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Abstract. We define and construct Independent Zero-Knowledge Sets
(ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and
for any x, proves non-interactively to a Verifier if x ∈ S or x /∈ S without
revealing any other information about S. In the independent ZKS proto-
cols we introduce, the adversary is prevented from successfully correlate
her set to the one of a honest prover. Our notion of independence in
particular implies that the resulting ZKS protocol is non-malleable.
On the way to this result we define the notion of independence for com-
mitment schemes. It is shown that this notion implies non-malleability,
and we argue that this new notion has the potential to simplify the design
and security proof of non-malleable commitment schemes.
Efficient implementations of ZKS protocols are based on the notion of
mercurial commitments. Our efficient constructions of independent ZKS
protocols requires the design of new commitment schemes that are si-
multaneously independent (and thus non-malleable) and mercurial.

1 Introduction

The notion of Zero Knowledge Sets (ZKS) was recently introduced by Micali,
Rabin and Kilian in [19]. In these protocols, one party (Alice) holds a secret
database Db which can however be accessed by another party (Bob) via queries.
When Bob queries the database on a key x, Alice wants to make sure that
nothing apart from Db(x) is revealed to Bob, who at the same time wants some
guarantee that Alice is really revealing the correct value.

Micali et al. presented a very ingenious solution to this problem, based on a
new form of commitment scheme (later termed mercurial commitments in [16]).
In a nutshell, Alice first commits to the entire database in a very succinct way,
and then when Bob queries a given key x, Alice answers with a “proof” πx that
Db(x) = y according to the original commitment. Their solution is efficient and
based on the discrete logarithm assumption.

A construction based on general assumptions, and allowing more general
queries on the database, was presented in [21]. However their construction re-
quired generic ZK proofs, based on Cook-Levin reductions and thus was less
efficient than [19]. The original construction in [19] has been generalized to hold
under various assumptions in [16] and [5].

Malleability. ZKS protocols guarantee simply that when Bob queries x, only
the value of D(x) is disclosed. However, this is only one of possible attacks
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that can be carried on a cryptographic protocol. It is well known that proving
confidentiality may not be sufficient, in an open network like the Internet, where
an Adversary can play the role of “man-in-the-middle” between honest parties.

First formalized in [11], the notion of malleability for cryptographic protocols
describes a class of attacks in which the adversary is able to correlate her values
to secret values held by honest players. In a ZKS protocol, for example, this
would take the form of the adversary committing to a set somewhat related to
the one of a honest player and then using this to her advantage.

The confidentiality property of ZKS protocols does not prevent such an attack
from potentially taking place. Indeed such an attack could be devised against the
protocol from [19]. What we need is an enhanced definition of security, to make
sure that databases committed by one party are independent from databases
committed to by a different party.

Non-Malleable Commitments. The first non-malleable commitment scheme
was presented in [11], but it required several rounds of communication. A break-
trough result came with a paper by Di Crescenzo, Ishai and Ostrovsky (DIO)
[9] which constructed a non-interactive and non-malleable commitment scheme.
Following the DIO approach several other commitment schemes were presented
with improved efficiency or security properties (e.g. [10, 8, 17, 13]).

The DIO approach has a very interesting feature: non-malleability is proven
by showing that the commitment satisfies a basic “independence” property
(though this property in not formally defined as such), and then it is shown
that this property implies non-malleability. All the commitment schemes that
followed the DIO approach have a proof of security structured in a similar way.
However the only “original” part of the proof in each scheme is the proof that
the commitment satisfies this “independence” property. The second part of the
proof is basically identical in all the proofs.

Our Contribution.

– We define the notion of Independent Zero Knowledge Sets which enforces the
independence of databases committed by various parties. We also define the
notion of independence for commitment schemes. This definition captures
the crucial notion of security in a DIO-like commitment.

Once this notion of independence is formalized we restate the second part
of the DIO proof as a formal theorem that shows once and for all that
independent commitments are non-malleable.

We believe that isolating the notion of independence has the potential to
simplify the design and security proof of non-malleable commitments in the
future.

– We present efficient independent ZKS protocols. These protocols are enabled
by the efficent constructions of new commitment schemes that are simulta-
neously independent (and thus non-malleable) and mercurial.

– Finally we define various notions of non-malleability for ZKS protocols. We
then ask if the DIO theorem (that independence implies non-malleability for
commitments) holds for ZKS protocols as well. Surprisingly the answer is not



that simple. We show under which conditions independent ZKS protocols are
also non-malleable.

Preliminaries. In the following we are going to need several cryptographic
tools and assumptions, with which we assume the reader is familiar. They are
however recalled in Appendix A.

2 Zero-Knowledge Sets

ZKS Definition. An elementary database Db is a subset of {0, 1}∗ × {0, 1}∗

such that if (x, v) ∈ Db and (x, v′) ∈ Db then v = v′. With [Db] we denote the
support of Db, i.e. the set of x ∈ {0, 1}∗ for which ∃v such that (x, v) ∈ Db. We
denote such unique v as Db(x); if x /∈ [Db] then we also write Db(x) = ⊥. Thus
Db can be thought of as a partial function from {0, 1}∗ into {0, 1}∗.

In a ZKS protocol we have a Prover and Verifier: the Prover has as input a
secret database Db. The Prover runs in time polynomial in |[Db]| (the cardinal-
ity of the support) and the number of queries, while the Verifier runs in time
polynomial in the maximal length of x ∈ [Db], which we assume to be publicly
known. They also have a common input string σ, which can be a random string
(in which case we say that we are in the common random string model) or a
string with some pre-specified structure (in which case we say we are in the
common parameters model).

The Prover first commits in some way to the database Db. This commitment
string is then given as input to the Verifier. Then the Verifier asks a query x
and the Prover replies with a string πx which is a proof about the status of x in
Db. The Verifier after receiving πx outputs a value y (which could be ⊥) which
represents his belief that Db(x) = y, or bad which represents his belief that the
Prover is cheating.

A ZK Set protocol must satisfy completeness, soundness and zero-knowledge.
Informally completeness means that if Db(x) = y the Prover should always be
able to convince the verifier of this fact. Soundness means that no efficient Prover
should be able to produce a commitment to Db, a value x and two proofs πx, π′

x

that convince the Verifier of two distinct values for Db(x). Finally zero-knowledge
means that an efficient verifier learns only the values Db(x) from his interaction
with the Prover, and nothing else. In particular the Verifier does not learn the
values Db(x′) for an x′ not queried to the Prover (following [14] this is stated
using a simulation condition). A formal definition appears in Appendix B.

2.1 Mercurial Commitments

A mercurial commitment scheme [16] is a commitment with two extra properties:

1. On input a message m, the sender can create two kinds of commitments: a
hard and a soft commitment.

2. There are two kinds of openings: a regular opening and a partial opening or
teasing.



The crucial properties of a mercurial commitment are: (i) both hard and soft
commitments preserve the secrecy of the committed message (semantic security);
(ii) hard commitments are indistinguishable from soft ones; (iii) soft commit-
ments cannot be opened, but can be teased to any value (even without knowing
any trapdoor information); (iv) hard commitments can be opened or teased
only to a single value (unless a trapdoor is known). A formal definition from [5]
appears in Appendix C.

A construction of mercurial commitments was implicitly presented in [19] based
on discrete log. More constructions were presented in [16, 5], including one based
on general assumptions. Let us recall the discrete log construction and a new
one based on RSA1.

Mercurial Commitments based on Discrete Log. This commitment is
based on [1, 20]; the mercurial property was introduced in [19]. The public in-
formation is a cyclic group G of prime order q, where multiplication is easy and
the discrete log is assumed to be hard. Also two generators g, h for G.

To hard commit to M , choose ρ, R ∈r Zq: let hρ = gρh and commit using Ped-
Com with bases g, hρ i.e. compute C = gMhR

ρ . The hard commitment is hρ, C.
The opening is M, R, ρ and the verification of a hard commitment is to check
the above equations. To soft commit, choose ρ, R ∈r Zq: let hρ = gρ and commit
to 0 using Ped-Com with bases g, hρ i.e. compute C = hR

ρ . The soft commitment
is hρ, C Notice that in a soft commitment, one actually knows the discrete log
of hρ with respect to g, while in a hard-commitment computing such discrete
log is equivalent to computing logg h. Thus to tease the above soft commitment
to M ′, one produces R′ with R′ = R−M ′ρ−1 mod q. The verification of such a
teasing consists in checking that gM ′

hR′

ρ = C.

Mercurial Commitments based on RSA. This commitment is based on [6,
7]; the mercurial property is an original contribution of this paper. The public
information is an RSA modulus N , a prime e, such that GCD(e, φ(N)) = 1;
and s ∈R Z∗

N . To hard commit to M , choose ρ, R ∈R Z∗
N : let sρ = sρe mod N

and commit using RSA-Com with base sρ i.e. compute C = sM
ρ Re. The hard

commitment is sρ, C. The opening is M, R, ρ and the verification of a hard
commitment is to check the above equations. To soft commit, choose ρ, R ∈r

Z∗
N : let sρ = ρe and commit to 0 using RSA-Com with base sρ i.e. compute

C = Re. The soft commitment is sρ, C Notice that in a soft commitment, one
actually knows e-root of sρ, while in a hard-commitment computing such root is
equivalent to computing the e-root of s. Thus to tease the above soft commitment
to M ′, one produces R′ with R′ = Rρ−M ′

mod N . The verification of such a
teasing consists in checking that sM ′

ρ (R′)e = C mod N .

2.2 Constructing ZK Sets

Using any mercurial commitment it is possible to construct a ZKS protocol as
shown in [19].

1 This construction of mercurial commitments based on RSA was independently dis-
covered in [16].



Let l to denote the maximal length of an input x ∈ [Db]. As we said above
we assume this to be a publicly known value. The Prover uses a variation of a
Merkle tree [18]. The Prover builds a tree of height l and stores a commitment
to Db(x) in the x-leaf (notice that if x /∈ [Db] then Db(x) = ⊥). Then the Prover
stores in each internal node a commitment to the contents of its two children:
this is done by hashing the values of the two children using a collision-resistant
hash function and then committing to the resulting value. The final commitment
to Db is the value stored at the root. To prove the value of Db(x) the Prover just
decommits all the nodes in the path from the root to x (in particular this means
that he reveals the values stored at their siblings, but without decommitting
them), thus providing a Merkle-authentication path from the leaf to the root.
The Verifier checks this path by checking the all the decommitments are correct.

