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Abstract. This paper proposes a new ID-based proxy signature scheme
based on the bilinear pairings. The number of paring operation involved
in the verification procedure of our scheme is only one, so our scheme
is more efficient comparatively. The new scheme can be proved secure
with the hardness assumption of the k-Bilinear Diffie-Hellman Inverse
problem, in the random oracle model.
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1 Introduction

In 1984, Shamir [1] first proposed the idea of ID-based public key cryptography
(ID-PKC) to simplify key management procedure of traditional certificate-based
PKI. In ID-PKC, an entity’s public key is directly derived from certain aspects
of its identity, such as an IP address belonging to a network host or an e-mail ad-
dress associated with a user. Private keys are generated for entities by a trusted
third party called a private key generator (PKG). The direct derivation of public
keys in ID-PKC eliminates the need for certificates and some of the problems
associated with them. Recently, due to the contribution of D.Boneh et.al [2],
a rapid development of ID-PKC has taken place. Using bilinear pairings, peo-
ple proposed many new ID-based signature schemes [3–5]. With these ID-based
signature schemes, a lot of new extensions, such as ID-based proxy signature
scheme, ID-based ring signature scheme, etc.[6, 7], have also been proposed.

A proxy signature scheme allows one entity, called original signer, to dele-
gate her signing capability to one or more entities, called proxy signers. Then
the proxy signer can generate proxy signatures, which are signatures of some
messages on behalf of the original signer. Upon receiving a proxy signature, a
verifier can validate its correctness by the given verification procedure, and then
is convinced of the original signer’s agreement on the signed message.

Since Mambo, Usuda and Okamoto [8] first introduced the proxy signature
scheme, many new constructions have been proposed. Based on the delegation
type, proxy signatures can be classified as full delegation, partial delegation and
delegation by warrant. In [9], Kim et al provided a new type of delegation called
partial delegation with warrant, which can be considered as the combination of
? Research supported by Found 973 (No. G1999035804), NSFC (No. 60473021).
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partial delegation and delegation by warrant. Depending on whether the original
signer can generate the same proxy signatures as the proxy signers do, there are
two kinds of proxy signature schemes: proxy-unprotected and proxy-protected.
In practice, the proxy-protected partial delegation by warrant schemes have at-
tracted much more investigations than others, because they clearly distinguish
the rights and responsibilities between the original signer and the proxy signer.
In this paper, we will also focus on this kind of schemes. In fact, for simplicity,
this special kind of schemes is often called as proxy signature scheme.

In [6], Zhang and Kim provided an ID-based proxy signature scheme based
on pairings. The scheme is similar to Kim et al.’s scheme [9] which is based on
certificate-based public key setting. There are no security proof in their original
work. Later, Gu and Zhu [10] gave a formal security model for ID-based proxy
signature schemes and provided a security proof for the scheme of Zhang and
Kim in the random oracle model.

In this paper, we provide a more efficient ID-based proxy signature scheme
from pairings. The new scheme can be proved secure in the random oracle model.
The rest of this paper is organized as follows: In Section 2, we recall some
preliminary works. In Section 3, we present a new ID-based proxy signature
scheme with a correctness and efficiency analysis. In Section 4, we offer a formal
security proof in the random orale model. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Pairings

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. ê : G1×G1 → G2

be a map which satisfies the following properties.

1. Bilinear: ∀P, Q ∈ G1,∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;
2. Non-degenerate: If P is a generator of G1, then ê(P, P ) is a generator of G2;
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Such an bilinear map is called an admissible bilinear pairing [2]. The Weil pair-
ings and the Tate pairings of elliptic curves can be used to construct efficient
admissible bilinear pairings.

We review a complexity problem related to bilinear pairings: the Bilinear
Diffie-Hellman Inverse (BDHI) problem [11]. Let P be a generator of G1, and
a ∈ Z∗q .

