
Simulation-Based Security with Inexhaustible

Interactive Turing Machines⋆

Ralf Küsters

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

24098 Kiel, Germany
kuesters@ti.informatik.uni-kiel.de

Abstract. Recently, there has been much interest in extending models
for simulation-based security in such a way that the runtime of protocols
may depend on the length of their input. Finding such extensions has
turned out to be a non-trivial task. In this work, we propose a simple, yet
expressive general computational model for systems of Interactive Turing
Machines (ITMs) where the runtime of the ITMs may be polynomial per
activation and may depend on the length of the input received. One dis-
tinguishing feature of our model is that the systems of ITMs that we con-
sider involve a generic mechanism for addressing dynamically generated
copies of ITMs. We study properties of such systems and, in particular,
show that systems satisfying a certain acyclicity condition run in polyno-
mial time. Based on our general computational model, we state different
notions of simulation-based security in a uniform and concise way, study
their relationships, and prove a general composition theorem for compos-
ing a polynomial number of copies of protocols, where the polynomial is
determined by the environment. The simplicity of our model is demon-
strated by the fact that many of our results can be proved by mere
equational reasoning based on a few equational principles on systems.

1 Introduction

In the simulation-based security paradigm the security of protocols is defined in
such a way that security is preserved even if the protocols are used as compo-
nents of an arbitrary (polynomially bounded) distributed system. This strong
composability property allows the modular design and analysis of protocols. The
main idea behind simulation-based security is that the security of a protocol is
defined in terms of an ideal protocol (also called, ideal functionality). A real
protocol securely realizes the ideal protocol if every attack on the real protocol
can be translated into an “equivalent” attack on the ideal protocol, where equiv-
alence is specified based on an environment trying to distinguish the real attack
from the ideal one.

Several related models for simulation-based security have been proposed [5,
19, 4, 3, 18, 10] (see [10] for a comparison of the models). In these models, systems

⋆ This is the full version of [16].

of Interactive Turing Machines (ITMs) are considered. However, in the various
models the ITMs can have different forms: rather standard ITMs, as used in
[5], probabilistic I/O automata [4], and process calculus expressions [18, 10]. De-
pending on the kind of entities running in a system (environment, real/ideal
adversary, simulator, real/ideal protocol) and the order of quantification over
these entities, different security notions for simulation-based security are ob-
tained, including strong [11, 10] (see also [5]), black-box [19], (dummy) universal
[5, 19], and reactive simulatability [19].

The mentioned models have in common that the total runtime of the ITMs,
i.e., the runtime summed over all activations, is bounded by a polynomial in the
security parameter alone and may not depend on the length of the input that
the ITMs receive from other ITMs. (We call these ITMs exhaustible in the fol-
lowing.) This is a mainly technically motivated restriction which guarantees that
a system of ITMs runs in polynomial time in the security parameter. However,
as explained below, it significantly limits the expressivity of the models and in
some cases results in unintuitive behavior.

Recently, there has therefore been much interest in developing models for
simulation-based security involving ITMs whose runtime may depend on the
length of the input received from other ITMs. Canetti [7] and Hofheinz et al. [14]
were the first to propose and study models for simulation-based security with
such ITMs. Developing such models is a non-trivial task. As already pointed out
in [4, 7, 14], näıve extensions of the existing models do not work: In a system of
ITMs (whose runtime may depend on the length of their input), two ITMs can
send messages back and forth among each other. Hence, such a system would
not terminate, let alone perform a polynomially bounded computation, which is,
however, required to guarantee the security of cryptographic primitives. Canetti
[7] and Hofheinz et al. [14] have pointed out that globally bounding the runtime
of an otherwise possibly non-terminating system by a polynomial, i.e., stopping
the system after a polynomial bound has been reached, also does not yield a
reasonable computational model for simulation-based security: an environment
could (artificially) distinguish a real attack from an ideal one by measuring the
overall number of steps taken in the different attacks.

Contribution of this Paper. In this paper, we propose a model for simulation-
based security which extends and simplifies several aspects of previous models
(see also the related work). More precisely, the main contributions of this work
are twofold: First, we propose a simple, yet expressive general computational
model for systems of what we call inexhaustible ITMs independent of the ap-
plication to simulation-based security. A distinguishing feature of this model is
a generic mechanism for addressing dynamically generated ITMs. Second, we
demonstrate the flexibility and simplicity of our model by formalizing several
notions of simulation-based security in it, along with a study of the relationships
of the security notions and general composition theorems. In previous models,
the formulations of the security notions were much more cumbersome or the
security notions could not be formalized at all. Also, the composition theorems
were more restricted in different respects. The simplicity of our model is also

2

reflected in the fact that many proofs can be carried out by mere equational
reasoning on systems based on a few equational principles. Let us explain our
general computational model and the application to simulation-based security
in more detail.

The general computational model. The main building blocks of our computa-
tional model are the already mentioned inexhaustible ITMs. The runtime of
these ITMs is only polynomially bounded per activation where the polynomial
is in the length of the current input, the security parameter, and the size of
the current configuration, i.e., the length of the current content written on the
work tapes of the machine. This enables a machine to read every input and in
every activation scan its entire current configuration. It also prevents machines
from being exhausted by other machines sending useless messages; we note that
in Canetti’s model [7], ITMs can be exhausted. Inexhaustible ITMs have two
main features that distinguish them from weakly polynomial machines [4, 14]:
First, they may run in one of two modes (CheckAddress and Compute). These
modes are used within a generic mechanism for addressing copies of ITMs. This
avoids to fix specific details of an addressing mechanism (such as session IDs)
in the general computational model. Second, we distinguish between enriching
and consuming input tapes of an ITM and require that the output produced
by a single ITM and the size of its current configuration (i.e., the length of the
content written on the work tapes of the machine) is bounded by a polynomial
in the security parameter plus the length of the input that has been received on
enriching tapes so far.

The systems of ITMs that we consider may contain an unbounded number
of copies of ITMs. In a run of a system, ITMs may create new copies of ITMs
by invoking other machines. In other words, the number of copies of ITMs is
determined dynamically. As mentioned, using the two modes in which ITMs
may run, we employ a generic mechanism for addressing copies of ITMs. In
the application for simulation-based security, this mechanism allows us to model
multi-party protocols and to talk about different sessions of a protocol (as needed
in the composition theorems). We identify semantic and syntactic conditions on
systems of ITMs which guarantee that these systems run in polynomial time.
The syntactic condition is an acyclicity condition on the way ITMs are connected
via the mentioned enriching tapes.

We prove several equational properties of systems in our general computa-
tional model which in the application for simulation-based security allows us to
carry out many of the proofs by mere equational reasoning on systems. We also
show that any (sub-)system can be simulated by a single ITM (the simulation
is independent of the environment in which the system may run). In particular,
this is true for those systems describing an unbounded number of sessions of a
protocol. This is the core of the joint state theorem [9, 7].

While, as we will see, our general computational model forms a solid and
flexible basis for studying different forms of simulation-based security, we believe
that our model and the properties shown are of interest independent of the
application to simulation-based security.

3

Simulation-based security. Based on our computational model, we state and in-
vestigate different notions of simulation-based security and prove general compo-
sition theorems. One important feature of our model is that the security notions
can be stated in a uniform and concise way and that many proofs can be carried
out based on the mentioned equational principles for (general) systems of ITMs.

More precisely, we consider two classes of systems for describing (real/ideal)
protocols, while the latter class is only briefly discussed due to space limitations:
IO-enriching protocol systems and IO-network-enriching protocol systems.

In IO-enriching protocol systems tapes which are part of the I/O interface
of the (real/ideal) protocol may be enriching while those that are part of the
network interface are consuming. This enables parties to produce output whose
length is only polynomially bounded in the security parameter plus the length of
the workload received on their I/O interface, such as messages to be encrypted,
signed, or securely transmitted. For this class of protocol systems we formulate
the security notions strong, black-box, (dummy) universal, and reactive simu-
latability and identify sufficient conditions under which these notions are equiv-
alent. We also prove a general composition theorem for composing a polynomial
number of copies of protocols where the polynomial can be determined by the
environment (and/or superior protocols).

In IO-network-enriching protocol systems not only the tapes of the I/O inter-
face but also of the network interface may be enriching, yielding a more general
class of protocol systems, but with somewhat restricted security notions.

Drawbacks of Models with Exhaustible ITMs. Models for simulation-based secu-
rity based on exhaustible ITMs have several drawbacks:

First, their expressivity is limited. For example, when specifying an ideal
protocol for modeling encryption (see, e.g., [5, 2]) the number and length of mes-
sages that can be encrypted using this protocol has to be bounded by some
fixed polynomial in the security parameter; the same is true for other ideal pro-
tocols, such as those for modeling signatures [5, 8, 6, 1, 2] and secure message
transmission [19]. Such a fixed bound is quite artificial and also restricts the
security guarantees. Inexhaustible ITMs overcome these problems. Another ex-
ample that illustrates the limited expressivity in models with exhaustible ITMs
is the following: A party, modeled as an ITM, running a protocol is not able to
block useless messages. It first has to examine the incoming message to decide
whether to drop or to further process the message. This task consumes resources,
and hence, by swamping an ITM with useless messages, external parties, includ-
ing the adversary and the environment, can exhaust the total runtime available
to a party and force it to stop. A partial solution to this problem of blocking
useless messages is the length function in the model of Backes, Pfitzmann, and
Waidner [4]. A more general approach is the concept of guards introduced in
[10]. However, inexhaustible ITMs supersede such constructions.

Second, models with exhaustible ITMs exhibit in some cases unintuitive and
unexpected behavior. For example, almost identical protocols may not be sim-
ulatable w.r.t. black-box simulatability, while they are with universal simulata-
bility. More concretely, consider an ideal and real protocol which are identical

4

except that on the network interface the ideal protocol sends the bit-wise comple-
ment of messages the real protocol would send. While the real protocol realizes
the ideal protocol w.r.t. universal simulatability, this is, in general, not the case
w.r.t. black-box simulatability. The main reason for this peculiarity is that if
the runtime of ITMs is polynomially bounded in the security parameter, then
in general it is not possible to plug an entity, say D, between two other entities,
say Q1 and Q2, such that D can be chosen independently of at least one of the
entities Q1 or Q2, and such that D forwards messages between Q1 and Q2 (this
property is called FORWARDER property in [10]): D can be exhausted by these
entities, i.e., the runtime available to D might not suffice to forward all messages
between Q1 and Q2. As shown in [10], this property has a great impact on the
relationships between the different security notions. When using ITMs where all
tapes are enriching, the FORWARDER property can be satisfied. Another un-
expected behavior is that when considering systems where the number of ITMs
in the system is unbounded and is determined by the environment, then such a
system cannot be simulated by a single ITM. For example, one cannot simulate
an unbounded number of copies of protocols within one ITM. This is, however,
what is required by the joint state theorem as stated in [7, 9]. In our model, every
(sub-)system can be simulated by a single ITM.

Related Work. As mentioned above, Canetti [7] and Hofheinz et al. [14] were the
first to study models for simulation-based security where the runtime of ITMs
may depend on the length of their input. Let us discuss the main differences to
the present work.