Unfortunately the above algorithm runs in time 2l, no matter what the size
of the database is. In order to have the Prover run in time polynomial in |[Db]|,
a pruning step is implemented as follows. First of all, we use mercurial com-
mitments, to compute the commitments. In the above tree, we consider all the
maximal subtrees whose leaves are not in [Db]. We store a soft-commitment in
the roots of those trees. The rest of the tree is computed as above, using the
hard commitments. Now the running time of the Prover is at most 2l|[Db]| since
it is only computing full authentication paths for the leaves inside Db.

The question is now how do you prove the value of Db(x). If x ∈ [Db] then
you just decommit (open) the whole authentication path from its leaf to the
root, as before.

Let x be the a query such that x /∈ [Db], i.e. Db(x) = ⊥. Let y be the
last node on the path from the root to x that has a commitment stored in it2.
We associate soft-commitments to the nodes on the path from y to x and their
siblings, including x. Then we compute an authentication path from the root to
x, except that we tease (rather than open) each commitment to the hash of the
commitment of the children. Notice that we can seamlessly do this from the root
to x. Indeed from the root to y these are either hard or soft commitments, and
we only tease the hard ones to their real opening. From y to the leaf those are
soft commitments that can be teased to anything.

A full detailed description of the protocol and its proof of security from [19,
16] is described in Appendix D.

3 Independent Zero-Knowledge Sets

Independent Commitments. As we said in the introduction, our starting point
was the DIO approach [9] to build non-malleable commitments. In order to prove
the non-malleability of their commitment scheme they first proved the following
property.

2 If x is the first query such that Db(x) = ⊥, then y is the root of the maximal subtree
that contains x, and such all its leaves are not in [Db]. However, as the Verifier asks
queries x /∈ [Db] we start “filling up” that subtree with commitments and so we may
need to go deeper in the tree to find the last commitment stored



Consider the following scenario: ℓ honest parties3 commit to some messages
and the adversary, after seeing their commitment strings, will also produce a
commitment value. We require that this string must be different from the com-
mitments of the honest parties (otherwise the adversary can always copy the
behavior of a honest party and output an identical committed value). At this
point the value committed by the adversary is fixed, i.e. no matter how the hon-
est parties open their commitments the adversary will always open in a unique
way.

In [9] this property is not formally defined but it is used in a crucial way in
the proof of non-malleability. We put forward a formal definition for it (presented
in Appendix E) and we say that such a commitment scheme is ℓ-independent. If
it is ℓ-independent for any ℓ (polynomial in the security parameter) we say that
is simply independent.

As mentioned in the Introduction, following the DIO approach, several other
non-malleable commitments were presented (e.g. [10, 8, 17, 13]). All these schemes
are independent according to our definition. Moreover their non-malleability
proofs all share the same basic structure: an “original” part which proves that
they are independent (once one formalizes the notion, as we did) – and a second
part (common to all proofs and which basically goes back to DIO [9]) that the
independence property implies non-malleability.

By formalizing the notion of independence we can then rephrase this second
part of the DIO proof as an independent theorem (see Appendix F where the
notion of ǫ-non-malleability for commitments is also recalled).

Theorem 1 (DIO [9]). If an equivocable commitment scheme is ℓ-independent

then it is (ℓ, ǫ)-non-malleable with respect to opening, for any ǫ. As a conse-

quence, if an equivocable commitment scheme is independent then it is ǫ-non-

malleable with respect to opening, for any ǫ.

3.1 Defining Independence for ZK Sets

Let us consider a man-in-the-middle attack for a ZK Sets protocol. In such an
attack, the Adversary would interact with the Verifier but while on the back-
ground is acting as a verifier himself with a real Prover. Of course we can’t
prevent the Adversary from relaying messages unchanged from the Prover to
the Verifier and vice versa. But we would like to prevent an adversary to commit
to a related database to the one committed by the real Prover and then manage
to convince the Verifier that Db(x) is a value different than the real one. When
we define independence for ZKS our goal will be to prevent this type of attacks.

A weak definition. A first approach is to treat ZKS protocols in a similar way
as commitments. Then the definition of independence would go as follows. The

3 To be precise in [9] only the case ℓ = 1 is considered, and suggested how to easily
extend it to constant ℓ. The case of arbitrary ℓ (polynomial in the security parame-
ter) is presented by Damg̊ard and Groth in [8] to construct reusable non-malleable
commitments.



adversary commits to a set after seeing the commitment of the honest prover,
but before making any queries about the set committed by the honest prover.
What we would like at this point is that the set committed by the adversary is
fixed, i.e. it will not depend on the answers that the honest prover will provide
on queries on his own committed set.

We call the above weak independence. This property is easily achieved by
combining any ZKS protocol with any independent commitment. A formalization
of this definition, the details and proof of this construction are in Appendix G.

A Stronger Definition. It may not be reasonable to assume that the ad-
versary does not query the honest provers before committing. Thus a stronger
definition of independence allows such queries. However once the adversary has
seen the value Db(x) of x in the database Db held by the honest prover, it can
always commit to a set which is related to Db by the mere fact that the adver-
sary knows something about Db (for example the adversary could committ to
Db′ where Db′(x) = Db(x)).

The idea is to make sure that the set committed by the adversary is inde-

pendent from the part of the honest prover’s set that the adversary has not yet

seen. Here is how we are going to formalize this.
Consider an adversary A = (A1,A2) which tries to correlate its database

to the one of a honest prover. A1 sees the commitments of the honest provers,
queries them (concurrently) on some values, and then outputs a commitment
of its own. A2 is given concurrent access to the provers to whom he can ask
several database queries while answering queries related to A1’s commitment.
We would like these answers to be independent from the answers of the honest
provers except the ones provided to A1 before committing.

In other wordsA1, after seeing the commitments Com1, . . . , Comℓ of ℓ honest
provers, does the following

– queries Comi on some set Qi of indices, which are answered according to
some database Dbi, and then

– outputs a commitment Com of its own.

We now run two copies of A2, in the first we give him access to provers that
“open” the Comi according to the databases Dbi; in the second instead we use
some different databases Db′i. However the restriction is that Db′i must agree

with Dbi on the set of indices Qi. At the end A2 outputs a value x and the
corresponding proof πx with respect to Com. We require that the database
value associated to x in the two different copies of A2 must be the same, which
implies that it is “fixed” at the end of the committing stage.

Of course we must rule out the adversary that simply copies the honest
provers, as in that case achieving independence is not possible (or meaningful).
Thus we require that A1 output a commitment Com different from the honest
provers’ Comi. A formal definition follows.

Given two databases Db, Db′ and a set of indices Q we define the operator
⊣ as follows: Db′ ⊣Q Db is the database that agrees with Db′ on all the indices
except the ones in Q where it agrees with Db.



We say that a ZKS protocol is ℓ-independent if the following property holds
(where Qi is the list of queries thatA1 makes to the oracle Sim2Dbi(·)(ωi, Comi)):

ZKS ℓ-independence For any adversary (A1,A2) and for any pair of ℓ-tuple
of databases Db1, . . . , Dbℓ and Db′1, . . . , Db′ℓ the following probability

Pr

















(σ, ω0)← Sim0(1k) ; (Comi, ωi)← Sim1(ω0) ∀ i = 1, . . . , ℓ ;

(Com, ω)← A
Sim2Dbi(·)(ωi,Comi)
1 (σ, ω) with Com 6= Comi ∀i ;

(x, πx)← A
Sim2Dbi(·)(ωi,Comi)
2 (σ, ω) ;

(x, π′
x)← A

Sim2
Db′

i
⊣Qi

Dbi(·)
(ωi,Comi)

2 (σ, ω) :
bad 6= V(σ, Com, x, πx) 6= V(σ, Com, x, π′

x) 6= bad

















is negligible in k.

The above notion guarantees independence only if the adversary interacts with
a bounded (ℓ) number of honest provers. We say that a ZKS protocol is inde-

pendent if it is ℓ-independent for any ℓ (polynomial in the security parameter).
In this case independence is guaranteed in a fully concurrent scenario where the
adversary can interact with as many honest parties as she wants.

The Strongest Possible Definition. A stronger definition allows A1 to
copy one of the honest provers’ commitments, but then restricts A2 somehow.
Namely, we say that either Com 6= Comi for all i, or if Com = Comi for some
i, the answer of A2 must be “fixed” on all the values x which she does not ask
to the ith prover. We call this strong independence.

We say that a ZKS protocol is strongly ℓ-independent if the following property
holds, where Qi (resp. Q′

i) is the list of queries that A1 (resp. A2) makes to the

oracle Sim2Dbi(·)(ωi, Comi):

ZKS strong ℓ-independence For any adversary (A1,A2) and for any pair of
ℓ-tuple of databases Db1, . . . , Dbℓ and Db′1, . . . , Db′ℓ the following probability

Pr





















(σ, ω0)← Sim0(1k) ; (Comi, ωi)← Sim1(ω0) ∀ i = 1, . . . , ℓ ;

(Com, ω)← A
Sim2Dbi(·)(ωi,Comi)
1 (σ, ω) ;

(x, πx)← A
Sim2Dbi(·)(ωi,Comi)
2 (σ, ω) ;

(x, π′
x)← A

Sim2
Db′

i
⊣Qi

Dbi(·)
(ωi,Comi)

2 (σ, ω) :
bad 6= V(σ, Com, x, πx) 6= V(σ, Com, x, π′

x) 6= bad AND
((Com 6= Comi ∀i) OR (∃i : Com = Comi AND x /∈ Q′

i))





















is negligible in k.

Again we say that a ZKS protocol is (strongly) independent if it is (strongly)
ℓ-independent for any ℓ (polynomial in the security parameter).

Remark: Notice that because we need to open the same database commitment
according to two different databases, the definition is stated in terms of the
simulated provers. But since simulated executions are indistinguishable from



real ones, we get that the independence property holds in real life too, in the
sense that no matter how the honest provers open their committed database
values, the adversary’s openings are fixed.

This is the reason why we restrict the database Db′i to agree with Dbi on
the queries that were asked by the adversary before committing. In our proofs
of security this requirement does not matter4. But the simulated execution is
indistinguishable from the real one only if the answers are consistent. Thus after
A1 has seen a given value for Dbi(x), we need to make sure that in both copies
of A2 the same value appears for Dbi(x), in order to make the simulated run
indistinguishable from a real one.

