On the Relationships Between Notions of Simulation-Based Security™®

Anupam Datta! Ralf Kiisters? John C. Mitchell! Ajith Ramanathan®

LComputer Science Department
Stanford University
Stanford, CA 94305-9045
{danupam,jcm,ajith} @cs.stanford. edu

2 Institut fiir Informatik
Christian-Albrechts- Universitat zu Kiel
kuesters@ti.informatik.uni-kiel.de

Abstract

Several compositional forms of simulation-based security have been proposed in the litera-
ture, including universal composability, black-box simulatability, and variants thereof. These
relations between a protocol and an ideal functionality are similar enough that they can be
ordered from strongest to weakest according to the logical form of their definitions. However,
determining whether two relations are in fact identical depends on some subtle features that
have not been brought out in previous studies. We identify the position of a “master process”
in the distributed system, and some limitations on transparent message forwarding within com-
putational complexity bounds, as two main factors. Using a general computational framework,
called Sequential Probabilistic Process Calculus (SPPC), we clarify the relationships between
the simulation-based security conditions. We also prove general composition theorems in SPPC.
Many of the proofs are carried out based on a small set of equivalence principles involving pro-
cesses and distributed systems. This gives us results that carry over to a variety of computational
models.

Keywords: simulation-based security, universal composability, reactive simulatability, black-box
simulatability, process calculus

1 Introduction

Several current projects use ideal functionality and indistinguishability to state and prove compo-
sitional security properties of protocols and related mechanisms. The main projects include work

“An abridged version of this work has been published in TCC 2005 [15]. Our work was partially supported by
the DoD University Research Initiative (URI) program administered by the Office of Naval Research under Grant
N00014-01-1-0795, by OSD/ONR CIP/SW URI ” Trustworthy Infrastructure, Mechanisms, and Experimentation for
Diffuse Computing” through ONR Grant N00014-04-1-0725, by NSF CCR-0121403, Computational Logic Tools for
Research and Education, and by NSE CyberTrust Grant 0430594, Collaborative research: High-fidelity methods for
security protocols. Part of this work was carried out while the second author was at Stanford University supported
by the “Deutsche Forschungsgemeinschaft (DFG)”.

by Canetti and collaborators on an approach called universal composability [9,11-14] and work
by Backes, Pfitzmann, and Waidner on a related approach that also uses black-box simulatabil-
ity [4,5,7,27]. Other projects have used the notion of equivalence in process calculus [17,23,24],
a well-established formal model of concurrent systems. While some process-calculus-based secu-
rity studies [1-3] abstract away probability and computational complexity, at least one project
[22,25,26,28] has developed a probabilistic polynomial-time process calculus for security purposes.
The common theme in each of these approaches is that the security of a real protocol is expressed
by comparison with an ideal functionality or ideal protocol. However, there are two main differ-
ences between the various approaches: the precise relation between protocol and functionality that
is required, and the computational modeling of the entities (protocol, adversary, simulator, and
environment). All of the computational models use probabilistic polynomial-time processes, but
the ways that processes are combined to model a distributed system vary. We identify two main
ways that these computational models vary: one involving the way the next entity to execute is
chosen, and the other involving the capacity and computational cost of communication. We then
show exactly when the main security notions differ or coincide.

In [9], Canetti introduced universal composability (UC), based on probabilistic polynomial-
time interacting Turing machines (PITMs). The UC relation involves a real protocol and ideal
functionality to be compared, a real and ideal adversary, and an environment. The real protocol
realizes the ideal functionality if, for every attack by a real adversary on the real protocol, there
exists an attack by an ideal adversary on the ideal functionality, such that the observable behavior of
the real protocol under attack is the same as the observable behavior of the ideal functionality under
attack. Each set of observations is performed by the same environment. In other words, the system
consisting of the environment, the real adversary, and the real protocol must be indistinguishable
from the system consisting of the environment, the ideal adversary, and the ideal functionality. The
scheduling of a system of processes (or ITMs) is sequential in that only one process is active at a
time, completing its computation before another is activated. The default process to be activated,
if none is designated by process communication, is the environment. In the present work, we use
the term master process for the default process in a system that runs when no other process has
been activated by explicit communication.

In [27], Pfitzmann and Waidner use a variant of UC and a notion of black-box simulatability
(BB) based on probabilistic polynomial-time IO automata (PIOA). In the BB relation between a
protocol and ideal functionality, the UC ideal adversary is replaced by the combination of the real
adversary and a simulator that must be chosen independently of the real adversary. Communication
and scheduling in the PIOA computational model are sequential as in the PITM model. While the
environment is the master process in the PITM studies, the adversary is chosen to be the master
process in the Pfitzmann-Waidner version of UC. In the Pfitzmann-Waidner version of BB the
master process is the adversary or the simulator [27]. In a later version of the PIOA model (see,
e.g., [4]), the environment is also allowed to serve as the master process, subject to the restriction
that in any given system it is not possible to designate both the adversary/simulator and the
environment as the master process. In proofs in cryptography, another variant of BB is often
considered in which the simulator may depend on the real adversary or its complexity. We call this
variant Weak BB (WBB) and the previous one Strong BB (SBB).

In [22,26,28,29], Mitchell et al. have used a form of process equivalence, where an environment
directly interacts with the real and ideal protocol. The computational model in this work is a
probabilistic polynomial-time processes calculus (PPC) that allows concurrent (non-sequential)

SS/SBB UC/WBB,,
Strong Simulatability [16] Universal Composability [27]
Strong Blackbox [4,27] Weak Blackbox
(No restriction on (Simulator and adversary
who is master) may be master, but
not environment)

N
: iff the FORWARDER property holds +

UC/WBB,, WBB.a»

Universal Composability [4, 9]
= Weak Blackbox

Weak]iackb ox

(Environment (Only adversary
may be master) may be master)

Figure 1: Equivalences and implications between the security notions in SPPC

execution of independent processes. The process equivalence relation gives rise to a relation between
protocols and ideal functionalities by allowing a simulator to interact with the ideal functionality,
resulting in a relation that we call strong simulatability, SS [16]. The difference between SS and
SBB is that in SBB, the environment and the adversary are separated while the SS environment
also serves as the adversary.

Contribution of the paper. In this paper, we clarify the relationships between UC, SBB, WBB,
SS under different placements of the master process and an additional issue involving the ability
to define a “forwarding” process that forwards communication from one process to another. While
it seems intuitively reasonable that such a forwarder can be placed between two processes without
changing the overall behavior of the system, this may violate complexity bounds if a polynomial-
time forwarder must be chosen before the sending or receiving process. If the time bound of the
sender, for example, exceeds the time bound of the forwarder, then some sent messages may be
lost because the time bound of the forwarder has been exhausted. This is relevant to our study
because some equivalence proofs require the existence of forwarders that cannot be exhausted.

Our main results are summarized in Figure 1. Each of the four boxes in this figure stands for
a class of equivalent security notions. Specifically, if a real and ideal protocol are related by one
notion in this class, then they are also related by all other notions in this class. A solid arrow
from one class to another indicates that relations in the first class imply relations in the second
class. The implication indicated by the dashed arrow is contingent on whether the aforementioned
forwarding property holds for the processes in question.

The proofs of equivalence and implication between security notions are axiomatic, using a rela-

tively small set of clearly stated equivalence principles involving processes and distributed systems.
This approach gives us results that carry over to a variety of computational models. Our axiomatic
system is proved sound for a specific computational model, a sequential probabilistic polynomial-
time process calculus (SPPC), developed for the purpose of this study. SPPC is a sequential model,
allowing only one process to run at a time. When one process completes, it sends an output in-
dicating which process will run next. This calculus is close to PIOA and PITM in expressiveness
and spirit, while (1) providing a syntax for writing equations between systems of communicating
machines and (2) being flexible enough to capture different variants of security notions, including
all variants of SS, SBB, WBB, and UC discussed in this paper. Our results about these security
notions formulated over SPPC are:

1. Equivalences between security notions.

(a) The different forms of Strong Simulatability and Strong Blackbox obtained by varying

(d)

the entity that is the master process are all equivalent. This equivalence class, denoted
SS/SBB, is depicted in the top-left box in Figure 1 and includes placements of the master
process as considered for Strong Blackbox in [4,27]

All variants of Universal Composability and Weak Blackbox in which the environment
may be the master process are equivalent. This equivalence class, denoted UC/WBB,_,,,,
is depicted in the bottom-left box in Figure 1 and includes placements of the master
process as considered for Universal Composability in [4,9].

All variants of Universal Composability and Weak Blackbox in which the simulator and
the adversary may be the master process, but not the environment are equivalent. This
equivalence class, denoted UC/WBB,,, , is depicted in the top-right box in Figure 1 and
includes placements of the master process as considered for Universal Composability
in [27].

All variants of Weak Blackbox where the adversary may be the master process, but
neither the environment nor the simulator may play this role are equivalent. This equiv-
alence class, denoted WBB,4,, is depicted in the bottom-right box in Figure 1.

2. Implications between the classes.

(a) SS/SBB implies UC/WBB

(b)

(

)

env- 1 particular, Strong Blackbox with placements of the
master process as considered in [4,27] implies Universal Composability with placements
of the master process as considered in [4,9].

UC/WBB,,,, implies WBB 4.

WBB,4, implies UC/WBB,,, .. In particular, Strong Blackbox with placements of the
master process as considered in [4,27] and Universal Composability with placements of
the master process as considered in [4, 9] implies Universal Composability with place-
ments of the master process as considered in [27].

3. Separations between the classes.

(a) The security notions in UC/WBB_,

, are strictly weaker than those in SS/SBB in any
computational model where the forwarding property (expressed precisely by the FOR-
WARDER axiom) fails. Since this property fails in the PITM model [9] and the buffered

PIOA model [4], it follows that UC/WBB,,,, does not imply SS/SBB in these models.
This contradicts a theorem claimed in [4]. However, the forwarding property holds in
SPPC and the buffer-free PIOA model for most protocols of interest. In these cases,
UC/WBB,,, implies SS/SBB.

(b) The security notions in UC/WBB,,, = are strictly weaker than the notions in WBB,4,,, and
hence, the notions in UC/WBB,,, and SS/SBB. In particular, the Universal Compos-
ability relation with placements of the master process as considered in [27] does neither
imply the Strong Blackbox relations with placements of the master process as considered
in [4,27] nor Universal Composability relations with placements of the master process
as considered in [4,9].

These results all show that the relationship between universal composability and black-box
simulatability is more subtle than previously described. One consequence is that when proving
compositional security properties by a black-box reduction, care must be taken to make sure that the
computational model gives appropriate power to the environment. In particular, the composability
theorem of Canetti [9] does not imply that blackbox simulatability is a composable security notion,
over any computational model in which the forwarding property (expressed by the FORWARDER
axiom) is not satisfied.

Another contribution of this paper is a general composition theorem for SPPC that, similar to
the composition theorem in Canetti’s model, allows to compose a polynomial number of copies of
protocols, while in SPPC the protocols may be combined in a very flexible way. In addition to
demonstrating the suitability of SPPC as a formalism for simulation-based security, this result is
interesting in its own right.

We note that the present work concentrates on models for simulation-based security where
processes run in polynomial time in the security parameter alone. Recently, several models have
been proposed in which the runtime of the processes may depend on the length of their input [8,18,
21]. Many of the results proved in this work, in particular those involving the issue of placements
of the master process, carry over to these models, and they have in fact already influenced design
decisions made there.

Outline of the paper. Section 2 defines the sequential polynomial-time process calculus SPPC.
In Section 3, we show that every system and every part of a system can be turned into a process
expression which exactly mimics a single interactive Turing machine. The security notions are
defined in Section 4. The main results, i.e., the relationships between the security notions, are
proved in Section 5, with consequences for the PIOA and PITM models developed in Section 6. In
Section 7, we briefly consider a less prominent security notion, called reactive simulatability in [5]
and security with respect to specialized simulators in [10], and relate it to the other notions. In
Section 8 we show that protocols that satisfy the FORWARDER property preserve this property
when they are composed. General composition theorems are then presented in Section 9. We
conclude in Section 10. The appendix contains some further details.

2 Sequential Probabilistic Process Calculus (SPPC)

In this section, we introduce Sequential Probabilistic Process Calculus (SPPC) as a language-based
computational model for studying security notions. Before we formally define syntax (Section 2.3)

rr ... Tk

" Guard = o
© PPT g
g Guard computation =
&
=
< Guard = ©
) < p(n g
B Guad _st];(: =
R ps =
overall ——= ©

Figure 2: Probabilistic polynomial-time machines in SPPC

and semantics (Section 2.4) of our computational model, we provide an informal description (Sec-
tion 2.1) and introduce the notion of a probabilistic function (Section 2.2).

2.1 Informal Introduction of SPPC

Let us first note that the driving philosophy behind the design of SPPC is to specify details of
the communication model (such as a specific order of activation of entities, insecure, authenticated,
secure channels, specific buffers, synchronous communication, broadcasting, and corruption) as part
of the protocol specification itself rather than to explicitly encode, and thus fix, these details in
the overall computation model. SPPC is expressive enough to encode such details in the protocol
specifications. This makes SPPC relatively simple and flexible. In particular, a variety of security
notions can easily be formulated in SPPC.

We start by discussing how individual probabilistic polynomial-time machines are modeled in
SPPC and then explain how to build and execute systems of interacting machines. Our exposition
parallels that of related models [5,9,27].

Single probabilistic polynomial-time machines. In SPPC, single machines are of the form
as depicted in Figure 2. For the time being, let us ignore the “guards” and the variables x1, ..., x.
Conceptually, a single machine is a black-box with internal state that receives inputs, performs
polynomially-bounded computation and then produces outputs. Inputs are received on input chan-
nels and outputs are written on output channels. More precisely, single machines are restricted to
receiving one input and producing at most one output at a time. While this at first might appear
to be a restriction, it is not really a problem since any machine that sends multiple messages can
be converted to a machine that stores internally—possibly using internal buffers—the messages it
wants to send, and then sends the messages one at a time on request. In fact, this style of commu-
nication corresponds exactly to the manner in which communication is defined in other sequential
models, notably the PIOA and PITM models [9,27]. Also, just as in these models, the overall
runtime of a machine is bounded by a polynomial in the security parameter and does not depend
on the number or length of inputs sent to the machine.

The channels of a single machine in SPPC correspond to ports in the PIOA model and to
tapes in the PITM model. However, while messages on channels (and ports) are removed when
read, this is not the case for tapes. Nevertheless, tapes can be modeled by adding machines,
one for each input channel, which simulate the tapes in the obvious way. The “main machine”

will then receive its input from the “tape machines”. In the PIOA model, buffer machines serve
a similar purpose. Note that while in SPPC and the PIOA model, the number of input and
output channels/ports is not restricted, in Canetti’s PITM model only one pair of input/output
and input/output communication tapes is considered.

In SPPC, machines can preprocess their input using guards (see Figure 2) which are determin-
istic polynomial-time machines that are placed on input channels. Given an input on the channel,
a guard may accept or reject the input. If rejected, the process does no computation. If accepted,
the process receives the output of the guard. This may be different from the input, e.g., a guard can
eliminate unnecessary information or transform data. The computation performed by the guard
may depend on the current internal state of the process. Its runtime is polynomially-bounded in
the security parameter per invocation and is not factored into the overall runtime of the process
using the guard. In particular, a guard can be invoked an unbounded number of times. Since
guards allow a process to discard messages without incurring a computation cost, attempts to “ex-
haust” a process by sending many useless messages to the process can be defeated. Additionally,
using guards we can simulate an unbounded number of “virtual” channel names by prefixing each
message with a session id and/or party name and then stipulating that the guards accept only
those messages with the right header information. Such an ability is required for systems with a
polynomial number of machines, e.g., multiparty protocols, or with multiple instances of the same
protocol. While mechanisms analogous to guards are absent in other models, notably [9, 27|, a
newer version of PIOA [6] has a length function that, when set to zero, prevents messages from
being received by the machine. This corresponds to a guard which rejects all inputs and so can be
used to help avoid exhaustion attacks. However, it does not help in the creation of a mechanism
analogous to virtual channels.

As mentioned above, guards can be invoked an unbounded number of times without being
exhausted and in every invocation their runtime is bounded by a polynomial in the security
parameter—the runtime could even depend on the length of the input. Hence, the runtime of
a single machine including the guards is polynomially bounded in the security parameter and the
number of invocations. However, the overall runtime of a single machine excluding the guards is
polynomially bounded in the security parameter alone, and hence, such a machine can produce at
most polynomially many output messages overall in the security parameter. Now, since guards can
only be triggered by messages sent by single machines, it follows that in a system of polynomially
many machines guards are only invoked a polynomial number of times in the security parameter.
As shown in Section 2.4.3, from this we can conclude that such systems can be simulated by a
probabilistic polynomial time Turing machine.

In SPPC, a machine may have auxiliary input, just like auxiliary input can be given to the
interacting Turing machines in Canetti’s model. This input is written on specific tapes before a
(system of) machines is run. If such auxiliary input is used, it results in a non-uniform computa-
tional model. The tapes are represented by 1, ...,z (see Figure 2). Just like in Canetti’s model,
we only allow the environment machine to use auxiliary input. However, whether the environment
machine is uniform or not does not affect the results presented in this paper (except for those in
Section 7).

More formally, in SPPC a single machine is defined by a process expression P. Such an ex-
pression corresponds to a description of an interacting Turing machine in the PITM model or an
I/O automaton in the PIOA model. A process expression is always parameterized by the security
parameter n and possibly so-called free variables 1, ..., xy, which represent the tapes for the aux-

iliary input mentioned above. Therefore, we sometimes write P(x1, ..., x) instead of P. A process
expression with value 7 chosen for the security parameter and values a (the auxiliary inputs) sub-
stituted for its free variables = yields a process P(?l))n*i. A process corresponds to an interacting
Turing machine where the security parameter is written on the security parameter tape and the
auxiliary input is written on the input tape. Hence, a process can perform computations as soon
as it receives input on the input channels. As an expositional convenience, we will use the terms
‘process expression’ and ‘process’ interchangeably. A process expression is called open if it has
free variables, and closed otherwise. Hence, open process expressions correspond to non-uniform
machines and closed expressions to uniform ones.

Systems of interacting machines. In SPPC, a system of interacting machines is simply a mul-
tiset of single machines where an output channel of one machine connects directly to an identically-
named input channel of another machine. The manner in which these machines are wired together
is uniquely determined by the channel names since we stipulate that no two machines have the
same input and output channel names respectively. After a machine M; has sent a message on an
output channel, the machine waits to receive input on an input channel. The message sent on the
output channel is immediately received by the machine My that has an identically-named input
channel. If the guards on the input channel of this machine accepts the message, then My may
perform some computation and produce one output message. While My now waits for new input
on its input channels, the output message (if any) is processed by the next receiving machine, and
so on. If there is no receiving machine, or the guard of the receiving machine rejects the message,
or no output message is produced, computation would halt since no machine is triggered. To avoid
this, in a system of machines, one machine is always declared to be a master machine, also called
master process, and this machine is triggered if no other machine is.

In SPPC, given process expressions Py, . .., P,, each representing a single machine, the combined

system of machines is denoted by the process expression P; | --- 1 P,. Instead of interpreting
P11 --- 1 Pn as a system of n single machines, one can consider this system as a single machine
(consisting of n sub-machines). This corresponds to the transformation, in the PIOA model, of a
system of fixed, finite number of machines into a single machine. However, in SPPC we can apply
such transformations to systems containing a polynomial number of machines as well.
With the bounded replication operator !;,) P, where g(n) is some polynomial in the security
parameter and P is a process expression (representing a single machine or a system of machines),
systems containing a polynomial number of machines can be described. The process expression
l4(n) P stands for a g(n)-fold parallel composition P 1 --- | P. Note that in such a system, different
copies of P have the same input and output channels. However, as discussed earlier, guards allow
us to send messages to (virtual) channels of particular copies of a protocol. Bounded replication can
be combined with parallel composition to build bigger systems such as !, () (P11P2] lgs(m) Ps).

