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Abstra
t

In this paper we give an overview of some of the 
ryptographi
 ap-

pli
ations whi
h were derived from the proposal of R.J. M
Elie
e to use

error 
orre
ting 
odes for 
ryptographi
 purposes. Code based 
ryptogra-

phy is an interesting alternative to number theoreti
 
ryptography. Many

basi
 
ryptographi
 fun
tions like en
ryption, signing, hashing, et
. 
an

be realized using 
ode theoreti
 
on
epts.

In this paper we brie
y show how to 
orre
t errors in transmitted data

by employing Goppa 
odes and des
ribe possible appli
ations to publi
 key


ryptography.

The main fo
us of this paper is to provide detailed insight into the

state of art of 
ryptanalysis of the M
Elie
e 
ryptosystem and the e�e
t

on di�erent 
ryptographi
 appli
ations. We 
on
lude, that for 
ode based


ryptography a publi
 key of 88KB o�ers suÆ
ient se
urity for en
ryption,

while we need a publi
 key of at least 597KB for se
ure signing.
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1 Introdu
tion

In this paper we want to give an overview over the M
Elie
e 
ryptosystem and

the primitives it is based on. First, we give some introdu
tion into 
oding theory

and the 
onstru
tion prin
iple of the 
ryptosystem. In the se
ond se
tion, we

present Goppa 
odes, whi
h at the moment seem to be the best 
hoi
e for 
ryp-

tographi
 appli
ations. In the se
tions three to �ve we present known atta
ks

on the M
Elie
e PKC and 
onsequen
es for the 
hoi
e of system parameters.

Afterwards we will present CCA2-se
ure 
onversions and show how to build

other 
ryptographi
 proto
ols from the basi
 s
heme. Finally we will dis
uss

performan
e and se
ure 
hoi
es of parameters for the M
Elie
e PKC.

1.1 History

In 1978 R. M
Elie
e proposed the �rst publi
 key 
ryptosystem whi
h is based

on 
oding theory. M
Elie
e's proposal to use Goppa 
odes for 
ryptographi
 ap-

pli
ations is one of the oldest publi
 key 
ryptosystems and remains unbroken

for appropriate system parameters. In 1986, Niederreiter proposed a di�erent

s
heme whi
h uses GRS 
odes. This proposal is equivalent (dual) to M
Elie
e's

proposal if we substitute the GRS 
odes by Goppa 
odes [33℄. Sidelnikov and

Shestakov showed 1992, that Niederreiter's proposal to use GRS 
odes is inse-


ure.

Several proposals were made to modify M
Elie
e's original s
heme (see e.g.

[17℄, [16℄, [18℄, [46℄ and [26℄). Most of them repla
e the Goppa 
odes with other


odes. However, most of them turned out to be inse
ure or ineÆ
ient 
ompared

to M
Elie
e's original proposal (see e.g. [38℄ or [28℄).

The most important variants of M
Elie
e's s
heme are the ones proposed

by Kobara and Imai in 2001. These variants are CCA2-se
ure and provably as

se
ure as the original s
heme [27℄.

Parallel to the e�orts to build an eÆ
ient en
ryption s
heme based on 
od-

ing theory, there were several attempts to build other 
ryptographi
 proto
ols

based on error 
orre
ting 
odes. Most e�orts to build a signature s
heme failed

(
ompare [52℄, [22℄, [2℄ and [50℄), until �nally in 2001 Courtois, Finiasz and

Sendrier made a promising proposal [11℄. In addition, there exists an identi�-


ation s
heme by Stern [49℄, whi
h is based on 
oding theory.

There are also attempts to build fast hash fun
tions and random number

generators using the prin
iples of 
oding theory (see e.g. [3℄, [13℄). All in all,

this provides suÆ
ient motivation to have a 
loser look at the M
Elie
e 
ryp-

tosystem, as an serious alternative to the established PKCs based on number

theory.

1.2 Coding Theory and Problems

The se
urity of the 
ryptosystems reviewed in this paper is based on the diÆ
ulty

of some 
lassi
al problems of 
oding theory. Here we give an introdu
tion into

the topi
 of 
oding theory.
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De�nition 1.2.1 An (n; k)-
ode C over a �nite �eld F is a k-dimensional sub-

ve
torspa
e of the ve
tor spa
e F

n

. We 
all C an (n; k; d)-
ode if the min-

imum distan
e is d = min

x;y2C

dist (x;y), where \dist" denotes a distan
e

fun
tion, e.g. hamming distan
e. The distan
e of x 2 F

n

to the null-ve
tor

wt (x) := dist (0;x) is 
alled weight of x.

De�nition 1.2.2 The matrix C 2 F

k�n

is a generator matrix for the (n; k)


ode C over F, if the rows of C span C over F. The matrix H 2 F

(n�k)�n

is


alled 
he
k matrix for the 
ode C if H

>

is the right kernel of C. The 
ode

generated by H is 
alled dual 
ode of C and denoted by C

?

.

With these de�nitions, we are able to de�ne some basi
 problems of 
oding

theory. Here the distan
e fun
tion used will be the hamming distan
e although,

there exist other notions of distan
e.

Problem 1.2.3 The general de
oding problem for linear 
odes is de�ned as

follows:

� Let C be an (n; k) linear 
ode over F and y 2 F

n

.

� Find x 2 C where dist (y;x) is minimal.

Let e be a ve
tor of weight � t :=

�

d�1

2

�

and x 2 C. Then there is a unique

solution to the general de
oding problem for y = x + e. The 
ode C is said to

be an t-error 
orre
ting 
ode.

Problem 1.2.4 The problem of �nding weights (SUBSPACE WEIGHTS) of a

linear 
ode is de�ned as follows:

� Let C be an (n; k) linear 
ode over F and w 2 N.

� Find x 2 C satisfying dist (0;x) = w.

Our hope that we might be able to 
onstru
t se
ure 
ryptosystems based on

the problems above is based on the following result.

Theorem 1.2.5 The general de
oding problem and the problem of �nding weights

are NP-hard.

Proof. See [4℄.

We present another problem based on the equivalen
e of 
odes:

De�nition 1.2.6 Two (n; k) 
odes C and C

0

over a �eld F are 
alled permutation

equivalent if there exists a permutation � of the permutation group S

n

over n

elements, su
h that

C

0

= � (C) =

��

x

�

�1

(1)

; � � � ; x

�

�1

(n)

�

jx 2 C

	

.

The subgroup of S

n

whi
h keeps C �xed will be 
alled Aut (C).
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Given two generator matri
es G and G

0

the problem is to de
ide if the 
odes

generated by the matri
es are permutation equivalent or not. In the 
ase where

F = F

2

the de�nition of permutation equivalen
y 
oin
ides with the de�nition

of equivalen
y.

De�nition 1.2.7 Two (n; k) 
odes C and C

0

over F are 
alled equivalent if there

exists � 2 S

n

, a n-tupel (a

i

)

1�i�n

2 F

�

and a �eld automorphism � of F su
h

that

x 2 C ,

�

�

�

a

�

�1

(i)

x

�

�1

(i)

��

1�i�n

2 C

0

In se
tion 3.3, we will see an algorithm whi
h solves the problem to de
ide

whether two 
odes are permutation equivalent or not.

Throughout this paper, we will use the following notation. We write G = hGi

if the linear (n; k)-
ode G over F has the generator matrix G. We 
an write x 2 G

as (x

1

; � � � ; x

n

) 2 K

n

. For any (ordered) subset fj

1

; � � � j

m

g = J � f1; � � �ng we

denote the ve
tor (x

j

1

; � � � ; x

j

m

) 2 K

m

with x

J

. Similarly we denote by M

�J

the submatrix of a k � n matrix M 
onsisting of the 
olumns 
orresponding to

the indi
es of J and M

J

0

�

=

�

M

>

�

�J

0

for any (ordered) subset J

0

of f1; � � � ; kg.

1.3 M
Elie
e PKC

This 
ryptosystem was proposed by M
Elie
e [37℄ and is the �rst, whi
h uses

error 
orre
ting 
odes as a trapdoor. It remains unbroken in its original version.

Although it uses Goppa 
odes (see se
tion 2) in the original des
ription, any

sub
lass of the 
lass of alternant 
odes 
ould be used. However, it might not

rea
h the desired se
urity (
ompare se
tion 3.2 or e.g. [38℄). The trapdoor for

the M
Elie
e Cryptosystem using Goppa 
odes is the knowledge of the Goppa

polynomial used to generate the 
ode.

We brie
y des
ribe the 
ryptosystem:

� System Parameters: n, t 2 N, where t� n.

� Key Generation: Given the parameters n, t generate the following ma-

tri
es:

G

0

: k � n generator matrix of a binary irredu
ible (n; k) Goppa 
ode G

whi
h 
an 
orre
t up to t errors, where k is 
hosen maximal.

S : k � k random binary non-singular matrix

P : n� n random permutation matrix

Then, 
ompute the k � n matrix G = SG

0

P .

� Publi
 Key: (G; t)

� Private Key: (S; D

G

;P), where D

G

is an eÆ
ient de
oding algorithm for

G (see e.g. algorithm 2.3.1).
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� En
ryption: To en
rypt a plaintext m 2 f0; 1g

k


hoose a ve
tor z 2

f0; 1g

n

of weight t randomly and 
ompute the 
iphertext 
 as follows:


 =mG� z .

� De
ryption: To de
rypt a 
iphertext 
 
al
ulate


P

�1

= (mS)G

0

� zP

�1

�rst, and apply the de
oding algorithm D

G

for G to it. Sin
e 
P

�1

has a

hamming distan
e of t to the Goppa 
ode we obtain the 
odeword

mSG

0

= D

G

�


P

�1

�

.

