(l)g

l2N

, any polynomial p, any polynomial-time quantum algorithm

A, and any suÆ
iently large number l, we have

�

�

�

�

Pr

A

[A(�

i

(l)) = 1℄� Pr

A

[A(�

j

(l)) = 1℄

�

�

�

�

<

1

p(l)

:

The distin
tion problem among f�

0

(l)g

l2N

; :::; f�

m�1

(l)g

l2N

is said to be solvable with non-negligible

advantage if the ensembles are not 
omputationally indistinguishable; i.e., there exist two ensembles

f�

i

(l)g

l2N

and f�

j

(l)g

l2N

, a polynomial-time quantum algorithm A and a polynomial p su
h that

�

�

�

�

Pr

A

[A(�

i

(l)) = 1℄� Pr

A

[A(�

j

(l)) = 1℄

�

�

�

�

>

1

p(l)

for in�nitely many numbers l 2 N.

We wish to de�ne a spe
i�
 distin
tion problem, denoted su

in
tly QSCD


y


among m ensembles

of quantum states. For any �xed n 2 N, assume that m � 2 and m divides n. For ea
h � 2 S

n

,

� 2 K

m

n

, and s 2 Z

m

, let

j�

�

�;s

i =

1

p

m

m�1

X

t=0

!

st

m

j��

t

i;

where !

m

= e

2�i=m

. Our new hidden permutation � 
onsists of disjoint n=m 
y
li
 permutations of

length m; namely, � is of the form

� = (i

0

i

1

� � � i

m�1

) � � � (i

n�m

i

n�m+1

� � � i

n�1

);

where i

s

; i

t

2 Z

m

and i

s

6= i

t

if s 6= t for any pair (s; t). Su
h a permutation � has the following

properties: (i) � has no �xed points (i.e., �(i) 6= i for any i 2 Z

n

) and (ii) � is of order m (i.e.,

�

m

= id). For 
onvenien
e, denote by K

m

n

� S

n

the set of all su
h permutations. The distin
tion

problem QSCD


y


is �nally de�ned in the following way.

De�nition 4.2 The problem QSCD


y


is the distin
tion problem among m ensembles

f�

(0)

�

(n)


k(n)

g

n2N

; :::; f�

(m�1)

�

(n)


k(n)

g

n2N

of quantum states, where k is a polynomial and the no-

tation �

(s)

�

(n) denotes the mixed state

1

n!

P

�2S

n

j�

�

�;s

ih�

�

�;s

j for ea
h � 2 K

m

n

. In parti
ular, for any

�xed k, we write k-QSCD


y


.
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As in the 
ase of QSCD

�

, we also drop the parameter n wherever possible. Note that QSCD

�


oin
ides with QSCD


y


with m = 2 and n = 2(2n

0

+ 1) for a 
ertain number n

0

2 N.

The generalized problem QSCD


y


also enjoys useful 
ryptographi
 properties. We �rst present the

trapdoor property of QSCD


y


. In the 
ase of QSCD

�

, we embed only a single bit into the quantum

states �

+

�

and �

�

�

. This is possible be
ause its trapdoor information � is a permutation of order two.

Sin
e � is of orderm � 2 in QSCD


y


, m bits 
an be embedded into the quantum states �

(0)

�

; :::; �

(m�1)

�

.

Now, we present a distinguishing algorithm for �

(s)

�

.

Theorem 4.3 (Generalized Distinguishing Algorithm) There exists a polynomial-time quan-

tum algorithm that, for ea
h n 2 N, � 2 K

m

n

, and s 2 Z

m

, de
rypts �

(s)

�

(n) to s with exponentially-

small error probability.

Proof. Let � be any given quantum state of the form �

(s)

�

for a 
ertain hidden permutation � 2 K

m

n

and a hidden parameter s. Note that � is the mixture of pure states j�

�

�;s

i over a randomly 
hosen

� 2 S

n

. It thus suÆ
es to give a polynomial-time quantum algorithm that de
rypts j�

�

�;s

i to s for any

�xed �. Su
h an algorithm 
an be given by 
ondu
ting the following Generalized Controlled-� Test,

whi
h is a straightforward generalization of the distinguishing algorithm given in Theorem 2.1.