The results proved by Hofheinz et al. are most closely related to the results
presented in this paper for IO-network-enriching protocol systems. These proto-
col systems are quite similar in expressivity to the polynomially shaped weakly
polynomial collections considered in [14]. However, the way the security notions
are defined is quite different from the definitions presented here. Hofheinz et al.
do not consider IO-enriching protocol systems, for which in the present paper
we have formulated and studied the different security notions (strong, black-box,
(dummy) universal, and reactive simulatability), and proved a general compo-
sition theorem. Strong and black-box simulatability have not been investigated
by Hofheinz et al. The computational model employed in [14] does not explicitly
allow to talk about systems with an unbounded number of dynamically gener-
ated ITMs (such systems would have to be simulated within a fixed and finite
number of ITMs). Hence, without further extending the model by Hofheinz et
al., a composition theorem for composing a polynomial number of machines can
not be stated (let alone proved) in their setting.

The model by Canetti [7] has been evolving over time and is still subject to
change. Canetti’s model has two main features that our model does not have:
ITMs may generate the code of machines they invoke and a description of a sys-
tem involves a control function which oversees whether or not an ITM is allowed
to communiate with another ITM. Compared to Canetti’s model, our model is
much simpler, and yet, more expressive and flexible in different respects: The to-
tal runtime of the ITMs that Canetti employs is bounded by a polynomial in the

5

security parameter and the length of the input received on I/O tapes (minus the
runtime provided to ”‘subroutine ITMs”’). In particular, the runtime of these
ITMs may not be polynomial per activation, and in fact, these ITMs can be
exhausted by other ITMs sending useless messages. This limits the expressivity
of the model in the sense that certain protocols can not be formulated, e.g., pro-
tocols that, without consuming resources, simply ignore messages of unexpected
format. Also, the exhaustion of ITM leads to much more involved constructions
for the security notions and proofs. By using inexhaustible ITMs, we avoid these
problems in our model. To guarantee that systems as defined by Canetti run
in polynomial time, the length of the output of ITMs when invoking new ITMs
must be strictly decreasing compared to the length of the input received. The
number of ITMs that may be invoked by a machine is also restricted in a certain
way. We do not have these restrictions in our model. Another difference between
the two models is that Canetti explicitly defines as part of his computational
model how session and party IDs are used to address specific copies of protocols.
In the present work we instead have developed a more general mechanism for
this purpose and do not fix details of the addressing mechanism in the general
computational model. We also note that our composition theorems are more
flexible in the way we allow protocols to connect to subprotocols. We finally
mention that in the version of [7] from January 2005, Canetti considers ITMs
whose runtime may depend on the input received on all tapes (he called such
ITMs A-PPT). In our terminology, these are ITMs where all of the tapes are
enriching. Canetti formulated different security notions using these ITMs. How-
ever, the proofs for establishing the relationships between these notions were
flawed.

Structure of the Paper. In Section 2, we present our general computational
model, including the definition of (inexhaustible) ITMs and systems of such
ITMs, with important properties presented in Section 3. Based on the gen-
eral computation model, we introduce the mentioned security notions for IO-
enriching protocol systems in Section 4, with their relationships studied in Sec-
tion 5. The composition theorems for this class of protocol systems are presented
in Section 6. IO-network-enriching protocol systems are investigated in Section 7.
We conclude in Section 8. More detailed definitions and full proofs are provided
in the appendix.

Notation and Basic Terminology. For a bit string a ∈ {0, 1}∗ we denote by |a|
the length of a. Following [7], a function f : {1}∗×{0, 1}∗ → R≥0 is negligible if
for every polynomial p and q there exists k0 such that for all k > k0 and all bit
strings a ∈

⋃
k′≤q(k){0, 1}k′

we have that f(1k, a) ≤ 1
p(k) .

2 The General Computational Model

In this section, we define our general computational model independent of the
application to simulation-based security. We introduce single interactive Tur-
ing machines and systems of such machines, define runs of systems, and state

6

basic properties. We also introduce further notation and terminology, used in
subsequent sections.

2.1 Inexhaustible Interactive Turing Machines

We first introduce the syntax of (inexhaustible) interactive Turing machines and
then the way these machines perform their computations.

Syntax. An (inexhaustible) interactive Turing machine (ITM, for short) M is
a probabilistic Turing machine with the following tapes and a polynomial q
associated with it where q will be used as a bound in computations of M : a
read-only tape on which the mode the ITM M is supposed to run is written (the
mode tape)—the possible modes are CheckAddress and Compute (see below)—, a
read-only tape on which the security parameter is written (the security parameter
tape), a write-only tape (the address decision tape, used in mode CheckAddress),
zero or more input and output tapes, and work tapes. The input and output tapes
have names and, in addition, input tapes have an attribute whose possible values
are consuming or enriching (see below). We require that different tapes of M have
different names. We allow M to randomly choose transitions. Alternatively, one
could equip M with a random tape (see, e.g., [12]).

The set of input and output tapes of M is denoted by T (M), the set of input
tapes by Tin(M), and the set of output tapes by Tout(M).

The names of input and output tapes will determine how ITMs are connected
in a system of ITMs: If an ITM sends a message on an output tape named c, then
only (a copy of) an ITM with an input tape named c can receive this message.
We will use input tapes with attribute enriching (enriching input tapes, for short)
to bound both the length of the output that may be produced by an ITM and
the size of its current configuration.

Tapes named start and decision will serve a particular purpose. We require
that only input tapes can be named start and only output tapes can be named
decision. We will later use start to provide a system with external input and to
trigger an ITM if no other ITM was triggered. An ITM is triggered by another
ITM if the latter sends a message to the former. An ITM with an input tape
named start will be called master ITM. On tapes named decision the final output
of a system of ITMs will be written.

An ITM M runs in one of two modes, CheckAddress or Compute. The mode
in which M is supposed to run is written on the mode tape of M .

Computation. We describe the computation of an ITM M in mode CheckAddress

and Compute, respectively. Informally speaking, in mode CheckAddress an ITM
M checks whether the incoming message is in fact addressed to it. Typically,
this mode is used for the following purpose: In a system of ITMs there may be
several copies of M (belonging to different parties in a multi-party protocol or
to different copies of a protocol). To address the different copies one can prefix
messages with identifiers (for example, session identifiers (SIDs) and/or party

7

identifiers (PIDs)). Now, in mode CheckAddress, M checks whether the incom-
ing message is prefixed with the expected identifier, and either accepts or rejects
that message. This allows to establish an unbounded number of virtual channels
between ITMs. In mode Compute, the ITM actually processes an incoming mes-
sage and possibly writes output on one of the output tapes, i.e., sends a message
to another ITM. More formally, the computation in the two modes is defined as
follows:

Mode CheckAddress: When M is activated in mode CheckAddress, it is the case
that CheckAddress is written on the mode tape of M , the security parameter η
is written on the security parameter tape, and one message, say m, is written
on one of the input tapes, say c (the other input tapes and the output tapes
are empty—or otherwise will be emptied before M starts to run—and the con-
tent on the work tapes represent the current configuration of M). We require
that (i) at the end of the activation M has written accept or reject on the ad-
dress decision tape; accordingly, we write M(CheckAddress, η, c, m) = accept and
M(CheckAddress, η, c, m) = reject, respectively, (ii) the computation performed
by M in this mode is deterministic, i.e., is independent of internal coin tosses,
and (iii) the number of transitions taken in the activation is bounded by q(n)
where q is the polynomial associated with M and n is the security parameter
plus the length of the content of the input and work tapes at the beginning of
the activation.

Mode Compute: To specify the computation in mode Compute, let l denote the
length of the security parameter plus the accumulated length of all inputs written
on enriching input tapes of M in mode Compute so far (i.e., the sum of the
lengths of inputs written on enriching input tapes in the current activation in
mode Compute and all previous activations in mode Compute).

When M is activated in mode Compute, it is the case that Compute is written
on the mode tape of M , the security parameter η is written on the security
parameter tape, and one message, say m, is written on one of the input tapes,
say c (the other input tapes and the output tapes are empty—or otherwise will be
emptied before M starts to run—and the content on the work tapes represent the
current configuration of M). We require that the computation in every activation
of M satisfies the following conditions: (i) Similar to other models [4, 7, 10], at
the end of the activation, M has written at most one message on one of its
output tapes (i.e., only one message can be sent to another ITM at a time), (ii)
the number of transitions taken in the activation is bounded by q(n) where q
is the polynomial associated with M and n is the security parameter tape plus
the length of the content of the input and work tapes at the beginning of the
activation, (iii) the sum of the lengths of all outputs written on output tapes so
far by M (in all activations) is bounded by q(l), (iv) at the end of the current
activation, the length of the content of the work tapes is bounded by q(l).

We emphasize that in mode CheckAddress and Compute, M can not be exhausted:
Whenever M is activated in one of the two modes, M is able to “scan” its
complete current configuration, including the incoming message. Requirements

8

(iii) and (iv) in mode Compute bound the length of the output that can be
produced and the size of the internal configuration. This will be used to guarantee
that a system of ITMs runs in polynomial time. Note that the bounds in (iii) and
(iv) may depend on the length of the input given to the machine on enriching
input tapes. When modeling protocols, this will enable parties to produce output
which is only polynomially bounded in the security parameter plus the length of
the input received on the I/O interface (see Section 4 and 7), such as messages
to be encrypted, signed, or transmitted.

Of course, inexhaustible ITMs can simulate exhaustible ITMs (which might
be useful for modeling denial-of-service attacks) since inexhaustible ITMs can
count the number of steps performed so far and halt if a certain bound has been
reached.

2.2 Systems of ITMs

A system of ITMs can be built according to the following grammar where M
ranges over (descriptions of) ITMs:

S ::= M | (S || S) | !S.

We require that the set of names of input tapes of different occurrences of
ITMs in a system S are disjoint. This implies that in S only at most one
ITM may be a master ITM, i.e., may have start as input tape. For example, if
S = M1 ||M2 || ! M3, then the above restriction says that Tin(Mi)∩Tin(Mj) = ∅
for every i 6= j.

Intuitively, S1 || S2 stands for the parallel composition of the systems S1 and
S2, and !S stands for the parallel composition of an unbounded number of copies
of (machines in) the system S, where the actual number of copies is determined
by the environment, i.e., external or internal machines invoking (machines of)
S. Following the common terminology of process calculus [13, 17], we call ‘! ’ the
bang operator.

We say that an ITM M occurs in the scope of a bang in S if S contains a
subexpression of the form !S′ such that M occurs in S′. It will be clear from the
semantics of systems, i.e., the way a system of ITMs runs, that every system S
can equivalently be written as S = M1 || · · · ||Mk || ! M ′

1 || · · · || ! M
′
k′ where the

Mi’s and M ′
i ’s are ITMs.

We will mainly be concerned with what we call well-formed systems. These
systems are guaranteed to run in polynomial time (see Section 2.3) and they
satisfy a certain acyclicity condition in the way ITMs are connected via enriching
tapes. To define well-formed systems, we associate a graph with a system.

A system S induces a graph GS which is defined as follows: The nodes of GS

are the ITMs occurring in S. If M1 and M2 are two nodes in GS , then there is an
edge from M1 to M2 in GS if M1 has an output tape c and M2 has an enriching
input tape c. For example, the graph GS of S = M1 ||M2 || ! M3 has three nodes,
M1, M2, M3, and there is an edge from Mi to Mj if Mi has an output tape c and
Mj an enriching input tape c.

9

Definition 1. We call a system S well-formed if GS is acyclic and the master
ITM (if any) occurring in S is not in the scope of a bang.

2.3 Running a System

We now define how a system S runs given a security parameter η and a bit string
a as external input. We denote such systems by S(1η, a). More details and proofs
can be found in Appendix A.