As described earlier, since our execution model is sequential, computation may not proceed if
currently executing machine produces no output, or a receiving machine rejects an input. In order
to ensure that computation proceeds even in this case, we identify a master process by using a
special input channel start. In case no output is produced by a machine, a fixed value is written
on start thereby triggering the master process. The master process is also the first machine to be
activated when execution starts.

Additionally, in studying security notions, it will be useful to define the output of a system.
We do so by writing a bit, the output, onto an output channel named decision. The machine

containing this channel is called the decision process. Given a process expression R(z) with free
variables z, we denote by Prob[R(Z)““i ~~ 1] the probability that R with security parameter i
and substitution of values @ for its variables z outputs a 1 on decision. Recall that R(E))“Hi
denotes the process obtained from the process expression R by replacing the security parameter n
by a value ¢ and replacing the variables T by values a. Two process expressions P(E) and Q(z)
are called equivalent or indistinguishable, written P(E) = Q(z), iff for every polynomial p(n) there
exists ig such that [Prob[P(a)% ~ 1]—Prob[Q(a)™ ~ 1]| < 1/p(i) for every i > iy and every
tuple a of bit strings.

We call machines which are neither master nor decision processes regular. A machine which
is both master and decision is called a master decision process. In what follows, by R, M, D,
and MD we denote the set of all closed regular processes, closed master processes, open or closed
decision processes, and open or closed master decision processes, respectively.

2.2 Probabilistic Functions

A probabilistic function F from X to Y is a function of the form X x Y — [0, 1] which satisfies the
following two conditions:

1. The cardinality of the set {y € Y | F(z,y) > 0} is finite for every z € X.

2. Y ey Flz,y) <1 for every z € X.

We call F' a k-ary probabilistic function if X = Z¥ = Z x --- x Z for some set Z.
We refer to X as the domain of F, to Y as the codomain of F, and to the set J,.x{y € Y |
F(z,y) > 0} as the range of F.

If — is a probabilistic function, then instead of writing — (x,y) = p to say that z is mapped
to y with probability p, we often write p = Prob[z — y] or = LN y and say that x is reduced to y
(by —) with probability p.

Let — and = be two probabilistic functions such that the range of — is a subset of the domain
of =. Then, the composition — o = of — and = defines the following probabilistic function:
Probjx — o = y| = > Problx — z = y| for all z and y where 2z ranges over the range of — and
Problx — z = y|] = Prob[z — z] - Prob[z = y].

Let — be a probabilistic function such that domain and codomain coincide and let ¢ > 0. Then,
the probabilistic function (—)? is defined by induction on i as follows: If i = 0, then (—)° is the
identity function, i.e., Prob[z(—)%] = 1 if y = 2 and Prob[z(—)%y] = 0 otherwise. For i > 0, we
define Prob[z(—)%y] = Prob[z — o(—)""1y].

Let — be a probabilistic function which satisfies the following conditions:

1. Domain and codomain of — coincide, say it is the set X.

2. The directed graph induced by —, i.e., (X, {(z,y) € X x X | Prob[z — y] > 0}) is cycle free
accept for self loops.

3. For every x we have Problz — x| € {0,1}.

Now, the transitive closure (—)" of — is defined to be the following probabilistic function:

Prob[x(—>)+y] = Z Z Problz — 2z — -+ — z;_1 — Y]

>0 2151
zj#y for all j

for every x and y. Note that in the sums only a finite number of probabilities are different from O.

Note that a probabilistic polynomial time Turing machine with k input tapes and [output tapes
realizes a probabilistic function I of the form ({0,1}*)* x ({0,1}*)! — [0,1] where we define the
size of the input to be the length of the input written on the first tape, i.e., the Turing machine
runs in polynomial time in the length of the first component of the function it realizes.

2.3 Syntax of SPPC

We now introduce the syntax of SPPC, in particular, we define process expressions. For this, we
first need to introduce terms and channels.

2.3.1 Terms

Let V be an infinite supply of variables. Variables are referred to by x,y, z and decorations thereof.
We write z for the sequence x1, ...,y of variables. Bit strings, i.e., elements of {0, 1}*, are denoted
by a,b, and decorations thereof. The empty bit string is referred to by €. We write a to denote
the sequence aq, ..., a of bit strings. Let n be the security parameter.

C-terms. A C-term T = T(x) (“C” being reminiscent of “computation”) is some representation
of a probabilistic function of the form ({0, 1}* x ({0,1}*)¥) x {0,1}* — [0, 1] which can be realized
by a probabilistic polynomial time Turing machine where the first component, {0,1}*, in the
domain ({0,1}* x ({0,1}*)¥) of this function takes the security parameter n. The variables T are
called input variables of T(7) and the set of input variables of T is denoted by vari,(T). We
write p = Prob[T™ ¥(ay,...,a;) | a] or simply p = Prob[T' | a] to say that T outputs (reduces
to) the bit string a on input ay,...,a; and security parameter ¢ with probability p. We assume
that the class of C-terms is complete in the sense that all probabilistic polynomial time realizable
probabilistic functions can be described by some C-term. Obviously we can achieve this by simply
taking representations of probabilistic polynomial-time Turing machines to be C-terms.

C-terms will be used in processes of the form out(c,T") to compute a bit string which is then
placed on the channel c.

M-terms. An M-term (also called guard) t = t(?,?) (“M” being reminiscent of “matching”)

—

with 7= Z1,...,x, and Y= yi,...,y; is some representation of a (deterministic) function F of
the form ({0,1}* x {0,1}* x ({0,1})*) x ({0,1}* x ({0,1}*)!) — {0,1} that can be realized by a
deterministic polynomial time Turing machine where the first component of the domain ({0, 1}* x
{0,1}* x ({0,1})%) of this function takes the security parameter n. The variables = are call input
variables of t and the variables in 5, which are required to be distinct from the input variables,
are called output variables. Intuitively, an M-term ¢ works as follows: Given bit strings a for the
input variables (the last k& components of the domain of t), on receiving a bit string a (the second
component of the domain of ¢) the term ¢ either rejects a or accepts it (i.e., 0 or 1 is returned as

10

the first component of the codomain ({0, 1}* x ({0,1}*)!) of ¢). In case ¢ accepts, it produces [bit
strings (the last | components of the codomain of ¢) which are substituted for the output variables

5. In case t rejects, this output is irrelevant. We assume that the class of M-terms is complete in
the sense that all deterministic functions F' realizable by a deterministic polynomial-time Turing
machine can be described by some M-term. Obviously this is possible by taking representations of
such Turing machines as M-terms.

For our purposes, M-terms with only one output variable would suffice. However, additional
output variables make it more convenient to define certain processes.

M-terms will occur in processes of the form P = in(c,t).P’. If a bit string a is received on
channel ¢, the M-term ¢ allows to parse a (maybe depending on external input) before P actually
reads a, and computes substitutions for the output variables in case a is accepted by t. The output
variables of t may occur in P’.

Often, t is of the form = which we will interpret as an M-term without input variables and output
variable z. This M-term accepts any message and this message is substituted for z. The runtime
of such an M-term is determined by the bandwidth of ¢, which is a polynomial in the security
parameter (see below). Conversely, since the computation of an M-term is polynomial bounded
in the security parameter, this polynomial could be considered the bandwidth of the channel the
M-term operates on. Hence, one could dispense with explicitly assigning bandwidth to channels.

The purpose of M-terms was explained in Section 2.1 where M-terms where referred to as
“guards”. As explained there, one reason for introducing M-terms is that they allow us to create
new virtual channels: An M-term can reject all messages that do not start with a certain bit string b
where b stands for a session ID; i.e., it can check whether messages are of the form (b, z). When later
different instances of a protocol are modeled, which all have there unique SID, then every instance
will only accept a message that is prefixed with the correct SID. Also, every message returned by
an instance will be prefixed by the SID of the instance. This will allow us to send /receive messages
to/from specific instances of protocols without introducing channel variables as in 7-calculus [23,24].

2.3.2 Channels

A channel is a tuple ¢ consisting of a channel name name(c), a bandwidth bw(c), and a priority
prior(c). The bandwidth bw(c) is a polynomial in the security parameter and determines the
maximum length of messages that can be sent through c. Strictly speaking, as also mentioned
above, the bandwidth is not needed since M-terms implicitly bound the length of messages read
from a channel. However, making this bound explicit is more convenient. The priority prior(c)
of ¢ can take the values high and low, and accordingly, we refer to high and low channels. A
message on a high channel will be scheduled before a message on a low channel. The intuition is
that high channels are used to update the internal state of a process, while low channels are used
to communicate with external processes or internal subprocesses. In Section 2.1, we only referred
to low channels and for the sake of presentation did not mention the internal step to update the
internal state that is taken after the output on the low channel has been produced. Channels are
usually referred to by ¢ and decorations thereof. The set of channels is denoted by C. We assume
that C contains the low channels start and decision. The channel start will be used as input
channel of what we will call the master process which is activated via the start channel if no
further communication is possible. The environment, which is trying to distinguish a protocol from
its ideal version, will use the decision channel to output its decision.

11

2.3.3 Sequential Process Expressions and Processes

A sequential process expression P is defined by the following grammar:

P == 0 | (termination)

S | (wait for input on different channels)

(P P) | (parallel composition)

lym) P] (bounded replication)

Powt == (Or || Ou || P) (process with initial output)

Oy == out(ey,T) | (output on high channel cpy)
0

Op == out(cg,T) | (output on low channel cy,)
0

S == in(cy,t).P | (wait for input on high channel cp)

in(cr,t). Powt | (wait for input on low channel cr)

(S+S) (wait for input on different channels)

where ¢y, and ¢y stand for low and high channels, respectively, and ¢t and T" are M- and C-terms,
respectively. We will require that high channels occurring in a sequential process expression P are
internal. Internal and external channels are defined below.

Expressions of the form Py are called process expressions with initial output. The notion
process expression refers to both sequential process expressions and process expressions with initial
output.

The set of channels occurring in a process expression P is denoted by C(P). A channel ¢
is called internal in P if it occurs both in an expression of the form in(c,¢).P’ and out(c,T));
otherwise, it is called external. The set of internal and external channels of P is denoted by
Cint (P) and Cey (P), respectively. The set Coyy(P) is further partitioned into input (Cin(P)) and
output channels (Coyt(P)) in the obvious way.

Given a non-negative integer i (represented by a bit string), a process P = P™~% of a process
expression P is obtained from P by replacing every occurrence of !y(; Qni by

q(i) times

We call i the parameter associated with P. In P, M-terms and C-terms are evaluated using i as
the security parameter.

Note that modulo commutativity and associativity of the parallel composition operator a
process P is of the form P, out(c,T) || P', out(c,T") || P, or out(c,T) || out(c, T") || P! where P’
is a process obtained from a sequential process expression (i.e., without initial output), ¢ is a high
channel, and ¢ is a low channel. In other words, at most two messages are currently on channels

[43 H 7
)

(at most one on a high channel and at most one on a low channel). In what follows, we refer to
processes such as P’ by processes without output.

Since process expressions and processes are (formal) terms, we sometimes consider them as
finite ordered trees with labeled nodes.

Given a process (expression) P, the set of free variables free(P) of P is the set of input variables
of C-terms occurring in P which are not bounded by an input expression. Formally, free(P) is
defined inductively as follows:

12

e free(0) =
e free(in(c,t).P) = free(P) \ varyy(t),

e free(out(c,T)) = variy(T),

e free(l) P) = free(P),

*q(n)

(
(
(
o free(P || Q) = free(P) U free(Q),
(!
(

e free(P + Q) = free(P) U free(Q).

We write P(7) with o= 21, ...,z to say that {z,..., 2z} C free(P). A process (expression) P
is called closed if free(P) =).

If P() is a process (expression) and @ is a sequence of bit strings (of the same length as),
then P(E) denotes the process (expression) obtained from P(;) by replacing every free occurrence
of x; by a;. The M-term and C-terms in P(E) containing a free occurrence of x; will be evaluated
with z; replaced by a;.

Let P be a process and t be an M-term. If ¢ accepts a bit string a, then, as explained, it
(deterministically) produces bit strings a1, ..., a; as output and these bit string are substituted for
the output variables vary;(t) = {x1,..., 2} of t. We write [a/t]P to denote the process obtained
from P by substituting every free occurrence of z; in P by a;.

The communication size comsize(P) of a process P is the number of occurrences of input and
output processes in P. For instance, comsize(out(c,T) || out(c,T) || in(e, t).in(c, t)) = 4.

The communication size comsize(P)(n) of a process expression P is a polynomial g(n) such
that ¢(i) = comsize(P™) for every i. Clearly, such a polynomial exists.

2.3.4 Contexts

A context C|] is a process where exactly one leave is labeled with [|.

The process C[P] is obtained from the context C| | by plugging the process P into the hole of
C[]. This notation is used to refer to some subprocess P of a given process P’ = C[P].

Given a process P, we call a context C[| an input context for P, if there exists a process of the
form in(c,t).Q), called the input process associated with C|[|, such that Clin(c,t).Q] = P and on
the path from the root of C[] to its hole all nodes are labeled with ¢ || > or ‘+’. This implies that
P is ready to receive input on channel ¢ (with M-term ¢).

2.4 Semantics of SPPC

Processes have an interleaving semantics which is defined in terms of reductions. Roughly speaking,
given a process P, the reduction is carried out by iteratively performing the following steps until
nothing changes:

1. Reduction. All C-terms occurring in P where all the variables are replaced by bit strings are
reduced. After this step, there is at most one message on a high channel and at most one
message on a low channel in P, i.e., modulo commutativity and associativity of “ || 7, P is
of the form P’, out(c,a) || P’, out(d,d’) || P, or out(c,a) || out(d,a’) || P" where P’ is a
process without output, c is a high channel, and ¢ is a low channel.

13

2. Communication. In the first case (where no message is on any channel), the empty bit string
€ is put on start which is then read by the process. In case there is only one message on a
(high or low) channel, then this message is read. In the last case (where there is one message
on a high channel and one on a low channel), the message a on the high channel ¢ is read by
the process. (Note that, by definition of process expressions, after reading a on ¢, the process
does not produce new output and in the next iteration step, the message on the low channel
will be read.)

The intuition is that high channels are used to update the current (internal) state of a process (and
therefore have priority over low channels) while low channels are intended for communication with
external processes or internal subprocesses.

In what follows, every single step is defined formally and the steps are put together in Sec-
tion 2.4.3.

2.4.1 C-term Reduction

The reduction of C-terms occurring in a process is defined by the probabilistic function — on closed
processes. For open processes P(z), the free variables z are first substituted by bit strings.

Formally, P EN Q is defined by structural induction on P where we assume that the security
parameter associated with P is i:

e 020,

e in(c,t).P N in(c, t)P,

e out(c,T) 2 out(c,a) if p = > bea mod 2we(e)i) 1 Prob[T | b].
e PIIQLPQiEPLP,QEQ andp=qg-¢,

e P+Q-P+Q.

For the cases not covered above we define P - (). Note that since we assume P to be closed, all
input variables of the C-term 7' have been substituted by bit strings.

2.4.2 Communication

To define the communication step, we first introduce a probabilistic function — . ,) on closed
processes which describes how a message a on channel c is read by a process.

Formally, we define P —>éa) Q iff the following is true: Let N be the number of different input
contexts C[| of P with associated input processes of the form in(ec,t).P’ such that ¢ accepts a.
In other words, IV is the number of input expressions in P ready to receive input a on channel c.
Then,

1. f N=0,then P=Q and p=1,0or P# @ and p = 0.

2. If N # 0, then @ = Cl[a/t]P’] and p = 1/N for some C[] and in(c,t).P’ as above, and
otherwise p = 0.

14

Now, we are ready to define a communication step — on closed processes. We set P 2, Q if the
following is true:

1. If P = out(decision,a) || P’ for some process P’, then P = Q and p = 1, or P # @ and
p = 0. (Since in P output was written on the channel decision, no further step shall be
taken.) Otherwise:

2. If P is a process without output, then p = Prob[P — (giare) Q-
3. If P = out(c,a) || P’ for some process P' without output, then p = Prob[P" — ., Q].

4. If P = out(c,a) || out(d,d’) || P’ where P’ is a process without output and ¢ is a high
channel, then p = Probout(c’,a’) || P" —(.q) Q]

In all other cases, we define P 9 Q.

2.4.3 The Complete Reduction of Processes

The probabilistic function = defines the complete reduction of processes.
For all processes P,), and probabilities p we define

P& Qiff p=Prob[P — o(— o —)" Q.

The probability p that the decision returned by a closed process P is 1 is written Prob[P ~» 1] or
P %1 and is defined as follows:

Prob[P A 1] = ZPI‘Ob[P = Q]
Q

where @) ranges over all processes of the form out(decision,1) || Q' (modulo commutativity and
associativity of ‘|| 7).

The following theorem tells us that the computation of process expressions can be simulated by
a probabilistic polynomial time Turing machine.

Theorem 1. Let P(x1,...,xx) be a process expression. There exists a probabilistic polynomial-time

Turing machine that for all processes Q@ (modulo associativity of ‘+ and ‘|| ’) returns Q on input

i,P(x1,...,Tk),a1,...,ax (given on separate input tapes) with probability p iff P(ay, ..., ar)™ " £

Q. The Turing machine runs in polynomial time in the security parameter i.

3 Single Machine Normal Form

In this section, we show that sequential process expressions can be turned into what we call single
machine normal form.

As explained informally in Section 2.1, these normal forms correspond to probabilistic polyno-
mial time IO automata (PIOAs) or Interactive Turing Machines (ITMs) which in every step read
exactly one message (on some external channel) as input and produce at most one message as
output, and which, in addition, have guards (M-terms) which allow them to reject or accept their
input. If they reject the input, then the message sent is dropped and no further computation is

15

carried out. (In this case, the master process is triggered by reading a message on start). The
guards are deterministic Turing machines which run in polynomial time in the security parameter.
If a process (in SMNF) is open, i.e., has free variables, then this corresponds to a non-uniform
PIOA/ITM (with guards), and otherwise to a uniform one.

Guards add additional power to processes (or PIOA and ITM extended by guards). The machine
itself could inspect the input and decide whether to accept or reject it, and in the latter case, would
simply produce no output. However, the overall run time of machines is bounded by a polynomial
in the security parameter and is independent of the number of invocations to a machine. As a
consequence, inspecting the input consumes resources. The idea behind the guards is that they
are invoked anytime a message is sent on an input channel and that their run time is not added
to the run time of the “main machine”. Consequently, using guards, inspecting the input does not
consume resources. In other words, guards of processes (or PIOA and ITM extended by guards)
are devices of a machine whose run time may depend on the number of invocations (where within
one invocation the run time is polynomial in the security parameter).

We will sometimes consider processes in what we call simple single machine normal form
(SSMNF) where the guards accept all messages. We refer to the fragment of SPPC where all
process are parallel compositions of processes in SSMNF the guard-free fragment of SPPC.

A process expression in single machine normal form works as follows: Before processing a
message on an input channel (a low channel), an M-term (the “guard”) on this channel decides
whether to accept or reject this message. The message is only processed further if the M-term
accepts the message and otherwise the message is dropped. In the former case, the internal state
is updated (via a high channel) depending on the current internal state and the current message,
and next at most one message is written on an output channel (a low channel). Further intuition
is given below. Formally, the single machine normal form is defined as follows.

Definition 2. We say that a sequential process expression 73(;) 1$ in single machine normal form
(SMNF) if it is of the following form:
Sinit(Z) || lym) S(Z) (1)

where

S(Z) = in(cs,2). Z in(c, tin(c, 2, 25 7). (out(cns,Tns(c,x, z,2)) ||
c€Cin(P(7))

Z in(cns,tout(c';y,v)).(out(cs,y) I out(c/,v)) +

¢'€Cout (P(Z))

in(cns, tempty (y))'out(CSa y)>)

and Sinit(Z) is defined in the same way except that in(cs, z) is removed and every occurrence of z
is replaced by e (representing the initial state of P).