Let J � f1; � � � ; ng be a set, su
h that G

�J

is invertible, then we 
an


ompute the plaintext m = (mSG

0

)

J

(G

0

�J

)

�1

S

�1

There are some restri
tions to the 
hoi
e of the M
Elie
e system parameters

given by the atta
ks, if we want to get optimal se
urity. We are going to dis
uss

them later on.

De�nition 1.3.1 The M
Elie
e problem is des
ribed as follows:

� Given a M
Elie
e publi
 key (G; t) where G 2 f0; 1g

k�n

and a 
iphertext


 2 f0; 1g

n

,

� Find the (unique) message m 2 f0; 1g

k

s.t. dist (mG; 
) = t.

It is easy to see that someone who is able to solve the general de
oding

problem is able to solve the M
Elie
e problem. The reverse is presumably not

true, as the 
ode G = hGi is not a random one, but permutation equivalent to

a 
ode of a known 
lass (a Goppa 
ode in our de�nition). We 
an not assume

that the M
Elie
e-Problem is NP-hard. Solving the M
Elie
e-Problem would

only solve the General De
oding Problem in a 
ertain 
lass of 
odes and not for

all 
odes.

In the 
ase of M
Elie
e's original proposal, Canteaut and Chabaud state the

following: \The row s
rambler S has no 
ryptographi
 fun
tion; it only assures

for M
Elie
e's system that the publi
 matrix is not systemati
 otherwise most

of the bits of the plain-text would be revealed" [7℄. However, for some variants

of M
Elie
e's PKC, this statement is not true, as e.g. in the 
ase of the CCA2-

se
ure variants (whi
h we are going to present in se
tion 6). The importan
e of

P is not that easy to see. We will 
ome ba
k to this question in se
tion 3.

1.4 Niederreiter PKC

The Niederreiter PKC is a knapsa
k-type 
ryptosystem whi
h uses an (n; k)-

linear 
ode whi
h 
an 
orre
t up to t errors and for whi
h an eÆ
ient de
oding

algorithm is known. We des
ribe the 
ryptosystem brie
y:
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� System Parameters: n, t 2 N, where t� n.

� Key Generation: Given the parameters n, t generate the following ma-

tri
es:

H: (n� k)� n 
he
k matrix of a binary irredu
ible Goppa 
ode G

of maximal dimension k whi
h 
an 
orre
t up to t errors

M: (n� k)� (n� k) random binary non-singular matrix

P: n� n random permutation matrix

Then, 
ompute the n� (n� k) matrix H

0

= MHP.

� Publi
 Key: (H

0

; t)

� Private Key: (P;D

G

;M), where D

G

is an eÆ
ient syndrome de
oding

algorithm for G (see e.g. algorithm 2.3.1).

� En
ryption: A messagem is represented as a ve
tor e 2 f0; 1g

n

of weight

t, 
alled plaintext. To en
rypt it, we 
ompute the syndrome

s = H

0

e

>

.

� De
ryption: To de
rypt a 
iphertext s 
al
ulate

M

�1

s = HPe

>

�rst, and apply the syndrome de
oding algorithm D

G

for G to it in order

to re
over Pe

>

. Now, we 
an obtain the plaintext e

>

= P

�1

Pe

>

The se
urity of the Niederreiter PKC and the M
Elie
e PKC are equivalent.

An atta
ker who 
an break one is able to break the other and vi
e versa [33℄.

2 Goppa Codes

In this paper, we 
onsider only irredu
ible binary Goppa 
odes. The following

reasons make them interesting for 
ryptography:

� The lower bound for the minimum distan
e is easy to 
ompute.

� The knowledge of the generating polynomial

1

allows eÆ
ient error 
orre
-

tion.

� Without the knowledge of the generating polynomial no eÆ
ient algo-

rithms for error 
orre
tion are known.

For a 
omprehensive introdu
tion to Goppa 
odes see [36, 34, 23℄.

1

See below
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2.1 De�nition

In this se
tion, we will �rst de�ne Goppa 
odes. Based on this de�nition, we will

des
ribe a way to 
onstru
t a generator and a parity 
he
k matrix for Goppa


odes.

Goppa 
odes were de�ned by V.D. Goppa in 1970 [21℄.

De�nition 2.1.1 (Goppa polynomial, Syndrome, binary Goppa Codes)

Let m and t be positive integers and let

g(X) =

t

X

i=0

g

i

X

i

2 F

2

m

[X ℄

be a moni
 polynomial of degree t 
alled Goppa polynomial and

L = (


0

; : : : ; 


n�1

) 2 F

n

2

m

a tuple of n distin
t elements su
h that

g(


i

) 6= 0; for all 0 � i < n:

For any ve
tor 
 = (


0

; : : : ; 


n�1

) 2 F

n

2

, de�ne the syndrome of 
 by

S




(X) = �

n�1

X

i=0




i

g(


i

)

g(X)� g(


i

)

X � 


i

mod g(X). (1)

The binary Goppa 
ode G(L; g(X)) over F

2

is the set of all 
 = (


0

; : : : ; 


n�1

) 2

F

n

2

su
h that the identity

S




(X) = 0 (2)

holds in the polynomial ring F

2

m

[X ℄ or equivalently if

S




(X) �

n�1

X

i=0




i

X � 


i

� 0 mod g(X): (3)

Thus, we have

G(L; g(X)) = f
 2 F

n

2

j S




(X) = 0g

= f
 2 F

n

2

j S




(X) � 0 mod g(X)g

If g(X) is irredu
ible over F

2

m

, then G(L; g(X)) is 
alled an irredu
ible binary

Goppa 
ode.

Remark 2.1.2 To emphasize the dependen
y of ve
tor 
 on sequen
e L, we

sometimes write 
 = (





0

; : : : ; 





n�1

). The elements 


0

; : : : ; 


n�1

2 F

2

m

are


alled 
ode support.
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Goppa 
odes are linear 
odes. If g(X) is irredu
ible, we have g(
) 6= 0 for all


 2 F

2

m

. Thus tuple L from the de�nition may 
ontain all elements of F

2

m

.

Now we will show how to 
onstru
t the parity 
he
k matrix of a Goppa 
ode

G(L; g(X)). Sin
e

g(X)� g(


i

)

X � 


i

=

t

X

j=0

g

j

X

i

� 


j

i

X � 


i

=

t�1

X

s=0

X

s

t

X

j=s+1

g

j




j�1�s

i

; for all 0 � i < n;

we see that 
 2 G(L; g(X)), i� for all s = 0; : : : ; t� 1

n�1

X

i=0

0

�

1

g(


i

)

t

X

j=s+1

g

j




j�1�s

i

1

A




i

= 0:

Thus, a parity 
he
k matrix of G(L; g(X)) 
an be written as

H =

0

B

B

B

B

�

g

t

g(


0

)

�1

� � � g

t

g(


n�1

)

�1

(g

t�1

+ g

t




0

)g(


0

)

�1

� � � (g

t�1

+ g

t




n�1

)g(


n�1

)

�1

.

.

.

.

.

.

.

.

.

�

P

t

j=1

g

j




j�1

0

�

g(


0

)

�1

� � �

�

P

t

j=1

g

j




j�1

n�1

�

g(


n�1

)

�1

1

C

C

C

C

A

= XYZ

where

X =

0

B

B

B

�

g

t

0 0 � � � 0

g

t�1

g

t

0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g

1

g

2

g

3

� � � g

t

1

C

C

C

A

; Y =

0

B

B

B

�

1 1 � � � 1




0




1

� � � 


n�1

.

.

.

.

.

.

.

.

.

.

.

.




t�1

0




t�1

1

� � � 


t�1

n�1

1

C

C

C

A

; and

Z =

0

B

B

B

B

�

1

g(


0

)

1

g(


1

)

.

.

.

1

g(


n�1

)

1

C

C

C

C

A

and therefore we have


 2 G(L; g(X)); i� H


T

= 0: (4)

The entries of the matrix H are elements of the extension �eld F

2

m

over F

2

. If

we interpret F

2

m

as m dimensional ve
tor spa
e over F

2

, we 
an write H as a

matrix over F

2

of dimension mt� n.

The rows of matrix H generate a ve
tor spa
e V whi
h is a subspa
e of F

n

2

.

From (4) it follows that the Goppa 
ode is a ve
tor spa
e whi
h is dual to V .

Therefore we obtain a generator matrix G of a Goppa 
ode by 
omputing the

basis of the ve
tor spa
e dual to V . The rows of G are these basis ve
tors.

Sin
e H is amt�nmatrix, the matrix G has dimension n�k, with k � n�mt.

Thus, it de�nes a (n; k) Goppa 
ode, where k � n�mt.
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2.2 The Minimum Distan
e of Irredu
ible Binary Goppa

Codes

In this se
tion we will determine the minimum distan
e of an irredu
ible binary

Goppa 
ode.

Let G(L; g(X)) be an irredu
ible binary Goppa 
ode with L = (


0

; : : : ; 


n�1

).

Let 
 = (


0

; : : : ; 


n�1

) 2 G(L; g(X)) be a 
odeword and T




= fi : 


i

= 1g. Then

we de�ne

�




(X) =

Y

j2T




(X � 


j

) 2 F

2

m

[X ℄:

The derivative of �




(X) is

�

0




(X) =

X

i2T




Y

j2T




nfig

(X � 


j

):

From (3) it follows

�




(X)S




(X) � �

0




(X) mod g(X): (5)

Sin
e g(


i

) 6= 0 for all 0 � i < n, we have g
d(�




(X); g(X)) = 1. Therefore,

�




(X) is invertible modulo g(X) and we have

�

0




(X)

�




(X)

� S




(X) mod g(X):

It follows that

8
 2 F

n

2

: 
 2 G(L; g(X)), �

0




(X) � 0 mod g(X):

The map F

2

m

�! F

2

m

, x 7! x

2

is the Frobenius automorphism on F

2

m

, therefore

every element y 2 F

2

m

has a unique square root.