Informally speaking, in a run of S(1η, a) at every time only one ITM is active
and all other ITMs wait for new input. The active machine may write at most
one message on one of its output tapes, say c. This message is then delivered to
another ITM (which has an input tape named c). The previously active machine
goes into a wait state and the receiver of the message is activated, resulting,
after some internal computation, into a new output which is sent to another
ITM, and so on. The first ITM to be activated in a run is the master ITM. It
gets a as external input (on tape start). A run stops if the master ITM, after
being activated, does not produce output or output was written on an output
tape named decision. If a message is sent on an output tape c but no previously
activated ITM is willing to accept the message, then a new ITM (with input
tape named c) might be created. If this is not possible, the master ITM will be
triggered. More formally, a run of S(1η, a) is defined as follows:

The current (global) configuration of a system in a run is described by a
tuple (A, P) where A is a sequence of configurations of ITMs, the sequence of
(previously) activated machines, and P is a system. The ITMs occurring in P
are called passive. (In what follows, we often do not distinguish between an ITM
and its current configuration.) We emphasize that the machines in A are not the
ones that are currently active, i.e., currently performing some computation—
only one of these machines was just active. The machines in A are rather those
machines that were active at some point in the run so far. If a message is output
without a machine in A willing to accept this message (this is tested by running
the machines in mode CheckAddress starting with the first machine in A), it is
tested if there is an ITM in P that would accept the message. If so, this machine
will be copied from P to A. Also, it will be removed from P if it is not in the
scope of a bang, and otherwise, it will stay in P . The intuition is that there is
an unbounded supply of those ITMs in P that are in the scope of an ITM.

A run ρ of a system S(1η, a) is a sequence of tuples of the form (A, P). The
initial configuration is (A0, P0) where A0 is the empty sequence—no machine
has been activated yet—, and P0 = S. Roughly speaking, one gets from one
configuration (A, P) to the next configuration (A′, P ′) by one machine (either
among A or a new machine obtained from P) reading a message from its input
tape, thereby updating its current configuration, and possibly writing a message
on one of its output tapes (which is then read in the next step by another ITM).

The first step in a run is to read the external input a, which is provided
on tape start. Since initially A0 is empty, it is checked whether P0 contains a
master ITM, i.e., an ITM with input tape start (recall that the master ITM is
uniquely determined in S). If this is not the case, the run stops. Otherwise, if

10

there is a master ITM, say M , and M accepts a in mode CheckAddress, i.e.,
M(CheckAddress, η, start, a) = accept, then a (written on start) is processed by
M in mode Compute and M (more precisely, the current configuration of M) is
moved to A0, and removed from P0 if it is not in the scope of a bang. If M did
not produce output, the run stops. If M produced output, say m was written
on tape c, then in the next step this output is read by another ITM yielding a
successor configuration.

More precisely, to define a successor configuration of a configuration, assume
that the current configuration is (A, P) where A is the sequence of configurations
M1, . . . , Mn and P is some system, and that in the previous step the message m
was written by some machine on an output tape c. (As explained above, after the
first step of the run, we have that A = M1 where M1 is the current configuration
of the master ITM and P coincides with P0, except that possibly the master ITM
might have been removed depending on whether it was in the scope of a bang
in P .). We now describe how the successor configuration of (A, P) is obtained.
We distinguish three cases:

1. There exists a machine Mi in A (where i is chosen to be minimal) with an
input tape named c which accepts m on c, i.e., Mi(CheckAddress, η, c, m) =
accept. Then, Mi is activated in mode Compute to process the input m on
tape c. Now, A is updated with the new configuration of Mi (note that in
this new configuration a new output message may be written on one of the
output tapes); P remains unchanged.

2. No machine in A with an input tape named c accepts m on tape c. But there
is a passive machine M (in P) with an input tape named c such that c is an
enriching tape of M and M accepts m on tape c. We activate M in mode
Compute to process m on tape c and add the new configuration of M at the
end of A. (This new configuration may contain a new output message on one
of the output tapes.) If M is not in the scope of a bang, then M is removed
from P .

3. If neither 1. nor 2. is satisfied, the configuration does not change.

If in one step no output is produced (in 1. by Mi, in 2. by M), then in the next
step the empty input ε is read from start, i.e., the master ITM is triggered.

A run immediately stops if the master ITM after being activated has not
produced output or some machine wrote output on a tape named decision—this
output is the overall output of the system.

We emphasize that a copy of an ITM can only be generated if a message is
sent to an ITM via its enriching input tape (see 2. above). For simulation-based
security, this requirement is not an essential restriction, but it is important to
guarantee that well-formed systems run in polynomial time (see below).

Definition 2. Let p be a polynomial p and ρ be a run of S(1η, a). Then, ρ
is p-bounded if the accumulated length of all outputs written on output tapes
during the run is ≤ p(η + |a|). A system S is p-bounded if for all security
parameters η and external inputs a all runs of S(1η, a) are p-bounded. A system
S is (polynomially) bounded if there exists a polynomial p such that S is p-
bounded.

11

We can prove that the length of every run of a bounded system S(1η, a), the
number of activated ITMs in such a run, the size of the configurations in a run,
and the overall number of transitions taken by ITMs in a run of S(1η, a) can be
bounded by a polynomial in η + |a|. As a result one obtains:

Proposition 1. Every bounded system can be simulated by a single ITM.

We call a system S almost p-bounded if the probability Prob[run of S(1η, a) is not
p-bounded] as a function of η and a is negligible. For such systems, Proposition 1
also holds, except that a simulated run may deviate from a run in the original
system with negligible probability.

We note that not all systems are (almost) bounded. For example, consider
the system S = M1 ||M2 where M1 and M2 are connected via enriching tapes in
both directions and one of the two machines is the master ITM. Then, M1 and
M2 could send messages back and forth forever. Another example is the system
S =! M where M is a master ITM. If M in mode CheckAddress only accepts a
message in its first activation and in mode Compute always produces some fixed
output, then after every activation of M a new copy of M will be generated and
the run of the system does not terminate.

Note that the systems in the examples are not well-formed. We can prove:

Theorem 1. Well-formed systems are bounded.

We note that if new ITMs could be generated when invoked not only via en-
riching but also via consuming input tapes, then well-formed systems would not
necessarily be bounded. Consider the following example:

Example 1. Let S = M1 || ! M2 where M1 is the master ITM (i.e., it has an input
tape start) and has an enriching input tape c, M2 has an output tape with the
same name, M2 has a consuming input tape c′, and M1 has an output tape
with the same name. In mode CheckAddress M1 accepts every message and in
mode Compute M1 writes a bit on output tape c′. In mode CheckAddress, M2

only accepts a message if it is activated for the first time. In mode Compute, it
outputs 1η where η is the security parameter on output tape c. Now, in a run of
S(η, a) M1 keeps sending messages to copies of M2 (on tape c′). Whenever M1

has produced output, this output is sent to a new copy of M2. This copy of M2

outputs 1η on c, and hence, since c is an enriching input tape of M1, allows M1

to produce more output. Consequently, runs of S(η, a) do not terminate and in
these runs an unbounded number of copies of M2 are generated.

If, however, we restricted ourselves to the simpler case where the number of copies
of ITMs is bounded by a fixed polynomial in the security parameter (rather than
determined by invoking machines), Theorem 1 would still hold. All other results
(with appropriate reformulations) proved in this paper would also carry over to
this simpler setting.

For bounded systems S, we denote by

Prob[S(1η, a) ❀ 1]

12

the probability that a run of S(1η, a) returns 1, i.e., 1 is written on decision.

This definition can be extended to almost bounded systems. Basically, one
only considers bounded runs and ignores all others: By definition, if S is almost
bounded, there exists a polynomial p such that S is almost p-bounded. Now, we
denote by Prob[S(1η, a) ❀ 1] the probability that a run of S(1η, a) is p-bounded
and that it returns 1, i.e., we ignore runs that are not p-bounded. Strictly speak-
ing, Prob[S(1η, a) ❀ 1] depends on the specific p that is used. However, we will
only consider the asymptotic behavior of a system, and therefore, the specific
choice of the polynomial p does not matter as long as S is almost p-bounded.

2.4 Further Notation and Terminology

To state properties of systems and to apply our general computational model to
simulation-based security, we now introduce some more notation and terminol-
ogy.

Let S be a system and M be an ITM. Recall that T (M), Tin(M), and
Tout(M) denote the set of (names of) input and output tapes, the set (of names)
of input tapes, and the set (of names) of output tapes of M , respectively.

A tape c in T (S) is called internal if there exist two ITMs in S, say M and
M ′, such that c ∈ Tout(M)∩Tin(M ′). Otherwise, c is called external. The set of
internal tapes of S is denoted by Tint(S) and the set of external tapes of S by
Text(S). We call c an (external) input tape of S if c ∈ Text(S) and c ∈ Tin(M)
for some ITM M in S. Analogously, c is called an (external) output tape of S if
c ∈ Text(S) and c ∈ Tout(M) for some ITM M in S. The set of (external) input
and output tapes of S is denoted by Tin(S) and Tout(S), respectively.

The set of external tapes of S is further partitioned into network and I/O
tapes. We denote the set of external network tapes of S by T net

ext (S) and the set
of external I/O tapes of S by T io

ext(S). Each of these sets is also partitioned into
input and output tapes. We denote by T net

in (S), T net
out (S), T io

in (S), and T io
out(S)

the set of network input and output tapes and the set of I/O input and output
tapes, respectively.

Note that for every S we have that start ∈ T (S) implies start ∈ Tin(S) and
decision ∈ T (S) implies decision ∈ Tout(S).

Given two systems P and Q, by

P |Q

we denote the parallel composition P ′ || Q′ where P ′ and Q′ are obtained from
P and Q by renaming the internal tapes of P and Q, respectively, such that
T (P ′) ∩ Tint(Q′) = ∅ and Tint(P ′) ∩ T (Q′) = ∅. The intuition is that P and Q
are different systems (e.g., a protocol and its environment) which communicate
via their external tapes; they should not interfere on their internal tapes.

Two systems P and Q are compatible iff T net
in (P) = T net

in (Q), T net
out (P) =

T net
out (Q), T io

in (P) = T io
in (Q), and T io

out(P) = T io
out(Q), i.e., P and Q coincide on

their external tapes for every type of external tapes.

13

The systems P and Q are I/O-compatible if they have the same set of I/O
tapes and disjoint sets of network tapes, i.e., T net

ext (P) ∩ T net
ext (Q) = ∅, T io

in (P) =
T io

in (Q), and T io
out(P) = T io

out(Q).
A system Q is connectible for P if each common external tape of P and Q has

the same type in both (network or I/O) and complementary directions (input or
output), i.e., for all c ∈ Text(P) ∩ Text(Q), we have that c ∈ T net

ext (P) ∩ T net
ext (Q)

or c ∈ T io
ext(P) ∩ T io

ext(Q), and c ∈ Tin(P) ∩ Tout(Q) or c ∈ Tout(P) ∩ Tin(Q).
Note that this connectability relation is symmetric. Given a set B of systems,
we denote by ConB(Q) the set of all systems P in B such that P is connectible
for Q.

A system A is adversarially connectible for P if A is connectible for P and
the set of external tapes of A is disjoint from the set of I/O tapes of P . Thus,
an adversary can only connect on the network tapes of a protocol. Given a set B

of systems, we denote by AdvB(P) the set of all systems A in B such that A is
adversarially connectible for P . With SimP

B
(F) we denote the set of all systems

S in B such that S is adversarially connectible for F and S |F is compatible
with P .