3.2 Constructing Independent ZKS

In this section we show how to modify the original protocol presented in [19]
(recalled in Section 2.2) using a different type of commitment which will yield
strong independence. This new commitment schemes that we introduce are si-
multaneously independent and mercurial.

Strong 1-Independence Based on Discrete Log The starting point of this
protocol is Pedersen’s commitment, modified as in [19] to make it mercurial.
In order to achieve independence we modify the commitment further, using
techniques inspired by the non-malleable scheme in [10]. We are going to describe
the protocol that achieves strong independence and later show how to modify it
if one is interested in just independence.

DLSI-ZKS

– CRS Generation. On input 1k selects a cyclic group G of order q, a k-
bit prime, where the discrete logarithm is assumed to be intractable and
multiplication is easy. It also chooses three elements g1, g2, h ∈R G. Finally
it selects a collision-resistant function H with output in Zq. The CRS is
σ = (G, q, g1, g2, h, H)

– Prover’s Committing Step. On input Db and the CRS σ. Choose a key pair
sk,vk for a signature scheme. Let α = H(vk) and gα = gα

1 g2. Run the prover’s
committing step from [19] on Db and the mercurial commitment defined by
σα = (G, q, gα, h) to obtain Com, Dec. Output Com, vk.

– Prover’s Proving Step. On input x compute πx with respect to σα, Com, Dec
using the prover’s proving step from [19]. Then output Com, πx and sigx a
signature on (Com, x) using sk.

– Verifier. Check that sigx is a valid signature of (Com, x) under vk; if yes, com-
pute α = H(vk) and gα = gα

1 g2 and run the [19] Verifier on (σα, Com, x, πx),
otherwise output bad.

4 I.e. the adversary would not be able to output (x, πx, π′

x) such that V outputs dif-
ferent values for Db(x) depending on which proof, πx or π′

x, is provided, even if Db′

does not agree with Dbi on the set Qi.



Theorem 2. Under the discrete logarithm assumption, DLSI-ZKS is a strong

1-independent zero-knowledge set protocol.

Proof appears in Appendix H. Also ℓ-independence can be obtained by standard
replication techniques.

Strong Independence under the Strong RSA Assumption In this section
we are going to use the mercurial RSA commitment described in Section 2.1. In
order to achieve independence we are going to modify it further using techniques
inspired by [8, 13] and use it inside MRK-ZKS. The modifications required to
prove independence require the Strong RSA assumption. Here is a description
of the protocol.

SRSA-ZKS

– CRS Generation. The key generation algorithm chooses a k-bit modulus, N
as the product of two large primes p, q and a random element s ∈R Z∗

N . Also
selects a collision-resistant hash function H which outputs prime numbers5

> 2k/2. Notice that such primes are relatively prime to φ(N). The CRS is
σ = (N, s, H)

– Prover’s Committing Step. On input Db and the CRS σ. Choose a key pair
sk,vk for a signature scheme. Let e = H(vk). Run the Prover’s committing
step from [19] on Db and the mercurial commitment defined by σe = (N, s, e)
to obtain Com, Dec. Output Com, vk.

– Prover’s Proving Step. On input x compute πx with respect to σe, Com, Dec
using the Prover’s proving step from [19]. Then output Com, πx and sigx a
signature on (Com, x) using sk.

– Verifier. Check that sigx is a valid signature of (Com, x) under vk; if yes,
compute e = H(vk) and run the [19] Verifier on (σe, Com, x, πx), otherwise
output bad.

Theorem 3. Under the Strong RSA Assumption, SRSA-ZKS is a strong inde-

pendent zero-knowledge set protocol.

Proof appears in Appendix I.

If one is interested in simple independence (rather than strong independence)
both of the above protocols can be simplified by using more efficient one-time
signature schemes for vk and just sign Com. It is easy to verify that the proof goes
through. Even more efficiently, to obtain independence, one can use a message
authentication code in place of a signature scheme (the original idea in [10]).
Informally, the basic idea is to commit to a random MAC key a using a basic
trapdoor commitment: call this commitment A. Set α = H(A) (resp. e = H(A))
and now use it the same way we used α (resp. e) in DLSI-ZKS (resp. SRSA-ZKS).
To answer a query x, open A as a, produce πx and a MAC of Com under a.
However note that both these variations (one-time signatures or MAC) cannot

5 We can use the techniques from [13] to implement this step efficiently.



be used for strong independence as we need to sign several messages (C, xi) with
the same key.

It is possible to improve the efficiency of SRSA-ZKS by choosing N as product
of two safe primes. In this case it is sufficient to use a collision-resistant hash
function H that outputs small primes (smaller than 2k/2−1), making all the
computations much faster.

It is also possible to obtain strong independence under the newly introduced
Strong DDH assumption over Gap-DDH groups [3]. This approach uses the
multi-trapdoor commitment from [13] based on this assumption, modified it to
make it both mercurial and independent. Details will appear in the final version.

4 Independence versus Non-malleability for ZKS

In the previous section we showed that independence implies non-malleability
for commitments. Does this implication extend to the case of ZKS protocols as
well? The answer, surprisingly, is not that simple.

The first thing to clarify, of course, is a definition of non-malleability for ZKS
protocols. Informally in the commitment case [11], a non-malleable commitment
satisfies the following property. An adversary A is fed with a commitment to a
message m, and she outputs another commitment to a message m′. If Amanages
to commit to a message m′ related to m then there is another machine A′ that
outputs a commitment to m′ without ever seeing a commitment to m. So in other
words the commitment is not helping A in committing to related messages.

Our definition of non-malleability for ZKS follows the same paradigm. Except
that, as in the case of independence, we have to deal with the fact that a ZKS
commitment is a commitment to a large string and that the adversary may
receive partial openings before creating her own commitment. For this reason
we present three separate definitions, each stronger than the previous one and
investigate their relationship with our notion of ZKS independence.

The discussion in this section is informal and intuitive. Formal definitions
and proofs appear in Appendix J.

ZKS Weak Non-Malleability. A first attempt would be to consider ZKS
protocols simply as commitments to large strings. In other words, as in the case
of weak ZKS independence, the adversary commits before querying the honest
provers. In this case the definition of ZKS non-malleability would be basically
identical to non-malleability for commitment schemes.

Thus the proof of the following Corollary is basically identical to the proof
of Theorem 1.

Corollary 1. If a ZKS protocol is weakly ℓ-independent then it is weakly (ℓ, ǫ)-
non-malleable with respect to opening.

ZKS Non-Malleability. We can strengthen the above definition by allow-
ing the adversary to query the committed databases before producing its own
commitment, which must be different from the ones of the honest provers.



However now we are faced with a “selective decommitment problem” [12].
A ZKS commitment is a commitment to a large set of strings: by allowing the
adversary to query some keys in the database we are basically allowing a selective
decommitment of a subset of those strings (some points in the database).

Thus to obtain this form of ZKS non-malleability we need a commitment
scheme which is secure against the selective decommitment problem. We do not
know if independent or non-malleable commitments are secure in this sense.
Universally composable (UC) commitments [4], on the other hand, are secure in
the selective decommitment scenario.

However to obtain an efficient ZKS protocol, such UC commitments would
have to be used inside the [19] construction, and thus would have to be mercurial
as well. Unfortunately we do not know any commitment that is simultaneously
mercurial and UC (not to mention also non-interactive).

Another approach is to restrict the distribution of the committed databases.
Under this assumption we can prove that independence will suffice.

Let IDB be the family of distributions over databases where each distribu-
tion can be efficiently sampled conditioned on the value of some points in the
database. In other words a distribution DB ∈ IDB if after sampling Db ∈ DB
and a set of points xi it is possible to efficiently sample Db′ ∈ DB such that
Db, Db′ agree on xi. An example of such a class of distributions is the one in
which the value of each element in the database is independent from the others.

Theorem 1 can easily be extended to the following.

Theorem 4. If a ZKS protocol is ℓ-independent then it is (ℓ, ǫ)-non-malleable

with respect to opening, with respect to the distribution class IDB.

ZKS Strong Non-Malleability. In this definition we allow the adversary
to copy one of the commitments, of the honest provers. Now recall that when
she is queried on her committed database, she can query the honest provers
in the background on their databases. Since she copied the (say) ith committed
database, a distinguisher can always detect a correlation between the adversary’s
and Pi’s answer to the same query x. But we require that this must be all that the
distinguisher can see. In other words, the distinguisher cannot see any correlation
between the answers of A and the answers of all the other Pj ’s; and cannot see
any correlation between the answers of A and the answers of Pi unless it queries
them on the same value.

Theorem 1 can also easily be extended to the following.

Theorem 5. If a ZKS protocol is strongly ℓ-independent then it is strongly (ℓ, ǫ)-
non-malleable with respect to opening, with respect to the distribution class IDB.

5 Open Problems

Can we build independent ZKS protocol based on general assumptions (the ones
in this paper are based on either discrete log, Stong RSA or Strong DDH). A suf-
ficient condition would be to build a commitment which is both independent and



mercurial under general assumptions (the mercurial commitments from general
assumptions in [16, 5] are not known to be independent).

Can we remove the restriction on the distribution of the input databases
when we prove that independence implies non-malleability for ZKS? Here too a
sufficient condition would be to build UC mercurial commitments.

In the case of commitments, is independence strictly stronger or equivalent
to non-malleability?
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A Preliminaries

This section contains descriptions of all the preliminary tool we need for our
results. It is quite long and can be skipped by readers familiar with the concepts
described in here.

In the following we say that function f(k) is negligible if for every polynomial
Q(·) there exists an index kQ such that for all k > kQ, f(k) ≤ 1/Q(k).

In the course of the paper we will refer to probabilistic polynomial time
Turing machines as efficient algorithms.

Also if A(·) is a randomized algorithm, with a ← A(·) we denote the event
that A outputs the string a. With Pr[A1; . . . ; Ak : B] we denote the probability
of event B happening after A1, . . . , Ak.

A.1 Computational Assumptions

The Strong RSA Assumption. Let N be the product of two primes, N = pq.
With φ(N) we denote the Euler function of N , i.e. φ(N) = (p− 1)(q − 1). With
Z∗

N we denote the set of integers between 0 and N − 1 and relatively prime to
N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [22] states
that it infeasible to compute e-roots in Z∗

N . I.e. given a random element s ∈R Z∗
N

it is hard to find x such that xe = s mod N .
The Strong RSA Assumption (introduced in [2]) states that given a random

element s in Z∗
N it is hard to find x, e 6= 1 such that xe = s mod N . The

assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent e for which she will be able to compute
e-roots.