– k-BDHI problem: given (P, aP, a2P, ...akP ) ∈ (G∗1)
k+1, output ê(P, P )a−1

.
An algorithm A solves k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP ) = ê(P, P )a−1
] ≥ ε,

where the probability is over the random choice of generator P ∈ G∗1, the
random choice of a ∈ Z∗q and random coins consumed by A.
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We assume through this paper that the k-BDHI problem is intractable, which
means that there is no polynomial time algorithm to solve k-BDHI problem with
non-negligible probability.

2.2 ID-based Proxy Signatures

In this paper, if there is no special statement, let A be the original signer with
identity IDA and private key dA. He delegates his signing rights to a proxy
signer B with identity IDB and private key dB . A warrant is used to delegate
signing right. In [10], Gu and Zhu gave a formal security model for ID-based
proxy signature schemes.

Definition 1. [10] An ID-based proxy signature scheme is specified by eight
polynomial-time algorithms with the following functionalities.

– Setup: The parameters generation algorithm, takes as input a security pa-
rameter k ∈ N (given as 1k ), and returns a master secret key s and system
parameters Ω. This algorithm is performed by PKG.

– Extract: The private key generation algorithm, takes as input an identity
IDU ∈ {0, 1}∗, and outputs the secret key dU corresponding to IDU . PKG
uses this algorithm to extract the users’ secret keys.

– Delegate: The proxy-designation algorithm, takes as input A’s secret key
dA and a warrant mω, and outputs the delegation WA→B.

– DVerify: The designation-verification algorithm, takes as input IDA, WA→B

and verifies whether WA→B is a valid delegation come from A.
– PKgen: The proxy key generation algorithm, takes as input WA→B and

some other secret information z (for example, the secret key of the executor),
and outputs a signing key dp for proxy signature.

– PSign: The proxy signing algorithm, takes as input a proxy signing key dp

and a message m ∈ {0, 1}∗, and outputs a proxy signature (m, δ).
– PVerify: The proxy verification algorithm, takes as input IDA, IDB and a

proxy signature (m, δ), and outputs 0 or 1. In the later case, (m, δ) is a valid
proxy signature of A.

– ID: The proxy identification algorithm, takes as input a valid proxy signature
(m, δ), and outputs the identity IDB of the proxy signer.

An ID-based proxy signature scheme should first be correct. That is, ∀m,ω ∈
{0, 1}∗, it should have the following properties:

1. DV erify(Delegate(ω, DA), IDA) = 1
2. For WA→B = Delegate(ω, DA), let DP ← PKgen(WA→B , DB), then

PV erify(PSign(m,DP ), IDA, IDB) = 1, and ID(PSign(m,DP )) = IDB .

We consider an adversary A which is assumed to be a probabilistic Turing
machine which takes as input the global scheme parameters and a random tape.

Definition 2. [10] For an ID-based proxy signature scheme ID PS. We define
an experiment ExpID PS

A (k) of adversary A and security parameter k as follows:
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1. A challenger C runs Setup and gives the system parameters Ω to A.
2. Clist ← φ, Dlist ← φ, Glist ← φ, Slist ← φ. (φ means NULL.)
3. Adversary A can make the following requests or queries adaptively.

– Extract(.): This oracle takes as input a user’s IDi, and returns the
corresponding private key di. If A gets di ← Extract(IDi), let Clist ←
Clist ∪ {(IDi, di)}.

– Delegate(.): This oracle takes as input the designator’s identity ID and a
warrant mω, and outputs a delegation W . If A gets W ← Delegate(ID,mω),
let Dlist ← Dlist ∪ {(ID,mω,W )}.

– PKgen(.): This oracle takes as input the proxy signer’s ID and a delega-
tion W , and outputs a proxy signing key dp. If A gets dp ← PKgen(ID,W ),
let Glist ← Glist ∪ {(ID,W, dp)}.

– PSign(.): This oracle takes as input the delegation W and message m ∈
{0, 1}∗, and outputs a proxy signature created by the proxy signer. If A
gets (m, τ) ← PSign(W,m), let Slist ← Slist ∪ {(W,m, τ)}.