The internal channels cs and cys (which carry the current and the updated state, respectively)
are defined to be high channels while all other channels are (external, and thus) low channels.

We say that a sequential process expression is in simple single machine normal form (SSMNF) if

it is in SMNF and the M-term tiy(c, z, Z; x) accepts all incoming messages. We call the fragment of

16

SPPC where all processes are parallel compositions of processes in SSMNF' the guard-free fragment

of SPPC.

Intuitively, the variable z stores the current state of P. The M-term ¢i,(c, 2, ;71') is the guard
which is used to decide whether P accepts or rejects the input on ¢. This term takes as input the
name of the channel ¢ from which input shall be read, the current state z, and the external inputs
Z. Tts output is written into x. The C-term Tys(c, z, 2, ;) computes the new state depending on
the current state z, the output = of ti,(c, z, ?; x), and the free variables Z. The M-term tous (<59, 0)
intuitively accepts an input a (which is the current state) if a encodes that the next output, say b,
shall be written on ¢. If tou (59, v) accepts a, then y is substituted by a and v by b. The M-term
tempty (y) works similarly. It only accepts a if a encodes that nothing shall be written on an output
channel.

The following lemma tells us that every sequential process expression can be turned into single

machine normal form. The proof of the following lemma is rather simple. Intuitively, the sequential
process expressions P; and P in this lemma are independent processes that may communicate (see
also Section 2.1 and 4.1).
Lemma 3. Let P, = 771(?) and Py = 772(;) be (possibly open) sequential process expressions such
that C(P1)NCint (P2) = 0, Cine(P1)NC(P2) =0, Cin(P1)NCin(P2) = 0, and Cout (P1)NCout (P2) = 0.
Then, Py and Py can be turned into single machine normal forms P and Pj, respectively, such
that

Prob((Py(a) || P2(a))™ ™~ 1] = Prob|(Pi(a) || P2(a))* " ~ 1]
a) || Ph(a)™ "~ 1]

1
= Prob|(P)(a) || Py(a))™ " ~ 1]
for every i and tuple a. In particular,
Pl Po=PLl|Po=P1 || Py =P1 || Pa

PRrROOF. We prove that P; can be turned into single machine normal form P{ such that Prob[(Pl(E
) || Po(@))™ = ~s 1] = Prob|(P}(a) || Po(a))™ ¢ ~» 1] for every i and a. Turning Py into single
machine normal form is done in the same way.

To define P{(?), we need to specify the C-term Tps(c,z, z, ;), the M-terms tin(c,z,z; x),
tout (¢;y,v), and tempry(y), and the polynomial ¢(n) in (1).

We start with the definition of tin(c,z,;; x). The variable z will be substituted by some
representation of a process P;. From P; together with ?, tin(c, 2, ?; x) can determine whether P
would accept or reject a given input a on ¢ as follows: First, ti,(c, 2, ;; x) determines from P; the
set t1,...,t; of M-terms occurring in input processes in(c,t;).P| associated with input contexts of
P;. Note that [is polynomially bounded in the security parameter. If [= 0, then this means
that P; does not accept any input on ¢, and therefore, ti,(c, 2, ;; x) will reject every input on
c. Otherwise, given an input a, tiy(c, 2, ;; x) will apply every ¢; to a. If every t; rejects a, then
tin(c, 2, ?; x) rejects a as well. Otherwise, ti,(c, 2, ;; x) copies a into the output z.

The C-term Tys(c, x, z, ;) evaluates z = P, based on z and z. More precisely, if z = ¢ and the

security parameter is i, then Tys(c, a, €, Ti) does the following: Tps(c, a, €, ?{) computes and outputs

17

a process @ by first applying — (. q) to Pl(g)n‘_i and then, to the result, alternatively applying
— and — until for the current process P; one of the following is true: a) P; is a process without
output, b) P, = out(c,a) || P| for some process P without output and an external (i.e., low)
channel ¢, or ¢) P, occurred before. (Note that if P; is a process with output on a high and a low
channel, then Tps(c, a, ¢, E) further simulates the computation of P, i.e., have P; read the message
on the high channel. This results in a process with output only on the low channel.) Analogously
to Theorem 1, it is easy to see that this reduction of P; (E)““i can be carried out by a probabilistic
polynomial time algorithm. If z # ¢, then z is a process P;. In this case, Tys(c, , z, ;) simulates
the reduction of this process in the same way as described above.

The M-term tou (¢';y, v) receives as input a process, say Py. If Pj is a process without output,
tout (/5 y,v) rejects Pp. Otherwise, P; is of the form out(c,a) || P| for some process P; without
output and an external channel c. If ¢ # ¢/, then again, tou(;y,v) rejects Pi. Otherwise, y is
substituted by P and v by a.

The behavior of the M-term tenpty(y) is analogous to the one of tou (5 y,v). It accepts Py iff it
is a process without output, and in this case, y is substituted with P;.

We define the polynomial ¢(n) to be the communication size comsize(P;(z)) of Pi(Z). Note
that due to the M-term ¢,(c, 2, ?; x), the single machine normal form of P; reads an input a on a
channel ¢ iff P; would read a on ¢. In particular, if P; currently can not read a on ¢ (because there
is no input process for ¢ or all M-terms reject a), then the single machine normal form would not
read a on ¢ as well, and thus would not be activated in the first place. This guarantees that the
single machine normal form is activated by receiving external messages exactly as often as Py, and
therefore, it suffices to define ¢(n) as done above. Without ti4(c, z, 2;), the decision whether a
can be read by P; would only be made when evaluating Tps(c, x, z, Z) Hence, the single machine
normal form would always be activated even if P; would reject the input. In this case, the number
of activations of the single machine normal form could not be bounded by ¢(n).

Now, Prob[(P1(a) || Pa(@)™ 7 ~» 1] = Prob[(P}(a) || Pa(@)™ i ~» 1] is easy to verify. O

We note that Lemma 3 does not hold for SSMNFs since a process in SSMNF has to process
all input messages. For instance, there is no SSMNF equivalent to the process expression P =
in(cg, z).in(c1, y).out(ce,y): Assume that there is a process Q in SSMNF equivalent to P. Let ¢(n)
be the communication size of this machine. An environment £ could send ¢(n)+1 random messages
on ¢; before sending a message on ¢y, and then a random message m on ¢;. The environment £
will output 1 on decision if m is returned on c,yt, and otherwise, if £ is triggered on start, it
will output 0 on decision. When interacting with P, the message m will be returned to £ on cs.
However, when interacting with O, no message will be returned since Q has already terminated as
it can only process ¢(n) messages. Thus, £ | P #£E 1 Q.

Remark 4. Lemma 3 does not hold, in general, when restricted to SSMNFs.

4 Definition of Security Notions

In this section, we introduce the security notions strong simulatability, strong and weak blackbox
simulatability, and universal composability. We first need some more notation.

18

4.1 Channel Configurations

To define the security notions, we need to specify how different processes (describing the envi-
ronment, the real/ideal adversary, the simulator, the real/ideal protocol) can be connected via
channels. At the end of this section, we provide an example to illustrate the definitions.

Recall from Section 2 that C(P) denotes the set of channels of P and Cint (P), Cext (P), Cin(P),
and Coyt (P) are the sets of internal, external, input, and output channels of P, respectively.

The set of external channels of a process expression P is further partitioned into the set of 10
channels CL2,(P) and the set of network channels C2£(P). Thus, the set of external channels of P
is partitioned into the set of input IO channels Ci2(P), output IO channels CI2, (P), input network
channels CI¢*(P), and output network channels C28t(P). We require that if decision € C(P), then
decision € CI% (P). Also, if start € C(P), then start € CI3(P).

We say that two process expressions P and Q are compatible iff they have the same set of external
channels and these channels are of the same type, i.e., C2¢*(P) = C3e*(Q), Cio(P) = Ci(Q),
Coet(P) = C25(Q), and CIo (P) = Ci%.(Q). They are IO-compatible iff they have the same set of
IO channels and disjoint sets of network channels, i.e., C2¢(P) N C2E(Q) =), Cie(P) = Ci2(Q),
and C5; (P) = C52:(Q).

Given sequential process expressions P and Q, by P | Q we denote the parallel composition
P’ || @ where P’ and Q' are obtained from P and Q by renaming the internal channels of P and
Q, respectively, in such a way that C(P") N Cine(Q') = 0 and Cine(P’) N C(Q') = 0. The intuition
is that P and Q are different processes (machines) which communicate via their external channels
only as explained in Section 2.1 and 3. They should not interfere on their internal channels. It may
help to think of P and Q to be in SMNF (with different high channels). By Lemma 3 this is w.l.o.g.
The definition of | is generalized to sequential process expressions Py, ..., P, in the obvious way.
To really match the intuition that different processes communicate, we introduce what we call valid
process expressions.

A sequential process expression P is valid for a sequential process expression Q if

Caxt (P) N Caxt(Q) C U (CL(P) N CL(Q))

z€{in,out},y€{net,io}

where T = in if x = out, and vice versa. That is, external channels used both in P and Q are of
the same “type” w.r.t. being network or IO channels and are of opposite “types” w.r.t. being input
or output channels. Note that being valid is a symmetric relation. Given a set Z of sequential
process expressions, we denote by Z-Valid(Q) the set of all process expressions in Z valid for Q.

We call P an adversarial (adversarially valid) process expression for Q if P is valid for Q and
Cext(P)NCE(Q) = 0. In other words, an adversarial process expression never connects to another
process expression via the IO channels. By Z-Adv(Q) we denote the set of sequential process
expressions in Z adversarially valid for Q. We write Z-Advp(Q) to denote the set of all process
expressions P’ € Z-Adv(Q) such that P’ | Q and P are compatible.

We say that P is an environmental (environmentally valid) process expression for Q if P is valid
for Q@ and Cext(P) N C22E(Q) = 0. That is, an environmental process expression never connects
to the network channels of a process expression. By Z-Env(Q) we denote the set of all process
expressions in Z environmentally valid for Q.

We call a sequential process expression P

e reqular if start,decision ¢ C(P),

19

e master if decision ¢ C(P),
e decision if start ¢ C(P), and

e master decision otherwise.

In what follows, by R, M, D, and MD we denote the set of all closed regular process expressions,
closed master process expressions, (open/closed) decision process expressions, and (open/closed)
master decision process expressions, respectively. In those cases where it is relevant to distinguish
between open and closed process expressions, we explicitly specify D and MD.

Example: To illustrate the above, let us look at the following typical configuration: £ 1 A1 P
where A is adversarially valid for P and £ is environmentally valid for A 1 P. That is, A only
connects to (not necessarily all) network channels of P and £ only connects to (not necessarily all)
10 channels of P and A. Intuitively £ is the environment process, A is the adversarial process, and
P is the real protocol. Moreover, let us assume that £ € MD, i.e., £ is a master decision process.
It is helpful to think of £ and A to be in SMNF. Often, P is the parallel composition P; | --- 1P,
describing n parties (or machines) running a particular protocol.! Again, one can think of every
P; to be in SMNF. (One could as well consider P to be in SMNF.)

Let us look at a run of such a system. As &£ is the master process and initially no other
communication is possible (since no other process has produced output yet), £ can read a message
on the start channel.? After some computation, £ will typically write a message on one of its
external channels ¢ (and thus, IO channels?) to A or P, say to P. Then, £ will have to wait for
new input and by reading the message on ¢, P will be activated next, in case the guard on ¢ of P,
more precisely one of the subprocesses P; of P, accepts the message. (Otherwise, £ as the master
process will be activated again via the start channel.) After some computation, P will typically
send a message on some external channel say on a network channel to A, which activates A, and
‘P has to wait for new input, and so on.

4.2 Indistinguishability of Process Expressions

The indistinguishability of process expressions is defined as expected:

Definition 5. Two sequential process expressions P(z) and Q(x) are called equivalent or indis-
tinguishable (P(z) = Q(;)) iff for every polynomial p(n) there exists ig such that for every i > i

and every tuple a of bit strings we have that
|Prob[73(?{)“H" ~ 1] — Prob[Q(g)nHi ~ 1]| < 1/p(3).

Obviously, = is an equivalence relation on sequential process expressions.

! As mentioned, by using bounded replication it is also possible to specify protocols with a polynomial number of
parties.

In case £ does not read a message on this channel or the guard rejects the message, nothing will happen, and the
run is completed.

3€ could as well write a message on a channel that is declared to be a network channel. However, this channel
will not be connected to A or P since £ may only connect to IO channels of these processes.

20

4.3 Security Notions

We now define the various security notions. For strong simulatability as well as strong and weak
blackbox simulatability we define two variants depending on whether or not the simulator may play
the role of the master process.

The first definition will be used if the simulator is a regular process, and thus, not a master.

Definition 6. Let A (adversaries), I (ideal adversaries), E (environments), and S (simulators)
be sets of sequential process expressions, and P (the real protocol) and F (the ideal functionality)
be 10-compatible sequential process expressions.

Strong Simulatability: SSisg)(P,F) iff P and F are 10-compatible and there exists S €
S-Advp(F) (called simulator) such that € 1 P =& 1 S |1 F for every & € E-Valid(P)

(called environment).

Strong Blackbox Simulatability: SBBa s g)(P,F) iff P and F are 10-compatible and there
exists S € S-Advp(F) (called simulator) such that E1 A1 P =E1 A1 S| F for every
A€ A-Adv(P) (called adversary) and € € E-Env(A | P) (called environment).

Weak Blackbox Simulatability: WBB s s g)(P,F) iff P and F are 10-compatible and for every
A € A-Adv(P) (called adversary) there exists S € S-Advp(F) (called simulator) such that
E1TATP=E1A1STF for every £ € E-Env(A 1 P) (called environment). As we will see,
equivalently we can require that the simulator S may only depend on the communication size
of A instead of A itself. In particular, all our results hold for both variants, and we therefore
do not distinguish between them explicitly. Necessary adjustments in proofs will be pointed
out.

Universal Composability: UCa 1g)(P,F) iff P and F are 10-compatible and for every A €
A-Adv(P) (called real adversary) there exists T € I-Adva1p(F) (called ideal adversary) such
that E1ATP=E1Z1F for every £ € E-Env(A | P) (called environment).

In Section 5, we will consider a variety of different instances of the above security notions

by defining the sets A, I, S, and E to be one of the sets R, M, D, and MD. One such in-
stance is UCiv m,mp) (P, F): Note that with A € M-Adv(P), Z € M-Advap(F), and € €
MD-Env(A | P) as required by UCv m,mD)(P; F) it follows that if A is a master process expres-
sion, i.e., contains start, then £ is not allowed to contain start, i.e., £ is just a decision process
expression, since otherwise £ would not be environmentally valid for A. Conversely, if A is regular,
i.e., does not contain start, then £ may contain start. In other words, it is guaranteed that not
both, the adversary and the environment, are master process expressions at the same time. Only
at most one of them has this role.
We now define versions of strong simulatability as well as strong and weak blackbox simulatability
for the case that the simulator may play the role of the master process. These definitions also apply
for the case where the simulator is restricted to be a regular process, and in this case they coincide
with the definitions given above. Hence, it would have been enough to provide only one definition.
However, since the previous definitions are simpler, we separate the two cases.

Definition 7. Strong Simulatability: SSsim(M7MD)(P,]—') iff the following conditions are sat-
isfied:

21

e P and F are 10-compatible,

e there exists S € M adversarially valid for F and such that P and S | F are compatible
except that, in addition to the external channels in P, S may contain start as input 10
channel and if start occurs in S, then start’ may also occur in S as a new output 10
channel, and

e £ P=E"181F for every £ € MD-Valid(P) where &' = £ if start does not occur
in S and where £ is obtained from E by replacing every occurrence of start by start’
otherwise.

Strong Blackbox Simulatability: SBBsimnnv mp) (P, F) iff the following conditions are sat-
isfied:

e P and F are 10-compatible,

e there exists S € M adversarially valid for F and such that P and S 1 F are compatible
except that, in addition to the external channels in P, S may contain start as input 10
channel and if start occurs in S, then start’ may also occur in S as a new output 10
channel, and

e E1ATP=E1A 181 F for every A € M-Adv(P) and € € MD-Env(A |1 P) where
&' =& and A = A if start does not occur in S and where &' and A’ are obtained from
E and A, respectively, by replacing every occurrence of start by start’ otherwise.*

Weak Blackbox Simulatability: WBBsimg nimp) (P, F) iff the following conditions are satis-
fied:

e P and F are 10-compatible,

e for every A € M-Adv(P) there exists S € M adversarially valid for F and such that
P and S 1 F are compatible except that, in addition to the external channels in P, S
may contain start as input 10 channel and if start occurs in S, then start’ may also
occur in S as a new output 10 channel, and

e E1AVP=E 1A 181 F for every E € MD-Env(A 1 P) where & =& and A' = A if
start does not occur in S and where &' and A’ are obtained from € and A, respectively,
by replacing every occurrence of start by start’ otherwise.

In the above definition of WBBsim, we could also restrict S to be master only if A is master,
i.e., S may contain start only if A does. In this case, we can always replace £ by €. Also,
just as for WBB, we can consider a version of WBBsim where the simulator may only depend
on the communication size of A. As we will see, all (four) variants are equivalent, and we
will not distinguish between them explicitly. However, we point out necessary modifications
in proofs.

Variants of SSsim, SBBsim, and WBBsim such as SSsimanr,mp) (P, F), SBBsimn m,p) (P, F),
and WBBsimn v p) (P, F) are defined in the obvious way.

4Note that start can not occur both in £ and A since otherwise £ would not be environmentally valid for A | P.

22

5 Relationships between the Security Notions

In this section, we examine the relationships between the security notions introduced in the previous
section. We prove some expected equivalences between the security notions and observe some
surprising differences which would not be apparent without detailed analysis. The proofs are carried
out axiomatically. The axiom system is introduced in Section 5.1. We show that all of the axioms
are sound, i.e., are satisfied in SPPC, except for one axiom, which is called FORWARDER. In
Section 5.2, we show that FORWARDER is a necessary condition on protocols in order for universal
composability to imply black-box simulatability or strong simulatability, i.e., if this axiom does not
hold, then universal composability does not imply black-box simulatability (strong simulatability).
In Section 5.3, we compare the security notions for the cases where the environment may play the
role of the master decision process, and in Section 5.4 we restrict the environment to be a decision
process. In Section 5.5, we study variants of strong and blackbox simulatability where the simulators
may be master processes. All results are summarized in Section 5.6. Based on the FORWARDER
axiom, we obtain a complete characterization of the conditions under which universal composability
and blackbox simulatability are equivalent. Since the proofs are carried out axiomatically, this
enables us to carry over our results to other computational models [9,27] (Section 6). These axioms
can also serve as an abstract specification for a “reasonable” computational model for simulation-
based security. Furthermore, the counter-examples used to demonstrate that certain notions are
strictly stronger than others are quite simple and easily translate into the related models (Section 6).

5.1 The Axiom System

To define the axioms (equational principles), we first introduce four variants of so-called dummy
adversaries, which simply forward messages on network channels of protocols and are used to
rename network channels and turn network channels into IO channels.

The first dummy adversary, called regular network dummy adversary, simply forwards messages
received on channel ¢ € Cqoyt to a copy ¢ of this channel and messages received on channel ¢ for
a copy of a channel ¢ € Cyi, to channel ¢. The number of messages this dummy can forward is
bounded by a polynomial in the security parameter. Formally, a reqular network dummy adversary
is defined as follows:

D%et(cinacoutaQ(n)) = D%et (2)
= lym) < Z in(e, x).out(c, x) +
CECout
Z in(c’,x).out(c,x))
c€Cin

where C;, and Cgy¢ are disjoint and finite sets of channel names, ¢’ is a new copy of ¢, i.e., it has
a new name, and ¢(n) is a polynomial in n. All channels in D%et are considered network channels.
Note that D}* € R.
The regular 10 dummy adversary D3 (Cin, Cout,q(n)) is defined just as DI¥*(Cin, Cout,q(n))
except that the channels ¢ are declared to be IO channels. Again, we have that D} (P) € R.
The following two dummy adversaries are master process expressions. The first one is called
master network dummy adversary and it works just as the regular network dummy adversary except

23

that it also forwards messages received on start to start’. More formally, a master network dummy
adversary is defined as follows:

Dlﬁt(cinacout’Q(n)) = DR?[t (3)
= lym) (Z in(e, x).out(c, x) +
CECout
Z in(c,x).out(c,) +
c€Cin

in(start,z).out(start/, x))

where Cin, Cout, ¢(n), and the channels ¢ are defined just as in D}*(Cin, Cout, ¢(n)). The channel
start’ is a new channel and declared to be an IO channel.