[Generalized Controlled-� Test℄

(D1') Prepare two quantum registers. The �rst register holds a 
ontrol string, initially set to j0i, and

the se
ond register holds the state j�

�

�;s

i. Apply the inverse Fourier transformation F

�1

m

to the

�rst register. Meanwhile, assume that we 
an perform the Fourier transformation exa
tly. The

total system then be
omes

1

p

m

m�1

X

r=0

jrij�

�

�;s

i =

1

m

X

r;t

!

st

m

jrij��

t

i:

(D2') Apply � to the 
ontent of the se
ond register from the right r times. The state of the total

system now be
omes

1

m

X

r;t

!

st

m

jrij��

r+t mod m

i:

(D3') Apply the Fourier transformation F

m

to the �rst register and we obtain the state

1

m

X

r;t

1

p

m

m�1

X

r

0

=0

!

rr

0

m

jr

0

i!

st

m

j��

r+t mod m

i

=

1

m

3=2

X

r;r

0

;t

!

st+rr

0

m

jr

0

ij��

r+t mod m

i

=

1

m

3=2

X

r;t

!

s(r+t)

m

jsij��

r+t mod m

i+

1

m

3=2

X

r;t;r

0

6=s

!

st+rr

0

m

jr

0

ij��

r+t mod m

i

=

1

p

m

m�1

X

t=0

!

st

m

jsij��

t

i = jsij�

�

�;s

i:

(D4') Finally, measure the �rst register in the 
omputational basis and output the result s in Z

m

.
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The error probability of the above algorithm depends only on the pre
ision of the Fourier transfor-

mation over Z

m

. As shown in [28℄, the quantum Fourier transformation 
an be implemented with

exponentially-small error probability by the approximated quantum Fourier transformation. There-

fore, the theorem follows. 2

Similar to QSCD

�

, the average-
ase hardness of QSCD


y



oin
ides with its worst-
ase hardness.

Theorem 4.4 Let k be any polynomial. Assume that there exists a polynomial-time quantum al-

gorithm A that solves k-QSCD


y


with non-negligible advantage for a uniformly random � 2 K

m

n

;

namely, there exist two numbers s; s

0

2 Z

m

and a polynomial p su
h that, for in�nitely many numbers

n 2 N,

�

�

�

�

Pr

�;A

[A(�

(s)

�

(n)


k(n)

) = 1℄� Pr

�;A

[A(�

(s

0

)

�

(n)


k(n)

) = 1℄

�

�

�

�

>

1

p(n)

;

where � is 
hosen uniformly at random from K

m

n

. Then, there exists a polynomial-time quantum

algorithm B that solves k-QSCD


y


with non-negligible advantage.

Proof. Applying a uniformly random permutation � 2 S

n

to j�

�

�;s

i from its right side and we

obtain the state

1

p

m

m�1

X

t=0

!

st

m

j��

t

�i =

1

p

m

m�1

X

t=0

!

st

m

j���

�1

�

t

�i =

1

p

m

m�1

X

t=0

!

st

m

j��(�

�1

��)

t

i:

Note that

1

n!

P

�2S

n

j�

��

�

�1

��;s

ih�

��

�

�1

��;s

j is an average-
ase instan
e of QSCD


y


sin
e �

�1

�� is dis-

tributed uniformly at random over K

m

n

. The rest of the proof follows by an argument similar to the

proof of Theorem 2.2. 2

We want to show a quantum algorithm that generates the quantum state �

(s)

�

eÆ
iently from �

and s. This generation algorithm will be used to generate en
ryption keys in our QSCD


y


-based

multi-bit quantum PKC.

Lemma 4.5 (�

(s)

�

-Generation Algorithm) There exists a polynomial-time quantum algorithm

that generates �

(s)

�

for any s 2 Z

m

and any � 2 K

m

n

with exponentially-small error probability.

Proof. The 
onstru
tion is based on a straightforward generalization of the �

+

�

-generation algo-

rithm. We use the approximated Fourier transformation [28℄ instead of the Hadamard transformation.

Note that the Fourier transformation F

�

over the 
y
li
 group fid; �; �

2

; :::; �

m�1

g 
an be eÆ
iently

approximated from � by an argument similar to the proof of Lemma 3.1 using the approximated

Fourier transformation. Su
h approximation enables us to perform with exponentially-small error

probability the following transformation:

F

�

j�

s

i =

1

p

m

m�1

X

t=0

!

st

m

j�

t

i:

Sin
e the initial state j�

s

i 
an be easily generated from �, we immediately obtain the approximation

of F

�

j�

s

i. By applying a uniformly-random permutation � 2 S

n

to the resulting state from the left,
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we obtain the desired state �

(s)

�

with exponentially-small error probability. 2

Toward the end of this se
tion, we present our multi-bit quantum PKC.

[Key transmission phase℄

(A1') Bob 
hooses a de
ryption key � uniformly at random from K

m

n

.