We now give formal definitions. Let RSA(k) be the set of integers N , such
that N is the product of two k/2-bit primes.

Assumption 1 We say that the RSA Assumption holds, if for all probabilistic

polynomial time adversaries A the following probability

Pr[ N ← RSA(k) ; e← Z∗

φ(N) ; s← Z∗
N : A(N, s, e) = x s.t. xe = s mod N ]



is negligible in k. We say that the Strong RSA Assumption holds, if for all

probabilistic polynomial time adversaries A the following probability

Pr[ N ← RSA(k) ; s← Z∗
N : A(N, s) = (x, e) s.t. xe = s mod N ]

is negligible in k.

The RSA Assumption can be strengthened to make it hold for a specific e, rather
than a randomly chosen one.

A more efficient variant of our protocols requires that N is selected as the product
of two safe primes, i.e. N = pq where p = 2p′ + 1, q = 2q′ + 1 and both p′, q′

are primes. We denote with SRSA(k) the set of integers N , such that N is the
product of two k/2-bit safe primes. In this case the assumptions above must be
restated replacing RSA(k) with SRSA(k).

Discrete Logarithm. Let G be a cyclic group of prime order q and let g be a
generator of G. This means that for any element y ∈ G, there exists an unique
x ∈ Zq such that y = gx in G. We say that the discrete logarithm is hard over
G if it is infeasible to compute such x when given as input G, q, g, y.

More formally, we assume the existence of an efficient istance generator I
that on input 1k outputs (G, g, q) where G is a cyclic group generated by g and
of prime order q where |q| = k.

Assumption 2 We say that the discrete logarithm assumption holds over I, if

for all probabilistic polynomial time adversaries A the following probability

Pr[ (G, g, q)← I(1k) ; x← Zq ; y ← gx : A(G, g, q, y) = x ]

is negligible in k.

A typical example of an istance generator is to select a random prime q of length
k and then search for a prime p such that q|(p − 1). The cyclic group G is the
subgroup of order q in Z∗

p .

A.2 Secure Signature Schemes

A secure signature scheme is a triple of algorithms (SG, Sig, Ver): SG is the key
generation algorithm which on input a security parameter outputs (sk,vk) the
signing/verification key pair; Sig is the (randomized) signature algorithm that on
input a message and sk outputs a signature; Ver is the verification algorithm that
on input a message/signature pair and vk accepts or rejects (always accepting
pairs that were generated by Sig using sk).

We are going to use signature schemes which are secure against chosen mes-
sage attack. Informally this means that the adversary is given the public key and
the signature on messages of her choice (adaptively chosen). Then it is infeasible
for the adversary to compute the signature of a different message. The following
definition is from [15].



Definition 1. (SG, Sig, Ver) is a secure signature if for every probabilistic poly-

nomial time forger F , the following

Pr

[

(sk, vk)← SG(1k) ; (M, sig)← FSig(sk,·)(vk) ;
Ver(M, sig, vk) = 1 and M was not asked to the oracle

]

is negligible in k.

A signature scheme is called one-time if the adversary F is limited to a single or-
acle query. One-time signatures can be constructed more efficiently than general
signatures since they do not require public key operations.

A.3 Commitment Schemes

A commitment scheme is the equivalent of an opaque envelope. It is a two stage
protocol: in the first part a sender commits to a message, and at the end of
this stage, nobody else has any information about the message. The second
stage is the opening stage, where the sender is bound to reveal the message he
committed to: in other words either he does not answer, or he can only answer
a single message, the one he committed to at the beginning.

More formally a (non-interactive) commitment scheme consists of the follow-
ing algorithms:

– KG, key generation algorithm. On input the security parameter 1k, it outputs
pk, the public key.

– Com, the commitment algorithm. On input pk and a message M and R
a random string in {0, 1}k, it computes [C(M), D(M)] = Com(pk, M, R).
C(M) is the commitment string and is the output, while D(M) is the opening
of C(M) and is kept secret.

– Ver, the verification algorithm. On input pk, a message M and two strings
C, D it outputs 1 or 0.

We require the following properties. Assuming pk is chosen according to the
distributions induced by KG:

Correctness For all messages M , if [C(M), D(M)] = Com(pk, M, R), then
Ver(pk,M, C(M), D(M)) = 1.

Secrecy Let [C(M), D(M)] = Com(pk, M, R). We require that for every two
messages M, M ′, the following distributions to be computationally indistin-
guishable: C(M) ≈ C(M ′).

Secure Binding Let A be an algorithm that on input pk wins if it outputs
strings C, M, D, M ′, D′ such that M 6= M ′, and Ver(pk,M, C, D) = Ver(pk,M ′, C, D′) =
1. Then for all efficient algorithms A the probability that A wins is negligible
in the security parameter.



Equivocable Commitments Informally an equivocable commitment is one
for which there exists a trapdoor that allows us to produce fake commitments
with a distribution which is computationally indistinguishable from the one of
honestly produced commitments. Knowledge of the trapdoor allows us to open
fake commitments in any desired way.

Formally, a (non-interactive) equivocable commitment scheme is a commit-
ment scheme as described above, except that

– The key generation algorithm KG, on input the security parameter 1k, out-
puts a pair pk, tk where pk is the public key and tk is called the trapdoor (or
secret key).

– There exists a fake commitment algorithm, FakeCom, that on input pk,tk
and R a random string in {0, 1}k, computes C = FakeCom(pk, tk, R).

– There exists an equivocation algorithm Equiv that opens a fake commitment
in any possible way given the trapdoor information. It takes as input the
key pair pk,tk, a fake commitment C, the random string R such that C =
FakeCom(pk, tk, R), and an arbitrary message M . It outputs D such that
Ver(pk,M, C, D) = 1.

– The Secrecy condition is modified as follows. Let [C(M), D(M)] = Com(pk, M, R).
We require that for every message M , the following distributions

C(M) ≈ FakeCom(pk, tk, R) and D(M) ≈ Equiv(pk, tk,C, R, M)

to be computationally indistinguishable6 even when the distinguisher is given
the trapdoor tk.

Trapdoor Commitments. Trapdoor commitments are a special type of equiv-
ocable commitments. In the case of trapdoor commitments, fake commitments
are exactly the same as real ones (the two distributions are identical) and the
secret information is not needed to create a fake commitment. A consequence of
this fact, is that trapdoor commitments are information-theoretically secret (a
property that may not hold for equivocable ones).

B Formal Definition of ZKS

A ZK Sets protocol is composed of the following algorithms:

– CRS, the common reference string generator algorithm, On input a security
parameter 1k it outputs σ ∈ {0, 1}k

c

for some constant c.
– P1, the committing step of the Prover. On input the CRS σ and a database

Db, P1 outputs [Com, Dec], the commitment/decommitment strings.
– P2, the proving step of the Prover. On input σ, Db, Com, Dec and x, P2

outputs πx.

6 Notice that the first condition implies that for any two messages M, M ′ the distribu-
tions C(M) and C(M ′) are computationally indistinguishable. The second condition
states that a real opening of a real commitment is indistinguishable from an equiv-
ocation of a fake commitment



– V, the Verifier. On input σ, Com, x, πx it outputs y ∈ {0, 1}∗ ∪ {⊥, bad}.
– Sim0,Sim1, Sim2, the simulators. Sim0 runs on input the security parameter

1k and outputs σ′ ∈ {0, 1}k
c

, and some internal state ω0. Sim1 runs on input
σ′, ω0 and outputs Com′ a commitment string and an update internal state
ω. Finally Sim2 runs on input σ′, Com′, ω and x ∈ {0, 1}∗. It has access to
an oracle Db(·) which returns the value Db(x) for some database Db. Sim2
returns π′

x.

The properties we require from these algorithms are the following:

Completeness For all databases Db and for all x

Pr

[

σ ← CRS(1k) ; [Com, Dec]← P1(σ, Db);
πx ← P2(σ, Db, Com, Dec, x) ; V(σ, Com, x, πx) = Db(x)

]

= 1

Soundness For all x and for all efficient algorithm P’ we have that the following
probability

Pr





σ ← CRS(1k) ; [Com, πx, π′
x]← P′(σ);

V(σ, Com, x, πx) = y ; V(σ, Com, x, π′
x) = y′;

y 6= y′





is negligible in k.
Zero-Knowledge For any efficient adversary A, and for all efficiently com-

putable7 databases Db, the outputs of the following experiments are indis-
tinguishable.

Real Experiment: σ ← CRS(1k) and [Com, Dec] ← P1(σ, Db). For i = 1 to
m: A(σ, Com, π1, . . . , πi−1) outputs xi and gets πi = P2(σ, Db, Com, Dec).
The output is [σ, x1, π1, . . . , xm, πm].

Simulated Experiment: (σ′, ω0)← Sim0(1k), (Com′, ω)← Sim1(ω0). For i =
1 to m: A(σ′, Com′, π′

1, . . . , π
′
i−1) outputs xi and gets π′

i = Sim2Db(σ′, ω, xi).
The output is [σ′, x1, π

′
1, . . . , xm, π′

m].

C Formal Definition of Mercurial Commitments

The following definition is due to Catalano et al. [5]:

– KG, the key generation algorithm. On input the security parameter 1k, it
outputs a key pair pk,tk, where pk is the public key which is put in the
public record, while tk is kept secret.

7 The original definition in [19] did not restrict Db to be efficiently computable, but
in [16] it is pointed out that only statistical ZK can be achieved for those databases.
We follow the definition in [16], but remind the reader that it is possible to prove this
condition for all databases if one is proving statistical ZK. While the construction of
ZK Sets from generic mercurial commitment achieves only computational ZK, the
ones based on the specific number theoretic assumptions achieve statistical ZK, thus
can be proven for any database.



– HardCom, the hard commitment algorithm. On input pk and a message M it
computes [C(M), D(M)] = HardCom(pk, M, R) where R is a random string
in {0, 1}k. As before C(M) is the commitment string and D(M) the opening.

– SoftCom, the soft commitment algorithm. On input pk it computes C =
SoftCom(pk, R) where R is a random string in {0, 1}k.

– Tease, the (randomized) teasing algorithm. On input pk, M, C and R, where
either [C, D] = HardCom(pk, M, R), or C = SoftCom(pk, R) it outputs a
string τ .

– Ver, the hard verification algorithm. On input pk, a message M and two
strings C, D it outputs 1 or 0.