4. A outputs (ID,mω,W ) or (W,m, τ).
5. If A’s output satisfies one of the following terms, A’s attack is successful.

– The output is (ID,mω,W ), and satisfies: DV erify(W, ID) = 1, (ID, .) /∈
Clist, (ID, ., .) /∈ Glist and (ID,mω, .) /∈ Dlist. ExpID PS

A (k) returns 1.
– The output is (W,m, τ), and satisfies PV erify((m, τ), IDi) = 1, (W,m, .) /∈

Slist, and (IDj , .) /∈ Clist, (IDj ,W, .) /∈ Glist, where IDi and IDj are
the identities of the designator and the proxy singer defined by W , re-
spectively. ExpID PS

A (k) returns 2.
Otherwise, ExpID PS

A (k) returns 0.

Definition 3. [10] An ID-based proxy digital signature scheme ID PS is said
to be existential delegation and signature unforgeable under adaptive chosen mes-
sage and ID attacks (DS-EUF-ACMIA), if for any polynomial time adversary
A, any polynomial p(.) and big enough k,

Pr[ExpID PS
A (k) = 1] <

1
p(k)

and Pr[ExpID PS
A (k) = 2] <

1
p(k)

3 A New Efficient ID-based Proxy Signature Scheme

In this section, we present a new efficient ID-based proxy signature scheme. Our
scheme is based on a variation of the ID-based signature scheme proposed by
Barreto et.al [5] in Asiacrypt’05. The method for obtaining private keys from
identities is a simplification of a method suggested by Sakai and Kasahara [12].
This leads to a more efficient performance.

3.1 Description of the Scheme

The new scheme can be described as follows:
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– Setup: Takes as input a security parameter k, and returns a master key
s and system parameters Ω = (G1, G2, q, ê, P, Ps, Pss, g, gs,H1,H2), where
(G1,+) and (G2, ·) are two cyclic groups of order q, ê : G1 ×G1 → G2 is an
admissible bilinear map, Ps = sP , Pss = s2P , g = ê(P, P ), gs = ê(Ps, P ),
H1 : {0, 1}∗ → Z∗q and H2 : {0, 1}∗ ×G1 → Zq are hash functions.

– Extract: Takes as input an identity IDX ∈ {0, 1}∗, computers DX =
(H1(IDX) + s)−1P , and lets DX be the user’s secret key.

– Delegate: Takes as input the secret key DA, the proxy signer’s identity
IDB and a warrant mω, selects a random x ∈ Z∗q , computes qB = H1(IDB),
rA = gx

s · gqBx, hA = H2(mω, rA), VA = (x + hA)DA, and outputs the
delegation WA→B = (mω, rA, VA).

– DVerify: Once B receives WA→B = (mω, rA, VA), he computes hA = H2(mω, rA),
qA = H1(IDA), qB = H1(IDB), and accepts the delegation only if

ê((qA + qB)Ps + qAqBP + Pss, VA) = rA · ghA
s · gqBhA .

– PKgen: If B accepts the delegation WA→B = (mω, rA, VA), he computes
the proxy signing key DP as DP = hA ·DB − VA, where hA = H2(mω, rA).

– PSign: The proxy signer can pre-computing ξ = ghA(qA−qB)/rA, where qA =
H1(IDA), qB = H1(IDB) and rA is from WA→B . Let DP be the proxy
signing key, for a message m, the proxy signer chooses y ∈ Z∗q at random
and computes rP = ξy, hP = H2(m, rP ), VP = (y+hP )DP , and lets (m, τ) =
(m, rP , VP ,mω, rA) be the proxy signature for m.

– PVerify: For a proxy signature (m, rP , VP ,mω, rA), a recipient first checks
if the proxy signer and the message conform to mω. Then he computes
hP = H2(m, rP ), qA = H1(IDA), qB = H1(IDB) and verifies whether

ê((qA + qB)Ps + qAqBP + Pss, VP ) = rP · ghAhP (qA−qB) · r−hP

A .

If both steps succeed, the proxy signature on behalf of A is valid.
– ID: The proxy signer’s identity IDB can be revealed by mω.