(A2') Bob generates the series (�

(0)

�

; :::; �

(m�1)

�

) of his en
ryption keys.

(A3') Ali
e obtains the entire en
ryption keys from Bob.

[Message transmission phase℄

(A4') Ali
e pi
ks up �

(s)

�

for her message s 2 Z

m

and sends �

(s)

�

ba
k to Bob.

(A5') Bob de
rypts Ali
e's en
rypted message using his de
ryption key �.

By 
hoosing 
y
les one by one sequentially, we 
an perform Step (A1'). The �

(s)

�

-generation algorithm

of Lemma 4.5 immediately implements Step (A2'). Note that Ali
e 
an en
rypt her message s simply

by 
hoosing �

(s)

�

from the series (�

(0)

�

; :::; �

(m�1)

�

) of Bob's en
ryption keys. Finally, the generalized

distinguishing algorithm in Theorem 4.3 a
hieves Step (A5').

A major drawba
k of our multi-bit en
ryption s
heme is that Bob needs to send Ali
e all the

en
ryption keys (�

(0)

�

; :::; �

(m�1)

�

) simply be
ause of the la
k of a sophisti
ated 
onverting algorithm

among di�erent en
ryption keys without knowing a hidden de
ryption key �. For 
omparison, re
all

the 
onversion algorithm for the QSCD

�

-based single-bit en
ryption s
heme. This 
onversion algo-

rithm utilizes the \parity" of � and �� to invert their phase without using any information on �.

More pre
isely, the algorithm implements the homomorphism f from S

n

to f+1;�1g

�

=

Z=2Z satisfy-

ing that f(�) = +1 (�1, resp.) if � is even (odd, resp.). Unfortunately, the same algorithm fails for

QSCD


y


. This is seen as follows. Let us assume, to the 
ontrary, that there exists a homomorphism

g mapping S

n

to f1; !

m

; :::; !

m�1

m

g (

�

=

Z=mZ). The fundamental homomorphism theorem implies that

S

n

=Ker(g)

�

=

Z=mZ; namely, there exists an isomorphism from �Ker(g) to g(�) for every � 2 S

n

.

Note that Ker(g) is a normal subgroup in S

n

. It is known that su
h a normal subgroup in S

n

equals

either the trivial group fidg or the alternation group A

n

. Apparently, there is no isomorphism between

f�A

n

: � 2 S

n

g and Z=mZ nor isomorphism between f� : � 2 S

n

g and Z=mZ if n > 4 and n � m > 2.

This 
ontradi
ts our assumption.

5 Con
luding Remarks

The 
omputational distin
tion problem QSCD

�

has useful properties to design a quantum PKC whose

se
urity is guaranteed by the 
omputational intra
tability of GA. Although GA is redu
ible to QSCD

�

,

there seems a large gap between the hardness of GA and that of QSCD

�

be
ause all the 
ombinatorial

stru
tures of input graphs in GA are 
ompletely lost in QSCD

�

. It is therefore pressing to �nd a ni
e


lassi
al problem (for instan
e, the problems of �nding a 
entralizer or �nding a normalizer [33℄) whi
h

almost mat
hes the 
omputational hardness of QSCD

�

. Sin
e no fast quantum algorithm is known for

QSCD

�

, dis
overing su
h an algorithm may require new tools and novel proof te
hniques in quantum


omplexity theory. Besides our quantum states f�

+

�

(n); �

�

�

(n)g in QSCD

�

, it is imperative to sear
h

for other simple quantum states whose 
omputational indistinguishability is helpful to 
onstru
t a

more se
ure 
ryptosystem.
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Similar to QSCD

�

, QSCD


y


owns useful 
ryptographi
 properties for whi
h we have built a multi-

bit quantum PKC. It is unfortunate that the intra
tability of QSCD


y


and therefore the se
urity of

our multi-bit quantum PKC are not yet 
lear. If one proves that the worst-
ase hardness of QSCD


y


is lower-bounded by, for instan
e, the hardness of GA, then our multi-bit quantum PKC might �nd

more pra
ti
al use.
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Appendix: Redu
tion from GA to UniqueGA

�

In this Appendix, we prove Lemma 2.6. Earlier, K�obler et al. [30℄ proved the polynomial-time Turing

equivalen
e between GA and UniqueGA. We �rst review their redu
tion and then explain how to

modify it to obtain the redu
tion from GA to UniqueGA

�

. Note that the redu
tion from UniqueGA

�

to GA is trivial.
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We begin with a te
hni
al tool and notations ne
essary to des
ribe the redu
tion of K�obler et al.