The Frobenius map

F

2

m

[X ℄ �! F

2

m

[X ℄; f(X) =

n

X

i=0

f

i

X

i

7! (f(X))

2

=

n

X

i=0

f

2

i

X

2i

is a inje
tive, but not surje
tive, ring homomorphism. Its image is F

2

m

[X

2

℄, a

set of polynomials, whi
h are perfe
t squares of the ring F

2

m

[X ℄.

The polynomial �

0




(X) =

P

n

i=1

i�

i

X

i�1

is a perfe
t square, be
ause in F

2

m

we have i�

i

X

i�1

= 0 for ea
h even i. Sin
e g(X) is irredu
ible, we have

8
 2 F

n

2

: 
 2 G(L; g(X)), �

0




(X) � 0 mod g

2

(X):

Thus, for any 
odeword 
 2 G(L; g(X))nf0g we have

wt(
) = deg�




(X) � 1 + deg�

0




(X) � 2 deg g(X) + 1:
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2.3 Error Corre
tion for Irredu
ible Binary Goppa Codes

As mentioned above, the minimum distan
e of a Goppa 
ode G whi
h is gener-

ated by an irredu
ible polynomial of degree t is at least 2t+ 1. Therefore, it is

always possible to 
orre
t up to t errors. We now will des
ribe su
h an error 
or-

re
tion algorithm whi
h 
orre
ts up to t errors in the 
ase of irredu
ible binary

Goppa 
ode G(L,g(X)). The error 
orre
tion of non-binary or non-irredu
ible

Goppa 
odes is slightly di�erent and 
an be found in [36, 23℄.

Assume m 2 G(L; g(X)) is a 
odeword, e 2 F

n

2

with wt(e) � t is an error

ve
tor, and


 =m� e:

Given 
, we want to 
ompute e and m.

Note that sin
em is a 
odeword, we have S

m

(X) � 0 mod g(X) and there-

fore

S




(X) � S

e

(X) mod g(X):

First, we de�ne the error lo
ator polynomial �

e

(X). For T

e

= fi : e

i

= 1g,

we set

�

e

(X) =

Y

j2T

e

(X � 


j

) 2 F

2

m

[X ℄:

From (3), it follows

�

e

(X)S

e

(X) � �

0

e

(X) mod g(X): (6)

We split �

e

(X) in squares and non-squares. Then we have

�

e

(X) = �

2

(X) +X�

2

(X):

Sin
e the 
hara
teristi
 of the �eld is 2, we have �

0

e

(X) = �

2

(X). Thus equa-

tion (6) 
an be rewritten as follows

�

2

(X)(XS

e

(X) + 1) � �

2

(X)S

e

(X) mod g(X) (7)

We 
an assume that e is not a 
odeword, thus S

e

(X) 6� 0 mod g(X). Therefore,

there exists an inverse of S

e

(X) modulo g(X). We set T (X) = S

�1

e

(X), and

multiply equation (7) by T (X). Then we obtain

�

2

(X)(X + T (X)) � �

2

(X) mod g(X) (8)

As mentioned in the last se
tion, ea
h element of F

2

mt

has a unique square root.

So let �(X) 2 F

2

m

[X ℄ be the unique square root of the polynomial T (X) +X ,

i.e. �(X)�(X) � T (X) +X mod g(X): Taking the square root of equation (8)

we obtain

�(X)�(X) � �(X) mod g(X): (9)

In order to solve the last equation for known �(X) and g(X), we have to deter-

mine �(X) and �(X) of least degree. By assumption we have deg(�

e

(X)) � t.

It follows that deg(�(X)) � bt=2
 and deg(�(X)) � b(t � 1)=2
. This yields
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a unique solution of equation (9) whi
h 
an be found by applying the ex-

tended Eu
lidean algorithm. We re
all that this algorithm may be used to


ompute polynomials �

k

(X) + �

k

(X)�

k

(X) � 0 mod g(X) in ea
h step with

deg(�

k

(X)) = deg(g(X)) � deg(�

k�1

(X)): This last formula presents the rela-

tion between the degrees of � and �: After ea
h step, the degree of � in
reases

as the degree of � de
reases. Using this, one 
an see that there is a unique point

in the 
omputation of the Eu
lidean algorithm, where the degree of both poly-

nomials is below the respe
tive bound. More pre
isely, we run the algorithm

until deg(�

k

(X)) drops below b(t+ 1)=2
 for the �rst time and get

deg�

k

(X) � b(t+ 1)=2
 � 1 � bt=2
.

In this round of the algorithm the following holds:

deg �

k

(X) = deg(�

k

(X)) = deg(g(X))� deg(�

k�1

(X))

� t� b(t+ 1)=2
 = b(t� 1)=2
.

Now, we set �(X) = �

k

(X) and �(X) = �

k

(X) (see algorithm 2.3.1). In

[36, 34, 23℄, it is shown in more detail that they ful�ll equation (9) and are

unique.

Finally, the 
omputation of zeroes for �

e

(X) = �

2

(X) + X�

2

(X) leads to

ve
tors e and m. We present the 
omplete algorithm on the following page.

Now, we analyze the runtime of the presented error 
orre
tion algorihm. To


ompute the syndrome S




(X) employing the 
he
k matrix H , we need at most

(n � k)n binary operations. To 
ompute T (X), we employ the extended Eu-


lidean algorithm. This takes O

�

t

2

m

2

�

binary operations, as the 
omputations

are modulo g(X), a polynomial of degree t and 
oeÆ
ients of size m. Com-

puting the sqare root of T (X) +X takes O

�

t

2

m

2

�

operation sin
e it is a linear

mapping on F

2

m

[X ℄ =g(X). The subsequently employed variant of the extended

Eu
lidean algorithm takes O

�

t

2

m

2

�

binary operations, too. These steps are all


omparatively easy in 
omparison to the last step of the algorithm, whi
h is to

�nd all roots of the error lo
ator polynomial. This last step 
an be performed in

n(tm

2

+ tm) binary operations, thus the whole error 
orre
tion algorithm needs

O

�

n � t �m

2

�

binary operations, as mt � (n� k).

3 Atta
ks on the Private Key

In the following se
tions we present several atta
ks on the M
Elie
e PKC. In

this se
tion we view atta
ks that aim to get the private key from the publi


key. We will see that not every 
lass of linear 
odes is a se
ure 
hoi
e for the

M
Elie
e 
ryptosystem.
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Algorithm 2.3.1 Error Corre
tion of Binary Irredu
ible Goppa Codes

Input: A binary irredu
ible Goppa 
ode G(L; g(X)), a ve
tor 
 =m� e,

where m is a 
odeword and e is an error ve
tor.

Output: The message m and the error ve
tor e.

/* Compute the syndrome of 
 */

S




(X) =

P

n�1

i=0




i

X�


i

mod g(X) (or use the parity 
he
k matrix H)

if S




(X) � 0 mod g(X) then

/* there is no error, 
 is a 
odeword */

return(
, 0)

else

/* there are errors, 
 is not a 
odeword */

T (X) � S

�1




(X) mod g(X)

�(X) �

p

T (X) +X mod g(X)

/* extended Eu
lidean algorithm */

i = 0; r

�1

(X) = �

�1

(X) = g(X); r

0

(X) = �

0

(X) = �(X); �

�1

(X) = 0;

�

0

(X) = 1

while deg(r

i

(X)) � b(t+ 1)=2
 do

i = i+ 1

Determine q

i

(X) and r

i

(X), s.t. r

i

(X) = r

i�2

(X)� q

i

(X)r

i�1

(X)

and deg(r

i

(X)) < deg(r

i�1

(X))

�

i

(X) = �

i�2

(X) + q

i

(X)�

i�1

(X)

�

i

(X) = r

i

(X)

�(X) = 


2

((�

i

(X))

2

+X(�

i

(X))

2

) with 
 2 F

2

m

, s.t. �(X) is moni


/* Determination of zeroes of �

e

(X) */

for i = 0 to n� 1 do

if �(


i

) = 0 then

e

i

= 1

else

e

i

= 0

m = 
� e

return(m; e)
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3.1 The importan
e of S, P and M

Suppose, the set L whi
h was used to generate the se
ret Goppa 
ode for some

publi
 key of the M
Elie
e PKC is known. This is true for normal appli
ations,

and if P is se
ret, then L may be revealed without se
urity problems.

Suppose that g is unknown. Let H

0

be the systemati
 dual matrix of SG

0

=

G. Assume further, that an atta
ker is able to re
over P and M su
h that

M

�1

H

0

P

�1

= H, where H = XYZ has the form given in se
tion 2 (represented

over F

2

). Then he 
an 
ompute g in the following way: The matrix g

t

Z is

written in in the �rst m rows of H. The matrix Y is determined by L. Thus the

atta
ker 
an re
over (X=g

t

) by solving some linear equations. Sin
e g de�nes the

same Goppa 
ode as (g=g

t

), the atta
ker is now able to 
orre
t errors eÆ
iently.

This breaks Niederreiter's as well as M
Elie
e's 
ryptosystem.

If the matrix P is revealed, it is easy to re
over the generator polynomial

from H

0

P

�1

using equation (6), as S




(X) = 0 for every binary n ve
tor 
 with

H

0

P

�1




>

= 0.

The se
ret matrix S indeed has no 
ryptographi
 fun
tion in hiding the se
ret

polynomial g. Today, there is no way to re
over H with the knowledge of S

�1

G

only.