3.2 Correctness and Efficiency

Set Q = (qA + qB)Ps + qAqBP + Pss. Consistency of the scheme is easily proved
as follows: For any mω ∈ {0, 1}∗, Delegate(mω, DA) = (mω, rA, VA), hA =
H2(mω, rA). Then,

ê(Q,VA) = ê((qA + s)(Ps + qBP ), (x + hA)(qA + s)−1P )
= ê(Ps + qBP, (x + hA)P )
= rA · (gs · gqB )hA

That is, DV erify(Delegate(mω, DA), IDA) = 1. On the other hand,

DP = PKgen((mω, rA, VA), DB) = hA ·DB −VA =
hA(qA − qB)− x(s + qB)

(s + qA)(s + qB)
P.
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For any m ∈ {0, 1}∗, PSign(m,DP ) = (m, rP , VP ,mω, rA), hP = H2(mω, rP ).
Then,

ê(Q,VP ) = ê((qA + s)(s + qB)P, (y + hP )
hA(qA − qB)− x(s + qB)

(s + qA)(s + qB)
P )

= ê(P, (hA(qA − qB)− x(s + qB))P )(y+hP )

= (ghA(qA−qB)/gx(s+qB))(y+hP )

= (ghA(qA−qB)/rA)(y+hP )

= rP · (ghA(qA−qB)/rA)hP

Hence, PV erify(PSign(m,DP ), IDA, IDB) = 1. mω designates the identity of
the proxy signer, and it is a part of the signature. So it is easy to see that
ID(PSign(m,DP )) = IDB .

Denote by M an ordinary scalar multiplication in (G1,+), by E an Exp.
operation in (G2, .), and by ê a computation of the pairing. The hash function
maps an identity to an element in G1 used by the scheme in [6] usually requires a
”Maptopoint operation” [2]. As discussed in [2], Maptopoint operation (denoted
by H) is so inefficient that we can’t neglect it. Do not take other operations into
account. We compare our new scheme to the ID-based proxy signature scheme
of Zhang and Kim [6] in the following table.

schemes Delgate DVerify PKgen PSign PVerify
Zhang-Kim [6] 2M + 1E 2ê + 1E + 1H 1M 2M + 1E 2ê + 2E + 2H

proposed 1M + 2E 1ê + 2M + 2E 1M 1M + 1E 1ê + 2M + 2E

Note: The hash function used in our scheme which maps an identity to an
element in Z∗q is so efficient that we usually can neglect it.

Some general performance enhancements can be applied to our schemes. For
pre-selected P ∈ G1 and µ ∈ G2, there are efficient algorithms [13] to compute
kP and µl for random k, l ∈ Zq by pre-computing and storing. In our scheme,
P , Ps and g, gs are fixed system parameters. Secret keyes of the signer and the
proxy signer are also fixed for themselves.

4 Security Proof

In this section, we reduce the security of our scheme to the hardness assumption
of k-BDHI problem in the random oracle model.

Assume there is an adversary F0 who can breaks the ID-based proxy signa-
ture scheme. We will construct a polynomial time algorithm F1 that, by sim-
ulating the challenger and interacting with F1, solves (n1 + 1)-BDHI problem,
where n1 is the number of queries that F0 can ask to the random oracle H1(.).

Lemma 1. Given system parameters Ω = (G1, G2, q, ê, P, Ps, Pss, g, gs,H1,H2)
and identities IDA, IDB ∈ {0, 1}∗, let qA = H1(IDA), qB = H1(IDB), DA =
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(s + qA)−1P , and T = (qA + qB)Ps + qAqBP + Pss, the following distributions
are the same.

δ =





(r, h, V )

∣∣∣∣∣∣∣∣

x ∈R Z∗q
h ∈R Zq

r = gx
s · gxqB

V = (x + h)DA





and δ′ =





(r, h, V )

∣∣∣∣∣∣∣∣

V ∈R G1

h ∈R Zq

r = ê(T, V ) · g−h
s · g−qBh

r 6= 1





Proof: First we choose a triple (α, β, γ) such that α ∈ G∗2,β ∈ Zq,γ ∈ G1

and satisfying α = ê(T, γ) · g−β
s · g−βqB . We then compute the probability of

appearance of this triple following each distribution of probabilities:

Prδ[(r, h, V ) = (α, β, γ)] = Prx6=0




α = gx
s · gxqB

h = β
(x + h)DA = γ


 =

1
q(q − 1)

.