The redu
tion of K�obler et al. uses a te
hni
al tool 
alled a label to distinguish ea
h node of a given

graph G from the others. The label j atta
hed to node i 
onsists of two 
hains, one of whi
h is of

length 2n+ 3 
onne
ted to node i and the other is of length j 
onne
ted to the n+ 2-nd node of the

�rst 
hain. (See Figure 2.)

i

j

1n + 1n +

i

j

1n + 1n +

Figure 2: label

Note that the total size of the label j is 2n + j + 3. Let G

[i℄

denote the graph obtained from G by

atta
hing label 1 to node i. Similarly, G

[i

1

;:::;i

j

℄

is de�ned as the graph with labels 1; :::; j respe
tively

atta
hed to nodes i

1

; :::; i

j

. Note that any automorphism of G

[i℄

maps the node i into itself and that

any label adds no new automorphism into the modi�ed graph. Let Aut(G) be the automorphism

group of the graph G and let Aut(G)

[1;:::;i℄

be the point-wise stabilizer of f1; :::; ig in Aut(G), i.e.,

Aut(G)

[1;:::;i℄

= f� 2 Aut(G) : 8j 2 f1; :::; ig[�(j) = j℄g.

K�obler et al. proved the following theorem. For our later use, we give its proof.

Theorem 5.1 [30, Theorem 1.31℄ GA is polynomial-time Turing redu
ible to UniqueGA.

Proof. Given an ora
le O for UniqueGA, the following algorithm solves GA in polynomial time.

Let G be any given instan
e of GA.

(U1) Repeat (U2)-(U3) for ea
h i starting with n down to 1.

(U2) Repeat (U3) for ea
h j ranging from i+ 1 to n.

(U3) Invoke O with input graph G

[1;:::;i�1;i℄

[G

[1;:::;i�1;j℄

. If the out
ome of O is YES, output YES

and halt.

(U4) Output NO.

If G is an \YES" instan
e, there is at least one non-trivial automorphism. Take the largest

number i 2 f1; :::; ng su
h that there exists a number j 2 f1; :::; ng and a non-trivial automor-

phism � 2 Aut(G)

[1;:::;i℄

for whi
h �(i) = j and i 6= j. We 
laim that there is exa
tly one su
h

non-trivial automorphism. This is seen as follows. First, note that Aut(G)

[1;:::;i�1℄

is expressed as

Aut(G)

[1;:::;i�1℄

= �

1

Aut(G)

[1;:::;i℄

+ � � � + �

d

Aut(G)

[1;:::;i℄

: For any two distin
t 
osets �

s

Aut(G)

[1;:::;i℄

and �

t

Aut(G)

[1;:::;i℄

and for any two automorphisms � 2 �

s

Aut(G)

[1;:::;i℄

and �

0

2 �

t

Aut(G)

[1;:::;i℄

, it

holds that �(i) 6= �

0

(i). Sin
e jAut(G)

[1;:::;i℄

j = 1 and there exists the unique 
oset �

k

Aut(G) su
h

that �(i) = j for any � 2 �

k

Aut(G) by the de�nition of i, we obtain j�

k

Aut(G)

[1;:::;i℄

j = 1. This im-

plies that the non-trivial automorphism � is unique. Note that the unique non-trivial automorphism

inter
hanges two subgraphs G

[1;:::;i�1;i℄

and G

[1;:::;i�1;j℄

. Therefore, the above algorithm su

essfully

outputs YES at Step (U3).

On the 
ontrary, if G is a \NO" instan
e, then for every distin
t i and j, the modi�ed graph has
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no non-trivial automorphism. Thus, the above algorithm 
orre
tly reje
ts su
h a graph G. 2

Finally, we des
ribe the redu
tion from GA to UniqueGA

�

by slightly modifying the redu
tion

given in the above proof.

Lemma 5.2 GA is polynomial-time Turing redu
ible to UniqueGA

�

.

Proof. We only need to 
hange the number of nodes to invoke ora
le UniqueGA

�

in (U3). For su
h

a 
hange, we �rst modify the size of ea
h label. Sin
e the numberm of all nodes G

[1;:::;i�1;i℄

[G

[1;:::;i�1;j℄

is even, if there is no k su
h that m = 2(2k + 1) then we add one more node appropriately to the

original labels. We then atta
h our modi�ed labels of length 2n+ i+ 4 and 2n+ j +4 to nodes i and

j, respe
tively. Obviously, this modi�ed graph satis�es the promise of UniqueGA

�

. Our algorithm

therefore works 
orre
tly for any instan
e of GA. 2
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