The master 10 dummy adversary D33(Cin, Cout,q(n)) is defined just as D4S*(Cin, Cout, ¢(1))
except that the channels ¢’ are declared to be IO channels.

Now we are ready to state the axioms and equational principles we use. Further explanations
follow below.

COM. For all sequential process expressions P and Q:
P1Q=Q1P.
ASC. For all sequential process expressions P, Q, and R:
PI1(QIR)=(P1Q IR
TRN. For all sequential process expression P, O, and R:

P=0,9=R — P=R.

SYM. For all sequential process expressions P and Q:
P=0Q — QO="7P.

RENAME. For sequential process expressions Py, ..., Py such that P; is valid for Pji1] ...]
Py, for every i:
Pl ... 1Pe=P11 ... 1P

where the P/ are derived from P; by consistently (w.r.t. the other 73]’) renaming external

channels (start and decision may not be renamed) and changing network channels to 10
channels and vice versa.

RENAME-START
E1A=E1ym in(start,e).out(start’,e) | A’

for every A € M, £ € D-Valid(A), and ¢(n) > comsize(A)(n) where A’ is obtained from A
by replacing every occurrence of start by the new channel start’.

24

REG-S-FORWARDER.
E1P=€1DE P

for every P € R, £ € MD-Valid(P), and g(n) > comsize(P)(n) + comsize(£)(n) such that
Dyt = Dt (CheH(P), Cost(P), q(n)) and &’ is obtained from & by replacing every occurrence
of network channels ¢ of P by ¢ as in the definition of D}*.

REG-ADV-FORWARDER.
E1TAIP=ETANDENP

for every P € R, A € M-Adv(P), £ € MD-Valid(A 1 P), and ¢(n) > comsize(P)(n) +
comsize(A)(n) such that DF* = Di*(Cie*(P), Coet (P), ¢(n)) and A’ is obtained from A by
replacing every occurrence of network channels ¢ of P by ¢ as in the definition of D}*.

MASTER-S-FORWARDER.
E1P=E1DE P

for every P € R, £ € MD-Valid(P), and ¢(n) > comsize(P)(n) + comsize(E)(n) such that
DRst = DRt (CEeH(P), Cat(P), ¢(n)) and &), is obtained from £ by replacing every occurrence
of network channels ¢ of P by ¢ as in the definition of D}* and replacing every occurrence

of start in & (if any) by start’.

MASTER-ADV-FORWARDER.
E1TAIP=E1 Ay 1D P

for every P € R, A € M-Adv(P), £ € D-Valid(A | P), and g(n) > comsize(P)(n) +
comsize(A)(n) such that D}s* = DiS*(Cie*(P), Cost(P), ¢(n)) and A, is obtained from A
by replacing every occurrence of network channels ¢ of P by ¢ as in the definition of D}*

and replacing every occurrence of start in A (if any) by start’.

FORWARDER(P). There exists D € R-Adv(P) such that CL2

ext

Coet(P), C2eE(D) = C22t(P) U C22E(PY, and for every & € MD-Valid(P):

out out

(D) = 0, G (D) = R (P) U

out

E1P=E1DP,

where Ci¥(P)’ consists of new copies ¢’ of the channels in C}g*(P), Chist

net(P)’ consists of new
copies ¢ of the channels in C2E(P), and &’ is obtained from & by replacing every occurrence

of network channels ¢ of P by ¢.

MMD-INCLUSION. For every P € R:

VA € M-Adv(P).VE € MD-Env(A | P) : £1.A € MD-Valid(P).

MD-INCLUSION. For every P € R:

VA € M-Adv(P).VE € D-Env(A 1 P): €1 A€ MD-Valid(P).

25

The letters ‘S’ in the axioms REG-S-FORWARDER and MASTER-S-FORWARDER are remi-
niscent of “simple”. All axioms, except for the last two, are equational principals on process
expressions. The last two axioms allow us to combine a environment which may only access the 10
channels of a protocol and an adversary, which may only access the network channels of a protocol,
into an environment that may access both the IO and network channels of a protocol.

The following lemma states that all axioms, except for FORWARDER, are sound, i.e., are true
in SPPC. These axioms are called basic azioms as they should be satisfied in most computational
models for simulation-based security notions (see Section 6). As we will see, most of the rela-
tionships between the security notions only require the basic axioms to hold. We will only need
FORWARDER to show that universal composability implies black-box simulatability (or equiva-
lently, strong simulatability). The axiom FORWARDER is further discussed in Section 5.2.

Lemma 8. All azioms mentioned above, except for FORWARDER, are sound, i.e., hold for SPPC.
This is also true for the guard-free fragment of SPPC.

PROOF. The proofs of the properties COM, ASC, TRN, SYM are trivial. The property RENAME
is also obvious as the semantics of process expressions does not depend on the names of channels
and whether they are network or IO channels.

In RENAME-START, the additional process expression on the right hand-side simply forwards
the message on start (which by the definition of the semantics is always ¢) via start’ to A’. Since
q(n) > comsize(A) = comsize(A), this process does not terminate before A (A’) does, and thus,
the signal on start is always forwarded.

The property MASTER-S-FORWARDER easily follows from the following observations: First
note that £ and &}, behave exactly the same except that if £ outputs/inputs a message on the
(low) channel ¢ € CIE(P), then &}, outputs/inputs a message on the (low) channel ¢. Since
these channels are low channels and since by the definition of sequential process expressions at any
time there is at most one message on a low channel, messages between £}, and P are immediately
forwarded by D37*. Second, if £ 1 P, and more precisely £, receives a message on start, then
in &, 1 D" 1 P the dummy adversary D}$* receives a message on start and by definition
immediately forwards it to £}, on start’. Then, £}, behaves exactly as €. Third, note that if
DAS* receives a message, then this message comes from &}, P, or start. If the message comes
from start and D35* forwards this message on start’ but £}, does not read the message, then
the overall system stops. Thus, this can happen only ones, and hence, in all other cases if D}$*
receives a message, the communication size of £}, or P decreases (if the message was sent on start,
then the communication size of £}, will decrease when reading start’). By the definition of ¢(n)
it is therefore guaranteed that D%5* will not terminate before & and P do. The argument for
REG-S-FORWARDER is similar.

For MASTER-ADV-FORWARDER note that if MASTER-ADV-FORWARDER receives a mes-
sage, then this message must have been received from A’,, P, or start. Now, the argument is
analogous to the one for MASTER-S-FORWARDER;; similarly for REG-ADV-FORWARDER.

It is clear that MMD-INCLUSION and MD-INCLUSION are sound. The arguments for the

guard-free fragment of SPPC are the same. |

Remark 9. In MASTER-S-FORWARDER it does not suffice to define q(n) independently of

comsize(€). If ¢(n) = comsize(P)(n), then consider for instance the environment € (€},) which

triggers DYS* via start q(n) + 1 times. When interacting with DS, €}, will not be triggered via

26

start’ after the q(n) + 1st time, however, & would be triggered via start. Thus, € (£);) can
“observe” DS (see also the proof of Theorem 21).

Similarly, in REG-S-FORWARDER it does not suffice to define q(n) = comsize(P)(n) inde-
pendently of comsize(E). Assume, for example, that P is of the form Py 1 --- | Py where the
P; model parties running a certain protocol. One of the parties may terminate before others do.
Now, if € sends a message to a terminated party, say P;, then P will not consume resources as
the message is simply ignored by P; and no computation will take place. In particular, £ can send
an unbounded number of messages to P; without P consuming any resources. Later, £ can send a
message to a non-terminated party P; and will (possibly) obtain an answer. Now, if the dummy
D" is plugged in between € and P, then € can exhaust DE*, i.e., force it to terminate, by sending
sufficiently many messages through DE* to the terminated party. Then, when € sends a message to
the non-terminated party, Ds* does not have any resources left to forward this message, and hence,
E can detect the presence of DE* because if the DE*® is present no answer will come back from the
non-terminated party and if D} is absent the non-terminated party will receive the message from
E and can send a reply.

5.2 On the Necessity and Validity of FORWARDER
We show that

1. The axiom FORWARDER is necessary for universal composability to imply black-box simu-
latability and strong simulatability (Section 5.2.1).

2. The axiom FORWARDER is not true for all regular process expressions P € R. But there
are interesting classes of regular process expressions for which FORWARDER is satisfied
(Section 5.2.2).

5.2.1 Necessity of FORWARDER

We show that the axiom FORWARDER is necessary for universal composability to imply black-box
simulatability and strong simulatability, respectively.

Let C be a class of sequential process expressions. We say that C is closed under renaming if
P’ € C for every P € C where P’ is obtained from P by renaming channels (this does not include
turning a network channel into an IO channel or vice versa).

The following theorem is stated for a certain variant of wuniversal composability
(UC(r,r,MD)(P, F)), strong black-box simulatability (SBBg g mp)(P,F)), and strong simulata-
bility (SS®,mp)(P,F)). In the following sections, we will identify various variants of universal
composability as well as weak black-box simulatability equivalent to UC(g rmp)(P,F). Also,
there are various variants of strong black-box simulatability and strong simulatability equivalent
to SBB(r,r,MD)(P; F) and SSr mp)(P, F), respectively (see Section 5.6 for an overview). To show
these equivalences the following theorem is not needed, and hence, this theorem immediately carries
over to other variants of security notions.

Theorem 10. Let C be a class of sequential process expressions closed under renaming.

1. Assume that
UCr,r,MD)(P,F) = SS®r,MD) (P, F)

for every P,F € C. Then, FORWARDER(P) for every P € C.

27

2. Assume that
UCR,rR,MD) (P, F) = SBBrR,MD) (P, F)
for every P,F € C. Then, FORWARDER(P) for every P € C.

PRrROOF. We first prove the case for strong simulatability. Let P € C. Under the given assumptions,
we want to show that FORWARDER(P).

Let P’ be obtained from P by consistently renaming the network channels such that the set
of network channels of P’ is disjoint from the set of network channels of P. Obviously, we have
that UC(gr r,MD) (P, P’) since given the real adversary the ideal adversary can be obtained from the
real adversary by renaming the network channels according to the renaming of network channels
of P'. Now, since with P € C we have that P’ € C and by the assumption that universal
composability implies strong simulatability, we obtain SS(R7MD)(73,73’). Hence, there exists a
simulator § € R-Advp(P’) such that

E1P=E18S1P

for all £ € MD-Valid(P). Note that S contains network channels from P and P’. If ¢ is a network
channel in P, then let ¢ denote the corresponding channel in P’. Let D be obtained from S by
switching the names of network channels, i.e., rename ¢ to ¢ and ¢ to c. Now, it is obvious that

ENP=E1DP.
for all £ € MD-Valid(P) where £ is defined as in FORWARDER(P). Thus, FORWARDER(P) is

true.
The proof for strong black-box simulatability is similar. Analogously to the previous case we
conclude that SBB(r gr,mp)(P,P’). Hence, there exists a simulator S € R-Advp(P’) such that

E1TAIP=ET1A1STP.

for all A € R-Adv(P) and all € € MD-Env(A | P). In particular, this is true if A = D}* as defined
in REG-S-FORWARDER where we set ¢(n) = comsize(P)(n) + comsize(S)(n) + comsize(E)(n).
Now, together with REG-S-FORWARDER we obtain:

EIP=E1DE 1 P=E1DE S|P =€151P

for every & € MD-Valid(P) where £ obtained from & as described in REG-S-FORWARDER. Now,
defining D as in the previous case, we can conclude that FORWARDER(P) holds true. O

In the above proof we have only used very basic properties of our computational model, which
should be satisfied in most computational models for simulation-based security. Hence, the above
theorem should be true in all such models.

5.2.2 On the Validity of FORWARDER

We show that not all process expressions satisfy FORWARDER. However, it is possible to identify
an interesting class of process expressions that satisfy this axiom. The following terminology will
become clear below.

Definition 11. We call a sequential process expression P network predictable if FORWARDER(P)
holds.

28

Non-network predictable process expressions. We now show that not all regular process
expressions satisfy FORWARDER. It is useful to recall Remark 9. Intuitively, as seen in this
remark, if the dummy is defined only depending on P but completely independent of £, then the
dummy should only react to inputs from the environment if P reacts to these inputs since otherwise
the dummy may get “exhausted” by the environment. In other words, the environment can force
the dummy to terminate before P does, and in this case, the dummy cannot forward messages
anymore. However, in general, the dummy does not know on what channels P expects messages
and it also does not know what messages P accepts. We use this intuition to show:

Proposition 12. There exists P € R which is not network predictable.
ProoOF. Consider
P = (in(c,0).in(cg, x).out(cout, x)) + (in(c, 1).in(c1, z).out(cout,)))

where ¢ and c,,; are declared to be IO channels and ¢y and ¢ are network channels. That is, the
environment determines via a bit sent on the IO channel ¢ (which is invisible to the dummy) on
which network channel—cy or ¢;—P will accept a message. Now, assume that there is a dummy
D which satisfies the required conditions for FORWARDER(P). It is helpful to think of D to be
in SMNF. By Lemma 3 this is w.l.o.g. Let us first consider the following environment £ (which
can easily be described as process expression): £ randomly chooses a bit b and a number ¢ between
1 and comsize(D)(n) + 1. Then, &£ sends ¢ — 1 randomly chosen messages, say of the length of
the security parameter, on cg or ¢; where for every message £ again makes a random decision on
which channel—cy or ¢;—to send the message. In all of these cases, £ will not receive any answer
but will be triggered on start. Then, for the ith step £ again chooses a random message, say m,
then sends b on channel ¢ after which £ will be triggered through start, and then sends m on ¢p.
Now, if £ receives m back on ¢y, then it outputs 1 on decision and otherwise (if £ is triggered
by start) outputs 0.

We argue that £ can distinguish between P and D | P, ie, E1P£E 1D P.

The dummy D can only forward < comsize(D)(n) + 1 messages from ¢, to ¢y and ¢} to ¢;
before it terminates. Thus, if £ chooses i = comsize(D)(n)+ 1, which happens with non-negligible
probability, the probability that D accepts messages on both ¢, and ¢} for all comsize(D)(n) steps
before the last message is sent by £ must be negligible: Otherwise when £ sends the last message to
¢p and expects to obtain input on ¢y, the probability that £ in fact obtains input on this channel
is negligible as D will be terminated with overwhelming probability. Thus, there is a non-negligible
probability that D does not accept a message on some of its input channels—c, or ¢j. Consequently,
& has a non-negligible chance of guessing this position in the run. In case £ guessed correctly, it
will output 0 since it will not obtain input on ¢y, but will be triggered on start. Thus, when
interacting with D and P, the environment £ will output 0 with non-negligible probability while
when interacting only with P it will always return 1. Hence, £ 1P £ & 1D 1 P. O

The proof of Proposition 12 indicates that in order to obtain a class of network predictable process
expressions, one needs to make sure that the dummy can determine from the traffic on network
channels on which channels the process accepts messages and of what shape the messages have to
be in order to be accepted by the M-terms, since otherwise the dummy can be exhausted. This is
why we call such process expressions network predictable.

Using length functions as in the version of PIOA in [6], the process P in the proof of Proposi-
tion 12 can also be expressed in PIOA. Therefore, we can remark:

29

Remark 13. In the version of PIOA with length functions, protocols can be expressed that are not
network predictable.

In Section 6.1 we will see that FORWARDER, can fail in PIOA even without length functions.

A class of network predictable process expressions. We now define a class of process
expressions, called standard protocols, which in fact are network predictable.

Definition 14. A process expression P € R is called a standard protocol if it is of the form
P=Pi1 - 1P, where every P; is in SSMNF.5

We note that the class of standard protocols contains the protocols expressible in the models
proposed in [27] and [9]. As mentioned in Section 2.1, in a later version of the PIOA model [6],
length functions allow to express certain M-terms (guards). Hence, by Remark 13, this yields a
class of protocols which goes beyond the class of standard protocols.

We show:

Proposition 15. Standard protocols are network predictable.
PRrROOF. Let P="P; 1 --- 1 P, be a standard protocol. Define

D; = D (CEE(P;), C2%t(P;), comsize(P;)(n)).

out

(Recall the definition of D}* from Section 5.1). Hence, D; simply forwards all message on network
channels from and to P;. To see that

E1Pi=E"1Dil P

for all £ € MD-Valid(P;), it suffices to observe that the number of messages that can be sent to
P; and that can be received from P; before P; terminates is bounded by comsize(P;)—a bound
known by D;—since P; accepts all messages sent on (network) channels. Thus, D; only needs to
forward comsize(P;) messages. After P; has terminated, D; does not need to forward messages
anymore.

Now, since the set of network channels of the P; are pairwise disjoint, it is clear that with
D=D;1 --- 17D, we obtain that

E1P=E1D1P.

for every & € MD-Valid(P). O

Proposition 15 can be extended to bigger classes of protocols. For instance to a class of protocols
with a polynomial number of parties where messages addressed to a certain party have to be prefixed
by the name of the party and its role in the protocol. More precisely, if the M-terms of parties
accept exactly those messages prefixed with the correct recipient and role, a dummy can predict
whether or not a message is accepted by a party.

5Recall from Definition 2 that SSMNF means that P; is in SMNF and the M-terms on external input channels
accept every message.

30

5.3 Declaring the Environment to be the Master Decision Process

The following theorem states the relationships between the security notions introduced in Defini-
tion 6 in case the environment may play the role of the master decision process. Among others, it
says that the notions strong simulatability, black-box simulatability, and universal composability
coincide given that the real protocol P is network predictable, i.e., the axiom FORWARDER(P)
is true. However, many of the relationships between the security notions are true independently of
this axiom.

Theorem 16. Let P, F € R.
1. 88(r,MmD)(P, F) iff SBBr r,MD)(P,F) iff SBBm,r,MD) (P, F).
2. UCr,r,MD) (P, F) iff UCvi,mmp) (P, F) iff WBBRr,R,MD) (P, F) iff WBBv R MD) (P, F)-
3. The notions in 1. imply those in 2.
4. If P is network predictable, i.e., if FORWARDER(P) holds, then the in 1. and 2. mentioned

security notions are all equivalent.

The theorem holds both for the case where MDD only contains closed process expressions and for the
case where MDD may contain open process expressions.

PROOF. Statement 1. From MMD-INCLUSION we easily obtain that SS(g mp)(P,F) implies
SBB(M,R,MD) (P, F). It is easy to see that SBB(nj r,MmD) (P, F) implies SBBr r,MD)(P,F). We now
show that SBBg r mp)(P,F) implies SSg mp) (P, F)-

1. Assume that SBB(r,r,mD) (P, F).

2. The definition implies that P and F are I0O-compatible and:
S € R-Advp(F) VA € R-Adv(P)VE e MD-Env(A1P):ETATP=ETATS| F.

3. Choosing A to be the regular I0 dummy adversary D} = D32 (Ci*(P), Cast(P),q(n)) we
obtain:

35 € R-Advp(F).¥ poly. q(n).VE € MD-Env(D¥ | P): £ 1D | P=E 1D | S F.
4. Choose S as in 3., let £ € MD-Valid(P), and ¢(n) = comsize(P)(n) + comsize(E)(n). We

have:
ET1P = &1 DE*1P (REG-S-FORWARDER)
= &' Dli,%" 1P (RENAME)
= &' D}%" 1S8S1F (&" e MD—Env(D10 P),3.)
= 1D 1S1F (RENAME)
= 181 F (REG-S-FORWARDER)

where &’ is defined as in REG-S-FORWARDER and £” is obtained from &’ by declaring the
renamed network channels ¢ of P to be 10 channels. Since &£ is valid for P and all network

channels of P occurring in € have been renamed according to D}* and declared to be I0
channels, it is clear that £” € MD-Env(D3 1 P).