– VerTease, the tease verification algorithm. On input pk, a message M and
two strings C, τ it outputs 1 or 0.

We require the following properties: the verification algorithm to be correct, that
hard commitments preserve the secrecy of the message, that soft commitments
be indistinguishable from hard ones, that hard commitments can be opened or
teased in an unique way.

Below we describe more formally the above conditions. Assume pk is chosen
according to the distributions induced by KG.

Correctness For all messages M , if [C(M), D(M)] = HardCom(pk, M, R), then
Ver(pk,M, C(M), D(M)) = 1.
Also, for every message M , if C = SoftCom(pk, R), and if τ = Tease(pk,M, C, R)
then VerTease(pk, M, C, τ) = 1.

Secure Binding Let A be an algorithm that on input pk wins if it outputs
strings C, M, D, M ′, D′ such that M 6= M ′, and Ver(pk,M, C, D) = Ver(pk,M ′, C, D′) =
1 or Ver(pk,M, C, D) = VerTease(pk,M ′, C, D′) = 1.
Then for all efficient algorithms A the probability that A wins is negligible
in the security parameter.

Secrecy We define this condition differently that [16] but the definition is equiv-
alent. There exist two algorithms FakeCom and Equiv, both taking as input
the trapdoor tk: the first prepares “fake” commitments8, while the second
opens or teases fake commitments to any possible message.

– FakeCom takes as input pk,tk and a random string R and outputs a fake
commitment C = FakeCom(pk, tk, R);

– Equiv takes as input pk,tk,C, R, such that C = FakeCom(pk, tk, R), a
message M and either Open or Tease. It outputs a string D.

Let [C(M), D(M)] = HardCom(pk,M, R). We require the following distribu-
tions to be (computationally) indistinguishable even when the distinguisher
is given the trapdoor tk:
– for any message M , C(M) ≈ FakeCom(pk, tk, R);
– for any message M , D(M) ≈ Equiv(pk, tk, C, R, M, Open);
– SoftCom(pk,R) ≈ FakeCom(pk, tk, R);

8 Note the important difference between fake and soft commitments: to prepare soft
commitments one does not need the trapdoor tk.



– Tease(pk,M, C, R) ≈ Equiv(pk, tk, C, R, M, Tease);

The above basically says that hard and soft commitments are indistinguishable
(since they are indistinguishable from fake commitments); for the same reason
hard commitments preserve the secrecy of the message. Finally we are also re-
quiring that the equivocations of fake commitments must be indistinguishable
from either the opening or the teasing of hard/soft commitments (in particular
this implies that the teasing of a hard commitment is indistinguishable from the
teasing of a soft one).

D Detailed Description and Proof of MRK-ZKS

We refer to the protocol from [19] as MRK-ZKS = (MRK-CRS,MRK-P1,MRK-
P2,MRK-V). A full detailed description follows.

For each node y in a binary tree denote with left(y), right(y), sib(y) the left
child, the right child and the sibling of y respectively.

MRK-ZKS = (MRK-CRS,MRK-P1,MRK-P2,MRK-V)

– MRK-CRS: the CRS is set to the public key pk for a trapdoor mercurial
commitment scheme and H a collision resistant hash function.

– MRK-P1, the committing step of the prover works as follows. Build a tree of
height l. Compute the subtree T as follows: let T ′ be the subtree composed
by all the leaves x such that x ∈ [Db], and the path connecting x to the root.
Let sib(T ′) be set of nodes y such that sib(y) ∈ T ′. Then T = T ′ ∪ sib(T ′).
For each leaf x ∈ T , if x ∈ [Db] compute [Cx, Dx] = HardCom(pk,Db(x), rx)
for a random string rx, and store Cx in leaf x. If x /∈ [Db] compute Cx =
SoftCom(pk,rx) for a random string rx and store it in leaf x.
Now for each level i in the T , starting from level l − 1 (the parent of the
leaves) up to level 1 (the root) do the following. For each node y at level i, if y
has children then compute [Cy, Dy] = HardCom(pk,H(Cleft(y), Cright(y)), ry)
for a random ry and store Cy in y. If y has no children in T then compute
Cy = SoftCom(pk,ry) for a random string r and store it in y.
The commitment Com output by P1 is Croot. The decommitment informa-
tion Dec is the collection of Cy, ry used to compute the information at the
internal nodes.

– MRK-P2, the proving step of the Prover, works as follows.
On input x ∈ [Db], the proof πx consists of Db(x) and the set of values
[Cy, Dy] for each node y in the path from the root to x (including x), and
the values Cz for each node z such that sib(z) is in the path.
On input x /∈ [Db], let v be the last node on the path from the root to x
that has a something stored in it. P2 augments the tree by computing for
each node y such that y or sib(y) is in the path from v to x (including x) the
value Cy = SoftCom(pk,ry) for a random string ry and storing it in node y.
Let τx = Tease(pk,⊥, Cx, rx). Also for each node y on the path from the root
to x let τy = Tease(pk,H(Cleft(y), Cright(y)), Cy, ry).



Then the proof πx consists of the set of values [Cy , τy] for each node y in
the path from the root to x (including x), and the values Cz for each node
z such that sib(z) is in the path.

– MRK-V, the verifier works as follows. If Croot in πx is different than Croot in
Com it rejects immediately. Otherwise does the following.
On input x, πx such that x ∈ [Db], let Db′(x) be the claimed value of Db(x)
contained in πx. Then check that Ver(pk,Db′(x), Cx, Dx) = 1. Also check
that for each node y in the path from the root to x (x not included) the
following holds Ver(pk,H(Cleft(y), Cright(y)), Cy, Dy) = 1. If so output the
value Db(x) = Db′(x) otherwise output bad.
On input x, πx such that x /∈ [Db]. Check that VerTease(pk,⊥, Cx, τx) = 1.
Also check that for each node y in the path from the root to x (x not
included) the following holds VerTease(pk,H(Cleft(y), Cright(y)), Cy , τy) = 1.
If so output Db(x) = ⊥ otherwise output bad.

Proof. Completeness should be obvious.
Soundness can be argued as follows. Assume there exists a Prover who is

able to find x, πx, π′
x such that the Verifier on input x, πx outputs Db(x) = y

and on input x, π′
x outputs Db(x) = y′ with y 6= y′. If at least one of the y, y′ is

different from ⊥ then this contradicts the Secure Binding condition of mercurial
commitments. Indeed look at the nodes y on the path from the root to x and
consider the highest node in which the two proofs agree on the value of Cy but
its openings are different. Such a node must exist, because the openings of Cx in
the two proofs are different, but the last commitment Croot must be the same
in both proofs. Then the malicious prover has created a commitment Cy which
can either be opened in two distinct ways or opened in one way and teased in
another.

We now argue Zero-Knowledge by defining the simulators. MRK-Sim0 sets
up the CRS so that it knows the matching tk for the public key pk. Then MRK-
Sim1 using tk publishes a fake commitment Croot = FakeCom(pk, tk,rroot).

For each query x, MRK-Sim2 obtains Db(x) from his oracle and then simulates
the Prover by just equivocating using tk. More specifically MRK-Sim2 performs
the following steps:

– Let v be the highest node on the path from the root to x where there is
something stored in the tree. If v = x skip the next step.

– For each node y such that y or sib(y) is in the path from x to v, if y is empty
compute Cy = FakeCom(pk, tk,ry) and store it in y.

– If Db(x) = ⊥ then compute τy for each y in the path from the root to x as
the real Prover using Equiv (in “Tease” mode).

– If Db(x) 6= ⊥, use tk to run the algorithm Equiv (in “Open” mode) to compute
the appropriate Dy for each node y in the path from the root to x. If a Dy

has been computed before, use that.

Why is this view indistinguishable? Clearly the simulated CRS is equal to the real
one. Also the commitment Croot is indistinguishable from the real CRS,Croot,
by the Secrecy property of mercurial commitments.



The secrecy condition also guarantees that a simulated proof for a query x
is indistinguishable from a real one, since simulated proofs are computed using
the algorithm Equiv, whose output is indistinguishable from the real openings
and teasings in real proofs.

E Independent Commitments

In this paper we focus on the notion of independence with respect to opening

where it is required that the value opened by the adversary to be independent
from the values opened by the honest senders. In the final paper we also present
the notion of independence with respect to commitment (where independence is
enforced at the time of adversary produces the commitment string).

For simplicity our definitions are presented in the common reference string
model (in which a “public key” for the commitment scheme is generated in some
way and put it in a public record to be used by all parties). Indeed all the known
non-interactive non-malleable commitment schemes are in this model.

Our notion of independence can be defined only for equivocable commitment
schemes, a concept that we have recalled in Appendix A and which includes
the case of trapdoor commitments. Formally, we use the fact that our commit-
ment schemes are equivocable, by feeding the adversary with fake commitments
(which are indistinguishable from real ones) and then require that the adver-
sary’s behavior is the same no matter how we open them. A formal definition
follows.

We say that an equivocable commitment scheme KG, Com, Ver, FakeCom,
Equiv is ℓ-independent w.r.t. opening if the following condition is satisfied.

ℓ-independence For any adversary (A1,A2) and any pair of ℓ-tuple of messages
[M1, . . . , Mℓ], [M ′

1, . . . , M
′
ℓ], the following probability is negligible in k:

Pr

























(pk, tk)← KG(1k) ; R1, . . . , Rℓ ← {0, 1}k ;
Ci ← FakeCom(pk, tk,Ri) ;

(ω, C)← A1(pk, C1, . . . , Cℓ) with C 6= Ci ∀i ;
Di ← Equiv(pk, tk, Ci, Ri, Mi) ;
D′

i ← Equiv(pk, tk, Ci, Ri, M
′
i) ;

M, D ← A2(pk, ω, M1, D1, . . . , Mℓ, Dℓ) ;
M ′, D′ ← A2(pk, ω, M ′

1, D
′
1, . . . , M

′
ℓ, D

′
ℓ) :

M 6= M ′ and Ver(pk,M, C, D) = Ver(pk,M ′, C′, D′) = 1

























Let’s first translate the meaning of the Definition in plain English. Consider the
following process. Feed A1 with ℓ fake commitments, and wait for it to output
a commitment of her own. At this point split the process in the two separate
processes where we feed A2 with distinct openings of the ℓ commitments. Then
the probability that A2 produces two distinct and correct openings is negligible.
Thus if A2 decommits to a value, this value is unique.

We say that an equivocable commitment scheme is independent if it is ℓ-
independent for any ℓ (polynomial in the security parameter).