P rδ′ [(r, h, V ) = (α, β, γ)] = Prr 6=1




h = β
V = γ
α = r = ê(T, V ) · g−h

s · g−qBh


 =

1
q(q − 1)

.

Hence, we can simulate the Delegate(.) oracle for input (IDA, IDB ,mω)
without the secret key DA indistinguishably from the real one as following:

– SD(IDA, IDB ,mω):
• Pick randomly VA ∈ G1, hA ∈ Zq.
• Compute rA = ê((qA + qB)Ps + qAqBP + Pss, VA) · g−hA

s · g−qBhA , where
qA = H1(IDA), qB = H1(IDB),

• If H2(mω, rA) has been defined, then abort (a collision appears). Other-
wise, set H2(mω, rA) = hA.

• Set W = (mω, rA, VA).

Lemma 2. Given system parameters Ω = (G1, G2, q, ê, P, Ps, Pss, g, gs,H1,H2),
identities IDA, IDB ∈ {0, 1}∗ and WA→B = (mω, rA, VA), let qA = H1(IDA),
qB = H1(IDB), hA = H2(mω, rA), DB = (s + qB)−1P , DP = hADB − VA,
ξ = ghA(qA−qB)/rA and T = (qA + qB)Ps + qAqBP + Pss, the following distribu-
tions are the same.

δ =





(rP , hP , VP )

∣∣∣∣∣∣∣∣

y ∈R Z∗q
hP ∈R Zq

rP = ξy

VP = (y + hP )DP





and

δ′ =





(rP , hP , VP )

∣∣∣∣∣∣∣∣

VP ∈R G1

hP ∈R Zq

rP = ê(T, VP ) · (g−hA(qA−qB) · rA)hP

r 6= 1





Proof: Readers can see that the proof is almost the same as that of Lemma
1. We omit it in this paper.

That is, we can simulate the PSign(.) oracle for input (WA→B = (mω, rA, VA),m)
without the secret proxy key DP indistinguishably from the real one as following:
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– SPS(WA→B ,m):
• Pick randomly VP ∈ G1, hP ∈ Zq.
• Check whether H2(mω, rA) is defined. If not, request oracle H2(.) with

(mω, rA). Let H2(mω, rA) = e.
• Compute rP = ê((qA + qB)Ps + qAqBP + Pss, VP ) · (g−e(qA−qB) · rA)hP ,

where qA = H1(IDA), qB = H1(IDB).
• If H2(m, rP ) has been defined, then abort(a collision appears). Other-

wise, set H2(m, rP ) = hP .
• Let (m, τ) = (m, rP , VP ,mω, rA) be the reply.

Theorem 1. In the random oracle mode, let F0 be a polynomial-time adversary
who manages an ExpID PS

A (k) within a time bound T (k), and gets return 1 or
2 by un-negligible probability ε(k). We denote respectively by n1,n2 and n3 the
number of queries that F0 can ask to the random oracle H1(.), H2(.) and the
proxy singing oracle PSign(.). Assume that ε(k) ≥ 10(n3+1)(n2+n3)n1/q, then
there is an adversary F1 who can solve (n1 + 1)-BDHI problem within expected
time less than 120686 · n2 · n1 · T (k)/ε(k).

Proof : Without any loss of generality, we may assume that for any ID, F0

queries H1(.) with ID before ID is used as (part of) an input of any query to
Extract(.), Delegate(.), PKgen(.) and PSign(.), by using a simple wrapper of
F0.