5. From 4. we immediately obtain that SS(R7MD)(73, F).

31

Statement 2. It is obvious that UCn v mp)(P,F) implies UCg g mp)(P,F) since if the real
adversary is regular, then so must be the ideal adversary because of the compatability requirement
for A1 P and Z1 F. We now show that UCg r,mp)(P,F) implies UC i nv mp) (P F)-

Assume that UCg g Mmp)(P,F) and let A € M-Adv(P). We need to show (*): There exists
Z e M-Advyp(F)such that E1 A1 P=E 1711 F for every £ € MD-Env(A 1 P).

If A € R, then (*) follows by the assumption UCg rmD)(P, F).

Assume that 4 € M\ R. Let A’ be obtained from A by replacing every occurrence of start by
the new channel start’. Then, A" € R-Adv(P). By assumption, there exists 7' € R-Adv 4 | p(F)
such that £1 A1 P=E1Z' 1 F for every £ € MD-Env(A’ | P). Let Z be obtained from Z’
by replacing every occurrence of start’ by start. Let £ € MD-Env(A | P). Since start occurs
in A, we know that £ € D. The following completes the proof of the equivalence between the
two variants of UC. In the second equation we use that £ 1 !,y (in(start,e). out(start’,¢)) €
MD-Env(A’ 1 P) where ¢(n) = comsize(A)(n) + comsize(Z)(n).

ETAIP = &£1!ym) in(start,¢).out(start’,e) 1 A | P (RENAME-START)
= &1!4m) in(start,¢).out(start’,e) 1 7' 1 F (Definition of Z7)
— ST\ F (RENAME-START)

Clearly, we have that WBB(nRrmD)(P,F) implies WBB(r r,MD)(P,F). It is also obvious that
WBB(R,R,MD) (P, F) implies UCg rmD)(P,F) since A | S is the ideal adversary required in
UCr,r,MD) (P, F) where S is the simulator obtained from WBB(r r D) (P, F)-

We now show that UC(g g mp) (P, F) implies WBB(v r M) (P, F) which concludes the proof of
statement 2.

1. Assume that UCg r,mD)(P; F)-

2. The definition yields that P and F are IO-compatible and:
VA € R-Adv(P).37 € R-Adv 4 p(F).YE e MD-Env(A1P):ETAITP=ET1T1F.
3. Choosing A = Dy = D2 (Ci*(P), Cast(P), ¢(n)) for some ¢(n) we obtain:

out

S, =Z € R-Advpsg p(F).¥E € MD-Env(D¥ | P) : £ DI 1 P =E 1 Symy | F.

4. Let A € M- Adv(), ¢(n) = comsize(A)(n) + comsize(P)(n), choose Sy as in 3. and let
€ € MD-Env(A 1 P). We obtain:

E1AIP = E1A 1D P (REG-ADV-FORWARDER)
= E{A DR P (RENAME)
= E1TA"1Smy 1 F (€1 A" € MD-Env(Dy 1 P),3.)
= E1A18)y | F (RENAME)

where A’ is defined as in REG-ADV-FORWARDER, D} and A” are obtained from D}* and
A’ by declaring the renamed network channel ¢’ of P to be IO channels, and S;(n) is obtained
from S,y by declaring the IO channels c to be network channels and renaming them to ¢
according to P.

5. By observing that S/(n) € R-Advp(F) and that S(; (n) only depends on F, P, and (the

communication size of) A, 4. immediately implies that WBBng g mp) (P, F) (for both variants
of weak blackbox simulatability). |

32

Statement 3. From SS(g nvp) (P, F) we know that there exists S € R-Advp(F) such that £ 1P =
£ 181 F for every & € MD-Valid(P). To show UC v mp) (P, F), assume that A € M-Adv(P)
and £ € MD-Env(A 1 P). From MMD-INCLUSION it follows that £ 1 A € MD-Valid(P), and
thus, E1 A1 P=E1A1S1F. Obviously, A1 S € M-Adv4p(F). Thus, defining the ideal
adversary Z to be A | S concludes the proof.

Statement 4. Assume that FORWARDER(P). It suffice to show that UCg r mp)(P,F) implies
SS(r,MD)(P, F). Let D be the dummy whose existence is guaranteed by FORWARDER(P). Let
D*° be obtained from D by declaring all the channels ¢ to be IO channels. (The channels ¢ occurring
in D remain network channels).

1. Assume that UCg g mpD)(P, F)-

2. The definition yields that P and F are IO-compatible and:
VA € R-Adv(P).3Z € R-Advyp(F)VE € MD-Env(A1P):ETAITP=ETTTF.

3. Choosing A = D*° we obtain:
38 =7 € R-Advpu | p(F).VE € MD-Env(D* | P): E1D*1P=E1S1F.

4. Choose S as in 3. and let £ € MD-Valid(P). We obtain:

E1P = &1D1P (FORWARDER(P))
= &1 D|P (RENAME)
= &"1S1F (£" € MD-Env(D*° | P),3.)
= €181 F (RENAME)

where £’ is defined as in FORWARDER(P), £” is obtained from &’ by declaring the renamed
network channels ¢ of P to be IO channels, and S8’ is obtained from S by declaring the
IO channels ¢ (which correspond to the IO channels of D*°) to be network channels and
renaming them to ¢ according to P.

5. By observing that &’ € R-Advp(F), 4. immediately implies that SS(g mp) (P, F)- O

By Theorem 10 and Proposition 12, to show Theorem 16, 4., we cannot dispense with the assump-
tion that P is network predictable.

5.4 Restricting the Environment to be a Decision Process

In this section, we consider the case were for blackbox simulatability and universal composability
the environment is restricted to be a decision process while the adversary may play the role of a
master process. Interestingly, in this setting not all three security notions are equivalent even if the
real protocol is network predictable.

We first note that certain variants of SS, BB, and UC do not make sense in case the environment
is restricted to be a decision process as every two 10-compatible protocols would be related:

Remark 17. For all 10-compatible protocols P and F, we have that the relationships SS(r p) (P,F),
SBB(r,R,D)(P,F), UCrr,D)(P,F), and UCg m,p)(P,F) are true since there are no master pro-
cesses and therefore no computation can take place. Note that in UC if the real adversary is a
reqular process expression, then so is the ideal adversary, and thus, the two variants of UC are
equivalent.

33

Theorem 18. Let P,F € R. Then,
1. 8Sw,mp)(P,F) iff SBBm,r.D)(P, F) iff SBBv\R.R.D)(P,F) iff SBBv\R,R,MD) (P, F)-
. WBBvir, D) (P, F) iff WBB(wi\R,R,D) (P, F).
. WBBvi,r,MD) (P, F) implies WBB\ g,y (P, F)-

2

3

4- UCm,m,p) (P, F) iff UCv\r,M\R,D) (P, F) iff UCm\Rr,M\R,MD) (P, F).

5. The notions in 1. imply those in 4. , and UCi M MD) (P, F) implies those in 4.

The theorem holds both for the case where MD and D only contain closed process expressions and
for the case where MID and D may contain open process expressions.

PrOOF. Statement 1. Using the definitions and MD-INCLUSION, it immediately follows that
SS(r,mp) (P, F) implies SBB(n r,p) (P, F). Clearly, SBBni g p)(P,F) implies SBByi\r,r,D) (P, F)-
The converse is also true: If the real adversary A is regular, then €1 A1 P =1 A1 S 1 F
because no one of the two process expressions contains start, and thus, no computation takes
place. We have that SBB\p\r,r,D)(P;F) and SBBnp\r,r,MD) (P, F) are equivalent since if the real
adversary contains start, then the environment may not contain start, and hence, belongs to D.
Similar to the proof of Theorem 16, 1. we now show that blackbox simulatability implies strong
simulatability.

1. Assume that SBBni,r,p) (P, F)-

2. The definition yields that P and F are IO-compatible and:
38 € R-Advp(F)VA € M-Adv(P).VE € D-Env(A 1 P):ETAIP=ETATST F.

3. Choosing A to be the master IO dummy adversary D}9 = D;3(Ci*(P), C2%(P), ¢(n)) we
obtain:

38 € R-Advp(F).V polynomials ¢(n).VE € D-Env(D39 | P): E1DI1P=E1Die1S 1 F.

4. Choose S as in 3., let £ € MD-Valid(P), and ¢(n) = comsize(P)(n) + comsize(S 1 F)(n) +
comsize(€)(n). We have:

E1P = &, 1D P (MASTER-S-FORWARDER)
= &1 Dig P (RENAME)
= &E1DS1STF (&Y; € D-Env(D3% 1 P),3.)
= & DS F (RENAME)
= 5 18 f (MASTER-S-FORWARDER)

where & is defined as in MASTER-S-FORWARDER and £}, is obtained from &£}, by declar-
ing the renamed network channels ¢ of P to be IO channels. Since & is valid for P, all network
channels of P occurring in £ have been renamed according to D}5* and declared to be 10
channels, and start has been renamed to start’, it is clear that £}, € D-Env(Di9 1 P).

5. From 4. we immediately obtain that SSr mp) (P, F)-

34

Statement 2. It suffices to observe that if the real adversary is not a master process, then no
computation will take place.

Statement 3. This statement is obvious.

Statement 4. The reasoning here is similar to the one for the different variants of blackbox sim-
ulatability above. In addition we use that if the real adversary contains start, then so does the
ideal adversary.

Statement 5. The first implication was proved in Theorem 16 and the second implication immedi-
ately follows since if the real adversary contains start, then so does the ideal adversary. O

As illustrated next, UCvpr,M\R,MD)(P, F), or equivalently UCn ni,p)(P,F), in general does not
imply SS® mp)(P,F) or UCvimmp) (P, F) even if P is network predictable. Intuitively, in the
proof of Theorem 16, 4. if the adversary may be a master process, then the simulator § = 7 we
obtain is also a master process. However, to show strong simulatability the simulator needs to be a
regular process expression. The example used to prove the following theorem shows that in general
master process expressions cannot be turned into regular process expressions without changing the
behavior of the overall system. Therefore, the proof of Theorem 16 would not go through if the
adversary may be a master process while the environment is a decision process.

Theorem 19. There exist P, F € R such that P is network predictable and UC(M7M,D)(P,.7:) does
not imply SSw mp) (P, F) and WBB\ gD (P, F).

To prove the theorem, we construct P, F € R and show the properties claimed.

Roughly speaking, P receives a bit x from the environment on an IO channel, returns an
acknowledgment of receipt on a network channel, waits for a send request on a network channel,
and then returns z on a network channel. The process F works exactly in the same way but if
x = 0, then in the last step it will not return .

Intuitively, a master process S which has only access to the network channels of F can simulate
‘P using F because if in the last step F does not return an answer, S will be triggered, i.e., receives
input on the channel start, and thus knows that F’s answer was 0. If § is not a master process,
then there is no way for S to know what = was, and therefore will not be able to simulate P (using
F). Now, the reason that UCyn,p)(P,F) holds but SSg,mp)(P,F) and WBBn r,p)(P,F) do
not hold is that for the latter two security notions one requires that P can be simulated using F
by a simulator that is not a master process, while for UCngm,mp) (P, F) the simulator (i.e., the
ideal adversary) may be a master process.

Formally, the process expression P uses the following channels: CiS(P) = {co}, C2L(P) =
{c1,¢2}, and C3e*(P) = {c3}. Now, P is defined as follows:

in
P = in(co,trefo,1})-(out(cr,received) || in(cs, send-req).out(cz, r)).

where the M-term ?,c(01} only accepts a bit string a if it is 0 or 1. In this case, z is set to a.
Clearly, P is network predictable: A possible dummy is

D = in(c;,received).(out(c), received) ||

in(c}, send-req).(out(c3, send-req) || in(cz, x).out(ch, z))).

35

The channels of F are defined just as for P except that the network channels c¢1, co, ¢c3 are renamed

to ¢}, ch, ¢. Also, F uses the internal channel ¢, .

F = in(co,txe{ovl}).(out(c'l,received) [l
in(cy, send-req). (out(ciy,, z) || in(ciy,, 1).out(d, x)))

where, formally, 1 is an M-term which only accepts the input if it is 1.
We now show:

Claim 1. UCv,M,D) (P, F).

Proof sketch of Claim I. By Theorem 18, we know that UCn m,) (P, F) iff UCwi\r,Mm\r,D) (P, F)-
To prove the claim, let A € (M\R)-Adv(P). We need to show that there exists Ze(M\R)-Advp(Z)
such that E1 A1 P=E 171 F for every £ € D-Env(A | P). We will define a master process
expression § which uses F to simulate P. Then, Z will be the parallel composition of A (with
start renamed) and S.

The simulator S works as follows: It forwards messages on F’s network channels from/to the
adversary A. If right after forwarding a message from the adversary A on ¢z to F on ¢4, S receives
a message on start, then S sends 0 on ¢o because this situation occurs exactly when F is expected
to send a message on ¢, but does not do so because x = 0. In all other situations where S receives
a message on start, S forwards it on start’ (to the adversary A). One can now show that
E1TAITP=ET1(AT1S)1 F where Z = A1 S is the ideal adversary, which concludes the proof of
the Claim I. Appendix A contains a formulation of S as a process expression and a more detailed
proof.

Claim I1. SS(r mp) (P, F) does not hold.

Proof sketch of Claim II . The proof of Claim II is by contradiction. Assume that there exists a
simulator &’ € R-Advp(F) such that E1 P =E 1S’ 1 F for every £ € MD-Valid(P). We construct
a closed master decision process expression £ € MD-Valid(P) such that & 1P £ & 1 S8 1 F.
The environment £ works as follows: It generates a random bit, sends it on channel ¢y, waits for
acknowledgment of receipt (on channel ¢;), sends a “send request” on c3, and then checks whether
the bit returned on ¢y is the one sent before. If at some point except at the beginning, £’ receives
a message on start, then & writes 0 on decision and terminates. In other words, £ always
expects to receive a message back from the process it is interacting with. Now, while in & | P
the environment £ will output 1 with probability 1, it is not hard to show that in & 1 &’ | F the
environment outputs 1 with at most probability 1/2 since the simulator does not know which bit
was sent by £ to F. Hence, &' | P # &' 1 S’ 1 F. This concludes the proof of Claim II. Appendix A

contains a more precise formulation of £ as a process expression and a more detailed argument.
Claim II1. WBB(\p R, D) (P, F) does not hold.

The proof is similar to the one of Claim II. One simply chooses A to be a dummy adversary that
forwards messages between £ and S’.

36

This concludes the proof of Theorem 19. Note that by Theorem 10, 16, and 18 it follows that
SS(r,mD) (P, F) implies WBB(\ r,p)(P,F) (but that the converse is not true if P is not network
predictable). Hence, Claim IIT implies Claim II. It is open whether WBB(M,R,D) (P,F) implies
SS(r,MD) (P, F) if P is network predictable.

5.5 Making the Simulator the Master Process

Theorems 18 and 19 show that SS (SBB) and UC (WBB) are not equivalent if the adversary may
play the role of the master process and the environment is restricted to be a decision process even
if the real protocol is network predictable. As mentioned, the reason for this is that to show that
UC implies SS, we want to use the ideal adversary in UC as the simulator in SS. However, in SS the
simulator has to be a regular process expression while in UC the ideal adversary may be a master
process expression. In general, it is not possible to turn a master process expression into a regular
process expression without changing the behavior of the overall system.

It is tempting to think that allowing the simulator to play the role of the master process would
solve the above problem, and thus, would make UC (WBB) and SS (SBB) equivalent even if the
environment may only be a decision process. In this section, we will see that this is not so. In
a nutshell, the reason for this is that in UC the run time of the ideal adversary may depend on
the run time of the real adversary while the run time of the simulator in SS and BB has to be
independent of the run time of the real adversary and the environment, and therefore, the simulator
can be exhausted by these entities.

However, WBB is equivalent to UC if the simulator may play the role of the master process
both in case the environment is the master process and in case the environment is restricted to be
a decision process.

Recall that we have defined variants SSsim, SBBsim, and WBBsim of SS, SBB, and WBB in
which the simulator may play the role of the master process in Definition 7.

We note that certain variants of SSsim, SBBsim, and WBBsim do not make sense as all 10-
compatible protocols would be related:

Remark 20. We have that SSsimnpy(P,F), SSsiman\r,p)(P,F), SBBsimg mp)(P,F),
SBBsimg m\R,D) (P, F), WBBsimg m,p) (P, F), and WBBsimg nvi\r,D) (P, F) are true for every 10-
compatible protocols P and F since the left hand-side of E | P =6 1S |1 Fand E1 AP =
E1A 181 F do not contain start, and thus, no computation can take place. Consequently, if S
does “nothing”, then the process expressions on both sides are indistinguishable.

Theorem 21. 1. There are no 10-compatible protocols P and F such that:
SSSim(M\R7MD)(’P, F), SBBSim(M7M\R7MD) (P,F), SBBSim(M7M\R7D)(’P, F), or
SBBSim(R,M\R,MD) (P, .7:)

2. For every P, F € R: 8S mp)(P, F) iff SSsimn mpy (P, F) iff SBBsimn v, mp) (P, F)
iff SBBsimg ni,mp) (P, F) iff SBBsimn m,p) (P, F).

3. For every P,F € R:
WBBsimg v mp) (P, F) iff WBBsimng v mp) (P, F) iff WBBvir,MD) (P, F)-

4. For every P,F € R:
WBBSim(M7M7D)(P,f) ’iﬁWBBSim(M\R’M7D)(P7f) 2ﬁCUC(M7M,D)(Ipv‘7:.)

37

5. The notions in 3. imply those in 4.

PROOF. Statement 1. Assume that there exists P and F such that SSsimpgrmp) (P, F). Hence,
there exists S € (M\R)-Advp(F) with E1 P =& 181 F. Let g(n) = comsize(S). Now, to
distinguish P from S 1 F, we define an £ that does the following: & triggers itself via start ¢(n)+1
times. (It is straightforward to formulate £ as a process expression.) If it interacts with P, then &
is in fact triggered ¢(n) + 1 times, and in this case, £ outputs 1 on decision. If £ (£’) interacts
with § 1 F, then £ must be triggered through S via start’. However, since the communication
size of S is g¢(n), S cannot trigger £ q(n) + 1 times, and thus, £ 1P £ & 1 S 1 F. The argument
for the variants of SBBsim is similar.

Statement 2. This is an immediate consequence of the first statement, Theorem 16, and Theorem 18.

Statement 3. The implications from right to left are obvious. To see that WBBsimg v mp)(P,F)
implies WBB(n R, MD) (P, F), first note that by Theorem 16 WBB(ngr mpD)(P,F) is equivalent to
WBB(R,R,MD) (P, F). Now, if WBBsimg nimp) (P, F) is the variant of WBBsim where the the simu-
lator may only be master if the adversary is, then it immediately follows that the simulator has to be
regular. Hence, WBBsimg v vp) (P, F) implies WBBg g mp) (P, F) (and thus WBBn g MD) (P F))-
In case, we consider the variant of WBBsim®r v MD) (P, F) where the simulator may be master inde-
pendent of whether the adversary is master, we obtain that if the simulator is master even though
the adversary is not, then the environment can be a master and can exhaust the simulator just as
shown in statement 1. Consequently, this case can not occur. And hence, the simulator has to be
regular if the adversary is.

Statement 4. The first equivalence follows from the fact that if the adversary is a regular process
expression, then no computation can take place. It is also clear that WBBsim implies UC since
the real adversary in parallel with the simulator provides the ideal adversary needed for UC. The
implication in the other direction is more interesting:

1. Assume that UCnm,) (P, F).

2. The definition yields that P and F are IO-compatible and:
VA € M-Adv(P).3Z € M-Adv g p(F)VE e D-Env(A1P):E1TAITP=ETTTF.