We call E an environmental (environmentally connectible) system for P if E is
connectible for P and Text(E) ∩ T net

ext (P) = ∅. In other words, an environmental
system only connects on the I/O tapes of P . Given a set B of systems, we
denote by EnvB(P) the set of all systems E in B such that E is environmentally
connectible for P .

Definition 3. Two almost bounded systems P and Q are called equivalent or
indistinguishable (P ≡ Q) iff the function

f(1η, a) = |Prob[P(1η, a) ❀ 1] − Prob[Q(1η, a) ❀ 1]|

is negligible (in the sense defined at the end of Section 1).

We will later consider what we call a dummy ITM D which simply forwards
messages between entities: The dummy ITM has for all of its input tapes a
corresponding output tape and all input tapes are enriching. The concrete set of
input and output tapes that D has depends on the entities between which D is
put. The dummy ITM accepts all messages on input tapes in mode CheckAddress

and in mode Compute it simply copies a message received on an input tape to
the corresponding output tape. Note that this is possible since all input tapes
are enriching. We also emphasize that, except for the set of input and output
tapes, D does not depend on the entities between which it is put.

More precisely, let Tin and Tout be disjoint finite sets of tapes. Moreover, let
T ′

in = {c′ | c ∈ Tin} and T ′
out = {c′ | c ∈ Tout} where c′ is a new copy of c, i.e., a

new tape with a new name.
We define

D = D(Tin, Tout)

to be an ITM with input tapes Tout ∪ T ′
in and output tapes Tin ∪ T ′

out. Every
input tape of D is declared to be enriching. In mode CheckAddress, D always

14

accepts. In mode Compute, D copies every message received on c ∈ Tout onto
c′ ∈ T ′

out and every message received on c′ ∈ T ′
in onto c ∈ Tin.

By
Dnet = Dnet(Tin, Tout)

we denote the version of D where all input and output tapes are considered
network tapes.

By
Dio = Dio(Tin, Tout)

we denote the version of D where all tapes c′ are declared to be I/O tapes and
all tapes c are declared to be network tapes.

3 Properties of Systems

In this section, we summarize some useful properties of systems.
The following lemma, which easily follows from the definition of systems, says

that consistently changing the names of tapes or their type (network or I/O) in
a system does not change the behavior of the system.

Lemma 1. Let S1, . . . ,Sk be systems such that Si is connectible for Si+1 | · · · | Sk

for every i. Then,
S1 | · · · | Sk ≡ S′

1 | · · · | S
′
k

where S′
i is derived from Si by consistently (w.r.t. the other S′

j) renaming exter-
nal tapes (start and decision may not be renamed) and possibly declaring some
network tapes to be I/O tapes and vice versa.

The next lemma says that the dummy ITM can be plugged between two systems
without changing the behavior of the overall system. In particular, using this
dummy ITM the FORWARDER property mentioned in the introduction can be
satisfied.

Lemma 2. Let P and Q be two systems such that P is connectible for Q
and P |Q is (almost) bounded. Let Text = Text(P) ∩ Text(Q), D = D(Text ∩
Tin(P), Text ∩ Tout(P)), and Q′ be obtained from Q by renaming all tapes c in
Text by c′. Then, we have that the system P |D |Q is (almost) bounded and

P |Q ≡ P |D |Q′.

We now show that every well-formed system within a more complex system can
be replaced by a single ITM. This is the core of the joint state theorem as stated
in [9, 7]. In what follows, we say that an input tape c is enriching in a system Q
if there is an ITM M in Q such that c is an enriching input tape of M .

Lemma 3. Let Q1 and Q2 be well-formed systems such that Q1 is connectible
for Q2 and Q1 | Q2 is (almost) bounded. Then, there exists an ITM M compatible
with Q2 such that a tape c of M is enriching iff c is enriching in Q2 and

Q1 | Q2 ≡ Q1 |M.

15

Moreover, the construction of M only depends on Q2 and in mode CheckAddress

M accepts every message.

Proof. Let Q1 and Q2 be given as stated in the lemma. For the time being,
we assume that Q2 does not contain a master ITM.

To show that there exists an ITM M as required, we first prove that there
exists a polynomial p such that for every η and a, and at every time in a run
of (Q1 | Q2)(η, a) the following is true: The number of copies of ITMs of Q2 and
the size of the configurations of these copies (i.e., the length of the contents of
the tapes of these copies) is ≤ p(η + l) where l is the length of the input that
has been written on enriching input tapes of the copies of ITMs of Q2 so far.
The proof is similar to the one of Theorem 1.

Let M1, . . . , Mn be the ITMs occurring in Q2. Since Q2 is well-formed, we
know that GQ2

is acyclic. Hence, as in the proof of Theorem 1, we can conclude
that there exists a total ordering < on M1, . . . , Mn which is consistent with GQ2

,
i.e., if there is an edge from Mi to Mj in GQ2

, then Mi < Mj. W.l.o.g. we may
assume that M1 < M2 < · · · < Mn. By definition of GQ2

, (a copy of) Mi can
only be invoked via an enriching input tape by (a copy of) Mj for j < i or some
external ITM, i.e., an ITM of Q1. In particular, only an ITM Mj, j < i, or an
external ITM can generate a copy of Mi.

Consequently, M1 can only be invoked by an external ITM. Hence, the num-
ber of copies of M1 at the given time of the run, is bounded by l, with l defined
as above. By definition of ITMs, the output produced by M1 so far is bounded
by a polynomial in η + l. In particular, the number of copies of M2, . . . , Mn

generate by M1 is bounded by a polynomial in η + l as well. It follows that the
number of copies of M2 is bounded by a polynomial in η + l and the input given
to these copies of M2 via enriching input tapes is also bounded by a polynomial
in η + l. Consequently, the output produced by copies of M2 is polynomially
bounded in η + l. Iterating this argument for the remaining ITMs, we obtain
that the number of copies of ITMs occurring in Q2 and the input given to these
copies on enriching input tapes can polynomially be bounded in η+ l. (Note that
n is a constant that does not depend on η or l.) By the definition of ITMs, this
implies that the size of the configurations is bounded by a polynomial in η + l.

It follows that M can store all configurations of copies of ITMs of Q2 on
its work tapes (without exceeding a polynomial bound). In mode CheckAddress,
we define M to accept all incoming messages. In mode Compute, M first, as
specified in Appendix A, simulates the ITMs in the configurations stored in mode
CheckAddress to see whether one of these ITMs accepts the incoming message
or whether a new copy of an ITM needs to be generated internally. If one ITM,
say M ′, accepts (possibly the newly generated copy, if any), then M simulates
M ′ in mode Compute with the given input and the corresponding configuration.
Note that by definition of ITMs, both the simulation of the ITMs in mode
CheckAddress and the simulation of the chosen ITM in mode Compute takes
only polynomial time in the security parameter, the size of the configurations
stored, and the given input, and hence, these simulations can be carried out by
M .

16

The reasoning in case one of the Mi is a master ITM is similar. As in Theo-
rem 1, we use that, since Q2 is well-formed, the master ITM is not in the scope
of a bang, and hence, every run of Q1 | Q2(η, a) will contain at most one copy of
the master ITM. ✷

The following lemma shows how the parallel composition of systems can be
combined into one system with only consuming external tapes. This is used for
moving entities (such as adversarial systems) into an environmental system.

Lemma 4. Let Q1,Q2,Q3 be systems such that start /∈ T (Q3), Q2 is connectible
for Q3, Q1 is connectible for Q2 | Q3, and Q1 | Q2 | Q3 is well-formed. Then there
exists a system Q which satisfies the following conditions:

1. Q is compatible with Q1 | Q2.
2. All tapes in Tin(Q) are consuming, except for start, which may be enriching

(if it occurs in Q).
3. Q1 | Q2 | Q3 ≡ Q |Q3.

Proof. Let S = Q1 | Q2 | Q3. If all tapes in Text(Q1 | Q2)\{start} are consuming,
then we set Q = Q1 | Q2. Obviously, Q satisfies all three conditions.

Otherwise, we define a single ITM Q = M which simulates Q1 | Q2. The
input and output tapes of Q are the tapes in Tin(Q1 | Q2) and Tout(Q1 | Q2),
respectively.

Before we specify how Q works, observe that by Lemma 3 we can assume
that Q1 and Q2 are single ITMs. By Theorem 1, we know that S is bounded, and
hence, by Lemma 6, there exists a polynomial p such that the overall number of
transitions taken by ITMs in any run of S(1η, a) is bounded by p(η, |a|).

We now define Q to simulate the system Q1 | Q2 as follows: If invoked in
mode CheckAddress, Q will simulate Q1 or Q2 in mode CheckAddress depending
on whether a message was sent to Q1 or Q2. In mode Compute, Q will simulate
Q1 | Q2 where, however, not more than p(η, |a|) transitions of ITMs in Q1 | Q2

are simulated. In case this bound is reached, the simulation stops and from that
point on Q ignores all incoming messages, i.e., when invoked in mode Compute

it does not produce any output. Note that in no run of S the bound will be
reached.

It is now easy to see that Q satisfies the required conditions. ✷

We will denote Q as constructed in the proof of the above lemma by [Q1 | Q2]Q3
.

The next lemma will allow us to “open” [Q1 | Q2]Q3
, i.e., replace [Q1 | Q2]Q3

by Q1 | Q2, in a context different from Q3.

Lemma 5. Let Q1 and Q2 be two systems which do not contain a master ITM,
are well-formed and compatible, and satisfy the following condition: E |Q1 ≡
E |Q2 for every E ∈ ConE(Q1). (Note that E |Q1 and E |Q2 are well-formed.)
Then for every system E1 connectible for Q1 and every system E2 connectible
for E1 | Q1 such that E2 | E1 | Q1 is well-formed, we have that [E2 | E1]Q1

| Q2 ≡
E2 | E1 | Q2 and E2 | E1 | Q2 is almost bounded.

17

Proof. First, recall that by definition, [E2 | E1]Q1
exactly simulates all transi-

tions taken by ITMs in E2 | E1 up to a certain polynomial bound, where the poly-
nomial is in the security parameter plus the length of the input on start. By con-
struction of [E2 | E1]Q1

when running [E2 | E1]Q1
| Q1, this bound is never reached.

It follows that the probably that this bound is reached when running the system
[E2 | E1]Q1

| Q2 is negligible. Otherwise, one can easily construct E ′ ∈ ConE(Q1)
such that E ′ | Q1 6≡ E ′ | Q2, in contradiction to 2: E ′ simulates [E2 | E1]Q1

and
outputs 1 iff the bound is not reached.

It follows that with overwhelming probability [E2 | E1]Q1
exactly simulates

E2 | E1 in the system [E2 | E1]Q1
| Q2. Thus, we obtain [E2 | E1]Q1

| Q2 ≡ E2 | E1 | Q2,
and since [E2 | E1]Q1

| Q2 is well-formed, and hence, bounded (Theorem 1), it
follows that E2 | E1 | Q2 is almost bounded. ✷

4 Notions of Simulation-Based Security

In this section, we define the notions of simulation-based security mentioned in
the introduction.