For the se
urity of the M
Elie
e PKC it is absolutely 
ru
ial to keep M

se
ret. The knowledge of M

�1

H

0

= HP is suÆ
ient to re
over g. We may

interpret M

�1

H

0

to be a matrix over F

q

m

. As we will see in the following, this

allows an eÆ
ient 
omputation of g and P.

3.2 Atta
k on the original Niederreiter PKC

Niederreiter proposed his 
ryptosystem originally using generalized Reed-Solo-

mon (GRS) 
odes. In 1992 V.M. Sidelnikov and S.O. Shestakov proposed a

atta
k on Niederreiter's 
ryptosystem using GRS 
odes [47℄ whi
h reveals an

alternative private key in polynomial time. We 
onsider this atta
k to be worth

mentionable, as Goppa 
odes are sub�eld sub
odes of GRS 
odes. Even though,

the results from [47℄ do not a�e
t the se
urity of the original M
Elie
e PKC.

In their atta
k, Sidelnikov and S.O. Shestakov take advantage of the fa
t,

that the 
he
k matrix of GRS 
ode is of the form

�

H =

0

B

B

B

�

z

1

a

0

1

z

1

a

1

1

� � � z

1

a

s

1

z

2

a

0

2

z

2

a

1

2

� � � z

2

a

s

2

.

.

.

.

.

.

.

.

.

z

n

a

0

n

z

n

a

1

n

� � � z

n

a

s

n

1

C

C

C

A

2 F

n�(s+1)

q

. (10)

Note that the matrix X

�1

H = YZ from se
tion 2 is of this from, too. It follows,

that the matrix

�

H is a 
he
k matrix of a Goppa 
ode, or to say it di�erently,

ea
h Goppa 
ode is a sub�eld sub
ode of a GRS 
ode.

A publi
 Niederreiter key is of the form H

0

= P

�

HM, whereM is a non-singular

matrix and P a permutation matrix. The permutation matrix P does not 
hange

the stru
ture of

�

H, so we don't have to worry about P. The entries of H

0


an be
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viewed as the values of polynomials M

�i

(whose 
oeÆ
ients are represented by

the i-th 
olumn of M and therefore are denoted in the same way) multiplied by

z

j

:

H

0

=

0

B

B

B

�

z

1

M

�1

(a

1

) z

1

M

�2

(a

1

) � � � z

1

M

�s

(a

1

)

z

2

M

�1

(a

2

) z

2

M

�2

(a

2

) � � � z

2

M

�s

(a

2

)

.

.

.

.

.

.

.

.

.

z

n

M

�1

(a

n

) z

n

M

�2

(a

n

) � � � z

n

M

�s

(a

n

)

1

C

C

C

A

,

where M

�i

(x) =

P

s

j=0

M

ji

x

j

.

Sidelnikov and Shestakov 
on
lude, that ea
h entry of the row H

0

i�


an be ex-

pressed by a polynomial in a

i

. From this observation one 
an derive a system of

polynomial equations whose solution yields the private key. We will need the no-

tation

�

H = Z �A with A := Z

�1

�

H and the diagonal matrix Z := diag [z

1

; � � � ; z

n

℄.

We want to assume without loss of generality that a

1

= 1 and a

2

= 0. In

order to do this, we have to view the matri
es

�

H, M and H

0

as matri
es over

F := F

q

[1 with 1=1 = 0, 1=0 = 1 and f (1) = f

degf

for every polynomial

f (x) =

P

degf

j=0

f

j

x

j

over F

q

. Sidelnikov and Shestakov show that for every

birational transformation (F-automorphism)

� (x) =

ax+ b


x+ d

with a; b; 
; d 2 F

q

, ad� b
 6= 0

there exist z

0

1

; � � � ; z

0

1

and a matrix M

0

su
h that

H

0

=

0

B

B

B

�

z

0

1

� (a

1

)

0

z

0

1

� (a

1

)

1

� � � z

0

1

� (a

1

)

s

z

0

2

� (a

2

)

0

z

0

2

� (a

2

)

1

� � � z

0

2

� (a

2

)

s

.

.

.

.

.

.

.

.

.

z

0

n

� (a

n

)

0

z

0

n

� (a

n

)

1

� � � z

0

n

� (a

n

)

s

1

C

C

C

A

� (M

0

)

�1

M.

For every three numbers a

1

; a

2

; a

3

2 F

q

it is possible to �nd a birational trans-

formation � s.t.

� (a

1

) = 1 = x

1

� (a

2

) = 0 = x

2

� (a

3

) =1 = x

3

� (a

j

) = x

j

; j 62 f1; 2; 3g .

Thus we 
an make the assumption mentioned above. Note that be
ause x

3

=1

we have x

i

6=1 for all i 6= 3.

We 
an use Algorithm 3.2.1 to re
over a (alternative) private Niederreiter

key from the publi
 key. The algorithm generates a system of polynomial equa-

tions based on the assumption x

1

= 1, x

2

= 0, x

3

= 1 and solves it. We

are going to explain the algorithm brie
y. First we have to remember the

identi�
ation of the entries of H

0

with polynomials evaluated at the a

j

. Thus

for 


i

2 F

s+1

q

, i = 1; 2 and j 2 f1; � � � ; ng, the s
alar produ
t

1

z

j

H

0

j�




i

is the

value of a polynomial �

i

at x

j

, where �

i

is of degree at most s. De�ning

J

1

= f1; s+ 2; s+ 3; � � � ; 2sg and J

2

= f2; s+ 2; s+ 3; � � � ; 2sg we 
an solve
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H

0

J

i

�




i

= 0 for i = 1; 2 we get two polynomials �

1

, �

2

with zeroes in x

s+2

; � � � ; x

2s

and in x

1

, x

2

respe
tively. We know that x

1

= 1; x

2

= 0 thus

H

0

j�




1

H

0

j�




2

=

�

1

(x

j

)

�

2

(x

j

)

=

�

1

(1)

�

2

(1)

�

x

j

� 1

x

j

=

�

1

(x

3

)

�

2

(x

3

)

�

x

j

� 1

x

j

,

whi
h reveals x

j

for j 62 f1; 2; s+ 2; � � � ; 2sg. To determine the missing x

j

,

j 2 fs+ 2; � � � ; 2sg we repeat the pro
edure (introdu
ing 


3

, J

3

, 


4

and J

4

) and

take into a

ount the knowledge of the already determined x

j

. Afterwards we

perform another birational transformation �

0

on the x

j

s.t. a

i

= �

0

(x

j

) are

�nite.

Knowing all a

i

, i 2 f1; � � � ; ng we are able to re
over z

2

; � � � ; z

s+2

assuming

that z

1

= 1 . De�ning J

5

:= f1; 2; � � � s+ 2g and solving 


5

H

0

J

5

�

= 0 for 


5

2 F

s+1

q

we get a polynomial s.t.

P

s+2

j=1




5j

z

j

M

i�

(x

j

) = 0 for i = 1; � � � ; s+2. Expressing

this in matrix form we get:




5

(

�

HM)

J

5

�

= 


5

(ZA)

J

5

M = 0

and 
onsequently we know that 


5

(ZA)

J

5

= 0, whi
h gives us a linear system

with s+1 unknowns and s+1 equations sin
e z

1

, A and 


5

are already known.

Now we 
an determineM and in 
ontinuation the remaining z

j

. Algorithm 3.2.1

has a running time of O

�

s

4

+ sn

�

. For details see [47℄.

Remark 3.2.1 Algorithm 3.2.1 
an not be applied to M
Elie
e/Niederreiter


ryptosystems using Goppa 
odes. Even though for every Goppa 
ode there is

a 
he
kmatrix H whi
h has the same stru
ture as the 
he
k matrix

�

H for GRS


odes in equation (10) (see [36℄), there is no analogous interpretation of H

0

for

the Niederreiter 
ryptosystem using Goppa 
odes. We are able to view H as a

matrix over F

2

if we are using Goppa 
odes, whereas this doesn't work for GRS


odes. Thus we have di�erent matri
es M: M 2 F

(s+1)�(s+1)

2

m

for the GRS 
ase

and M 2 F

m(s+1)�m(s+1)

2

for Goppa 
odes. Thus, in the latter 
ase, H

0

has no

obvious stru
ture, as long as M is unknown.

3.3 Weak Keys and the Support Splitting Algorithm

P. Loidreau and N. Sendrier proposed a way to identify a sub
lass of Goppa


odes, namely the ones with binary generator polynomial g 2 F

2

[X ℄. If an

atta
ker knows, that the se
ret generator polynomial is binary, this redu
es

the sear
h spa
e of a brute for
e atta
k on the private key [35℄. Their general

idea is to take advantage of the Support Splitting Algorithm (SSA) presented

in [44℄. The SSA 
an be used as an ora
le to de
ide whether two 
odes are

permutation equivalent as well as to determine the automorphism group of a


ode. P. Loidreau and N. Sendrier use this ability, to determine if the generator

polynomial of a Goppa 
ode is a binary (irredu
ible) polynomial. If this is the


ase, we sear
h the spa
e of the Goppa 
odes with binary generator polynomial

for a 
ode, whi
h is equivalent to the one given by the publi
 generator matrix.
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Algorithm 3.2.1 GRSre
over [47℄

Input: H

0

=

�

h

0

ij

�

2 F

n�(s+1)

q

and t, a Niederreiter Publi
 key.

Output:

�

H,P of the 
orresponding private Niederreiter Key.