3. Choosing A = D} = D7 (Ci*(P), Cak(P). q

net n)) for some ¢(n) we obtain:
o

(
3Syn) = I € M-Advps | p(F).VE € D-Env(Dig | P): £ 1D} 1 P=E1Sym 1 F.

4. Let A € (M\R)-Adv(P), q(n) = comsize(A)(n) + comsize(P)(n) + 1, choose Sy(y) as in
3. and let £ € D-Env(A 1 P). We obtain:

ETATP = E1A, 1D 1P (MASTER-ADV-FORWARDER)
= E1AY1 D]\ido 1P (RENAME)
= & ./4/](4 1 Sq(n) 1 F (€1 ./4/](4 € D—EDV(D P),3.)
= &1 A S;(n) 1 F (RENAME)

where A, is defined as in MASTER-ADV-FORWARDER, D} and A, are obtained from
D1t and Ay, respectively, by declaring the renamed network channel d of P to be 10
channels, A’ is defined as in the definition of WBBsim, and S;(n) is obtained from Sy by

declaring the IO channels ¢’ to be network channels and renaming them to ¢ according to P.

38

5. Observe that S(;(n) is adversarially valid for F and that P and S(;(n) | F are compatible except

that S(;(n) contains start and start’. Also, Sé (n) only depends on F, P, and (the commu-
nication size of) A. Consequently, 4. implies WBBsimnp\r,m,D)(P,F) (for both variants of
WBBsim).

Statement 5. It suffices to observe that WBBn g mp)(P,F) implies WBBsimg v p)(P, F), which
is obvious. O

5.6 Summary of the Relationships

In this section, we summarize the results proved in the previous sections. We have four classes of
pairwise equivalent (variants of) security notions. In the following four corollaries we present these
classes. We then study the relationships between these classes. All results are also depicted in
Figure 1. In this figure, (non-)implications that immediately follow from the ones depicted are not
drawn.

The first class, which we call SS/SBB, consists of all variants of strong simulatability and strong
black-box simulatability. There equivalence follows immediately from Theorem 16, 18, and 21.

Corollary 22. All security notions in the class SS/SBB are equivalent, i.e., for every P,F € R,
we have:

SS(R,MD)(P7f) iff SSSim(M7MD)('P,.7:) iff SBB(R,R,MD)(P7f) iff SBB(M,R,MD)(,PMF) iff
SBBm R, D) (Ps F) iff SBBv\R.R.D)(P: F) iff SBBv\r,R,MD) (P, F) iff SBBsimmng v mp)(P, F) iff
SBBsimg v,mp) (P, F) iff SBBsimuim p) (P, F)

The second class, which we call UC/WBB,_, , consists of all variants of universal composabil-
ity and weak black-box simulatability where the environment may be a master process. There
equivalence follows immediately from Theorem 16 and 21.

Corollary 23. All security notions in the class UC/WBB,,,
R, we have:

UCr,r,MD) (P, F) iff UCm,Mm,MD) (P, F) iff WBBr r,MD) (P, F) iff WBBm,r,MD) (P, F) iff
WBBSim(M7M7MD)(P,f) ’iﬁWBBSim(R,M,MD)(Pw?)'

» are equivalent, i.e., for every P,F €

The third class, which we call UC/WBB,,,,, consists of all variants of universal composability
and weak black-box simulatability where the simulator is a master process and the environment is
restricted to be a decision process. There equivalence follows immediately from Theorem 18 and
21.

Corollary 24. All security notions in the class UC/WBB,,
R, we have:

UCv,Mm,D) (P, F) iff UCov\r.m\R,D) (P, F) iff UCw\r M\ MD) (P, F)° iff
WBBsimim,p) (P, F) iff WBBsimn\r M, D) (P, F)

m are equivalent, i.e., for every P,F €

The fourth class, which we call WBB,q4,,, consists of all variants of weak black-box simulatability
where the simulator is a regular process and the environment is restricted to be a decision process.
There equivalence follows immediately from Theorem 21.

5Note that since real and ideal adversary have to be master process, the environment can not be a master process.

39

Corollary 25. All security notions in the class WBB,q4, are equivalent, i.e., for every P,F € R,
we have: WBBsim R,D) (P,f) iff WBBsimn\R,R,D) (P,F).

We now summarize some of the basic relationships between the different classes.

Given a class C of regular process expressions, we write, for instance, SS/SBB = UC/WBB,,,,
for C to say that, for every P, F € C, if P and F are related with respect to some security notion
in SS/SBB (since all of the security notions in one class are equivalent, it does not matter which one
is chosen), then they are also related with respect to (all of) the security notions in UC/WBB,,, .
In particular, UC/WBB,, , # WBB,4, for C means that there exist P, F € C such that P and
F are related w.r.t. the security notions in UC/WBB_, = but not w.r.t. those in WBB,4,. In case
C =R, we will omit C and simply say, for instance, SS/SBB = UC/WBB,_,,, .

Corollary 26. 1. S5/SBB= UC/WBB,,,,.
2. UC/WBB,,, = WBB,g,.
3. WBB,4, = UC/WBB,,, .
4. UC/WBB

sim

7é> VVBBadv-7
5. In particular:

(a) UC/WBB,, = UC/WBB,,, .
(b) UC/WBB,, +# UC/WBB,, .

(¢c) SS/SBB = UC/WBB,, .
(d) SS/SBB# UC/WBB,;, .

PrOOF. The first implication follows immediately from Theorem 16. The second implication was
shown in Theorem 18, while the third one was proved in Theorem 21. Finally, 4. was stated in
Theorem 19. The statements in 5. immediately follow from the previous ones. O

We emphasize the following;:

Remark 27. The equivalences among the security notions in the different classes—SS/SBB,
UC/WBB.,,,,, WBB.4,, and UC/WBB,,, — as well as the relationships between these classes, as
stated in Corollary 26, are proved based on only quite basic properties of the computational model,
namely, the axioms listed in Section 5.1, excluding FORWARDER, plus the assumption that the
runtime of processes are polynomially bounded in the security parameter (except for guards), which
is the case for the models proposed in [5, 9, 27]. Also, the example showing that UC/WBB,, . does
not imply WBBggy, is quite basic. This allows us to carry over our results to other models (see
Section 6).

It is open whether or not WBB,4, implies UC/WBB,_, . However, from Corollary 26 and Corol-
lary 28, it follows that WBB,4, does not imply SS/SBB for protocols that are not network pre-
dictable, i.e., protocols that do not satisfy FORWARDER. (Otherwise, SS/SBB and UC/WBB,_, ,
would be equivalent even for protocols that do not satisfy FORWARDER, which is a contradiction
to Corollary 28 below).

"The real (and ideal) protocol chosen to prove this statement is network predictable, i.e., it satisfies FORWARDER.

40

In Theorem 10, we have shown that for UC/WBB_, to imply SS/SBB it is necessary that
FORWARDER is satisfied. This allows us to characterize when UC/WBB,,, and SS/SBB are
equivalent. We write UC/WBB_, , < SS/SBB for C if UC/WBB,_, , = SS/SBB for C and SS/SBB =
uC/wWBB,,, for C.

Corollary 28. Let C be a class of regular process expressions closed under renaming of channels
(in the same sense used in Theorem 10). Then,

UC/WBB,,, < S5/SBB for C iff FORWARDER(P) for every P € C.

PRrROOF. The only-if direction immediately follows from Theorem 10. For the if direction, first note
that by Corollary 26 we know that SS/SBB = UC/WBB,,,, for R. Given that FORWARDER(P),
we obtain that UC/WBB,,,, = SS/SBB for C by Theorem 16. O

We emphasize:

Remark 29. The proof of Corollary 28 only uses very basis properties (axioms) which should be
satisfied in most or all computational models. Hence, the corollary should carry over to such models.

Together with Proposition 15, Corollary 28 implies:
Corollary 30. Let C be the class of standard protocols (see Definition 14). Then,

UC/WBB,, , < SS/SBB for C.

We note that this corollary does not hold for the class of all regular process expressions as
there exist regular process expression which are not network predictable (Proposition 12). By
Corollary 28, for those protocols, UC/WBB,, , does not imply SS/SBB.

Corollary 30 tells us that if the environment may play the role of the master process, then for
standard protocols (i.e., the class of protocols considered in the computational models by Pfitz-
mann and Waidner [27] and Canetti [9]) strong simulatability /strong black-box simulatability and
universal composability /weak black-box simulatability are equivalent notions in SPPC. The main
reason is that in SPPC, for standard protocols, the axiom FORWARDER is true (Proposition 15).
Here we use that processes correspond to 10 automata/ITMs with guards. Without guards, the
proposition would not hold true.

6 Implications for Other Models

In this section, we discuss the implications of our results in SPPC for the PIOA and PITM models.

6.1 The PIOA Model and Variants

We refer the reader to [5,27] for a detailed description of the PIOA model. We examine the
relationships between the security notions for PIOA. It turns out that the security notions UC and
WBB are not equivalent in PIOA in case the environment may play the role of the master process.
This seems counterintuitive and suggests to slightly modified or restrict PIOA. We call the new
version the buffer-free version of PIOA (BFPIOA). This version behaves just like SPPC as far as
the relationships between the security notions are concerned.

41

Before studying the relationships between the security notions, we go through the axioms listed
in Section 5.1 and see which ones are satisfied and which ones are not. This will allow us to
immediately carry over some of the results for SPPC. We then consider the relationships which
were proved for SPPC based on axioms not satisfied in PIOA. All of the following is independent
of whether or not buffers can be queried an unbounded number of times.

On the validity of the axioms in Section 5.1. It is easy to see that the axioms COM, ASC,
TRN, SYM, RENAME, RENAME-START, MMD-INCLUSION, and MD-INCLUSION are satis-
fied in PIOA. We will see that MASTER-S-FORWARDER, and MASTER-ADV-FORWARDER
are satisfied as well.

However, the axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and FORWARDER
are not satisfied. For all dummy axioms we assume that the environment/adversary connects only
to the channels (or ports, to use the terminology of the PIOA model) of the dummy process. That
is, the environment/adversary is not allowed to access the channels of the protocol directly by
renaming of channels. Although to some extent this is allowed in the PIOA model, it does not
effect the results presented here.

Proposition 31. The axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and FORWAR-
DER are not satisfied in the PIOA model.

PrOOF. The following example shows that REG-S-FORWARDER is not satisfied. The same exam-
ple works for REG-ADV-FORWARDER and FORWARDER. The example uses that in the PIOA
model entities always communicate through buffers which have to be triggered to deliver messages
and which may be triggered by machines (typically the adversary/environment) other than those
who write messages into the buffer.

Let P consist of one IO automaton M which receives a bit on an IO channel and forwards it
on a network channel, i.e., writes it into a buffer connected to the adversary/environment. We
assume that the buffer is scheduled by the adversary/environment. In what follows, we argue that
REG-S-FORWARDER does not hold for P.

If the environment (for which we may assume that it plays the role of the master process) sends
a bit to P, then P outputs the bit on the network channel and according to the computational
model of PIOA, this bit is written into the buffer. Next the environment is triggered and it will
trigger the buffer in which it expects to find the bit send to P via the IO channel. In case there
is no dummy between P and the environment, the environment will obtain the bit. Otherwise, if
the environment and P are separated by a dummy, then the environment triggers the buffer which
“sits” in between the environment and the dummy, and this buffer does not contain the bit since
the dummy was never activated, and thus, could not write into this buffer. Thus, the environment
can distinguish whether it only interacts with the protocol P or with the dummy and the protocol.
Consequently, REG-S-FORWARDER does not hold in PIOA. O

We note that by Remark 13, the axiom FORWARDER fails in PIOA (for the same reason it fails
in SPPC) even if all machines trigger their own buffers.

The above example does not work for the axioms MASTER-S-FORWARDER and MASTER-
ADV-FORWARDER because after P wrote the bit into the network buffer, the dummy will be
triggered next as it is the master process. Hence, the dummy can write the bit into the buffer that
sits in between the environment and the dummy, and then can activate the environment. More

42

SS/SBB

for standard UC/WBB,,
protocols o
WBB(E: MD)
WBBadv
UC(E: MD)

Figure 3: Relationships of the security notions in PIOA

generally, since the dummy is the master it can copy all messages written by P to the buffers sitting
in between the dummy and the protocol into the buffers which sit in between the environment and
the dummy, and only then active the environment. Therefore, MASTER-S-FORWARDER and
MASTER-ADV-FORWARDER are satisfied in PIOA.

On the relationships of the security notions. In what follows, let UC(E: MD) consist of
the UC notions of the class UC/WBB,_,,,, and let WBB(E: MD) consist of the WBB and WBBsim
notions in this class. That is, UC/WBB,,,, is the union of UC(£: MD) and WBB(E: MD).

The relationships between the security notions in the PIOA model are summarized in Figure 3.
The most interesting relationship is that of UC(E: MD) and WBB(E: MD). While in SPPC these
classes are equivalent, this is not the case in the PIOA model. The reason for this is that to prove
the equivalence the axiom REG-ADV-FORWARDER is necessary, which, however, does not hold
in the PIOA model (see below for more details). In what follows, the relationships depicted in
Figure 3 are justified.

The security notions in the classes depicted in Figure 3 (i.e., those in the single boxes) are
equivalent because to prove these equivalences only axioms are necessary which are valid in PIOA.
And hence, the proofs can be carried out just as for SPPC. (One exception are the equivalences
of the notions in SS/SBB. Here, for SPPC, we used the axiom REG-S-FORWARDER which, as
shown above, does not hold in the PIOA model. However, this axiom can easily be avoided in the
equivalence proof.)

In what follows, we show that UC(E: MD) does not imply WBB(E: MD). The other relation-
ships depicted in Figure 3 are obtained from the results obtained for SPPC and the fact that the
axioms used to prove the implications are also valid in PIOA. The non-implications carry over from
SPPC as the same counterexamples can be used.

To prove that UC(E: MD) does not imply WBB(E: MD) we show that UC(g r,mp) (P, F) does
not imply WBB(n r,MD) (P, F) for the following protocols P and F.

43

Let P consist of one 10 automaton M which receives a bit on an 10 channel and forwards it on
a network channel, i.e., writes it into a buffer connected to the adversary/environment. We assume
that the buffer is scheduled by the adversary/environment. (This is the same protocol as above.)

Let F consist of one I0 automaton M’ which, just as M, has an IO channel and a network
channel where the corresponding buffer is scheduled by the adversary. In addition, M’ has a secure
channel to itself. (Alternatively, one could introduce another machine M” and two channels, one
from M’ to M" and one from M" to M’, controlled by the sending machine, respectively.) M’ works
as follows: It receives a bit by from the environment, generates a random bit by, and writes the two
messages (b1, “environment”) and (b2, “random”) into the network buffer. M’ chooses the order
in which these messages are written into the buffer uniformly at random. Also, the messages are
written into two different cells of the network buffer. This is possible by using the secure channel:
First, M’ writes the first message into the buffer, then M’ uses the secure channel to trigger itself,
and third M’ writes the second message into the buffer.

Claim 1. UC(R,R,MD) (P, f)

Proof sketch of Claim I. The ideal adversary simply simulates the real adversary. In case the real
adversary triggers the buffer to M to obtain the first message, the ideal adversary would trigger
the buffer to M’ two times to obtain both messages (if any) and would only use b; to simulate the
real adversary. The tag “environment” tells the ideal adversary which of the two bits to use.

Claim II. WBBng g MmD) (P, F) does not hold.

Proof sketch of Claim II. Assume that WBB holds for the real protocol P and the ideal protocol
F. We distinguish three cases and lead them to a contradiction.

1. The simulator S is “empty”, i.e., the ideal adversary A’ (obtained by renaming channels of
the real adversary A) connects to the network buffer of M’. This obviously does not work
because the network buffers of M and M’ contain different information such that it is easy
to specify A, A’, and an environment that tell P and F apart.

2. The simulator S connects to the network buffer of M’ but the ideal adversary A’ controls the
clock channel of this buffer. This also does not work. Let the real adversary A be one that
is triggered by the environment to read out the bit of the network channel. More precisely,
A triggers the buffer to read out the first entry and forwards it to the environment. If A’
triggers the first entry of the network channel of M’, then this entry would be given to S.
In half of the cases this entry is (by,random), and thus, the simulator cannot figure out b;.
Hence, the bit forwarded by S to A’ is wrong in half of the cases, and thus, so is the bit
forwarded by A’ to the environment.

3. The simulator S completely controls the network buffer of M’. In this case, there must be a
buffer from S to A’ controlled by A’. Now the problem is that after F wrote the two messages
into the buffer (which “sits” between S and F), the environment, which is assumed to be a
master scheduler, is scheduled and asks A (A’) to deliver the bit from the network channel.
The adversary A does this by triggering the network channel and forwarding the bit to the
environment. If A’ does the same, the buffer will be empty since the simulator was never
triggered, and thus, could not write anything into the buffer between A" and S. (We note
that this situation corresponds to the failure of REG-ADV-FORWARDER explained above.)

44

A similar argument works for WBB(MR,D)(P,]:). The only difference is that we assume the
adversary to be the master process.

The failure of the equivalences and the failure of the axioms REG-S-FORWARDER and REG-
ADV-FORWARDER seem counterintuitive. The problem vanishes if the PIOA model is modified
so that machines always trigger their own buffers. In effect, this is equivalent to not having buffers
at all, which is why we call this fragment of the PIOA model the buffer-free PIOA model (BFPIOA).
This fragment is essentially as expressive as PIOA and this fragment can easily be embedded into
SPPC. In particular, all axioms (except the forwarder property of the previous section) are satisfied
in BFPIOA and the examples used to prove separation results can also be expressed in BFPIOA.
As mentioned in Section 2, starting from the work [6] PIOA (and thus, BFPIOA) has a restricted
form of guards. Similar to SPPC, this mechanism suffices to satisfy the forwarder property for
standard protocols, but just as in SPPC, there are protocols expressible in BFPIOA which do not
satisfy this property. In summary, we obtain for BFPIOA exactly the same relationships as for
SPPC (see Figure 1).

In [27], the security notions UCqngm,py(P,F) and SBBwim p)(P,F) were introduced for the
PIOA model, while in [4] the notions UCng v mp) (P, F) and SBBwi v, mD) (P, F) were considered.
Our results clarify the relationships between these security notions: while the two variants of SBB
are equivalent (they both belong to the class SS/SBB), these notions are different from the two
variants of UC. Also, the two variants of UC are not equivalent. Our results contradict the claim
in [4] that SBB(v,m,mp) (P, F) and UCv v,mp) (P, F) are equivalent.

6.2 The PITM Model

The PITM model [9] is tailored towards defining UC where the environment is a master process
and the adversaries are regular processes i.e., UC(r,gr,MmD) (P, F). Depending on which entities are
involved, different computational models are defined: the real model (involving the environment,
the real adversary, and the real protocol), the ideal model (involving the environment, the ideal
adversary, and the ideal functionality together with dummy parties), and the hybrid model which
is a combination of the previous two models.

Therefore, it is not immediately clear how the security notions SS, SBB, and WBB, which
involve a simulator, would be defined in PITM. Different variants are possible, and as we have
seen, differences in the definitions may affect the relationships between the security notions. It is
out of the scope of this paper, to extend PITM in order to define SS, SBB, and WBB. However,
general points can be made.

The version of PITM as introduced in [9] does not have a mechanism, such as guards of SPPC,
that would allow the dummy axiom to be satisfied. As shown, without this axiom being satisfied,
UC does not imply SBB (SS).

We finally note that in [9], Canetti introduces a special case of UC where the adversary is
restricted to be a dummy which merely forwards messages between the environment and the parties.
Canetti proves UC and this notion equivalent. This notion can easily be stated in SPPC and
proved equivalent to UC along the lines of the proof which shows that UCr r,MmD) (P, F) implies

WBB(M, R, MD) (P, F)-

45

7 Reactive Simulatability and Extensions of SPPC

In this section, we consider another security notion, called reactive simulatability in [5] and security
with respect to specialized simulators in [10]. This notion has not drawn as much attention as the
other notions studied in the present work because a general composition theorem for composing
a polynomial number of copies of protocols along the lines of [9] or the present work was not
known, and in fact, as recently shown is not possible in case the environment is uniform and
strict polynomial-time [20]. Therefore, in the previous sections, we have concentrated on the other
security notions and only very briefly cover reactive simulatability here. In our terminology, reactive
simulatability is defined as follows:

Reactive Simulatability: RS(A 1E) (P,F) iff P and F are 10-compatible and for every A €
A-Adv(P) and for every £ € E-Env(A | P) there exists Z € I-Adv 4 1 p(F) such that €1 A1 P =
ETTTF.