F Proof of Theorem 1

For simplicity our definitions are presented in the common reference string model
(in which a “public key” for the commitment scheme is generated in some way
and put it in a public record to be used by all parties). Indeed all the known
non-interactive non-malleable commitment schemes are in this model. First we
recall the definition of non-malleability for commitments, and then we prove our
main Theorem.

F.1 The definition of Non-Malleable Commitments

This section recalls the definition of non-malleability with respect to opening
from [11, 9].

The informal, intuitive, security condition for non-malleable commitments, is
that the adversary should not be able to commit to messages that are somewhat
related to messages which are contained in commitments produced by honest
parties. We are going to parameterize the definition by a value ℓ which is the
number of commitments that the adversary sees from the honest parties9.

Think of the following game. The adversary, after seeing a tuple of ℓ commit-
ments produced by honest parties, outputs his own tuple of committed values.
At this point the honest parties decommit their values and now the adversary
tries to decommit his values in a way that his messages are related to the honest
parties’ ones. Intuitively, we say that a commitment scheme is ℓ-non-malleable
(with respect to opening) if the adversary fails at this game.

However the adversary could succeed by pure chance, or because he has
some a priori information on the distribution of the messages committed by the
honest parties. So when we formally define non-malleability for commitments
we need to focus on ruling out that the adversary receives any help from seeing
the committed values. This can be achieved by comparing the behavior of the
adversary in the above game, to the one of an adversary in a game in which the
honest parties’ messages are not committed to and the adversary must try to
output related messages without any information about them.

Let’s try to be more formal. We have a publicly known distribution M on
the message space and a randomly chosen public key pk (chosen according to
the distribution induced by KG).

Define Game 1 (the real game) as follows. We think of the adversary A
as two separate efficient algorithms A1,A2. We choose ℓ messages according to
this distribution, compute the corresponding commitments and feed them to the
adversary A1. This adversary outputs a commitment, with the only restriction
that he cannot copy any of the ℓ commitments presented to him.A1 also transfers
some internal state ω toA2. We now open our commitments and runA2, who will
the commitment prepared by A1 (if A2 refuses to open we replace the opening

9 Surprisingly to prove that a commitment is 1-non-malleable (i.e. where the adversary
sees only one honest commitment) is not sufficient to prove that it is ℓ-non-malleable
(the intuition is that a standard hybrid argument would work).



with ⊥). We then invoke a distinguisher D on the ℓ + 1 messages. D will decide
if the two vectors are related or not (i.e. D outputs 1 if the messages are indeed
related). We denote with Succ1D,A,M the probability that D outputs 1 in this
game, i.e.

Succ1D,A,M(k) = Pr

















pk← KG(1k) ; M1, . . . , Mℓ ←M ;
R1, . . . , Rℓ ← {0, 1}k ; [Ci, Di]← Com(pk,Mi, Ri) ;

(ω, C)← A1(pk, C1, . . . , Cℓ) with C 6= Ci ∀i ;
M, D ← A2(pk, ω, M1, D1, . . . , Mℓ, Dℓ)
s.t. Ver(pk,M, C, D) = 1 or M = ⊥ ;

D(M1, . . . , Mℓ, M) = 1

















Define now Game 2 as follows. We still select ℓ messages according to M
but this time feed nothing to the adversary A. The adversary now has to come
up with a message on its own. Again we feed the ℓ + 1 messages to D and look
at the output. We denote with Succ2D,A,M the probability that D outputs 1 in
this game, i.e.

Succ2D,A,M(k) = Pr





pk← KG(1k) ; M1, . . . , Mℓ ←M ;
M ← A(pk) s.t. M ∈ M∪ {⊥} ;

D(M1, . . . , Mℓ, M) = 1





Finally we say that a distinguisherD is admissible, if for any input (M1, . . . , Mℓ, M),
its probability of outputting 1 does not increase if we change M into ⊥. This
prevents the adversary from artificially “winning” the game by refusing to open
its commitments.

We say that the commitment scheme is (ℓ, ǫ)-non-malleable (with respect to
opening) if for every message space distribution M, every efficient admissible
distinguisher D, for every efficient adversary A, and for every ǫ, there is an effi-
cient adversary A′ which runs in time polynomial in ǫ−1 such that the following
difference

Succ1D,A,M(k)− Succ2D,A′,M(k) ≤ ǫ

In other words A′ fares almost as well as A in outputting related messages.
We say that a commitment scheme is ǫ-non-malleable (with respect to open-

ing) if it is (ℓ, ǫ)-non-malleable for any ℓ (polynomial in the security parameter).

F.2 The Proof of the Theorem

Before proving Theorem 1 let us stop for a second and compare the two def-
initions of independence and non-malleability. It should appear clear that the
definition of independence is easier to work with and simpler. The implication
from independence to non-malleability is intuitively immediate, yet requires a
fair deal of technicalities. Virtually all the non-malleable commitments in the
literature are independent (as we will point out later). Thus it is our hope that
in the future, researchers can just focus on the easier to prove (and more im-
mediately intuitive) goal of independence and then invoke Theorem 1 to claim
non-malleability.



Proof. Let KG,Com,Ver,Equiv be an ℓ-independent equivocable commitment scheme.
Let A = [A1,A2] be an adversary for Game 1.

Consider the behavior of (A1,A2) between Game 1 and an hybrid game
which we call Game H. In Game H the ℓ commitments are prepared as fake
commitments, and then opened to the messages Mi. Define the success proba-
bility of the adversary in Game H, the same way as in Game 1 and denote it with
SuccHD,A,M(k). Since fake commitments are computationally indistinguishable
from real ones, we have that the success probability of (A1,A2) in Game H must
be negligibly close to the success probability in Game 1 (i.e. SuccH ≈ Succ1).

Now we want to build an adversary A′ for Game 2 such that for every poly-
nomial P (·) we have that

SuccHD,A,M(k)− Succ2D,A′,M(k) ≤ ǫ(k) = 1/P (k)

Let’s fix such polynomial P (·) and consequently ǫ(k).
First of all A′ runs KG(1k) to obtain pk,tk. Then A′ selects ℓ messages ac-

cording to the distribution M and computes the fake commitments C1, . . . , Ct

accordingly. It then feeds the public key pk and the commitments to A1. Let
ω, C be the output of A1.

Notice that up to this point, the view of A1 in this “simulated” game, is
identical to the view that A1 would have had in Game H, no matter what the
hidden messages M1, . . . , Mℓ are. Thus the distribution of A1’s output will be
the same in both games.

Now A′ runs kǫ−1(k) copies of A2. On each copy, the internal state input will
be set to the ω output by A1. However on each copy, A′ will provide a different
opening as follows. For each copy, A′ samples ℓ messages from M and uses its
knowledge of tk to open the commitments accordingly.
A′ collects the openings of C that A2 provides in all the copies. A′ sets M to

the first such opening that is different from ⊥. If in all the openings, A2 outputs
⊥, then A′ sets M = ⊥.

Consider now the commitment C created by A1: we say that such a commit-
ment is bad, if the probability that A2 opens it (i.e. opens to a non ⊥ value) is
less than ǫ(k); otherwise we say it is good. Since A′ runs kǫ−1(k) copies of A2,
we know that if C is good, then A′ will get a correct opening with overwhelming
probability. Notice that A′ may also correctly open a bad commitment as well,
but that does not matter as D is an admissible distinguisher.

Thus except than with probability negligibly close to ǫ(k), we have that (i)
A2 does not open a bad commitment in the real life Game H; (ii) A′ opens a
good commitment in Game 2. So now all we have to prove is that D outputs 1
with almost the same probability on both outputs. But for D to output 1 with
substantially more probability in Game H, rather than in Game 2, it means that
for a good commitment, A2 must provide a different opening in real life Game
H than in the simulation done during Game 2.

Said in other words, A2 opens C in two ways depending on what is the open-
ing of the ℓ commitments presented to him. But by the property of independence
this happens only with negligible probability.



G Weak ZKS Independence

In this section we define weak ZKS independence and present a generic ZKS
protocol that is weakly independent.

Consider an adversary A = (A1,A2) which tries to correlate its database to
the one of a honest prover. A1 sees the commitments of the honest provers and
outputs a commitment of its own. A2 is given concurrent access to the provers
to whom he can ask several database queries while answering queries related
to A1’s commitment. We would like these answers to be independent from the
answers of the honest provers. Notice that A1 is not allowed to query the honest
provers, thus its commitment is produced without any knowledge about the
honest provers’ databases.

In other wordsA1, after seeing the commitments Com1, . . . , Comℓ of ℓ honest
provers, will output a commitment Com of its own. We now run two copies of
A2, in the first we give him access to provers that “open” the Comi according
to some databases Dbi; in the second instead we use some different databases
Db′i. At the end A2 will outputs a value x and the corresponding proof πx with
respect to Com. We require that the database value associated to x in the two
different copies of A2 must be the same, which implies that it is “fixed” at the
end of the committing stage.

Of course we must rule out the adversary that simply copies the honest
provers, as in that case achieving independence is not possible (or meaningful).
Thus we require that A1 output a commitment Com different from the honest
provers’ Comi.

A formal definition follows.

We say that a ZKS protocol is ℓ-weakly-independent if the following property
holds:

ZKS ℓ-weak-independence For any adversary (A1,A2) and for any pair of
ℓ-tuple of databases Db1, . . . , Dbℓ and Db′1, . . . , Db′ℓ the following probability

Pr















(σ, ω0)← Sim0(1k) ; (Comi, ωi)← Sim1(ω0) ∀ i = 1, . . . , ℓ ;
(Com, ω)← A1(σ, Com1, . . . , Comℓ) with Com 6= Comi ∀i ;

(x, πx)← A
Sim2Dbi(·)(ωi,Comi)
2 (σ, ω) ;

(x, π′
x)← A

Sim2
Db′

i
(·)

(ωi,Comi)
2 (σ, ω) ;

bad 6= V(σ, Com, x, πx) 6= V(σ, Com, x, π′
x) 6= bad















is negligible in k.

The above notion guarantees weak independence only if the adversary interacts
with a bounded (ℓ) number of honest provers. We say that a ZKS protocol is
weakly independent if it is ℓ-weakly-independent for any ℓ (polynomial in the
security parameter). In this case weak independence is guaranteed in a fully
concurrent scenario where the adversary can interact with as many honest parties
as she wants.