J

1

= f1; s+ 2; s+ 3; � � � ; 2sg; J

2

= f2; s+ 2; s+ 3; � � � ; 2sg;

J

3

= f1; 3; 4; � � � ; s+ 1g; J

4

= f2; 3; 4; � � � ; s+ 1g; J

5

= f1; 2; � � � s+ 2g;

for i = 1 to 4 do

solve H

0

J

i

�




i

= 0 with 


i

2 F

s+1

q

n 0;

for j 62 J

1

[ J

2

do

//

�

1j

= H

0

j�




1

; �

2j

= H

0

j�




2

;

b

j

= �

1j

=�

2j

;

for j 2 fn; 2s; � � � ; s+ 2g do

�

3j

= H

j�




3

; �

4j

= H

j�




4

;

b

j

=

b

n

�

4n

�

3n

�

�

3j

�

4j

; // Note, that we already know b

n

.

x

1

= 1; x

2

= 0; x

3

=1;

for j = 4 to n do

// Determining the values of x

j

.

x

j

= b

3

= (b

3

� b

j

);


hoose some a 2 F

q

di�ering from all x

j

;

for j = 1 to n do

// Mapping the x

j

to �nite elements.

a

j

= (a� x

j

)

�1

; A

j�

=

�

a

0

j

; � � � ; a

s

j

�

;

solve 


5

H

0

J

5

�

= 0 with 


5

2 F

s+1

q

n 0;

z

1

= 1;

�nd z

2

; � � � ; z

s+2

2 F

q

s.t.

P

s+2

j=1




5j

z

j

A

j�

= 0;

for i = 0 to s do

solve A

J

5

�

M

�i

=

�

z

�1

j

H

0

ji

�

>

j2J

5

;

M = (M

�0

; � � � ;M

�s

);

for j = 3 to n do

z

j

= H

0

j�

�

M

�1

�

�0

;

Return a

1

; � � � ; a

n

; z

1

; � � � ; z

n

;M;
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If su
h a 
ode is found, the SSA 
an be used to re
over the permutation matrix

P. There is another atta
k by Gibson [20℄, whi
h aims to re
over the matrix

P, but we forbear presenting it here, as its average work fa
tor is larger than

2

nm(1+O(1))

binary operations [43℄.

The Support Splitting Algorithm was presented to solve the problem to de-


ide whether two 
odes are permutation equivalent in (almost) polynomial time.

We will explain it in the following. Our notation in the following presentation

of the algorithm will di�er slightly from that used in [44℄ so as not to 
onfuse

the reader of the paper with two di�erent de�nitions of a signature. The main

idea is to partition the index set of the 
ode C into small sets, whi
h are �xed

under operation of elements of Aut (C). We have to introdu
e some de�nitions

�rst:

De�nition 3.3.1 Let L be the set of all 
odes and let M be a arbitrary set. A

fun
tion f : L � N 7! M is 
alled permutation invariant if for all (n; k) 
odes

C and all permutations � on f1; � � � ; ng the equation f (C; i) = f (� (C) ; � (i))

holds. A permutation invariant fun
tion f is 
alled dis
riminant for C if there

exist i; j 2 f1; � � � ; ng s.t. f (C; i) 6= f (C; j). It is further 
alled fully dis
rimi-

nant for C if

8

i;j2f1;��� ;ng

: i 6= j ) f (C; i) 6= f (C; j)

If we have two permutation equivalent 
odes C and C

0

and a fully dis
riminant

fun
tion for C, then we are able to name the permutation � s.t. � (C) = C

0

. In

order to build a dis
riminant fun
tion for C, we employ the weight enumerator

and pun
tured 
odes :

De�nition 3.3.2 Let C be an (n; k) 
ode over K . Let J be any subset of

f1; � � � ; ng. Then the 
ode C pun
tured in J is de�ned by

C

J

= fx 2 F

n

jx

J

= 0 and 9

y2C

8

j 62J

x

j

= y

j

g .

The weight enumerator W : L 7! N

N

is the fun
tion s.t. W (C)

i

is the number

of words of weight i in the 
ode C for all i 2 N.

Example 3.3.3 The fun
tion W

0

: L � N ! N

N

; (C; i) 7! W

�

C

fig

�

is permu-

tation invariant. Furthermore, W

0

is dis
riminant for most binary (n; k) 
odes

C.

We are going to use dis
riminant fun
tions to partition the index set of a


ode. Starting with a fun
tion f dis
riminant for C, we want to 
onstru
t a

fun
tion g more dis
riminant for C in the sense of

jg (C; f1; � � � ; ng)j � jf (C; f1; � � � ; ng)j

for the (n; k) 
ode C. The fun
tion g is 
alled stri
tly more dis
riminant for C if

we 
an repla
e � with > in the inequality above. We repeat this pro
ess until

we get a fully dis
riminant fun
tion for C. The following two de�nitions will

enable us to do so.
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De�nition 3.3.4 Let f; g be two permutation invariant fun
tions. We de�ne

the produ
t of f and g as

f � g : L � N !M �M;

(C; i) 7! (f (C; i) ; g (C; i)) ,

and the dual of f as

f

?

: L � N !M;

(C; i) 7! f

�

C

?

; i

�

.

The fun
tion f is 
alled self-dual if f = f

?

.

It is easy to see, that f�g is more dis
riminant than f . With the de�nitions

above we are able to des
ribe the Support Splitting Algorithm (algorithm 3.3.1).

It mainly 
onsists in a while-loop in whi
h de�nitions 3.3.4 and 3.3.2 are used

to get more dis
riminant fun
tions for a given 
ode C, until a fully dis
riminant

fun
tion for C is generated. After the while-loop the index set of C is partitioned

in a standardized way.

Algorithm 3.3.1 Support Splitting Algorithm (SSA)

Input: G generator matrix of a linear (n� k) 
ode C,

S : L � N !M permutation invariant dis
riminant for C.

Output: P = f(P

j

; j)g

1�j�n

, P

j

� f1; � � � ; ng, 
alled labeled partition.

T a permutation invariant, dis
riminant fun
tion for C.

I

n

= f1; � � � ; ng;

j = 0;

T

0

= S;

while (a fun
tion stri
tly more dis
riminant for C than T

j

exists) do


hoose L � T

i

(C; I

n

) at random;

T

j+1

(C; i) = T

j

(C; i)� S

�

C

fi2I

n

jT (C;i)2Lg

; i

�

� S

?

�

C

fi2I

n

jT (C;i)2Lg

; i

�

;

j = j + 1;

T = T

j

;

for j = 1 to n do

if j 2

S

1�i<j

P

i

then

P

j

= ;;

else

P

j

= fi 2 I

n

jT (C; i) = T (C; j)g;

There are two main diÆ
ulties with the algorithm. The �st one is, that

it won't terminate if we are not able to generate a fully dis
riminant fun
tion

for C in the while-loop. Only then we would know, that there does not exist

any further re�nement of T

j

. However, remark 3.3.7 will give us a termination


riterion for binary Goppa 
odes. The se
ond diÆ
ulty is to �nd a good 
hoi
e

for the fun
tion S. A

ording to [35℄ and [44℄ for binary 
odes C we 
hoose

S : L � N ! N

N�N

(C; i) 7!

�

W

�

C

fig

\

�

C

fig

�

?

�

;W

�

�

C

?

�

fig

\

�

�

C

?

�

fig

�

?

��

(11)
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as input for SSA, where W is the weight enumerator. This fun
tion is dis
rimi-

nant in pra
ti
e. Choosing suitable 
riteria for exiting the while-loop, algorithm

3.3.1 runs in time

O

�

n

3

+ 2

dim

(

C\C

?

)

n

2

log (n)

�

, (12)

see [35℄. To see that the average running time of SSA is polynomial bounded

we need to estimate the dim

�

C \ C

?

�

-term in equation (12) and the 
ost for


omputing the weight enumeratorW . The worst-
ase 
omputation 
ost ofW for

a q-ary 
ode of length n and dimension k is proportional to nq

k

operations in F

q

.

However, the average 
ost of 
omputing the weight enumerator is proportional

to 2n operations [44℄. We 
ontinue with determining the dim

�

C \ C

?

�

-term:

Proposition 3.3.5 Let C be an (n; k) 
ode over F

q

. We 
all C \ C

?

the hull of

C. The average dimension of the hull of C tends to a 
onstant when the size of

the 
ode goes to in�nity. This 
onstant is equal to

R =

1

X

i=1

1

q

i

+ 1

.

The proportion of (n; k) 
odes over F

q

with a hull of dimension l � 0 is asymp-

toti
ally equal to

R

l

= R

l�1

=

�

q

l

� 1

�

with R

0

=

1

Y

i=0

1

1 + q

�i

.

Proof. See [45℄, [44℄.

As we have already mentioned SSA is unlikely to terminate in the version of

algorithm 3.3.1. Thus we have to make some assumptions on its output if we


hoose other termination 
riteria for the while-loop, than the one given in the

algorithm. We will see, that these assumptions lead to a suitable termination


riterion, if C is a Goppa 
ode.

We write P = SSA (C) if the labeled partition P = f(P

j

; j)g

1�j�n

is output

of SSA on input of the generator matrix of C. The nonempty P

s

of the output

of SSA are 
alled the 
ells of P . Two labeled partitions P and P

0

are 
alled

equivalent i� a permutation � 2 S

n

exists, s.t. for all s 2 I

n

jP

s

j = j P

0

�(s)

j ; we

write P � P

0

. The fundamental property of SSA is that

C = � (C

0

)) P � P

0

,

where � 2 S

n

. Thus the output of SSA on input of two permutation equivalent


odes is identi
al and the orbits of the elements of the 
ode support under the

a
tion of Aut (C) 
onstitute the �nest obtainable partition.