The only difference between reactive simulatability and universal composability (UC) is that
for the former notion the ideal adversary is allowed to depend on the environment.

It has been shown by Canetti [8] that reactive simulatability is equivalent to UC for non-
uniform environments whose runtime may depend on the lengths of their input on the input tape.
The fact that UC implies reactive simulatability follows simply from the order of quantifiers. For
the other direction, one considers a “universal” environment which interprets (part of its) input as
an encoding of another environment and simulates this environment. In this way, one effectively
can quantify over all environments, and hence, switch the order of quantification over environments
and ideal adversaries. When allowing the runtime of the environment to depend on the length of
the input on its start channel, then in SPPC we obtain the same result. Moreover, one can show
that with this extension of SPPC, the security notions in the classes UC/WBB,,,, and UC/WBB,, .
are equivalent, respectively; the axioms used to prove these relationships also hold true for the
extension of SPPC.

Hofheinz and Unruh [19] show that for strictly polynomial-time, uniform environments reactive
simulatability does not imply universal composability. While this result is shown in the PIOA
model, it immediately carries over to SPPC in case the environment does not get auxiliary input,
i.e., initially € is written on the start channel.

8 On the Composability of Network Predictable Processes

In this section, we show that the property of being network predictable is composable, i.e., if regular
process expressions are network predictable, then so is their parallel composition. This will allow us
to carry over the composition theorem proved for strong simulatability, and thus, by Corollary 22,
also blackbox simulatability to universal composability /weak black-box simulatability (Section 9).

We first consider the case of composing a constant number of network predictable processes and
then the case of composing a polynomial number of copies of processes. While the construction
presented here is tailored to the composition theorem, a similar construction shows that network
predictable multi-party protocols with a polynomial number of participants can be defined from
network predictable processes.

46

8.1 Composing a Constant Number of Network Predictable Processes

Lemma 32. Let Pq,..., P, € R be network predictable processes such that P; is environmentally
valid for Pjy11 -+ 1 Py for every j. Then, Py 1 --- 1 Py is network predictable.

PROOF. We prove the lemma for k = 2. For k > 2, the statement follows by induction on k.

Assume that P; and P are network predictable and that P; is environmentally valid for Ps,
and thus, Py is environmentally valid for P;. Let D; be the dummy for P; whose existence is
guaranteed by FORWARDER(P;). Since the set of network channels of P; and Py are disjoint, we
may assume that this is also true for D; and Dsy. Note that neither D nor Dy has 10 channels.
We want to show that Dy | Dy is a dummy for P; | Pe. Obviously, D; | Dy € R-Adv(P; | P2) and
the conditions on the external channels of D; 1 Dy are satisfied as well. We need to show that

ETPLIP=E1D11Da1 P11 Pe

for every £ € MD-Valid(P; 1 P2) where &£’ is defined as in FORWARDER(P; | P2).

We have
Ep, 1 P11 Dy P2 i)

Ep, 1 D21 P2 1P i

ETPL]Ps (
(
Epipy 1 D21 P21 Dy 1P (iid)
(
(

~—

Ep,p, 1 D11 D21 PPy (iv)
EN1D11 D1 Pl P v)

where in (i) Ep, is obtained from & by replacing all network channels ¢ of Py occurring in € by ¢
according to the renaming of network channels in Dy. The equivalence holds due to the definition
of Dy and the fact that £ | P; € MD-Valid(P2). Also note that P; does not contain network
channels of Py, and thus, no channels need to be renamed in P; on the right hand-side of the
equivalence. In (ii) we use commutativity (COM) and associativity (ASC) of parallel composition.
In (iii) we consider Ep, 1 Dy 1 P2 € MD-Valid(P;) as a valid process for P; and use the definition
of D1 where Ep, p, is obtained from Ep, by replacing every occurrence of network channels ¢ of Py
by ¢ according to the renaming of network channels in D;. Again, note that this set of network
channels is disjoint from the set of network channels of Ps. In (iv) we again apply COM and ASC,
and (v) is obtained by noting that Ep, p, = &’ |

8.2 Composing a Polynomial Number of Copies of Network Predictable Pro-
cesses

We want to show that if P is network predictable, then so are a polynomial number of copies of
P. Using the results of the previous section, this is then extended to the case where we have a
polynomial number of copies of the protocols Py, ..., Pg.

Similar to the setting of Canetti [9], we employ session identifiers (SIDs) to be able to distinguish
between the different copies of P. We also introduce a SID manager M%(n) which manages ¢(n)
copies of P. To invoke a new copy of P, a process needs to send an SID s to the manager who
generates a new copy Ps of P provided that the SID has not been used before. The copy P is
then accessible via s, i.e., if a process wants to send a message a to this copy via some channel c,
then the message (s,a) would have to be sent on channel ¢ since P only accepts messages where
the first component is s. Conversely, every message sent by Py is prefixed by s. In this way, SIDs
allow to generate new (virtual) channels.

47

To be able to generate copies of P, we consider what we call the SID version P of P. This SID
version receives a SID as input, announces the SID on a network channel, acknowledges receipt of
the SID, and generates a new copy of P. Formally:

P = in(sid, z).(out(netsend, z) || in(netrec,x).(out(received, z) || P(x))) (4)
where sid and received are IO channels (and thus, low channels), netsend and netrec are
network channels (and thus, low channels), and P(x) denotes the process expression obtain from P
as follows: Every subexpression in(c,t). P’ of P is replaced by in(c, (z,t)) where the M-term (z, t)
accepts a message a if it is of the form (z,y) and y is accepted by t. Every subexpression out(c,T)
of P is replaced by out(c, (z,T)) where the C-term (z,7T) returns (z,a) with probability p iff T
returns a with probability p. Note that P € R if P € R.

We often consider what we will call a simple SID wersion of a protocol where the SID is not
announced on a network channel. That is, after receiving the SID on sid, the protocol immediately
acknowledges receipt of the SID on received.

We can now define the SID manager M%(n) for P. For simplicity we assume that ¢(n) > 1,
i.e., q(i) > 1 for every i > 0. This manager is a closed regular process expression which will run
in parallel with !;,) P. Intuitively, the manager receives a SID, checks whether it exists already.
If not, then a new copy of P is generated by sending the SID to P and the process who called
the manager is notified. In case the SID was not new, the manager notifies the failure to the
calling process. Initially, the manager will always notify success since no SID has been sent so far.
Formally:

M%(n) = in(sid,t;).(out(sid,x) || in(received, x).(out(state,z) || out(done, suc))) ||
lyn)—1 in(state, y).(
in(sid, t,¢,)-(
out(sid,) || in(received, z).(out(state, (y,x)) || out(done, suc))) +
in(sid, tzey).(
out(state,y) || out(done, fail)))

where state is a high channel and all other channels are low, the M-term %, accepts a bit string
only if it is of length ¢(n) and then substitutes x with this bit string (in fact, any format would work
as long as in a message of the form -z, the SID z can uniquely be extracted from such a message),
and the M-term ¢,¢, accepts a bit string a if a does not occur in the sequence y (the current state
of the manager). In this case, z is substituted with a. Similarly, tr¢y 18 an M-term which accepts
a bit string a if @ occurs in the sequence y. (The variable z does not need to be substituted by a
since z is not used later on.) Note that the definition of ./\/l%(n) is almost independent of P. We
only require that sid is the same channel as the one used by P to receive SIDs.

We note that /\/l%(n) could be generalized in that this manager not only accepts session IDs on
one channel, namely sid, but on different channels. This would allow different external processes
to use the same manager. Our results easily carry over to such managers.

We define
P = ME™ 1 Ly P

Lemma 33. If P € R is a network predictable process, then so is P1™).

48

PROOF. Let P € R be a network predictable process. Thus, there exists a dummy D € R-Adv(P)
which satisfies the conditions stipulated in FORWARDER(P). We define

D = in(netsend, z).(out(netsend’, z) || in(netrec’, z).(out(netrec, z) || D(z)))

where D(z) is defined analogously to P(x). That is, D first forwards the SID z coming from the
protocol on netsend’ and after receiving x again on netrec’ forwards z and generates a copy of
D. Since P(x) is generated only after P has received the responds on netrec, it suffices for D to
generate a copy D(x) of D only after this responds has been sent. Clearly, we have that

E1P=¢&"1D1P
for every £ € MD-Valid(P). Now, it is easy to conclude that
1P =g lym D1 pa(n)
for every £ € MD-Valid(P4™).]

Typically, a protocol is first activated through some IO channel and then sends a message on a
network channel before it accepts a message on some network channel. Let us call such protocols
which first send a message on a network channel before accepting a message on a network channel
initially network sending. For such protocols the above lemma also holds if in the definition of
P1M) the simple SID version of P is used because the dummy will first only accept input from
the protocol rather than from the environment. After having received the first message from the
protocol, the dummy can then extract the SID from this message and from now on only accept
messages prefixed with this SID. If the protocol was not initially network sending, the dummy
would not know in case the first message comes from the environment whether this message will
be accepted by the protocol since the dummy does not know the SID yet.

Lemma 34. If P € R is a network predictable process and is initially network sending, then PI™)
is network predictable even if P is the simple SID version of P.

As an immediate consequence of Lemma 32, 33, and 34 we obtain the following theorem:

Theorem 35. If P1,...,Pr € R are network predictable processes and q1(n),...,q.(n) > 1 are

polynomials such that ijj ®) s environmentally valid for P;Ifll(n) IIERE ng(n) for every j, then
Pfl(n) 1] P,Z’“(n) is network predicatable. In case P; is initially network sending, then P; can

be chosen to be the simple SID wversion of P;.

9 A General Composition Theorem

We prove a general composition theorem for composing a polynomial number of instances (also
called copies) of protocols. This is done in two steps. We first, in Section 9.1, show that a constant
number of (possibly) different protocols can securely be composed by parallel composition. We
then, in Section 9.2, consider the (parallel) composition of a polynomial number of instances of
one protocol. From this we immediately obtain the general composition theorem (Section 9.3)
which states that a polynomial number of instances of protocols derived from a constant number
of different protocols can securely be composed. In Section 9.3, we also show that the restriction
to a constant number of different protocols is necessary, unless additional assumptions are made in
the composition theorem.

49

9.1 Composing a Constant Number of Protocols

The following lemma shows how a constant number of possibly different protocols can securely be
composed.

Lemma 36. As usual, let R be the set of all closed reqular process expressions and MD be the set
of all (open/closed) master decision process expressions. Let Pi,...,Pg,F1,...,Fr € R such that
for every j the following conditions are true:

1. 'P; is environmentally valid for Pji11 -+ 1 Pg.
2. F; is environmentally valid for Fjy1 1 --- 1 Fg.
3. SS(R’MD)(PJ,}—]’).

Then,

SS(R,MD)(P11 I P Frl e] ‘7:/43)

PROOF. We prove the lemma for k = 2. For k > 2, the statement follows by induction on k.
Assume that SSr mp) (P, F;) for every j € {1,2}. Thus, there exists S; € R-Advp, (F;) such
that £1P; =€ 181 F; for every £ € MD-Valid(P;).
Let £ € MD-Valid(P; | P2). In particular, £ is valid for S; 1 F; 1 S2 | F2. We have

ETPLIP = ETP11S21F (7)
= E1S1R1P (i)
= E1S18STARTFR (iv)

where in (i) we use that &' 1 Py = &' | So 1 F for every £ € MD-Valid(P,), and that £ | Py €
MD-Valid(P,); in (ii) we use COM and ASC (see Section 5), and thus, P; 1 So | Fo = Sa 1 Fa2 1 Pi;
in (iii) we use that a) £ 1 Sy 1 Fo € MD-Valid(P;), and that b) & 1 Py =& 1 S 1 F for every
&' € MD-Valid(P;); in (iv) we again use COM and ASC.

Finally, since P; and F; are environmentally valid for P, and F», respectively, and P; and
S; 1 Fj are compatible, it follows that S; is environmentally valid for S and that S; 1 So €
R-Advp, | p,(F1 1 F2). Consequently, (iv) yields SS(g yvpy (P11 P2, F1 1 F2). 0

By Corollary 22, this lemma immediately carries over to other variants of strong simulatability and
strong black-box simulatability. Given that the P; are network predictable, by Corollary 28 and
Lemma 32, the lemma also holds for universal composability /weak black-box simulatability.

Corollary 37. Lemma 36 is also true if the version of strong simulatability used in the lemma is
replaced by

1. Any of the security notions in the class SS/SBB (see Corollary 22),

2. Any of the security notions in the class UC/WBB

o (see Corollary 23) given that the P; are
network predictable.

Clearly, one can proof the composition theorem also for versions of security notions not equiv-
alent to strong simulatability, such as the security notions in UC/WBB but the point here is
that one does not have to do so for equivalent security notions.

stm?

20

9.2 Composing a Polynomial Number of Instances of one Protocol

We now show that we can securely compose a polynomial number of instances of one protocol.
More precisely, we prove that if P and F are strong simulatable, then so are P2 and Fa®),
Observe that if P and F are I0-compatible, then P4™ and F4™ are 10-compatible if the SID
managers use the same channel to receive SIDs and if, say, in the SID version of F the channels
netsend and netrec are renamed to the new channels simsend and simrec.

Lemma 38. As usual, let R be the set of all closed regular context expressions and MD be the
set of all (possibly open) master decision context expressions. Let q(n) > 1 be a polynomial. If
SS(r,mD) (P, F), and PIM) gnd F1) gre [O-compatible, then

8S(r,mp) (P*™, F9)).

This is true independently of whether in P1™ the simple or non-simple SID version of P is used.

In the remainder of this subsection, we prove the lemma for the case that P is the simple SID
version of P. Throughout the proof, we point out the changes necessary if P is the non-simple SID
version of P. We stress that for F we always consider the (non-simple) SID version since the SID
version of F needs to announce the SID to its simulator.

We use the following abbreviation. For every process expression Q(z), we set

Foz) (i @) +=Prob[Q(a@)™ 7 = 1]

for every i and a.
Since SS(r, M) (P, F), we know that there exists S € R-Advp(F) such that E|P=E1S1F
for every & € MD-Valid(P). Define

S" = in(simsend, z).(out(simrec,z) || S(z))

where S(x) is defined just as P(z) in Section 8.2. Informally speaking, S’ receives the SID from F,
acknowledges the receipt, and generates the copy S(x) of S which works exactly as S but requires
incoming and outgoing messages to be prefixed by the SID x.%

It is easy to verify that l;m) " € R-Advpym) (Fam)),

To prove the lemma, it remains to show that

EC)V1PI™ = £(2)1 (lym S) 1 F1®

for every £(Z) € MD-Valid(P4™),
In what follows, let £(z) € MD-Valid(P4™) and let p(n) be a polynomial. We need to show
that there exists ig such that

f(Z7 (I) = ‘fé'(;) 1 Pa(n) (27 (I) - fg(z’) 1 (!q(n) 81 Fa(n) (Z7 CL)‘

< 1
— p(i)

8In case P is the (non-simple) SID version of P, after receiving x on simsend, S’ would have to send x on netsend
and wait for responds on netrec before sending an acknowledgment on simrec.

51

for every i > ip and every tuple a of bit strings. The proof continues by a hybrid argument.
From now on, we assume that in the SID version of F the channel sid is replaced by sid; and
that in P the channel sid is replaced by the channel sidp different from sidp.
We now define a hybrid variant M (z) with free variable z of the SID manager which in the
first z invocations generates copies of F and in the remaining invocations generates copies of P.
The manager will interpret z as a unary encoding of a non-negative integer. Formally,

MI® () = in(sid,z).(out(zero,¢) ||
(in(zero,t.—¢).(out(sidp, z) || in(received, z).(out(state, z) || out(done, suc))) +
in(zero,t.40).(out(sidy, z) || in(received, z).(out(state,z) || out(done, suc)))) ||
lqm)—1 in(state,y).(
in(sid, 77,).(
out(sidp,) || in(received, z).(out(state, (y,z)) || out(done, suc))) +
in(sid, 77).(
out(sidp,x) || in(received, z).(out(state, (y,z)) || out(done, suc))) +
in(sid, tpey).(
out(state,y) || out(done, fail)))

where t,—¢ is an M-term which accepts if the input string z represents 0, and otherwise rejects.
The M-term ¢, is defined dually. Note that since t.—¢ and ¢, are Turing Machines which run
in polynomial time in the size of the security parameter, these machines may not be able to read
the whole string z. However, they only have to examine the first bit of z to return their answer.
The M-term t;;y is defined just as t,¢, except that t;éy only accepts a string a if the length of
the sequence y (recall that y represents the state of the manager) is < z, i.e., so far < z copies of
F have been generated excluding the copy that is about to be generated. Analogously for tf;y.
Again, t;zy and tfz may not be able to read the whole bit string z. However, the size of y is
bounded by a polynomial in the security parameter, and thus, the M-term can check their length.
To compare this length with z, it is only necessary to read a polynomial number of bits of z.
Let

S(7,2) = E(Z) 1T MI™ () 1y S 1 lym) E 1 lym) P

Clearly, £(z) is valid for MI® (2) 11,0y 8" 1 lymy £ 1 lym) P
Obviously, we have that

fg(;’) 1 Pa(n) (’L, E) = fS(?,Z) (Z, E, 0) and

fg(;) 1 Fam) (Z7 CL) = f$(§7z)(ia aaQ(i))

for every i and tuple a of bit strings. Define

fj(i7 a) = ’fs(§7z)(i7 a7j) - fS(Z,z (iv a7j+1)"
By the triangle inequality, we have
q(i)—1
fli, @) =|fs(i,a,0) = |fs(i, a,q(@)| < Y f;(i, a).
j=0

52

We show that for every polynomial p/(7) there exists g such that f;(3, a) < for every ¢ > i,

1
= p'(@)

tuple @, and j > 0. Now, if we set p/(i) = p(i) - q(i) it follows that f(i, a) < m -q(i) = L) for

p(i
every i > ig and every tuple E, which would conclude the proof of the lemma.

To show the above, let us consider the processes S (;, j) and S (;, j+1) more closely. These
processes almost coincide. The only difference is that after the j+1st invocation of the hybrid
manager in S (?, j) a copy of P is generated while in & (;, j+1) a copy of F is generated (this
copy of F, then interacts with some copy of the simulator §). Note that if j+1 > ¢(i), i.e., j+1 is
greater than the total number of copies that are going to be generated for the security parameter
i, then S(z,7) and S(Z,j+1) coincide completely. If we now “extract” these copies (of P and F)
from S(7,j) and S(z,j+1), then the processes that remain coincide, let us call this process &,
and can be considered an environment trying to distinguish the copy of P from the copy of F and
S. However, we first need to consistently rename the channels of the copies of P, F, and S such
that £’ is in fact a valid context for these copies.

Formally, let P be obtained from P by renaming all external channels by new channels. Let F
be defined analogously where the set of IO channels of P and F coincide and the sets of network
channels of P and F are disjoint. Finally, let S be obtained from S as follows: First note that S
does not have IO channels. The network channels of S are renamed consistently with the renaming
of network channels of F and P, i.e., the network channels with which S connects to F are renamed
according to the renaming of network channels of F. The other network channels coincide with
those of P and they are renamed according to the renaming of network channels of P. Since S is
adversarially valid for F, by construction we have that S is adversarially valid for F. Moreover,
just as P and § 1 F, the process expressions P and S 1 F are compatible.