We first need to define protocol, adversarial, and environmental systems
to specify the corresponding classes of entities. Here we define what we call
IO-enriching protocol systems (or simply protocol systems) and IO-network-
enriching adversarial systems (or simply adversarial systems). In this and the
following two sections, we will study simulation-based security w.r.t. these classes
of protocol and adversarial systems. In Section 7, different classes of protocol and
adversarial systems will be considered. The definition of the environmental sys-
tems will stay the same in both settings.

An (IO-enriching) protocol system P is a well-formed system such that i) no
tape in P is named start or decision, ii) all network tapes of P are consuming
(I/O-tapes may be enriching), and iii) for every ITM M occurring in P such
that M is not in the scope of a bang, we require that M accepts every incoming
message in mode CheckAddress. We denote the set of protocol systems by P.
The motivation behind condition iii) is that if M does not occur in the scope
of a bang, then in every run of P (in some environment) there will be at most
one copy of M . Hence, there is no reason to address different copies of M , and
therefore, in mode CheckAddress, M should accept every incoming message. This
condition will be used in the proof of the composition theorem (Theorem 4 and
Corollary 1).

An (IO-network-enriching) adversarial system A is a well-formed system
such that no tape in A is named start or decision. We denote the set of adversarial
systems by A or by S. Note that we allow all external tapes of A to be enriching.

An environmental system E is a well-formed system such that all external
tapes are consuming, except for start which may be enriching. We denote the set
of environmental systems by E. Note that E may contain start and decision. In
particular, E may contain a master ITM (while protocol and adversarial systems
may not). This choice is justified by results shown in [10] and corresponds to the
choice made in other models (see, e.g., [5, 7]).

18

The security notions can now be defined in a concise and simple way. Note
that from the definition of the different entities (in particular, the restrictions
regarding what tapes may be enriching), it follows easily that all systems in the
following definition, except for E |A | S |F , are well-formed, and hence, bounded.

Definition 4. Let P and F be I/O-compatible protocol systems, the real and
ideal protocol, respectively.

Strong Simulatability (SS): P ≤SS F iff ∃S∈SimP
S (F) ∀E∈ConE(P): E | P ≡

E | S | F .
Black-box Simulatability (BB): P ≤BB F iff ∃S∈SimP

S
(F) ∀A∈AdvA(P)

∀E∈EnvE(A |P): E |A |P ≡ E |A | S |F and E |A | S |F is almost bounded.
Universal Simulatability/Composability (UC): P ≤UC F iff ∀A∈AdvA(P)

∃I∈Sim
A |P
S

(F) ∀E∈EnvE(A |P): E |A |P ≡ E | I | F .

Dummy Version of UC (UCdummy): P ≤UCdum F iff ∃I∈Sim
Dio | P
S

(F)
∀E∈EnvE(Dio | P): E |Dio | P ≡ E | I | F where Dio = Dio(Tin(P), Tout(P)).

Reactive Simulatability (RS): P ≤RS F iff ∀A∈AdvA(P) ∀E∈EnvE(A |P)

∃I∈Sim
A |P
S

(F): E |A |P ≡ E | I | F .

Using the property of dummy ITMs (Lemma 2), it is easy to see that all security
notions introduced above are reflexive (modulo renaming of tapes), i.e., every
protocol can be simulated by itself. Also, unlike in previous models, the above
security notions do not exhibit the unintuitive properties anymore mentioned in
the introduction: a real protocol in fact realizes almost identical ideal protocols.
(Recall the example from the introduction where an ideal protocol coincides
with the ideal protocol except that on the network interface the ideal protocol
outputs the bit-wise complement of the messages the real protocol outputs.)

5 Relationships Between Notions of Simulation-Based

Security

We study the relationships between the different security notions. In a nutshell,
we have two classes of unconditionally equivalent notions: i) strong, black-box,
and dummy universal simulatability, and ii) universal and reactive simulatability.
All notions are equivalent if the ideal protocol is what we call generous.

To define generous protocols, we need the following notion: Given a security
parameter η and a polynomial p, we say that a non-negative integer n is polyno-
mially at least as big as a non-negative integer i w.r.t. η and p if p(η + n) ≥ i.

Now, roughly speaking, an (ideal) protocol is generous if the length of the
output it writes on network tapes is polynomially at least as big as the length
of the input it receives on I/O tapes. In other words, a generous protocol gives
at least as much computation power to a simulator as it receives on its I/O
interface. If this property is not satisfied for a given ideal protocol, it is often
possible to have the ideal protocol output dummy messages without changing
the desired security properties of the protocol (see, e.g., the functionality for

19

signatures in [6]). If the ideal protocols are formulated in a “non-interactive
way”, i.e., the simulator hardly interacts with the functionality (see, e.g., the
new formulation of signatures and encryption in [7]), then in order to make
these ideal protocols generous one could, for example, modify the ideal protocol
in such a way that it initially expects to receive the overall length of messages
it is supposed to handle on the I/O interface (per party) and have the ideal
protocol forward this information to the simulator in an initial phase. Such an
ideal protocol would still be more flexible than an ideal protocol with an a priori
bound on the number and length of messages it can handle.

Formally, generous protocols are defined as follows:

Definition 5. We call a protocol system F generous if there exists a polynomial
p such that for every E ∈ ConE(F), η, a, and in every run of (E |F)(η, a),
whenever F sends a message on an external tape, then the lengths of the output
written so far by F on network tapes is polynomially at least as big as the length
of the input received so far by F on enriching I/O tapes w.r.t. η and p.

The following theorem summarizes the relationships between the security no-
tions.

Theorem 2. Let P and F be I/O compatible protocol systems. We have that:

1. P ≤SS F iff P ≤BB F iff P ≤UCdum F .
2. P ≤UC F iff P ≤RS F .
3. If F is generous, then: P ≤SS F iff P ≤BB F iff P ≤UCdum F iff

P ≤UC F iff P ≤RS F .

Most of the above equivalences can be proved by equational reasoning using the
equational principles established in Section 3. A detailed proof of the above the-
orem can be found in Appendix B. We note that for the equivalence of universal
and reactive simulatability we use that the environment gets auxiliary input,
i.e., is non-uniform. As shown in [15], the two notions are not equivalent in the
uniform case; this is also true if, in case of reactive simulatability, the auxiliary
input provided to the environment is chosen before the ideal adversary.

6 Composition Theorems

We first state a composition theorem for composing a constant number of proto-
cols and present the proof, which is based on the equational principles established
in Section 5. We then extend this theorem to an unbounded number of copies of
protocols.

Theorem 3. Let P1, . . . ,Pk,F1, . . . ,Fk be protocol systems such that P1 | · · ·
| Pk and F1 | · · · | Fk are well-formed and for every j the following conditions
are satisfied:

1. Pj is environmentally connectible for Pj+1 | · · · | Pk.
2. Fj is environmentally connectible for Fj+1 | · · · | Fk.

20

3. Pj and Fj are I/O-compatible.
4. Pj ≤SS Fj.

Then, P1 | · · · | Pk ≤SS F1 | · · · | Fk.

Proof. We prove the theorem for k = 2. For k > 2 the statement follows by
induction on k.

Let E ∈ ConE(P1 | P2). Since P1 ≤SS F1 and P2 ≤SS F2 we have

1. ∃ S1∈SimP1

S
(F1) ∀ E ′∈ConE(P1): E ′ | P1 ≡ E ′ | S1 | F1, and

2. ∃ S2∈SimP2

S
(F2) ∀ E ′∈ConE(P2): E ′ | P2 ≡ E ′ | S2 | F2.

Define S = S1 | S2. Because the set of network tapes of S1 and S2 are disjoint,

it easily follows that S is well-formed; more precisely, S ∈ Sim
P1 | P2

S
(F1 | F2).

Now, we obtain

E | P2 | P1 ≡ [E | P2]P1
| P1 (Lemma 4)

≡ [E | P2]P1
| S1 | F1 (1.)

≡ E |P2 | S1 | F1 (1., Lemma 5)
≡ E | S1 | F1 | P2

≡ [E | S1 | F1]P2
| P2 (Lemma 4)

≡ [E | S1 | F1]P2
| S2 | F2 (2.)

≡ E | S1 | F1 | S2 | F2 (2., Lemma 5)
≡ E | S1 | S2 | F1 | F2

≡ E | S |F1 | F2 (Definition of S)

✷

Next we present a general composition theorem for composing a polynomial
number of copies of protocols where the polynomial is determined by the environ-
ment. To address the different copies of a protocol, we use the mode CheckAddress

of ITMs combined with session identifiers (SIDs)
More precisely, we turn a system Q into its session version Q, which allows

us to address different copies of (ITMs occurring in) Q by a particular SID. We
first define the session version of a single ITM.

The session version M of an ITM M simulates M except that all messages
received have to be prefixed by a particular SID (i.e., in mode CheckAddress

the ITM M will reject all messages not prefixed by the particular SID) and
all messages sent out are prefixed by this SID. The SID M will use is the one
with which M is first activated (hence, in the first activation, M will accept the
incoming message in mode CheckAddress and then store the SID). More precisely,
M behaves as follows in mode CheckAddress and Compute, respectively:

– When activated in mode CheckAddress, M does the following: If M has never
been activated before, it accepts an incoming message m′ only if the following
is satisfied: i) m′ is of the form (s, m) where s is interpreted as a SID, and
ii) the simulated M accepts m in mode CheckAddress. (In mode Compute,
s will be stored by M .) If M was activated before, then M will accept an

21

incoming message m′ only if the following is satisfied: i) m′ is of the form
(s, m) where s is the SID stored in the first activation (in mode Compute),
and ii) m is accepted by the simulated M in mode CheckAddress.

– When activated in mode Compute, M does the following: If M has never been
activated before (in mode Compute), then by the definition of M in mode
CheckAddress it follows that the incoming message is of the form (s, m). Now,
M first stores s and then simulates M on input m in mode Compute. If M
produces output, say m′, then M sends the output (s, m′), i.e., prefixes m′

with s. If M was activated before (in mode Compute), then by definition of
M in mode CheckAddress it follows that the incoming message is of the form
(s, m) where s is the SID stored in the first activation. Now, as before, M
simulates M on input m in mode Compute and prefixes the output produced
(if any) with s.

Now, the session version Q of a system Q is obtained from Q by replacing every
ITM occurring in Q by its session version.

The following theorem, which is proved in Appendix C, says that if a real
protocol securely realizes an ideal protocol, then an unbounded number of copies
of the real protocol securely realize an unbounded number of copies of ideal
protocol.

Theorem 4. Let P ,F be protocol systems such that P and F are I/O-compatible
and P ≤SS F . Then, !P ≤SS !F .

We remark that in the above composition theorem, the session versions and the
SIDs are simply used as a means to address certain (ITMs belonging to) copies
of protocols. A protocol itself is not and does not need to be aware of the SID
used to address ITMs belonging to it, and the specific addressing mechanism
used.

As an immediate consequence of Theorem 3 and 4 we obtain the following
corollary.

Corollary 1. Let P1,P2,F1,F2 be protocol systems such that the systems P1 |
!P2 and F1 | !F2 are well-formed and the following conditions are satisfied for
j ∈ {1, 2}:

1. P1 is environmentally connectible for !P2.
2. F1 is environmentally connectible for !F2.
3. Pj and Fj are I/O compatible.
4. Pj ≤SS Fj.

Then, P1 | !P2 ≤SS F1 | !F2. If P1 and F1 coincide up to the names of the
network tapes (to ensure that P1 and F1 are I/O compatible), we do not need
to require 4. for j = 1.