Assumption 1 If SSA on input G and G

0

returns P ; T and P

0

; T

0

respe
tively,

then

(T (hGi ;N) = T (hG

0

i ;N) ^ P � P

0

) ) hGi = � (hG

0

i) ,
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This assumption is satis�ed in pra
ti
e, if the number of 
ells is larger than

a few units. From this observation the following assumption about the behavior

of SSA is derived:

Assumption 2 On input of the generator matrix of C the SSA returns a labeled

partition whose 
ells are the orbits of the elements of the 
ode support under the

a
tion of Aut (C).

Assumption 2 seems to hold for (binary) 
odes of length � 50 and is based

on experiments by P. Loidreau and N. Sendrier [35℄. Now, if we know Aut (C),

then we 
an easily determine for every for C dis
riminant fun
tion T whether

there exists a stri
tly more dis
riminant fun
tion for C, or not. Fortunately we


an determine Aut (G) for a Goppa 
ode G in some 
ases:

Theorem 3.3.6 With the notation of remark 2.1.2. Let G (L; g) be a binary

(n; k) Goppa 
ode de�ned by a generator polynomial g 2 F

q

m

[X ℄ with 
oeÆ
ients

from a sub�eld F

q

s

of F

q

m

. If n = q

m

, then AUT (G) 
ontains the automorphism

� : F

q

m

! F

q

m

; x 7! x

2

s

.

Note that the elements x 2 F

q

m

are the 
ode support and 
orespond to positions

whi
h are determined by L.

Proof. The proof is derived from a theorem by Moreno [36℄, [35℄.

Here we will only 
onsider s = 1, i.e. only binary Goppa 
odes with binary

generator polynomial. In su
h 
ases, the group generated by the Frobenius �eld

automorphism is in general exa
tly AUT (G) [35℄. Based on this theorem and

the assumptions above, we get the following termination 
riterion for algorithm

3.3.1:

Remark 3.3.7 Let G be a binary Goppa 
ode over F

q

m

with binary generator

polynomial. Assume, that the group generated by the Frobenius �eld automor-

phism over F

q

m

is exa
tly Aut (G). Let P

Aut

be the set of di�erent orbits of the


ode support under the a
tion of Aut (G). Then the 
ondition

(a fun
tion stri
tly more dis
riminant for G than T

j

exists)

in algorithm 3.3.1 is equivalent to

jT

j

(G;N) j <

�

�

P

Aut

�

�

.

Further, the running time of algorithm 3.3.1 is given by equation (12).

Let's return to the original problem. We do know the publi
 M
Elie
e key

(G; t) and want to re
onstru
t the private key. If assumptions 1 and 2 hold,

we 
an identify a weak key (i.e. a M
Elie
e-Instan
e, generated with a binary
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generator polynomial) by 
omparing the 
ardinalities of SSA (hGi) with the


ardinalities of the di�erent orbits of the elements of the 
ode support under

the a
tion of Aut (hGi): If the SSA does not terminate or returns a fun
tion T

su
h that

jT (C;N)j 6�

�

�

P

Aut

�

�

,

then we assume, that hGi = G does not have a binary generator polynomial.

Otherwise, we identify a \weak key ", i.e. we assume, that G has a binary

generator polynomial.

On
e a weak key is identi�ed, we 
an determine the binary Goppa polynomial

used to generate the publi
 key G by brute for
e. We 
he
k if

SSA (hGi) � SSA (G(L; g(X)))

for all (irredu
ible) binary polynomials g of degree t, where G(L; g(X)) de-

notes the Goppa 
ode de�ned by the set L and g (
ompare se
tion 2). After

having identi�ed the generator polynomial of G, one 
an determine the se
ret

permutation matrix P. In order to do so, we have to pi
k a i 2 f1; � � � ; ng s.t.

AUT

�

G

fig

�

= f1g and a j out of the orbit of i under Aut (G). Then G

fig

and

hGi

fjg

are equivalent and we get the permutation by applying SSA to both. This

produ
es partitionings 
ontaining only 
ells of 
ardinality one (under assump-

tion 2) and the mat
hes between the 
ells provide the permutation. The authors

of [35℄ 
laim that most i serve the last 
ondition. The number of irredu
ible

polynomials of degree 50 is approximately 2

44

. Thus the average runtime of the

atta
k on weak keys for M
Elie
e parameters n = 1024, t = 50 is

�

2

44

+ 1

�

O

�

n

3

+ 2

R

n

2

log (n)

�

� 2

75

,

where R is given in proposition 3.3.5. We 
on
lude, that the 
hoi
e of n = 1024,

t = 50 for M
Elie
e does not rea
h the desired level of se
urity, if we want to

use binary generator polynomials.

There is a possibility to speed up this atta
k by a fa
tor (log (n))

3

if we �rst


he
k the idempotent sub
odes against ea
h other in the brute for
e part of the

atta
k, instead of 
omparing the Goppa 
odes themselves.

De�nition 3.3.8 Let G be a Goppa 
ode, then a word a 2 G is 
alled idempo-

tent if

a =

�

a




0

; � � � ; a




n�1

�

=

�

a

�

�1

(


0

)

; � � � ; a

�

�1

(


n�1

)

�

.

The set of all idempotents of G is a linear sub
ode of G and is 
alled the idem-

potent sub
ode I

G

of G.

The sub
ode I

G

may be mapped to a linear 
ode I of length equal to the

number of di�erent orbits of F

2

m

under � [35℄. The 
ode I has the same di-

mension as I

G

and its length is shorter by a fa
tor 
lose to m. We 
on
lude

that the use of the idempotent sub
ode provides a speedup of the atta
k 
lose

to the fa
tor m

3

, thus the 
hoi
e of a binary generator polynomial for the se
ret

Goppa 
odes does not provide suÆ
ient se
urity, even for parameter sets with

n > 1024.
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Remark 3.3.9 This atta
k may be generalized to dete
t Goppa 
odes with

a generator polynomial over any sub�eld of F

2

m

but the 
lass dete
ted this

way is mu
h too big to perform an exhaustive sear
h. Further, the number of

polynomials 
lassi�ed by this property is mu
h too small to provide an e�e
tive

atta
k against the M
Elie
e 
ryptosystem.

4 Ciphertext Only Atta
ks

In this se
tion, we will �rst present algrorithms for solving the general de
od-

ing problem (see Problem 1.2.3). These algorithms yield to di�erent atta
ks

against 
ryptosystems based on linear error-
orre
ting 
odes. On input of a


ode generator matrix G (a part of the publi
 key) and a 
iper-text 
, these at-

ta
ks 
ompute the plain text 
orresponding to the 
ipher text 
. Although these

atta
ks require exponential time, they are faster than the brute for
e algorithm.

At the end of the se
tion, we will des
ribe an atta
k by Bri
kell and Odlyzko

[6℄ based on latti
e redu
tion and show why this atta
k does not work with

M
Elie
e or Niederreiter 
ryptosystems based on binary Goppa 
odes.

4.1 Generalized Information-Set-De
oding Atta
k

This atta
k was proposed by M
Elie
e in his original paper [37℄. Lee and Bri
kell

systematized and generalized it in [30℄. It solves the general de
oding problem

assuming the knowledge of an upper bound for the distan
e to the next 
ode

word.

We will begin by presenting the idea of the atta
k. Assume we are given a

generator matrix G of a linear error-
orre
ting 
ode and a 
ipher text 
 =mG�e

where e is the error ve
tor of weight t. Then, we randomly 
hoose k 
olumns of

G and 
. If there is no error in the 
hosen 
olumns of 
 and the k � k matrix

builded from k 
olumns of G is invertible, then we 
an easy determine m.

Now we will give a detailed des
ription of the atta
k. It pro
eeds as follows.

Let I � f0; : : : ; n � 1g with jIj = k = dimG. As in se
tion 1.2 we denote by

G

I

, 


I

, and e

I

the k 
olumns pi
ked from G, 
, and e, respe
tively. Then the

following relationship is true




I

=mG

I

� e

I

:

If G

I

is non-singular and e

I

= 0, then

m = 


I

G

�1

I

:

If G

I

is non-singular and wt(e

I

) is small, then m 
an be re
overed by guessing

e

I

and 
he
king whether

wt((


I

� e

I

)G

�1

I

G� 
) = t:

We will estimate the work fa
tor of this atta
k (see Algorithm GISD). The

number of sets I, su
h that there are exa
tly i errors in ve
tor 


I

is

�

t

i

��

n�t

k�i

�

.



D. Engelbert, R. Overbe
k and A. S
hmidt: The M
Elie
e Cryptosystem 25

Algorithm 4.1.1 GISD

Input: n� k generator matrix G, a 
ipher text 
 =mG� e, where m is the

plain-text and e is the error ve
tor of weight t, a positive integer j � t.

Output: The plain-text m

while true do

Choose randomly I � f0; : : : ; n� 1g, with jIj = k.

Q

1

= G

�1

I

; Q

2

= Q

1

G

z = 
� 


I

Q

2

for i = 0 to j do

for all e

I

with wt(e

I

) = i do

if wt(z � e

I

Q

2

) = t then

return((


I

� e

I

)Q

1

)

The number of all sets I with jIj = k is

�

n

k

�

. Therefore, the expe
ted number

for 
hoosing the set I su
h that there are at most j errors in ve
tor 


I

is

T

j

=

�

n

k

�

P

j

i=0

�

t

i

��

n�t

k�i

�

:

The number of error ve
tors e

I

with wt(e

I

) � j is

N

j

=

j

X

i=0

�

k

i

�

:

Therefore the expe
ted work fa
tor of the atta
k for given j and (n; k) Goppa


ode with minimum distan
e 2t+ 1 is

W

j

= �T

j

(k

3

+N

j

k);

where � is a small 
onstant.

In [30℄ the authors propose to use j = 2 to minimize the W

j

.