We now modify ./\/(q(‘rl (7) such that after the j+1st invocation, no copy of P (or F) is generated.
Instead Mq(n)(/) will simply return suc on the channel done to indicate that a copy has been
generated provided that the SID sent in the j41st invocation is in fact new. The idea is that the
j+1st copy is P (or F which will run in parallel with :S\) The new version of the hybrid manager
is denoted by /\//\lq(n)(z) (where z is the variable which will be substituted for j) and is defined as
in Figure 4 where the M-term ¢,_o(x) accepts a if z = 0 and then substitutes a for z. Dually for
t.40(z). The other M-terms are defined analogously to the ones in M%™)(z). As also pointed for
MM (2), the M-terms can perform there tasks even if they cannot read all of z.

If £(Z) in the j+1st invocation of Mam (7) sent the SID @ and this SID was new, then Ma®) (7)
will still not generate a copy of P (or F) since, as mentioned before, the j+1st copy will be
represented by P or F. Thus, we need to modify & (;) such that instead of accessing P or F using
the SID a it uses the new channels of P and F 1 S. To adjust & (;) in this way, it is helpful to
think of 5(?) to be in single machine normal form. By Lemma 3, this is w.l.o.g. We define the
new variant £(z,z) of £(z) as follows: The new free variable z will take the value j. To the set of
external channels of € (;), the set of external channels of 7/5, and thus, F 1 S , are added where the
input channels of P are added as output channels of & (;, z) and the output channels of P are added
as input channels of & (Z,2) to the set of channels of 5 (%, 2). Now, intuitively, 5 (%, 2) simulates
& (;) with the following modifications. First, &| (;, z) records in its internal state the number of
times a SID has been sent to the manager, i.e., a message a has been sent on channel sid (to the
hybrid manager). If z is substituted by j, in the j+1st invocation, & (;, z) records the SID a sent
to the hybrid manager and also records whether suc or fail is returned by the hybrid manager

23

Mam) (z) = in(sid,t.—o(z)).(out(state,x) || out(done, suc)) +
in(sid, t;20(x)).(out(sidy, x) || in(received, z)(out(state, z) || out(done, suc))) ||
lqn)—1 in(state,y).(
in(sid, ;7).(
out(sidp,) || in(received, z).(out(state, (y,z)) || out(done, suc))) +
in(sid, t,g,).(
(out(state, (y,x)) || out(done, suc))) +
in(sid, ¢,).(
out(sidp,) || in(received, x).(out(state, (y,z)) || out(done, suc))) +
in(sid, tyey).(
Y

out(state,y) || out(done, fail)))

Figure 4: The hybrid manager.

on channel done. Now, every time £(z) would send a message of the form (a,b) on an external
channel of 72 (zlnd ‘E}lus, F 1 S), the process g (?, z) sends the message b on the corresponding
channel of P (F | S) provided that the j+1st invocation of the hybrid manager was successful,
otherwise nothing is sent. If & (;, z) receives a message b on some external channel of P (.7? I 3\),
then £(z,z) simulates £(Z) pretending to have received the message (a,b) on the corresponding
channel of P (F 1 S). It is straightforward to define the internal state of 5 (%,z) and the C- and
M-terms of & (?, 2) to obtain the behavior just described.” We note that for this it is important
that € has direct access to z. If we restricted environments, and in particular £ and £ to have only
one free variable, then we would need to assume that g interprets the bit string given to it as a
tuple of the form (a,7) where a is the input for £ and j is the length. However, for small security
parameters, £ might not be able to read even part of j, and tllus, would not be able to perform the

simulation described above. (A simular argument applies if £ interprets the input string as (j, a).)
Define

~

E(Z,2)=E(Z,2) 1 MU 21 L 81 gy 1 lym) P

Now, it is easy to verify that

fS(;,z) (17 Za]) - fg/(;7z) 1 7’5(2, E,j) and (5)

fS(Z,z)(l’E’]_{_l) = fg/(?7z)1 31 ﬁ(zaza]) (6)

Tf P is the (non-simple) SID version of P, then in 5(27 z) after sending the j+1st invocation the interaction with
P (F together with the simulator) needs to be simulated as well: As above, first £(Z,z) would read the result on
done to check whether the SID existed already or not. Now, if the SID is new, then S(;) is simulated pretending
that the SID z is sent on netsend. If £(z) returns x on netrec, then £(z) is simulated pretending that on done suc
or fail is sent depending on what was received on this channel before. From here on, the simulation continues as
described above. If 5(2) never sends = on netrec, then access to channels of P with SID x will be ignored because
such a copy of P would not have been generated. Also, further access to the SID manager is ignored as this manager
would wait for response from P (F).

54

for every i, 7, and tuple a. R o
By construction, £'(z,2) € MD-Valid(P), and thus, £'(z, z) is valid for S 1 F. _ R
We know that &” 1P =E&" 1S 1 F for every £’ € MD-Valid(P), and thus, " 1 P=E"1S1F

~

for every £” € MD-Valid(P). In particular, for the polynomial p/(i) there exists ig such that

fj(@ a) = |f£’(?,z) 1 ﬁ(% a,j) - fg/(z7z) 187 ﬁ(la a,j)|
1
p'(i)

for every i, tuple @, and j, where the first equality is by (5), (6), and the definition of f;(, 3)
This concludes the proof of Lemma 38

Just as in Section 9.1, by Corollary 22, this lemma immediately carries over to other variants
of strong simulatability and strong black-box simulatability. Given that the P; are network pre-
dictable, by Corollary 28 and Lemma 33, the lemma also holds for universal composability /weak
black-box simulatability.

Corollary 39. Lemma 38 is also true if the version of strong simulatability used in the lemma is
replaced by

1. Any of the security notions in the class SS/SBB (see Corollary 22),

2. Any of the security notions in the class UC/WBB,,, (see Corollary 23) given that the P;

are network predictable and the non-simple SID version of Pj is used. In case Pj is initially
network sending, the simple SID version of P; may be used as well.

As already mentioned in Section 9.1, even though one can proof the composition theorem also
for versions of security notions not equivalent to strong simulatability, such as the security notions

in UC/WBB_,,,, the point here is that one does not have to do so for equivalent security notions.

9.3 The Composition Theorem
Putting Lemma 36 and 38 together, we immediately obtain the following composition theorem.

Theorem 40. Let R be the set of all closed reqular context expressions and MD be the set
of all (possibly open) master decision context expressions. Let Pi,...,Pp,Fi,...,Fr € R and
g1(n),...,qc(n) > 1 be polynomials such that for every j the following conditions are true:

1. ng(n) is environmentally valid for ngll(n) 1 P,Z’“(n).

2. .7-"]% @ s environmentally valid for f]qﬁl(n)] .]:]Zk(n)_
3. P]qj(n) and f]qj(n) are I0-compatible.
4. SSw,mp)(Pj, Fj)-

Then,

This is true independently of whether in P1™ the simple or non-simple SID version of P is used.

95

Just as for Lemma 36 and 38, these results immediately carry over to other security notions.

Corollary 41. Theorem 40 is also true if the version of strong simulatability used in the theorem
1s replaced by

1. Any of the security notions in the class SS/SBB (see Corollary 22),

2. Any of the security notions in the class UC/WBB,, (see Corollary 23) given that the P;
are network predictable and the non-simple SID version of P; is used. In case Pj is initially

network sending, the simple SID version of P; may be used as well.

Remark 42. Theorem 40 does not hold if the number of different processes P; and Fj is not a
constant k but a polynomial in the security parameter.

Strictly speaking, this situation cannot be described in SPPC since in SPPC we can only talk
about a polynomial number of processes of a constant number of different “types”. To illustrate
Remark 42, we extend SPPC in an ad hoc way.

Consider the infinite sequences Py, Po, ... and Fi,Fa,... of regular process expressions with
only 10 channels. Let the IO-channels be the input channel ¢ and the output channel ¢/. The
process expressions use the same channel names but the jth process expression assumes a message
to start with 7 and outputs messages that start with j.

We define
Pj = in(cj, (j, x)).out(c}, (4, 0))
and
Fj = in(cj, (4, 2)).out(c}, (7, Tj))
where the C-term T} returns 0 if the security parameter ¢ satisfies ¢ > j, and 1 otherwise.
Let !3(:101) P; denote the process expression where ('3:101) Pt =Pt - || 73;1(;—)1‘. Note that
()

strictly speaking !?:1 P; is not a process expression in SPPC.

Obviously, SS(R7MD)(73J-, F;) for every j since if for the security parameter ¢ we have ¢ > j, then
P; and F; behave exactly in the same way.

However, SS(R,MD)(!?:ﬂDj, !;»1:1.7:]') is not true: Since P; and F; do not have network channels,
we do not need to consider a simulator for !;‘:1.7-"j since such a simulator would not have external
channels, and thus, would never be active. Thus, SS(g mD) (!;‘:173]', !;»1:1.7:]') implies that £ 1 17, P; =
& 117, F; for every & € MD-Valid(!}_,P;). However, an environment £ can distinguish between
!?:173]- and !;1:1.7:]' by sending a message to the ith process. If the answer is 0, then £ interacts with
I"_1P; and otherwise with I7_; 7. Formally,

& = in(start, z).(out(c,T) || in(c, t=p).out(decision, 1) + in(c, t4o).out(decision, 0)

where the C-term T returns (i, €) if invoked with the security parameter . The M-term t—_y accepts
the input iff it is of the form (i,0) where ¢ is the security parameter. Analogously for the M-term
tzo0. Obviously, €115, P; & 117, F;.

Remark 43. Backes et al. [4] prove a composition theorem for a non-uniform set of systems which
in particular includes processes of the form !?Sl)Pj. As the above example shows, in their com-
position theorem one therefore has to make additional assumptions not present in Theorem 40 or
Canetti’s composition theorem [9]. Also, their composition theorem is proved for black-box simu-
latability only. Since in their model, black-box simulatability does not imply universal composability,
the theorem does mot immediately carry over to universal composability.

o6

10 Conclusion

We have carried out a thorough study of the relationships among various notions of simulation-based
security, identifying two properties of the computational model that determine equivalence between
these notions. Our main results are that all variants of SS (strong simulatability) and SBB (strong
black box simulatability) are equivalent, regardless of the selection of the master process, and they
imply UC (universal composability) and WBB (weak black box simulatability). Conditions UC
and WBB are equivalent as long as the role (master process or not) of the environment is the
same in both. However, the variant of UC in which the environment may be a master process
(as in [4,9]) is strictly stronger than the variants in which the environment must not assume this
role (as in [27]). In addition, the weaker forms of WBB do not imply SS/SBB. Finally, we prove a
necessary and sufficient condition for UC/WBB to be equivalent to SS/SBB, based on the ability to
define forwarders. These results all show that the relationship between universal composability and
black-box simulatability is more subtle than previously described. In particular, the composability
theorem of Canetti [9] does not necessarily imply that blackbox simulatability is a composable
security notion over any computational model in which the forwarding property is not satisfied.
Another technical observation is that making the environment the master process typically yields
a stronger security notion. Hence, we recommend that in subsequent developments of the various
models, the environment is always assigned the role of the master process.

Since our proofs are carried out axiomatically using the equational reasoning system developed
for SPPC, we are able to apply the same arguments to suitably modified versions of the alternative
computational models. We emphasize that our suggested modifications to the other systems are
motivated by the failure, in those systems, of simple equational principles. In particular, it seems
reasonable to adopt a buffer-free variant of PIOA.

While our study concentrates on models where the runtime of processes is bounded by a polyno-
mial in the security parameter, our results involving the issue of placements of the master process
should also carry over to models where the runtime of processes may depend on the number of
invocations and the length of inputs [8,18,21].

Acknowledgments: We thank Michael Backes, Ran Canetti, Birgit Pfitzmann, Andre Scedrov, and
Vitaly Shmatikov for helpful discussions.

References

[1] Martin Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In
28th ACM Symposium on Principles of Programming Languages, pages 104-115, 2001.

[2] Martin Abadi and Andrew D. Gordon. A bisimulation method for cryptographic protocol. In
Proc. ESOP 98, Lecture notes in Computer Science. Springer, 1998.

[3] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: the spi calculus.
Information and Computation, 143:1-70, 1999. Expanded version available as SRC Research
Report 149 (January 1998).

[4] M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for Secure
Reactive Systems. In Proceedings of the 1st Theory of Cryptography Conference (TCC 2004),
volume 2951 of Lecture Notes in Computer Science, pages 336-354. Springer, 2004.

o7

[5]

[6]

[10]
[11]

[12]

[13]

[14]

[15]

M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. Technical
Report 082, Eprint, 2004.

Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial fairness
and liveness. In Proceedings of 15th IEEE Computer Security Foundations Workshop, pages
160-174, Cape Breton, Nova Scotia, Canada, 2002.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. Reactively secure signature schemes.
In Proceedings of 6th Information Security Conference, volume 2851 of Lecture Notes in Com-
puter Science, pages 84-95. Springer, 2003.

R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. Technical report, Cryptology ePrint Archive, December 2005. Online available at
http://eprint.iacr.org/2000/067.ps.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symp. on the Foundations of Computer Science. IEEE, 2001.

Ran Canetti. Personal communication, 2004.

Ran Canetti and Marc Fischlin. Universally composable commitments. In Proc. CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 19-40, Santa Barbara, Cali-
fornia, 2001. Springer.

Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In Advances in Cryptology—EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 337-351. Springer, 2002.

Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 68-86.
Springer, 2003.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In Proc. ACM Symp. on the Theory of Computing,
pages 494-503, 2002.

A. Datta, R. Kiisters, J.C. Mitchell, and A. Ramanathan. On the Relationships Between
Notions of Simulation-Based Security. In J. Kilian, editor, Proceedings of the 2nd Theory of
Cryptography Conference (TCC 2005), volume 3378 of Lecture Notes in Computer Science,
pages 476-494. Springer-Verlag, 2005.

Anupam Datta, Ralf Kiisters, John C. Mitchell, Ajith Ramanathan, and Vitaly Shmatikov.
Unifying equivalence-based definitions of protocol security. In ACM SIGPLAN and IFIP WG
1.7, 4th Workshop on Issues in the Theory of Security, 2004. No formal proceedings.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

D. Hofheinz, J. Miiller-Quade, and D. Unruh. Polynomial Runtime in Simulatability Def-
initions. In 18th IEEE Computer Security Foundations Workshop (CSEW-18 2005), pages
156-169. IEEE Computer Society, 2005.

o8

[19] D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In J. Kilian, editor,
Theory of Cryptography, Proceedings of TCC 2005, volume 3378 of Lecture Notes in Computer
Science, pages 86—-103. Springer-Verlag, 2005.

[20] D. Hofheinz and D. Unruh. Simulatable Security and Concurrent Composition. In Proceedings
of the 2006 IEEE Symposium on Security and Privacy, 2006. To appear.

[21] R. Kiisters. Simulation-based security with inexhaustible interactive turing machines. Sub-
mitted., 2006.

[22] Patrick D. Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Probabilistic
polynomial-time equivalence and security protocols. In Jeannette M. Wing, Jim Woodcock,
and Jim Davies, editors, Formal Methods World Congress, vol. I, number 1708 in Lecture
Notes in Computer Science, pages 776-793, Toulouse, France, 1999. Springer.

[23] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[24] Robin Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989.

[25] John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In Proc. 39th Annual IEEE Symposium
on the Foundations of Computer Science, pages 725-733, Palo Alto, California, 1998. IEEE.

[26] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic
polynomial-time calculus for the analysis of cryptographic protocols (preliminary report). In
Stephen Brookes and Michael Mislove, editors, 17th Annual Conference on the Mathematical
Foundations of Programming Semantics, Arhus, Denmark, May, 2001, volume 45. Electronic
notes in Theoretical Computer Science, 2001.

[27] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Appli-
cation to Secure Message Transmission. In IEEE Symposium on Security and Privacy, pages
184-200. IEEE Computer Society Press, 2001.

[28] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic
bisimulation and equivalence for security analysis of network protocols. Unpublished, see
http://www-cs-students.stanford.edu/~ajith/, 2004.

[29] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic
bisimulation and equivalence for security analysis of network protocols. In FOSSACS 200/ -
Foundations of Software Science and Computation Structures, March 2004. Summarizes results
in [28]; to appear.

A Proof of Theorem 19

We present the details of the proof of Claim I and Claim II within the proof of Theorem 19.

29

Claim I. In Figure 5 the simulator is formulated as a master process expression, where ¢(n) =
comsize(F)+comsize(A), cint and state are internal high channels, and “” means concatenation.
The M-term t—¢c; accepts sequences of channels of the form wcjw’cs where w is some sequence
which does not contain ¢} and w’ does not contain ¢3. The M-term t4¢, 5 accepts all other sequences.
Intuitively, if the state y of S is some sequence of the form wcjw’cs and S was triggered on start,
then this means that F was actived before, just read a message on c3 but did not return a message
on c. In other words, the bit F obtained from the environment was 0.

S = in(start,z). (out(start',x) || out(state,¢) ||

l(n) in(state,y).(

in(c}, z).(out(c1, 2) || out(state,y - c})) +

)
z).(out(cp, 2)

c3, send-req).(out(cs, send-req) || out(state,y - c3)) +
t

|| out(state,y - ch)) +

[N

(
in(ch,
in(
in(start, z). (ou (Cint,Yy) ||

in(cipt,t —ccs (out ¢2,0) || out(state,y - start))) +

in(Cint, el cy)- (out(start’, 2) || out(state, y - start))>

/—\/—\

)

Figure 5: The simulator S.

Let A’ be obtained from A by replacing every occurrence of start by start’. Next, we argue
that E1 AT P=E1 A 181 F for every £ € D-Env(A | P). Since A’ | S € M, this implies
UC(n,m,p) (P, F), and concludes the proof of Claim I.

First observe that A" 1 & € M-Adv4{p(F). Let £ € D-Env(A 1 P). We want to show that
ETA1TP=E1A 1S 1 F: The simulator S records in its state the sequence of channels on
which messages have been sent between A’ and F, and most of the time simply forwards messages
between A’ and F. The only exception is if S reaches a state y accepted by belcs after S received
a message on start. It is easy to see that S is in a state y (the value of y before reading a new
message) accepted by b=elcs iff F just received a message on ¢4 and then either returned a message
on ¢, or not. If a message is written on ¢, then S simply forwards it on ¢y, and otherwise, by the
definition of reductions, a message is written on start which is read by S. In the latter case, S
outputs 0 on ¢z because if after reading a message on ¢j, the process F did not return a message,
then this means that the bit F received from the environment was 0. From these arguments,

60

E1TATP=ETA 1S F easily follows.
Proof of Claim II. The environment &’ is defined as follows:

& = in(start,a).(
(
(

in(cin,xo).<out(co,x0) I

in(start,6).out(decision,0)> I

out(Cin, Tﬂip) I

in(cy, received).(out(c3, send-req) ||

in(cg,x1).out(decision, 1 ® xg @ z1)

)
)

)

where the C-term 713, generates a random bit. Obviously we have Prob[(£' 1 P)* " ~» 1] =1 for
every 1.

Now we show that Prob[(£ 1 &' 1 F)™% ~ 1] < 1/2 for every i, and thus, &' | P £ &' 18" 1 F.
The process (£’ | S’ 1 F)™ ¥ works as follows: First £ is activated (by reading a mesasge on
start), then it sends a random bit on ¢y to F, and expects to receive answer on c¢;. After F has
been activated, it outputs a bit on ¢}, which activates S’. If S’ does not send a message on ¢, &’
is activated (by reading a message on start) and outputs 0 on decision. So, we may assume that
S’ outputs received on ¢;. Then, £ is activated again and sends send-req on c3 to §’. Now,
if 8" activates F, the probability that F does not return output is 1/2 in which case & would be
activated and would output 0 on decision. Otherwise, S’ does not send a message on ¢ to F
but computes a bit by itself and sends it to £ (if it does not send a message on c3 to £, again &’
would be activated and output 0 on decision). The probability that this bit coincides with the one
generated by £, i.e., that 1 = 1@ zo® 1, is 1/2. This shows that Prob[(£' 1 S’ 1 F)* ¥~ 1] < 1/2
for every i, which concludes the proof of Claim II.

61