In this corollary, for the case that P1 and F1 coincide up to the names of the
network tapes, we use that P1 ≤SS F1: one can choose the simulator to
be the dummy ITM. In this setting, the corollary says that if (an unbounded

22

number of copies of) an ideal protocol F2 is used as a component in a more
complex system P1 (F1), then it can be replaced by its realization P2. Clearly,
by iteratively applying Theorem 3 and 4, one can construct much more complex
systems than those described in the above corollary.

Using the equivalences between the security notions stated in Section 5, the
above composition theorems immediately carry over to the other security notions
considered in this paper. (Note that if the ideal protocols F , F1, . . . ,Fk are
generous, then so are !F and F1 | · · · | Fk.)

7 IO-Network-Enriching Protocol Systems

In this section, we briefly discuss how our general computational model can
be applied to a different class of protocol systems, called IO-network-enriching
protocol systems.

In IO-network-enriching protocol systems not only I/O tapes but also net-
work tapes may be enriching. The class of IO-network-enriching protocol sys-
tems is quite similar in terms of expressivity to the class of polynomially shaped
weakly polynomial collections defined in [14].

The security notions universal and reactive simulatability for IO-network-
enriching protocol systems can be defined just as in the case of IO-enriching
protocol systems (see Definition 4). However, to ensure that the systems E |A |P
and E | I | P are well-formed, we need to restrict the class of adversarial systems
(the definition of environmental systems remains unchanged). Note that with
the current definition of (IO-network-enriching) adversarial systems the systems
A |P and I |F might not be well-formed anymore if P and F may be IO-
network-enriching protocol systems: A (I) may connect to P (F) by enriching
network tapes, and vice versa. One therefore has to restrict adversarial systems
to be IO-enriching, i.e., network tapes have to be consuming.

As in the case of IO-enriching protocols, it is not hard to show that the notions
universal and reactive simulatability as defined above are equivalent (where, as
in the case of IO-enriching protocol systems, we use that the environment is
non-uniform). Also, a composition theorem similar to Theorem 3 can be proved.

Comparing IO-Network-Enriching and IO-Enriching Protocol Systems. The ob-
vious advantage of IO-network-enriching protocol systems compared to IO-en-
riching protocol systems is that the runtime of such systems may depend on
the length of the input received on network tapes and I/O tapes (rather than
only on I/O tapes). Hence, IO-network-enriching protocol systems can forward
arbitrarily long messages from the adversary. However, this can be mimiced by
IO-enriching protocol systems since additional resources for forwarding messages
coming from network tapes can be supplied by the environment. Hence, the ad-
ditional feature of IO-network-enriching protocol systems does not seem to be
very essential. In fact, IO-enriching protocol systems and the security notions
defined for them in this paper appear to be the more favorable and useful setting
for several reasons:

23

As demonstrated in this paper, IO-enriching protocol systems allow for nat-
ural and simple definitions of all five security notions: strong, black-box, dummy
universal, universal, and reactive simulatability. It remains to be investigated
whether for the former three notions—which are often prefered over universal
and reactive simulatability as they typically greatly simply proofs—equally nat-
ural definitions exist also for IO-network-enriching protocol systems. We note
that in the model by Hofheinz et al. [14] dummy universal simulatability can
be formulated for a class of protocols similar to IO-network-enriching protocols.
However, the definitions are much more complex than those presented here for
IO-enriching protocol systems. (Strong and black-box simulatability have not
been defined in their setting.)

The notion of universal simulatability for IO-network-enriching protocols as
defined here is problematic if the ideal adversary is invoked often by the ideal
protocol (e.g., to supply ciphertexts) since the ideal adversary could run out
of resources. (Recall that the tapes with which the ideal adversary connects to
the ideal protocol are consuming.) Hence, certain natural ideal protocols are not
realizable. In the setting for IO-enriching protocols, where all tapes of the ideal
adversary may be enriching, such problems do not occur.

8 Conclusion

We have proposed an expressive general computational model for systems con-
taining an unbounded number of inexhaustible ITMs and involving a generic
addressing mechanism for copies of ITMs. This model extends and simplifies
certain aspects of previous models. Based on this model, we demonstrated that
several security notions for different classes of protocol systems can be formu-
lated in a simple and uniform way and that, unlike in previous models, these
security notions exhibit intuitive properties. We also proved general composition
theorems. Many of the proofs could be carried out by mere equational reasoning
based on a few equational principles on systems of ITMs.

Almost all models for simulation-based security (including our model) are
sequential in the sense that at any time in a run at most one machine is active (an
exception is the model in [18]). While, in order to concentrate on cryptographic
issues, this is a good abstraction of distributed systems, the computation in
real distributed systems is concurrent, i.e., many machines can be active at the
same time. It would be interesting to see in how far the model presented here,
including the security notions considered, could be extended to a real concurrent
model.

Acknowledgments. We would like to thank Ran Canetti for many interesting dis-
cussions on models for simulation-based security. We also thank Michael Backes,
Anupam Datta, and John Mitchell.

24

References

1. M. Backes and D. Hofheinz. How to Break and Repair a Universally Composable
Signature Functionality. In ISC 2004, volume 3225 of Lecture Notes in Computer
Science, pages 61–72. Springer, 2004.

2. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations. In CCS 2003, pages 220–230. ACM, 2003.

3. M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for
Secure Reactive Systems. In TCC 2004, volume 2951 of Lecture Notes in Computer
Science, pages 336–354. Springer, 2004.

4. M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Sys-
tems. Technical Report 082, Cryptology ePrint Archive, 2004.

5. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

6. R. Canetti. Universally Composable Signature, Certification, and Authentication.
In CSFW 2004, pages 219–233. IEEE Computer Society, 2004.

7. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Technical report, Cryptology ePrint Archive, December 2005. Online
available at http://eprint.iacr.org/2000/067.ps.

8. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. In EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 337–351. Springer, 2002.

9. R. Canetti and T. Rabin. Universal Composition with Joint State. In CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 265–281. Springer,
2003.

10. A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On the Relationships
Between Notions of Simulation-Based Security. In TCC 2005, volume 3378 of
Lecture Notes in Computer Science, pages 476–494. Springer-Verlag, 2005.

11. A. Datta, R. Küsters, J. Mitchell, A. Ramanathan, and V. Shmatikov. Unifying
Equivalence-Based Definitions of Protocol Security. In WITS 2004, 2004.

12. O. Goldreich. Foundations of Cryptography, volume 1. Cambridge Press, 2001.

13. C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

14. D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simulata-
bility Definitions. In CSFW 2005, pages 156–169. IEEE Computer Society, 2005.

15. D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In TCC 2005,
volume 3378 of Lecture Notes in Computer Science, pages 86–103. Springer-Verlag,
2005.

16. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW-19 2006). IEEE Computer Society, 2006. To appear.

17. R. Milner. A Calculus of Communicating Syustems. Springer-Verlag, 1980.

18. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic
polynomial-time calculus for analysis of cryptographic protocols (preliminary re-
port). In 17th Annual Conference on the Mathematical Foundations of Program-
ming Semantics, 2001.

19. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and
its Application to Secure Message Transmission. In IEEE Symposium on Security
and Privacy, pages 184–201. IEEE Computer Society Press, 2001.

25

A Defining Runs of Systems

In this section, we present a more formal definition of runs of systems than the
one presented in Section 2.3 and provide proofs.

In what follows, let S(1η, a) be a system with security parameter η and
external input a. We often do not distinguish between an ITM M and its current
configuration. We write

M(Compute, η, c, m) →π M ′

to say that when running the ITM M starting from its current configuration
in mode Compute with η written on the security parameter tape, m written
on input tape c, and the empty bit string written on all other input tapes, on
all output tapes, and the address decision tape, we obtain with probability π
a configuration M ′ after the computation is finished (where in M ′ a message
might be written on one of the output tapes).

The (global) configuration of S(η, a) in a run is a tuple of the form (A, P)
where, as explained in Section 2.3, A is a sequence of configurations (the sequence
of previously activated machines) and P is a system (the passive machines). The
initial configuration is (A0, P0) where A0 is the empty sequence and P0 = S.

Given a configuration (A, P), we now describe how the system evolves when
a message m which was output on an output tape c is read by one of the ITMs
in the system. We will write (A, P) →π

(c,m) (A′, P ′) to say that with probability

π > 0 we obtain (A′, P ′) as a successor configuration of (A, P) after m was read
on c (by some ITM). We call this event a communication step with given input
(c, m) and say that (A′, P ′) is a →(c,m)-successor of (A, P).

We have (A, P) →π
(c,m) (A′, P ′) if one of the following conditions is satisfied

where we assume that A = M1, . . . , Mn.

1. There exists i ∈ {1, . . . , n} such that Mi(CheckAddress, η, c, m) = accept. If i
is minimal with this property and M ′

i is a configuration with Mi(Compute, η,
c, m) →π M ′

i , then A′ is obtained from A by replacing the content of every
input and output tape of a configuration in A by the empty bit string and
then replacing Mi by M ′

i where the content of the input tapes of M ′
i are

replaced by the empty bit string. Moreover, P ′ = P . (Note that one of the
output tapes of M ′

i may contain a non-empty bit string and all other output
tapes, including those of other ITMs, are empty.)

2. There does not exist 1 ≤ i ≤ n such that Mi(CheckAddress, η, c, m) = accept,
but there occurs an ITM M in P (which we identify with its initial configu-
ration) such that c ∈ Tin(M), c is enriching for M , and M(CheckAddress, η,
c, m) = accept. If M ′ is a configuration such that M(Compute, η, c, m) →π

M ′, then, A′ is obtained from A by replacing the content of every input and
output tape of a configuration of A by the empty bit string and appending
M ′ at the end of A where the content of the input tapes of M ′ is also deleted.
(Note that one of the output tapes of M ′ may contain a non-empty bit string
and all other output tapes, including those of other ITMs, are empty.) If M

26

is in the scope of a bang in P , then P ′ = P , otherwise P ′ is obtained from
P by removing M from P .

3. If neither Condition 1. nor 2. is satisfied, then π = 1, A′ = A, and P ′ = P .

Note that in 2., if some M occurs in P with c ∈ Tin(M), then M is uniquely
determined. This is so because by definition of systems we assume that the set
of names of input tapes of different occurrences of ITMs in a system are disjoint.

Let (A, P) be a configuration where all output tapes of the configurations
occurring in A are empty, except for at most one output tape. (This will be the
case after every communication step.) We write (A, P) →π (A′, P ′) if one of the
following conditions is satisfied:

1. All output tapes of the configurations in A are empty, (A, P) →π
(start,ε)

(A′, P ′) where ε denotes the empty bit string.
2. There is a configuration in A where one of the output tapes, say c, is non-

empty, say its content is m, c 6= decision, and (A, P) →π
(start,ε) (A′, P ′).

We refer to (A, P) →π (A′, P ′) as a communication step and to (A′, P ′) as
a →-successor of (A, P). Informally speaking, Condition 1. means that if no
output was produced, then a master ITM is triggered. Condition 2. describes
the situation where in the previous communication step output was produced
by an ITM and this output is now fed into another ITM. However, a run stops
if the output produced was written on an output tape named decision.

A (complete) run ρ of a system S given the security parameter η and ex-
ternal input a (a run of S(η, a), for short) is a sequence of configurations
(A0, P0), . . . , (Ak, Pk) such that the following conditions are satisfied:

1. (A0, P0) is an initial configuration.
2. (A0, P0) →

π1

(start,a)
(A1, P1) for some π1 ∈ (0, 1].