4.2 Finding-Low-Weight-Codeword Atta
ks

In this se
tion, we will present three algorithms whi
h solve the problem of

�nding weights (see Problem 1.2.4). These algorithms 
an be used to break

M
Elie
e or Niederreiter 
ryptosystems in the following way. Assume we know

a generator matrix G of a linear error-
orre
ting 
ode with minimum distan
e t

and a 
ipher text 
 = mG� e, where wt(e) < t=2. We 
ompute the 
odeword

with the minimum weight in a new 
ode generated by matrix

�

G




�

:

Sin
e this 
odeword is e, this atta
k 
an be used to re
over the plain text m

from the given 
ipher text 
.
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All three algorithms presented below are based on the same idea. Assume

we have a 
ode C given by a generator matrix G. The algorithms �rst sear
h

for 
odewords of small weight in a restri
ted 
ode generated by G

S

where S is a

random subset of f0; : : : ; n� 1g. Then, they expand these 
odewords to 
ode-

words in C and 
he
k whether the 
odewords in C have the desired weight. The

algorithms di�er in the way of 
hoosing for set S and the strategy of sear
hing

for 
odewords of small weight in the restri
ted 
ode.

Before we des
ribe the algorithms, we will will give some ne
essary notations

and de�nitions.

Let N = f0; : : : ; n� 1g be the set of all 
oordinates. As in the last se
tion,

we will use the set I � N with jIj = k = dimG.

By G = (V;W)

I

, we will denote the de
omposition of G in two matri
es V

and W, su
h that V = (G

i

)

i2I

and W = (G

i

)

i=2I

, where G

i

is the i-th 
olumn of

G.

Now, we will introdu
e the information set whi
h allows us to redu
e the


omputation 
ost in the algorithms we will present below.

De�nition 4.2.1 Let I � N , su
h that jIj = k. Then I is an information set

for the 
ode C i� there is a generator matrix G for C su
h that G = (Id

k

;Z)

I

.

The following statement for information sets is true.

Theorem 4.2.2 Let I be an information set and G = (Id

k

;Z)

I

the 
orrespond-

ing systemati
 generator matrix. Then I

0

= (Inf�g) [ f�g is an information

set i� Z

�;�

= 1

Proof. Sin
e G = (Id

k

;Z)

I

, we have

G

�

= Z

�;�

+

X

i2Inf�g

Z

i;�

G

i

:

Columns indexed by I are linearly independent, therefore G

�

and (G

i

)

i2Inf�g

are linearly independent i� Z

�;�

= 1.

Now we will des
ribe the algorithms by Leon, Stern, and Canteaut and Chabaud.

4.2.1 Leon

In [32℄, J. S. Leon proposed a probabilisti
 algorithm for 
omputing mini-

mum weights of large linear error-
orre
ting 
odes. This algorithm 
an also

be adapted for 
omputing 
odewords of minimum weight in a linear 
ode.

In this paper, we will present a version of the algorithm whi
h is slightly

di�erent from version presented by Leon in [32℄. This version was presented by

Chabaud in [10℄.

The input of the algorithm is a generator matrix G, the weight t, and two

additional integers p and l whi
h 
ontrol the runtime and the su

ess probability

of the algorithm. The algorithm returns a 
odeword of weight t or fails. The

algorithm exe
utes the following steps.
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Step 1: Randomly 
hoose an information set I and apply a Gaussian elimina-

tion in order to obtain a systemati
 generator matrix G

�

= (Id

k

;Z)

I

.

Step 2: Randomly 
hoose a set L � NnI 
onsisting of l elements.

Step 3: For ea
h linear 
ombination A of p or fewer rows of matrix G

�

I[L


ompute wt(A

I[L

).

Step 4: If wt(A

I[L

) � p 
he
k whether the same linear 
ombination applied

to matrix G

�

has weight t. If that is the 
ase, then return the last linear


ombination. If there is no linear 
ombination whi
h ful�lls the above


ondition, then the algorithm fails.

Next, we will analyze the algorithm. Thereby we assume that zeros and ones in

the 
odewords are distributed almost uniformly.

At �rst, we will determine the su

ess probability. It depends on favorable


hoi
es of I and L. Assume we have a 
odeword e with wt(e) = t. Fix p; l 2 Z,

then the following 
onditions lead to favorable 
hoi
es of I and L:

I � N ; jIj = k; L 2 NnI; jLj = l; wt(e

I[L

) � p:

Therefore, Leon's algorithm su

eeds with probability:

Pr[algorithm su

eeds℄ =

p

X

j=1

�

t

j

��

n�t

k+l�j

�

�

n

k+l

�

:

Next, we will estimate the expe
ted work fa
tor of the algorithm.

� The Gaussian elimination performed in step 1 requires on the average

k

2

2

(n�

k+1

2

) bit operations.

� Step 3 requires

P

p

j=1

�

k

j

�

(j � 1) additions of l-bit words.

� Sin
e in step 4, 
ondition wt(A

I[L

) � p is true approximately

P

p

j=1

�

k

j

�

P

p�j

i=0

(

l

i

)

2

l

times. The algorithm requires

P

p

j=1

�

k

j

�

(j � 1)

P

p�j

i=0

(

l

i

)

2

l

additions of n-bit

words.

Therefore, the expe
ted work fa
tor of Leon's atta
k against M
Elie
e 
ryp-

tosystem is

�

n

k + l

�

k

2

2

(n�

k+1

2

) +

P

p

j=1

�

k

j

�

(j � 1)(l +

n

2

l

P

p�j

i=0

�

l

i

�

)

P

p

j=1

�

t

j

��

n�t

k+l�j

�

. (13)

To minimize the work fa
tor, in [10℄ the parameters of Leon's atta
k are 
hosen

to be p = 3 and l � k + log

2

(n).
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Algorithm 4.2.1 Leon-LWCW

Input: k � n generator matrix G, a positive integers t, p, and l.

Output: A 
odeword of weight t

N = f0; : : : ; n� 1g

while true do

/* Step 1 */

I = ;; P = ;

for i = 1 to k do

Randomly 
hoose r 2 NnI; I = I [ frg

Randomly 
hoose 
 2 f1; : : : ; kgnP su
h that G

r;


= 1; P = P [ f
g

/* Eliminate all 1's in 
olumn 
 */

for j = 1 to k do

if j 6= r and G

j;


= 1 then

G

j

= G

j

� G

r

, where G

x

is the x-th row of G

/* now we have G = (Id

k

;Z)

I

*/

/* Step 2 */

Randomly 
hoose L � NnI su
h that jLj = l

/* Steps 3 and 4 */

for all linear 
ombinations A of p rows of G

I[L

do

if wt(A

I[L

) � p then

Constru
t 
 from G by taking the same rows as in A

if wt(
)=t then

return(
)
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4.2.2 Stern

In this se
tion, we will present a slightly modi�ed algorithm from [48℄. We apply

our algorithm to a generator matrix of a 
ode instead of a parity 
he
k matrix

as presented by Stern.

On input of a generator matrix G and three integers t, p and l the algorithm

returns a 
odeword of length t or fails. The additional parameters p and l

allow us to 
ontrol the runtime and the su

ess probability of the algorithm.

Thus, knowing that there exist a 
odeword, we 
an repeat the algorithm until

it su

eeds.

The algorithm is based on the following idea. It randomly splits G into two

sub-matri
es whi
h 
onsist of rows of matrix G. In ea
h matrix, the algorithm


omputes all linear 
ombinations of p rows and 
he
ks whether 
ertain parts of

these linear 
ombinations are equal. If they are equal, then the algorithm 
he
ks

whether the weight of remaining parts is equal t. In this 
ase the algorithm

su

eeds.

The algorithm performs the following �ve steps:

Step 1: Randomly 
hoose an information set I and apply a Gaussian elimina-

tion in order to obtain a systemati
 generator matrix G

�

= (Id

k

;Z)

I

.

Step 2: Randomly spit I into two subsets I

1

and I

2

. Ea
h element of I is

added either to I

1

or to I

2

with probability 1=2. This 
auses a splitting

of the rows of Z in Z

I

1

�

and Z

I

2

�

Step 3: Randomly 
hoose a set L � NnI 
onsisting of l elements.

Step 4: For ea
h linear 
ombinationA (resp. B) of p rows of matrix Z

I

1

�

(resp.

Z

I

2

�

) 
ompute A

L

(resp. B

L

).

Step 5: For ea
h pair (A;B) withA

L

= B

L


he
k whether wt(A+B) = t�2p.

If that is the 
ase, then return ve
tor e 
onsisting of a linear 
ombination

of rows of G

�

, where the same rows as in A +B are taken. If there is no

pair whi
h ful�lls the above 
onditions, then the algorithm fails.

We will analyze the algorithm. At �rst, we will determine the probability it

su

eeds. It depends on 
hoi
es of I, I

1

, I

2

, and L. Assume we have a 
odeword

e with wt(e) = t. Fix p; l 2 Z, then we have the following 
onditions:

1. jIj = k and wt(e

I

) = 2p,

2. I

1

� I, wt(e

I

1

) = p, and I

2

= InI

1

,

3. L 2 NnI, jLj = l, wt(e

NnI

) = t� 2p, and wt(e

L

) = 0.

These 
onditions impli
ate the probabilities of 
hoosing su
h sets I, I

1

, I

2

, and
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L whi
h yield to the given 
odeword e.

Pr[of 
hoosing a favorable I℄ =

�

t

2p

��

k�t

k�2p

�

�

n

k

�

Pr[of 
hoosing a favorable I

1

℄ =

�

2p

p

�

4

p

Pr[of 
hoosing a favorable L℄ =

�

n�k�t+2p

l

�

�

n�k

l

�

The probability of su

ess of Stern's algorithm is the produ
t of the above

probabilities. Thus, we have

Pr[the algorithm su

eeds℄ =Pr[of 
hoosing a favorable I℄�

Pr[of 
hoosing a favorable I

1

℄�

Pr[of 
hoosing a favorable L℄:

(14)

Next, we will estimate the expe
ted work fa
tor.