F1 is given input parameters of pairing (q, G1, G2, ê) and a random instance
(P, aP, a2P, ..., an1P, an1+1P ) of the (n1 +1)-BDHI problem, where P is random
in G∗1 and a is a random in Z∗q . F1 simulates the challenger and interacts with
F0 as follows:

1. F1 randomly chooses different h0, h1, ...hn1−1 ∈ Z∗q , and computes f(x) =∏n1−1
i=1 (x + hi) =

∑n1−1
i=0 cix

i.
2. F1 computes Q =

∑n1−1
i=0 cia

iP = f(a)P , aQ =
∑n1−1

i=0 cia
i+1P , a2Q =∑n1−1

i=0 cia
i+2P , and Q′ =

∑n1−1
i=1 cia

i−1P . In the (unlikely) situation where
Q = 1G1 , there exists an hi = −a, hence, F1 can solve the (n1 + 1)-BDHI
problem directly and abort.

3. F1 computes fi(x) = f(x)/(x+hi) =
∑n1−2

j=0 djx
j . Obviously, (a+hi)−1Q =

(a + hi)−1f(a)P = fi(a)P =
∑n1−2

j=0 dja
jP for 1 ≤ i ≤ n1.

4. F1 randomly chooses an index t with 1 ≤ t ≤ n1, sets v = 0.
5. F1 computes g = ê(Q,Q), gs = ê(aQ,Q), sets the system parameters

Ω = (G1, G2, q, ê, Q, aQ, a2Q, g, gs,H1,H2), where H1, H2 are random or-
acles controlled by F1.

6. F1 sets Clist = φ, Dlist = φ, Glist = φ, Slist = φ, and starts ExpID PS
F0

(k)
by giving F0 the system parameters Ω. During the execution, F1 emulates
F0’s oracles as follows:
– H1(.): F1 maintains a H1 list, initially empty. For a query ID, if ID

already appears on the H1 list in a tuple (ID, l, D), F1 responds with l.
Otherwise, sets v = v + 1, IDv = ID, if v = t, F1 sets lv = h0, Dv = ⊥;
otherwise, F1 selects a random n1 ≥ ϑ > 0 which has not been chosen
and sets lv = hϑ + h0, Dv = (a + hϑ)−1Q. In both case, adds the tuple
(IDv, lv, Dv) to H1 list and responds with lv.
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– H2(.): For a query (m, r), F1 checks if H2(m, r) is defined. If not, F1

picks a random c ∈ Z∗q and defines H2(m, r) = c. F1 returns H2(m, r)
to F0.

– Extract(.): For input IDi, F1 searches in H1 list for (IDi, li, Di). If
Di = ⊥ then F1 aborts. Otherwise, F1 responds with Di. Set Clist ←
Clist ∪ {(IDi, Di)}.

– Delegate(.): For input IDi and warrant mω (we assume the identity of
the proxy signer’s is IDj), if i 6= t, F1 computes W = Delegate(Di,mω).
Otherwise, F1 runs the simulator SD(IDt, IDj ,mω) and gets the reply
W . Let W be the reply to F0, and set Dlist ← Dlist ∪ {(IDi,mω,W )}.

– PKgen(.): For input proxy signer’s IDj and delegation W = (mω, r0, V0),
if j = t, then abort. Otherwise, F1 computes DP = H2(mω, r0)Dj − V0

as the reply to F0. Let Glist ← Glist ∪ {(W, IDj , DP )}.
– PSign(.): For input W = (mω, r0, V0) and message m, designator’s iden-

tity be IDi and proxy signer’s identity be IDj . If j 6= t, F1 computes
the proxy signature τ = (rP , VP ,mω, r0) on m with secret signing key
DP = H2(mω, r0)Dj − V0, and return (m, τ) as the reply. Otherwise,
F1 simulates IDt’s proxy signature on behalf of IDi with the simu-
lator SPS(W,m) and lets the output (m, τ) of SPS as the reply. Let
Slist ← Slist ∪ {(W,m, τ)}.