3. (Ai, Pi) →πi+1 (Ai+1, Pi+1) for every 1 ≤ i ≤ k − 1 and some πi+1 ∈ (0, 1].
4. (Ak, Pk) does not have a →-successor or all output tapes of configurations

in Ak−1 and Ak are empty, and k is minimal with this property, i.e., there
does not exist k′ < k such that (Ak′ , Pk′) satisfies this property.

Condition 4. defines when a run stops: Either if there is no successor configuration
(because output was written on decision) or a master ITM was triggered in the
last communication step but did not produce output.

We call π1 · · ·πk the probability of ρ, k the length of ρ, and say that ρ outputs
or returns m if on an output tape named decision of some configuration in Ak

the message m is written.

Definition 6. (restated from Definition 2) Let p be a polynomial p and ρ be
a run of S(1η, a). Then, ρ is p-bounded if the length of all outputs written on
output tapes during the run is ≤ p(η + |a|).

A system S is p-bounded if for all security parameters η and external inputs
a all runs of S(1η, a) are p-bounded.

A system S is (polynomially) bounded if there exists a polynomial p such
that S is p-bounded.

27

For p-bounded systems we obtain:

Lemma 6. If S is p-bounded, then there exists a polynomial q such that for
every η, a, and run ρ of S(η, a) we have:

1. The overall length of inputs given to ITMs in ρ is ≤ q(η + |a|).
2. The length of ρ is ≤ q(η + |a|).
3. The number of ITMs invoked in ρ (both in mode CheckAddress and Compute)

and the number of active machines is ≤ q(η + |a|).
4. The length of the contents of work tapes of ITMs in all configurations occur-

ring in ρ is ≤ q(η + |a|).
5. The overall number of transitions taken by ITMs in ρ is ≤ q(η + |a|).

Proof. It suffices to find polynomials for every single statement. The polyno-
mial q can then be chosen as the sum of these polynomials.

Statement 1.: Follows immediately with q = p.
Statement 2.: To see this statement, we set q(η + |a|) = 2 · p(η + |a|) + 1.

Now, it suffices to observe that by definition of runs in at least every other
communication step, except for the last two communication step, output must
be produced.

Statement 3.: By 2. and the fact that in every communication step at most
one configuration is added to the set of activated machines, it follows that the
number of activated machines is bounded by some polynomial in η + |a|. Also,
in every communication step the activated machines are invoked at most twice
(once in mode CheckAddress and once in mode Compute). The passive machines
(whose number is constant), are also invoked at most twice. It follows that the
number of invocations of ITMs is bounded by a polynomial in η + |a|.

Statement 4.: Immediately follows from the definition of computations of
ITMs in mode Compute.

Statement 5.: Since by 3. only a polynomial number of ITMs are invoked it
suffices to bound the number of transitions taken by an ITM in one activation.
This immediately follows from the definition of computations of ITMs in mode
CheckAddress and Compute. ✷

An immediate consequence of the above lemma is:

Proposition 2. (restated from Proposition 1) Every bounded system can be sim-
ulated by a single ITM.

Definition 7. (restated from Section 2.3) A system S is almost p-bounded if
the probability

f(1η, a) = Prob[run of S(1η, a) is not p-bounded]

is negligible.
We call S almost bounded if there exists a polynomial p such that S is almost

p-bounded.

28

As already mentioned in Section 2.3, for almost p-bounded systems Proposition 2
also holds, except that a simulated run may deviate from a run in the original
system with negligible probability.

Recall that in Section 2.3, we have provided examples which illustrate that
not all systems are (almost) bounded. While these systems were not well-formed,
for well-formed systems we can prove:

Theorem 5. (restated from Theorem 1) Well-formed systems are bounded.

Proof. Assume that S is well-formed and let GS be the graph associated with
S (see Section 2.2). By assumption, GS is acyclic and the master ITM (if any)
is not in the scope of a bang. We need to show that there exists a polynomial
p such that for every η and a, and for every run of S(η, a), the length of the
output written on output tapes is bounded by p(η + |a|).

If S does not contain a master ITM, then no ITM in S will be activated.
Hence, no output is produced, which implies that S is bounded. So, let us assume
that S contains a master ITM.

Let M1, . . . , Mn be the ITMs occurring in S. Since GS is acyclic there is a
total ordering < on the Mi’s consistent with GS , i.e., if there is an edge from Mi

to Mj in GS , then Mi < Mj. W.l.o.g. we may assume that M1 < M2 < · · · < Mn.
By definition of GS , (a copy of) Mi can only be invoked via an enriching input
tape by (a copy of) Mj for j < i. In particular, only an ITM Mj, j < i, can
generate a copy of Mi.

There exists exactly one l ∈ {1, . . . , n} such that Ml is a master ITM, i.e.,
has start as input tape. It is easy to see by induction on j that the ITMs Mj for
j < l are never invoked: If j = 1 < l, M1 could only be invoked via start, i.e., if
M1 were a master ITM. However, since 1 < l, this is not the case. Now, Mj for
j < l can only be invoked by the ITMs M1, . . . , Mj−1. However, by induction,
these ITMs are never invoked so Mj cannot be invoked.

Consequently, the first (w.r.t. <) ITM to be invoked is the master ITM Ml.
It is invoked via start. Since, by assumption, Ml is not in the scope of a bang,
in every run of S(η, a), there will only be one copy of Ml. The only input on
an enriching tape that Ml obtains is the input a on tape start. By definition of
ITMs, this means that in every run of S(η, a), the length of the output produced
by Ml is bounded by a polynomial in η+ |a|. In particular, Ml can only generate
a polynomial number of copies of ITMs Ml+1, . . . , Mn and the input given to
these copies on enriching input tapes by Ml is also bounded by a polynomial.

This implies that in every run of S(η, a) there are only a polynomial number
of copies of Ml+1 and that the input to these copies on enriching input tapes
is bounded by a polynomial in η + |a|. By definition of ITMs, it then follows
that the length of the output produced by Ml+1 is bounded by a polynomial in
η + |a|. In particular, copies of Ml+1 can only generate a polynomial number of
copies of ITMs Ml+2, . . . , Mn.

The same argument can iteratively be applied to the remaining ITMs Ml+2,
. . . , Mn. Since n is a constant (which does not depend on η and |a|), it follows
that S is bounded. ✷

29

B Proof of Theorem 2

To prove Theorem 2, we first show that strong simulatability is equivalent to
dummy universal and black-box simulatability (Appendix B.1 and B.2). We
then prove equivalence of universal and reactive simulatability (Appendix B.3).
Finally, for the case that the ideal protocol is generous, we establish equiva-
lence between universal and strong simulatability. Combining these equivalences
immediately implies Theorem 2.

In what follows, let P and F be I/O-compatible protocol systems.

B.1 Equivalence of Strong and Dummy Universal Simulatability

We prove that P ≤SS F iff P ≤UCdum F , and start by showing that strong
simulatability implies dummy universal simulatability:

1. Assume that P ≤SS F .
2. By definition of SS, we obtain: ∃ S∈SimP

S
(F) ∀ E∈ConE(P):

E | P ≡ E | S | F .

3. With S as in 2. and Dio as in Definition 4, we have for all E∈EnvE(Dio | P):

E |Dio | P ≡ E ′ | P (Lemma 2 and 1)
≡ E ′ | S | F (2.)
≡ E | S′ | F (Lemma 1)

where E ′ is obtained from E by renaming the external tapes c′ of E connecting
to Dio to c (see the definition of Dio) and declaring them to be network tapes,
and S′ is obtained from S by renaming the tapes c connecting to E ′ to c′

and declaring these tapes to be I/O tapes.

We now show that dummy universal simulatability implies strong simulatability.

1. Assume that P ≤UCdum F .

2. By definition of UCdummy, we obtain: ∃ I∈Sim
Dio | P
S

(F) ∀ E∈EnvE(Dio | P):

E |Dio | P ≡ E | I | F

where Dio = Dio(Tin(P), Tout(P)).
3. With S = I as in 2., we have for all E∈ConE(P):

E | P ≡ E ′ | Dio | P (Lemma 2 and 1)
≡ E ′ | S | F (2.)
≡ E | S′ | F (Lemma 1)

where E ′ is obtained from E by renaming the external tapes c of E connecting
to the network tapes of P to c′ and declaring them to be I/O tapes, and
S′ is obtained from S by renaming the tapes c′ connecting to E ′ to c and
declaring them to be network tapes. ✷

30

B.2 Equivalence of Strong and Black-Box Simulatability

We prove that P ≤SS F iff P ≤BB F , and start by showing that black-box
simulatability implies strong simulatability:

1. Assume that P ≤BB F .
2. By definition of BB we have: ∃ S∈SimP

S (F) ∀ A∈AdvA(P) ∀ E∈EnvE(A |P):

E |A |P ≡ E |A | S |F

and E |A | S |F is almost bounded.
3. With S as in 2., we have for all E∈ConE(P):

E | P ≡ E ′ | Dio | P (Lemma 2 and 1)
≡ E ′ | Dio | S | F (2.)
≡ E | S |F (Lemma 2)

where Dio = Dio(T net
in (P), T net

out (P)) and E ′ is obtained from E by renaming
the external tapes named c of E connecting to the network tapes of P to c′

and declaring them to be I/O tapes. Note that by 2. the system E ′ | Dio | S | F
is almost bounded.

We now show the implication in the other direction.

1. Assume that P ≤SS F .
2. By definition of SS, we obtain: ∃ S∈SimP

S
(F) ∀ E∈ConE(P):

E | P ≡ E | S | F .

3. With S as in 2., we have for all ∀ A∈AdvA(P) ∀ E∈EnvE(A |P):

E |A |P ≡ [E |A]P | P (Lemma 4)
≡ [E |A]P | S | F (2.)
≡ E |A | S |F (2. and Lemma 5)

and E |A | S |F is almost bounded (Lemma 5). ✷

B.3 Equivalence of Universal and Reactive Simulatability

We prove that P ≤UC F iff P ≤RS F . The implication from left to right is
trivial. The argument in the other direction is analogous to the one presented in
[7]. Let us present the proof sketch:

Assume that P ≤RS F . This implies that ∀ A∈AdvA(P) ∀ E∈EnvE(A |P)

∃ I∈Sim
A |P
S

(F):
E |A |P ≡ E | I | F .

We choose E to be a “universal” Turing machine (more precisely, a universal
ITM) which takes as external input (i.e., input on start) a tuple of the form
(a, e, 1t) where e is an encoding of some ITM (representing an environmental

31

system E ′), a is interpreted as an external input to E ′, and t is interpreted as a
runtime. (By Lemma 3, we may assume that e encodes a single ITM with only
consuming input tapes and which accepts every message in mode CheckAddress.)
The universal ITM E simulates E ′ with external input a up to t steps. Now, when
ranging over all tuples (a, e, 1t)—of polynomially bounded length in the security
parameter—E simulates all environmental systems E ′. Hence, E |A |P ≡ E | I | F
implies E ′ | A | P ≡ E ′ | I | F for every E ′ ∈ EnvE(A |P). Thus, P ≤UC F
follows.

B.4 Equivalence of Universal and Strong Simulatability

Assume that F is generous. We show that P ≤SS F iff P ≤UC F , and start
with the direction from right to left.