The Generic Construction. We now show a generic constructions for weakly
independent ZKS. The construction use any ZKS protocol ZKS= (CRS, P1, P2,
V) and any equivocable independent commitment Ind-Com = (KG, Com, Ver,
FakeCom, Equiv). Notice that by the results in [9, 8, 17, 16] we obtain construc-
tions of weak independent ZKS protocol based on general assumptions (collision-
resistance hashing and trapdoor permutations). Here is the description of the
first protocol:

WInd-ZKS:

– CRS Generation. The CRS is σ, pk where σ ← CRS(1k) and pk← KG(1k).
– Prover’s Committing Step. On input Db: run P1 on σ, Db to obtain Com, Dec.

Then choose R ∈R {0, 1}k and compute [C, D] = Com(pk,Com, R). The pub-
lic commitment is C, the decommitting information is Com, Dec, D.

– Prover’s Proving Step. On input x compute πx with respect to Com using
P2. Then output Com, D and πx.

– Verifier. Check that Com, D is a correct decommitting of C under pk; if it
is output V(σ, Com, x, πx) otherwise output bad.

Theorem 6. Assuming Ind-Com is an ℓ-independent commitment, and ZKS a

zero-knowledge set protocol, then WInd-ZKS is an ℓ-weakly-independent zero-

knowledge set protocol.

An immediate consequence of the above is that if Ind-Com is independent, then
WInd-ZKS is weakly independent.

Sketch of Proof: That WInd-ZKS is a ZKS protocol (if ZKS is) is obvious as
we are running ZKS unchanged except for the extra commitment on top.

Let us elaborate on the simulator for WInd-ZKS as we are going to use it for
the proof of independence. Let Sim0, Sim1, Sim2 be the simulators for ZKS. Here
is the definition of our simulator for WInd-ZKS.

– Ind-Sim0. Run Sim0 to get σ, ω0; run KG to get pk,tk. The values σ, pk are
placed in the CRS while ω0, tk is the internal state (trapdoor).

– Ind-Sim1. Run FakeCom (since it knows tk) to get a fake commitment C.
– Ind-Sim2. Run Sim1 (on input ω0) to get Com, ω. Run Equiv to open C as

Com, i.e. get D that represents a valid opening of C as Com. Keep Com
fixed for all the queries x. On such a query run Sim2 on input Com, ω and
oracle access Db to obtain πx. Answer with Com, D, πx.

This is clearly a valid ZK simulator, since we are basically running the simulator
for ZKS, with the only difference that the commitment C is fake, and the opening
D is an equivocation. But these are indistinguishable from real because Ind-Com
is an equivocable commitment10.

10 Another simulator for WInd-ZKS would not use equivocation at all. It would run
the simulators for ZKS, and compute the commitment and the opening using the
real algorithms of Ind-Com (i.e. would not need to use the trapdoor tk.) However the
simulator we chose allows us to postpone defining the value Com during the running
of Sim2 which will be important for the proof of independence.



We need to prove ℓ-independence. Assume that there is an adversary (A1,A2)
that contradicts the ℓ-independence condition. That is we run Ind-Sim0 to get
σ, pk and ω0, tk. Then we run ℓ copies of Ind-Sim1 to get C1, . . . , Cℓ, i.e. ℓ fake
commitments according to Ind-Com. We feed these values to A1 which outputs
C 6= Ci. Now we run two copies of A2 where on the first copy we answer its
queries on Ci using Ind-Sim2 with oracle access to Dbi, while in the second copy
Ind-Sim2 is given oracle access to Db′i. Notice that in the two copies the opening
of Ci will be different, say Comi in the first, while Com′

i in the second (since
Ind-Sim2 runs independent copies of Sim1 inside its execution).

At the end of this processA2 produces a value x and two “proofs” (Com, D, πx) 6=
(Com′, D′, π′

x) in the two executions, such that the verifier will accept both and
will output a different value for in the two executions. . Recall that Com, D is
the opening of C according to Ind-Com with key pk. We have two cases according
to the fact if Com 6= Com′ or Com = Com′.

Case 1. If Com 6= Com′, we break the independence of Ind-Com. Indeed we have
found two sequences of messages Com1, . . . , Comℓ and Com′

1, . . . , Com′
ℓ, such

that if we equivocate Ci as Comi or Com′
i the adversary opens its own C (which

is different from all Ci’s) in two different ways (all the extra things needed to
run A1,A2 can be simulated).

Case 2. If Com = Com′ we contradicts the soundness of ZKS. The values D, D′

are used by the verifier only to determine acceptance. Once the verifier accepts,
its output is just a function of Com, πx. Since the verifier accepts with two
different outputs in the two executions, and Com = Com′ it must be that
πx 6= π′

x.

To break ZKS, we are given σ chosen according to CRS and we want to come
up with Com, x, πx, π′

x such that bad 6= V(σ, Com, x, πx) 6= V(σ, Com, x, π′
x) 6=

bad.

We change the above process in the following way: we use the σ that was given
to us, rather than run the simulator. Clearly the view of A1 is indistinguishable
from the one in the original process (simulated σ’s are indistinguishable from
real values). A1 will answer C.

We now create real ZKS commitments to the databases Dbi, Db′i, call them
Comi, Com′

i. We run two copies of A2: in the first we equivocate Ci to Comi

and then answer queries according to the ZKS protocol. In the second we do the
same except that we equivocate Ci to Com′

i. Again the joint view of A2 in the
two executions is indistinguishable from the one in the above process.

A2 will come up with x and two different proofs (Com, D, πx) 6= (Com′, D′, π′
x).

We are assuming πx 6= π′
x. Also by hypothesis bad 6= V(σ, Com, x, πx) 6= V(σ, Com, x, π′

x) 6=
bad. So we can return Com, x, πx, π′

x and break the soundness of ZKS. ⊓⊔

Notice that the above protocol WInd-ZKS does not satisfy the stronger notion
of independence, since if A1 is allowed to query the honest prover before com-
mitting, it will then see Com the ZKS commitment. Thus A1 may create Com′

a commitment to a set related to the one contained in Com and proceed from
there.



H Proof of DLSI-ZKS

Sketch of Proof: First of all, it is clear that DLSI-ZKS is a ZKS protocol: since
we are just running MRK-ZKS with a specific mercurial commitment. Let us
specify the behavior of the ZK simulator for DLSI-ZKS since it will be useful for
the proof of independence.

– DLSI-Sim0. Compute σ = (G, q, g1, g2, h, H), but with g2 = gr
1 and h = gs

1.
The value σ is placed in the CRS while r, s is the internal state (trapdoor).

– DLSI-Sim1. Choose sk,vk a key pair for a signature scheme. Compute α =
H(vk) and gα = gα

1 g2. Run MRK-Sim1 using the mercurial commitment
defined by σα = (G, q, gα, h). Notice that it can do that as it knows the
“trapdoor” of such commitment (the discrete log xα = (α + r)s−1 mod q of
h w.r.t. gα).
Recall that MRK-Sim1 produces a fake mercurial commitment Com. Output
Com, vk.

– DLSI-Sim2. Run MRK-Sim2, using the mercurial commitment defined by
σα = (G, q, gα, h). Also, on query x, append a signature on (Com, x) com-
puted using sk.

This is basically the MRK-ZKS simulator, so the ZK property is guaranteed.
We need to prove strong 1-independence. Assume that there is an adversary

(A1,A2) and databases Db1, Db′1 that contradict the strong 1-independence con-
dition. That is we run DLSI-Sim0 to get σ and r, s. Then we run DSLI-Sim1 to
get (Com1, vk1). Let α1 = H(vk1) and gα1 = gα1

1 g2. We feed (Com1, vk1), to A1

which queries some values on (Com1, vk1): we answer these by running DLSI-
Sim2 with oracle access to Db1. Let Q be the set of these queries. Then A1

outputs (Com, vk). Let α = H(vk) and gα = gα
1 g2.

Now we run two copies of A2 where on the first copy we answer its queries
on (Com1, vk1) using DLSI-Sim2 with oracle access to Db1, while in the second
copy DLSI-Sim2 is given oracle access to Db′1 ⊢Q Db1 (this can be easily achieved
by checking if the query is in Q or not and then using Db1 or Db′1 accordingly).

At the end of this process the output of the first copy ofA2 contains (x, πx, sigx)
while the second copy outputs (x, π′

x, sig′x), such that the verifier will accept both
strings and will output a different value for Db(x) in the two executions.

Since the verifier accepts, sigx and sig′x must be valid signatures on Com, x
under vk. We have several cases.

– Case 1: vk 6= vk1. We show how to compute discrete log by breaking the
soundness of MRK-ZKS. Assume we have a discrete log challenge G, q, g, y,
i.e. we want to compute the discrete log of y w.r.t. g.
We run the above process with the following modifications. DLSI-Sim0 chooses
sk1, vk1 and sets g1 = g, g2 = g−α1yr, h = y for r ∈R Zq and α1 = H(vk1).
With these settings DLSI-Sim1, DLSI-Sim2 know the discrete log of h w.r.t.
gα1 (the discrete log is r−1 mod q), so it can still run as before (using the
sk1, vk1 selected by DLSI-Sim0).



A2 is outputting Com, x, πx, π′
x which leads the verifier to accept and output

2 different database values for x: the soundness proof of MRK-ZKS shows how
to use such proofs to compute the trapdoor of the mercurial commitment
used in the protocol. In this case this means the discrete log z of h with
respect to gα = gα

1 g2, where α = H(vk). By plugging in our settings for
g1, g2, h we get the discrete log z of y with respect to gα−α1yr. Thus

y = [gα−α1yr]z =⇒ y1−rz = gα−α1

which means that the discrete log of y with respect to g is (α−α1)(1−rz)−1.
Notice that by the collision-resistance of H , we have that α 6= α1, thus
(1− rz) 6= 0 and the inverse exists.

– Case 2: vk = vk1. But in this case it must be that either Com 6= Com1 or
the value x was not asked by A2. Either way we break the signature scheme.
We do the above simulation, but we set vk1 = vk where vk is the target
key under which we want to forge. We have access to an oracle that signs
messages for us, which we use to perform the simulation. On a query x1

asked by A2 we need a signature on Com1, x1. We want to get a signature
on a message that we did not ask to the oracle.
By hypothesis A2 will use the same key vk, and will sign a message which
is different from the ones we ask (since indeed either Com 6= Com1 or the
value x was not asked by A2).