7. F1 keeps interacting with F0 until F0 halts or aborts.
– Case 0: If F0’s output is (ID∗,m∗

ω,W ∗), where W ∗ = (m∗
ω, r∗0 , V ∗

0 ), and
satisfies: DV erify(W ∗, ID∗) = 1, (ID∗, .) /∈ Clist, (ID∗, ., .) /∈ Glist

and (ID∗,m∗
ω, .) /∈ Dlist, and ID∗ = IDt, F1 can get a delegation

forgery (m∗
ω, r∗0 , h∗0, V

∗
0 ) corresponding to identity IDt (whose secret key

is a−1Q), where h∗0 = H2(m∗
ω, r∗0). By replays of Step 6 with the same

random tape but different choices of H2(.), as done in the Forking Lemma
[14], F1 can get another valid forgery (m∗

ω, r∗0 , h∗1, V
∗
1 ) such that h∗1 6= h∗0.

Set statue = 0.
– Case 1: If F0’s output is (W ∗,m∗, τ∗) = ((m∗

ω, r∗0 , V ∗
0 ),m∗, (r∗P , V ∗

P ,m∗
ω, r∗0))

with designator’s identity IDt and proxy signer’s identity IDj , and sat-
isfies PV erify((m∗, τ∗), IDt) = 1, (W ∗,m∗, .) /∈ Slist, and (IDj , .) /∈
Clist, (IDj ,W

∗, .) /∈ Glist, F1 can get a forgery (W ∗,m∗, (r∗P , h∗P , V ∗
P ,m∗

ω, r∗0))
corresponding to proxy signing key DP = µa−1Q − V ∗

0 , where µ =
H2(m∗

ω, r∗0) and h∗P = H2(m, r∗P ). Define H2(m∗
ω, r∗0) = µ. By replays

of Step 4 with the same random tape but different choices of H2(.),
as done in the Forking Lemma [14], F1 can get another valid forgery
(W ∗,m∗, (r∗P , h∗P1, V

∗
P1,m

∗
ω, r∗0)) such that h∗P1 6= h∗P . Set statue = 1.

8. F1 can computes a−1Q as follows:
– If statue = 0,

a−1Q = (h∗1 − h∗0)
−1(V ∗

1 − V ∗
0 ).

– If statue = 1,

a−1Q = H2(m∗
ω, r∗0)−1((h∗P1 − h∗P )−1(V ∗

P1 − V ∗
P ) + V ∗

0 ).
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9. F1 computes ê(Q, a−1Q) = ê(Q,Q)a−1
. Then, F1 computes and outputs

ê(P, P )a−1
= ê(Q,Q)a−1

/ê(Q′, Q + c0P ))c−2
0 as the solution to the given

instance of (n1 + 1)-BDHI problem.

This completes the description of F1.
During F1’s execution, if F0 manages an ExpID PS

F0
(k) and gets return 1

or 2, collisions appear with negligible probability, as mentioned in [14]. So F1’s
simulations are indistinguishable from F0’s oracles. Because t is chosen ran-
domly, F1 can get a forgery of (m∗

ω, r∗0 , h∗0, V
∗
0 ) corresponding to identity IDt,

or (W ∗,m∗, (r∗P , h∗P , V ∗
P ,m∗

ω, r∗0)) corresponding to proxy signing key DP =
µa−1Q− V ∗

0 , within expected time T (k) with probability ε(k)/n1.
In fact, the delegation and proxy signing are both schemes producing sig-

natures of the form (m, r, h, V ), where each of r, h, V corresponds to one of
the three moves of a honest-verifier zero-knowledge protocol. By applying the
Forking lemma[14], F1 can produce two valid forgery (m∗

ω, r∗0 , h∗0, V
∗
0 ) and

(m∗
ω, r∗0 , h∗1, V

∗
1 ) such that h∗0 6= h∗1 within expected time less than 120686 · n2 ·

n1 · T (k)
ε(k) . So F1 can output ê(P, P )a−1

. Thus we prove the theorem.

5 Conclusion

This paper presents an efficient and provably secure ID-based proxy signature
scheme based on the bilinear pairings. Although fruitful achievements [15, 16]
have been made in enhancing the computation of pairings, the computation of
pairings are still a heavy burden for schemes from pairings. The number of paring
operation involved in the verification procedure of our schemes is only one, so our
scheme is more efficient comparetively. The scheme can be proved secure with
the hardness assumption of the k-BDHI problem, in the random oracle model.
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