Obviously, P ≤UC F implies P ≤UCdum F . Since strong simulatability
and dummy universal simulatability are equivalent, we obtain that P ≤UC F
implies P ≤SS F . Note that for this direction the assumption that F is generous
is not needed.

We now show that P ≤SS F implies P ≤UC F :

1. Assume that P ≤SS F .
2. By definition of SS, we obtain: ∃ S∈SimP

S (F) ∀ E∈ConE(P):

E | P ≡ E | S | F .

3. With S as in 2., we have ∀ A∈AdvA(P) ∀ E∈EnvE(A |P):

E |A |P ≡ [E |A]P | P (Lemma 4)
≡ [E |A]P | S | F (2.)
≡ E |A | S |F (2. and Lemma 5)
≡ E | I | F (*)

We need to define I, which will only depend on A, S, and F , and prove (*),
which then shows that P ≤UC F .

Before defining I, we make some useful observations:

(a) By Lemma 3, P can be simulated by a single ITM, and hence, by definition
of ITMs there exists a polynomial in the security parameter η and the length
of the input received on enriching input tapes of P which bounds the length
of the output produced. This polynomial is independent of the context E in
which P runs.

(b) The probability that at some point in a run of E | S | F the length of the
output written by S on one of the output network tapes to E exceeds the
bound mentioned in (a) is negligible, in η and the external input a given
to E . (Otherwise, one can easily construct E ′ such that E ′ | P 6≡ E ′ | S | F , in
contradiction to 2.: E ′ simply simulates E and outputs 1 iff the length of the
input received on the network tapes is bounded as expected.)

32

(c) Since F is generous, in every run of the system E |A | S |F whenever S (i.e.,
one of the ITMs that belong to S) is activated the length of the input S
received from F is polynomially at least as big as the length of the input
F received on its enriching I/O tapes so far, where the polynomial only
depends on F .

(d) By Lemma 3, we may replace A and S by single ITMs MA and MS , respec-
tively.

We define I as follows: The input and output tapes of I are defined in such a
way that I is compatible with the system MA |MS . The machine I simulates
MA |MS , and the external tapes between MA and MS are work tapes in I.

To see that I can in fact simulate MA |MS , we prove that the overall length
of the bit strings written on the tapes between MA and MS can polynomially
be bounded in η plus the length of the input to I on enriching input tapes: This
follows from the fact that by (b) the output sent by MS to MA is (with over-
whelming probability) polynomially bounded in η plus the length l of the input
F received from E so far. By (c), l is bounded by a polynomial in the security
parameter and the length l′ of the input MS received from F so far. Hence,
the output sent by MS to MA is (with overwhelming probability) polynomially
bounded in η plus the length of the input MS received from F so far. But then,
the output from MA to MS is polynomially bounded in η plus the length of
the input given to MA by E and l′. Note that if the length of the input from
MS to MA exceeds the polynomial bound in η + l′, then I can simply stop the
simulation as this happens only with negligible probability.

From the above it follows that MA |MS can in fact be simulated in poly-
nomial time in the security parameter and the length of the input given to I
on enriching input tapes. The system I exactly mimics MA |MS , except when
the overall length of messages sent from MS to MA exceeds a certain bound.
But since this happens only with negligible probability, the simulation is faithful
with overwhelming probability.

Now, (*) easily follows. ✷

C Proof of Theorem 4

For every system Q, we define

PQ(η, a) = Prob[Q(η, a) ❀ 1].

Let P ,F be protocol systems such that P and F are I/O-compatible and
P ≤SS F . We need to show that !P ≤SS !F .

Since P ≤SS F , there exists S∈SimP
S

(F) such that for all E∈ConE(P) we
have that

E | P ≡ E | S | F . (1)

By Lemma 3, we may assume that S is a single ITM which in mode CheckAddress

accepts all messages. We denote by S the session version of S.

33

Obviously, !S ∈ Sim
!P
S

(!F). We show that

E | !P ≡ E | !S | !F . (2)

for every E ∈ ConE(!P), which then concludes the proof of Theorem 4.
To show (2), let E ∈ ConE(!P) and let p1 and p2 be polynomials. We need

to prove that there exists η0 such that for all η > η0 and all bit strings a ∈⋃
η′≤p2(η){0, 1}η′

we have that

d(η, a) := |PE | !P(1η, a) − PE | !S | !F(1η, a)| ≤
1

p1(η)
. (3)

The proof proceeds by a hybrid argument.
In what follows, let P ′ be the version of P obtained from P by renaming

every tape c occurring in P to c′. Analogously, let P ′′ be obtained from P by
renaming every tape c occurring in P to c′′. Similarly for F ′, F ′′, S ′, and S ′′.

We now define a system E ′ which basically simulates E and which will run in
the system E ′ | !P ′′ | !S′ | !F ′ | P and E ′ | !P ′′ | !S ′ | !F ′ | S | F , respectively. More
precisely, E ′ is given a parameter i on its external input. The first i copies of
the protocol invoked by E will be copies of S ′ | F ′, the i+1st copy will be P and
S |F , respectively, and the remaining copies will be copies of P ′′.

Formally, E ′ is obtained from E as follows. By Lemma 3, we may assume that
E is a single ITM which in mode CheckAddress always accepts. The ITM E ′ will
also always accept in mode CheckAddress. The behavior of E ′ in mode Compute

is specified next.
First, we need to make sure that E ′ has the appropriate tapes to connect to

the different entities. The system E may already have tapes to connect to the
external tapes of P and S |F . For each such tape c, we add to E ′ a tape c′ and
c′′ to connect to the external tapes of S ′ | F ′ and P ′′, respectively.

Next, we need to specify how E ′ redirects protocol invocations of E in the
way described above: E ′ interprets its external input, i.e., the input received on
tape start, as a tuple of the form (i, a) where i encodes a non-negative integer. E ′

then stores i and keeps a list L of SIDs, which initially is empty, and the length
l of the list, which initially is 0. From now on, E ′ simulates E with external input
a. In particular, if E produces output, then so does E ′, and if E ′ receives input,
then E is simulated with this input. However, as explained next, the behavior of
E ′ deviates from that of E when it comes to sending and receiving messages to
the different copies of protocols.

1. If E produces output m on some external tape c of P (and hence, S |F)
which is not prefixed by a SID, then E ′ does not produce output.

2. If E produces output m on some external tape c of P (and hence, S |F)
prefixed with s, then E ′ checks whether s occurs in L. Let j be the position
where s occurs in L (the positions in L start from position 1); let j = 0 if s
does not occur in L.

(a) If 0 < j ≤ i, then E ′ writes m on tape c′.

34

(b) If j = i+1, then E ′ outputs m′ on c where m′ is a message such that
m = (s, m′), i.e., s is removed from m.

(c) If j > i+1, then E ′ writes m on tape c′′.
(d) If j = 0, then s is appended at the end of L and l is increased by 1.

Next, depending on whether 0 < l ≤ i, l = i+1, or l > i+1, E ′ proceeds
as in a), b), or c), respectively.

3. If E ′ receives input on tape c′′ where c′′ is an external tape of P ′′ corre-
sponding to an external tape c of P , then E ′ behaves as E in case input was
received on tape c.

4. If E ′ receives input on tape c′ where c′ is an external tape of S′ | F ′ corre-
sponding to an external tape c of S |F , then E ′ behaves as E in case input
was received on tape c.

5. If E ′ receives input m on tape c where c is an external tape of P (and hence,
S |F), then E ′ behaves as E in case input (L[i+1], m) was received on tape c
where L[i+1] denotes the i+1st entry of L. By construction, this entry exists
in L since E must have invoked the i+1st copy.

We also consider a simplified version Ê ′ of E ′ which is intended to run in the
system Ê ′ | !P ′′ | !S ′ | !F ′. Instead of invoking P (S |F), Ê ′ invokes P ′′ as its
i+1st protocol copy. This is achieved by modifying E ′ in the obvious way.

Since, as mentioned above, we may assume that E is an ITM with start as its
only enriching input tape, we know that there exists a polynomial q such that
the length of the output produced by E in any context is bounded by q(η + |a|)
where η is the security parameter and a the external input given to E on start.
In particular, the number of copies of protocols that can be invoked by E is also
bounded by q(η + |a|) since to invoke a new ITM non-empty output must be
sent to the ITM.

In what follows, let Ê ′′ = Ê ′ | !P ′′ | !S′ | !F ′. By construction, we obtain:

PE | !P(1η, a) = PbE′′
(1η, (0, a))

PE | !S | !F (1η, a) = PbE′′(1
η, (q(η + |a|), a))

for every η and a. Define

di(η, a) = |PbE′′(1
η, (i, a)) − PbE′′(1

η, (i + 1, a))|

for every η, bit string a, and i < q(η + |a|).
By the triangle inequality, we have that

d(η, a) = |PbE′′(1
η, (0, a)) − PbE′′(1

η, (q(η), a))| ≤

q(η+|a|)−1∑

i=0

di(η, a).

We now show that for every polynomial p there exists η0 such that

di(η, a) ≤
1

p(η)
(4)

35

for every η > η0, a ∈
⋃

η′≤p2(η){0, 1}η′

, and 0 ≤ i < q(η + |a|). From this, with

p(η) = p1(η) · q(η + p2(η)), we immediately obtain that d(η, a) ≤ 1
p1(η) for every

η > η0 and a ∈
⋃

η′≤p2(η){0, 1}η′

, which shows (3), and hence, concludes the
proof of Theorem 4.

To prove (4), let E ′′ = E ′ | !P ′′ | !S′ | !F ′. By construction, we obtain that

PbE′′(1
η, (i, a)) = PE′′ | P(1η, (i, a)), (5)

PbE′′
(1η, (i+1, a)) = PE′′ | S | F (1η, (i, a)). (6)

For (5) we use that P is a protocol system. In particular, we use property iii)
of protocol systems. If this property were not satisfied, i.e., P contains an ITM
M which is not in the scope of a bang but which could reject a message in
mode CheckAddress, the following could happen. In a run of (E ′′ | P)(1η, (i, a))
a message is sent to M , but it is rejected by M (in mode CheckAddress). Then,
since M is not in the scope of a bang, no new copy of M will be generated.
Conversely, if in a run of Ê ′′(1η, (i, a)) a message is sent to a copy of the session
version M of M prefixed with the i+1st SID generated by E and the simulated
M in M would reject the message, then it could happen that a new copy of M
is generated (since M is in the scope of a bang in Ê ′′) which then would not
have a corresponding entity in a run of the system E ′′ | P(1η, (i, a)). In short,
by property iii) of protocol systems it is guaranteed that for ITMs that do not
occur in the scope of a bang in P only at most one copy is generated per SID in
the run of Ê ′′.

Analogously, for (6), since F is a protocol system and S is (w.l.o.g.) an ITM
that accepts all messages in mode CheckAddress, we have that in every run of
Ê ′′ at most one copy is generated per SID for ITMs in F that do not occur in
the scope of a bang and for S.

It is easy to verify that E ′′ ∈ ConE(P). By (1), we know that E ′′ | P ≡
E ′′ | S | F . Consequently, for every polynomial p(η) and p′(η) = p2(η) + q(η +
p2(η)) there exists η0 such that

di(η, a) = |PE′′ | P(1η, (i, a) − PE′′ | S | F(1η, (i, a)|

≤
1

p(η)

for every η > η0, 0 ≤ i < q(η + |a|), and (i, a) ∈
⋃

η′≤p′(η){0, 1}η′

. Now, (4)
follows.

36