⊓⊔

I Proof of SRSA-ZKS

Sketch of Proof: The proof follows the same outline of the proof of Theorem
2. As before it is clear that SRSA-ZKS is a ZKS protocol: since we are just
running MRK-ZKS with a specific mercurial commitment. Let us specify the
behavior of the ZK simulator for SRSA-ZKS since it will be useful for the proof
of independence.

– SRSA-Sim0. Compute σ = (N, s, H), but store p, q such that N = pq. The
value σ is placed in the CRS while p, q is the internal state (trapdoor).

– SRSA-Sim1. Choose sk,vk a key pair for a signature scheme. Compute e =
H(vk). Run MRK-Sim1 using the mercurial commitment defined by σe =
(N, s, e). Notice that it can do that as it knows the “trapdoor” of such
commitment (the e-root of s, as it knows the factorization of N).
Recall that MRK-Sim1 produces a fake mercurial commitment Com. Output
Com, vk.

– SRSA-Sim2. Run MRK-Sim2, using the mercurial commitment defined by
σe = (N, s, e). Also, on query x, append a signature on (Com, x) computed
using sk.

This is basically the MRK-ZKS simulator, so the ZK property is guaranteed.
We need to prove strong independence. Assume that there is an adversary

(A1,A2) and 2ℓ databases Db1, . . . , Dbℓ and Db′1, . . . , Db′ℓ that contradict the



strong ℓ-independence condition for some ℓ. That is we run SRSA-Sim0 to get
σ and r, s. Then we run SRSA-Sim1 to get (Comi, vki) for i = 1, . . . , ℓ. Let
ei = H(vki). We feed (Comi, vki), to A1 which will first query some values on
those commitments. We answer the queries to the ith commitments by running
DLSI-Sim2 with oracle access to Dbi. Let Qi be the set of these queries. Then
A1 outputs (Com, vk). Let e = H(vk).

Now we run two copies of A2 where on the first copy we answer its queries
on (Comi, vki) using SRSA-Sim2 with oracle access to Dbi, while in the second
copy SRSA-Sim2 is given oracle access to Db′i ⊢Qi

Dbi (again this step can be
performed by first checking if the query is in Qi).

At the end of this process A2 produces a value x and two “proofs” (πx, sigx),
(π′

x, sig′x) in the two executions, such that the verifier will accept both and will
output a different value in the two executions.

Since the verifier accepts, sigx and sig′x must be valid signatures on Com, x
under vk. We have two cases.

– Case 1: vk 6= vki for all i. We show how to break Strong RSA by breaking
the soundness of MRK-ZKS. Assume we have a strong RSA challenge N, δ
and we want to compute e 6= 1 and δ1/e mod N .
We run the above process with the following modifications. SRSA-Sim0 chooses

ski, vki. Let ei = H(vki) and set s = δ
∏

i
ei . We set the public key to N, s, H .

With these settings SRSA-Sim1, SRSA-Sim2 know the ei-roots of s so they
can still run as before (using the ski, vki selected by SRSA-Sim0).
A2 is outputting Com, x, πx, π′

x which leads the verifier to accept and output
2 different database values for x: the soundness proof of MRK-ZKS shows how
to use such proofs to compute the trapdoor of the mercurial commitment
used in the protocol. In this case this means the e-root of s. Since e 6= ei for
all i, we have that GCD(e,

∏

i ei) = 1 and using standard techniques we get
an e-root of δ.

– Case 2: vk = vk1 for some i. But in this case it must be that either Com 6=
Comi or the value x was not asked by A2 to the ith prover. Either way we
break the signature scheme.
We do the above simulation, but we set vki = vk where vk is the target key
under which we want to forge for a randomly chosen i. We have access to an
oracle that signs messages for us, which we use to perform the simulation.
On a query xi asked by A2 to the ith prover we need a signature on Comi, xi.
We want to get a signature on a message that we did not ask to the oracle.
With probability 1/ℓ, A2 will use the same key vk, and will sign a message
which is different from the ones we ask (since indeed either Com 6= Comi or
the value x was not asked by A2 to the ith prover).

⊓⊔

J Non-Malleability for ZKS Protocols

In this section we present definitions of non-malleability for ZKS protocols and
then try to establish a relationship with our notion of independence.



Since we are going to talk about databases which are potentially large ob-
jects, in this section when we say that a distinguisher D is given a database Db
as input we always mean that D is given oracle access to Db. Similarly with
VP2(Dec)(σ, Com) we denote oracle access to the database contained in Com ac-
cording to the verifier V: in other words on query x, the query is passed to P2
who outputs πx according to σ, Com, Dec following the ZKS protocol, and then
V reaches the conclusion on the value Db(x) by running on input σ, Com, x, πx.

Weak Non-Malleability. A first attempt would be to consider ZKS proto-
cols simply as commitments to large strings. In this case the definition would
be basically identical to the case of commitment schemes. There is a known
distribution DB from which databases are drawn.

In Game 1 the adversary A1 is given ℓ commitments to databases Dbi drawn
from DB. Then A1 produces a different commitment and some side information
which is passed to A2. The distinguisher will query A2 on the commitment pre-
pared by A1, while A2 is interacting with the honest provers. The distinguisher
is also given as input the databases Dbi.

In Game 2 instead we feed A nothing (apart from the distribution DB) and
A will just output database queries for the distinguisher.

We require that the probability that the distinguisher outputs 1 in both
games is roughly the same. More formally, let CRS, P1, P2, V be the ZKS Pro-
tocol. Denote with Succ1wD,A,DB the probability that D outputs 1 in Game 1,
i.e.

ZKSucc1wD,A,DB(k) = Pr





σ ← CRS(1k) ; Db1, . . . , Dbℓ ← DB ; (Ci, Di)← P1(σ, Dbi) ;
(ω, C)← A1(σ, C1, . . . , Cℓ) with C 6= Ci ∀i ;

D(Db1, . . . , Dbℓ, V
A2(ω)P2(σ,Ci,Di,·)

(σ, C)) = 1





We denote with Succ2wD,A,DB the probability that D outputs 1 in Game 2, i.e.

ZKSucc2wD,A,DB(k) = Pr

[

σ ← CRS(1k) ; Db1, . . . , Dbℓ ← DB ; Db← A ;
D(Db1, . . . , Dbℓ, Db) = 1

]

Finally we say that a distinguisher D is admissible, if for any ℓ + 1 tuple of
databases Db1, . . . , Dbℓ, Db, its probability of outputting 1 does not increase if
the oracle queries to Db are answered by ⊥. This prevents the adversary from
artificially “winning” the game by refusing to open its commitments.

We say that the ZKS protocol is weakly (ℓ, ǫ)-non-malleable (with respect to
opening) if for every database distribution DB, every efficient admissible distin-
guisher D, for every efficient adversary A, and for every ǫ, there is an efficient
adversary A′ which runs in time polynomial in ǫ−1 such that the following dif-
ference

ZKSucc1wD,A,DB(k)− ZKSucc2wD,A′,DB(k) ≤ ǫ

In other words A′ fares almost as well as A in outputting related databases.

A Stronger Definition. We can strengthen the above definition by allow-
ing the adversary to query the committed databases before producing its own
commitment, which must be different from the ones of the honest provers. The



change is reflected in the definition of the probability Succ1 where we need to
give A1 access to the provers. Similarly definition of Succ2 must reflect that the
adversary is allowed to query some points on the databases.

ZKSucc1D,A,DB(k) = Pr







σ ← CRS(1k) ; Db1, . . . , Dbℓ ← DB ; (Ci, Di)← P1(σ, Dbi) ;

(ω, C)← A
P2(σ,Ci,Di,·)
1 (σ, C1, . . . , Cℓ) with C 6= Ci ∀i ;

D(Db1, . . . , Dbℓ, V
A2(ω)P2(σ,Ci,Di,·)

(σ, C)) = 1







ZKSucc2D,A,DB(k) = Pr

[

σ ← CRS(1k) ; Db1, . . . , Dbℓ ← DB ; Db← ADbi ;
D(Db1, . . . , Dbℓ, Db) = 1

]

We say that the ZKS protocol is (ℓ, ǫ)-non-malleable (with respect to opening)
with respect to a class of database distributions {DB}, if for every DB in the
class, every efficient admissible distinguisher D, for every efficient adversary A,
and for every ǫ, there is an efficient adversary A′ which runs in time polynomial
in ǫ−1 such that the following difference

ZKSucc1D,A,DB(k)− ZKSucc2D,A′,DB(k) ≤ ǫ

In other words A′ fares almost as well as A in outputting related databases.
Notice that we are basically handling the problem of non-malleability with

selective decommitment described in the previous Section. A ZKS commitment
is a commitment to a large set of strings, and the adversary is allowed a selective
decommitment of a subset of those strings (some points in the database). As for
the case of single messages, we do not know how to obtain non-malleability in
this case with respect to any distribution over the databases.

Let IDB be the family of distributions over databases where each distribu-
tion can be efficiently sampled conditioned on the value of some points in the
database. In other words a distribution DB ∈ IDB if after selecting Db ∈ DB
and a set of points xi it is possible to efficiently sample Db′ ∈ DB such that
Db, Db′ agree on xi. An example of such a class of distributions is the one in
which the value of each element in the database is independent from the others.

The strongest definition. In this definition we allow the adversary to copy
one of the commitments. But then we restrict the distinguisher. We say that
a distinguisher is i-admissible if the intersection of the queries to the ith and
(ℓ + 1)st database is empty. We define

ZKSucc1sD,A,DB(k) = Pr







σ ← CRS(1k) ; Db1, . . . , Dbℓ ← DB ; (Ci, Di)← P1(σ, Dbi) ;

(ω, C)← A
P2(σ,Ci,Di,·)
1 (σ, C1, . . . , Cℓ);

D(Db1, . . . , Dbℓ, V
A2(ω)P2(σ,Ci,Di,·)

(σ, C)) = 1







where if C = Ci for some i then D must be i-admissible. We also define
ZKSucc2sD,A,DB(k) identically as ZKSucc2 above.

We say that the ZKS protocol is strongly (ℓ, ǫ)-non-malleable (with respect
to opening) with respect to a class of database distributions {DB}, if for every



DB in the class, every efficient admissible distinguisher D, for every efficient
adversary A, and for every ǫ, there is an efficient adversary A′ which runs in
time polynomial in ǫ−1 such that the following difference

ZKSucc1sD,A,DB(k)− ZKSucc2sD,A′,DB(k) ≤ ǫ

In other words A′ fares almost as well as A in outputting related databases.