� The Gaussian elimination performed in step 1 requires on the average

k

2

2

(n�

k+1

2

) bit operations.

� Step 4 requires on the average 2lp

�

k=2

p

�

bit operations.

� In step 5 we assume that the distribution of values of A

L

(resp. B

L

) is

roughly uniform. Then, any bit ve
tor of dimension l is hit by approxi-

mately

�

k=2

p

�

=2

l

elements of A (resp. B). It follows, that step 5 requires

approximately 2(n� k)

�

k=2

p

�

2

=2

l

bit operations.

Thus, Stern's algorithm requires on average

2lpk

2

(n� k)(n�

k + 1

2

)

�

k=2

p

�

3

=2

l

(15)

bit operations.

By 
ombining the results of (14) and (15), we 
on
lude that the expe
ted

work fa
tor of Stern's atta
k against M
Elie
e 
ryptosystem is

4

p+1

lpk

2

(n� k)(n�

k+1

2

)

�

k=2

p

�

3

�

n�k

l

��

n

k

�

2

l+1

�

2p

p

��

t

2p

��

k�t

k�2p

��

n�k�t+2p

l

� (16)

4.2.3 Canteaut and Chabaud

As mentioned above, Stern's algorithm has to be repeated very often in order

to de
rypt su

essfully. Ea
h repetition performs in the �rst step a Gaussian
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Algorithm 4.2.2 Stern-LWCW

Input: k � n generator matrix G, a positive integers t, p, and l.

Output: A 
odeword of weight t

N = f0; : : : ; n� 1g

while true do

/* Step 1 */

I = ;; P = ;

for i = 1 to k do

Randomly 
hoose r 2 NnI; I = I [ frg

Randomly 
hoose 
 2 f1; : : : ; kgnP su
h that G

r;


= 1; P = P [ f
g

/* Eliminate all 1's in 
olumn 
 */

for j = 1 to k do

if j 6= r and G

j;


= 1 then

G

j

= G

j

� G

r

, where G

x

is the x-th row of G

/* now we have G = (Id

k

;Z)

I

*/

/* Step 2 */

Randomly split I into I

1

and I

2

/* Step 3 */

Randomly 
hoose L � NnI su
h that jLj = l

/* Steps 4 and 5 */

for all linear 
ombinations A of p rows of Z

I

1

do

store (A

L

; A; index of rows) in a hash table T

for all linear 
ombinations B of p rows of Z

I

2

do

if there exists (B

L

; A; index of rows) 2 T and

wt((A+B)

Nn(I[L)

) = t� 2p then

Constru
t 
 from G by taking the same rows as in A+B

return(
)
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elimination whi
h is very time 
onsuming. In [8℄ the authors suggest another

strategy for this step. Based on theorem 4.2.2, they suggest to 
hoose a new

information set not randomly but by modifying only one element in the old one.

The 
omplexity of this new step is approximately k(n� k)=2 binary operations

instead of k

2

(n�

k+1

2

) in Stern's algorithm.

The pre
ise analyze of the algorithm CC-LWCW 
an be found in [8, 9℄.

Here we will present only the results. The algorithm is analyzed via modeling

by a Markov 
hain. For this purpose we need a random variable X

i

whi
h

represent the ith iteration of the algorithm and 
orresponds to the number

of non-zero bits of 
ipher text 
 in I. X

i

takes one of the values of the set

E = (f1; : : : ; tgnf2pg)[ f(2p)

S

; (2p)

F

g The set of su

ess states is S = f(2p)

S

g.

The set of failure states is F = EnS

Theorem 4.2.3 The following results for the algorithm CC-LWCW are true:

1. The average number of elementary operations performed in ea
h while-

iteration is




p;l

= 2pl

��

k=2

p

��

+2p(n�k�l)

�

�

k=2

p

�

�

2

2

l

+S

�

p

��

k=2

p

��

+ 2

l

�

+

k(n� k)

2

where S is the size of a 
omputer word (= 32 or 64).

2. Let �

0

(u) = Pr[X

0

= u℄, P

u;v

= Pr[X

i

= v=X

i�1

= u℄, Q = (P

u;v

)

u;v2F

,

and R = (I�Q)

�1

. Then the expe
tation of the number of while-iterations

N is

E(N) =

X

u2F

�

0

(u)

X

v2F

R

u;v

3. Suppose the number of 
odewords of weight t is A

t

(Note, that A

t

= 1 in

our atta
k). Then the overall work fa
tor of the algorithm is

W

p;l

=




p;l

E(N)

A

t

(17)

The exa
t values of the entries of the matrix P and a more detailed analysis

may be found e.g. in [9℄. To get a approximate work fa
tor, one 
an repla
e the

k

2

�

n�

k+1

2

�

-term in equation (16) by k(n� k)=2.

4.3 Statisti
al De
oding

This atta
k was presented by A Kh. Al Jabri in [25℄. It is based on the idea

that ve
tors from the dual spa
e of a binary 
ode whi
h are not orthogonal

to the 
iphertext reveal some information on the error positions. This atta
k

needs an algorithm whi
h �nds a suÆ
ient number of ve
tors of the dual 
ode of


ertain weight. It is not 
lear what the running time of su
h a sear
h would be,

sin
e the problem of �nding the desired set of ve
tors is 
onne
ted to Problem
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Algorithm 4.2.3 CC-LWCW

Input: k � n generator matrix G, a positive integers t, p, and l.

Output: A 
odeword of weight t

N = f0; : : : ; n� 1g

/* Step 1 */

I = ;; P = ;

for i = 1 to k do

Randomly 
hoose r 2 NnI; I = I [ frg

Randomly 
hoose 
 2 f1; : : : ; kgnP su
h that G

r;


= 1; P = P [ f
g

/* Eliminate all 1's in 
olumn 
 */

for j = 1 to k do

if j 6= r and G

j;


= 1 then

G

j

= G

j

� G

r

, where G

x

is the x-th row of G

/* now we have G = (Id

k

;Z)

I

*/

while true do

/* Step 2 */

Randomly split I into I

1

and I

2

with jI

1

j = bjIj=2


/* Step 3 */

Randomly 
hoose L � NnI su
h that jLj = l

/* Steps 4 and 5 */

for all linear 
ombinations A of p rows of Z

I

1

do

store (A

L

; A; index of rows) in a hash table T

for all linear 
ombinations B of p rows of Z

I

2

do

if there exists (B

L

; A; index of rows) 2 T and

wt((A+B)

Nn(I[L)

) = t� 2p then

Constru
t 
 from G by taking the same rows as in A+B

return(
)

/* New step 1 */

Randomly 
hoose � 2 I

Find unique r su
h that G

r;�

= 1

Randomly 
hoose � 2 NnI, su
h that Z

r;�

= 1

I = (Inf�g) [ f�g

/* Update Z appropriate to new I */

for i = 1 to k do

if r 6= i and G

i;�

= 1 then

G

i

= G

i

� G

r

, where G

x

is the x-th row of G
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1.2.4 (SUBSPACEWEIGHTS). Further we know little about the true minimum

distan
e of the dual 
ode (see e.g. [12℄).

Let H

w

be a set of ve
tors of weight w of the dual spa
e of the (n; k; 2t+ 1)

linear binary 
ode G with generator Matrix G. Let y be the sum of a 
odeword

uG 2 G and an error ve
tor e with weight at most t. A Jh. Al Jabri points out,

that for randomly generated 
odes the probability that a value of 1 appears in

the i-th position of h 2 H

w

with yh

T

= 1 depends on i being an erroneous

position in the ve
tor y. Let p be the probability that h

i

= 1 and i is an

erroneous position, and q be the probability that h

i

= 1 and i is a non-erroneous

position. Then we have

p =

P

m�t

m odd

�

n�t

w�m

��

t�1

m�1

�

P

m�t

m odd

�

t

m

��

n�t

w�m

�

, q =

P

m�t

m odd

�

n�t�1

w�m�1

��

t

m

�

P

m�t

m odd

�

t

m

��

n�t

w�m

�

for all h satisfying that yh

T

= 1.

The idea for statisti
al de
oding is quite similar to the one of iterative de
od-

ing, see [14℄. It 
onsists in estimating the probability that h

i

= 1 and yh

T

= 1

for ea
h position i 
onsidering di�erent ve
tors h. Unlike at iterative de
oding

we do not determine a single error position, but try to determine an informa-

tion set of non-error positions. If for example p > q, then we assume that i is

a non-error position if the relative frequen
y estimate is lower then a 
ertain

bound. On
e we have found a non-erroneous information set by modifying the

bound, we try to 
orre
t the errors.

We 
an re
over u using algorithm 4.3.1 if H

w

is properly 
hosen. Note

that for i 2 f1; � � � ; ng an (non-)error position the value v

i

=v

+

y

with v

+

y

:=

P

h2H

w

�

yh

T

mod 2

�

is the relative frequen
y estimate for p (q respe
tively).

The mean value of v

i

is pv

+

y

, and its varian
e is �

2

= p(p � 1)v

+

y

. The sets I

1

and I

2

are introdu
ed to 
over the 
ases where p < q or p > q.

Algorithm 4.3.1 StatDe


Input: H

w

, y.

Output: u, the information ve
tor.

v =

P

h2H

w

�

yh

>

mod 2

�

h 2 Z

n

.


hoose I

1

= fpositions of the k largest entries of vg s.t. G

�I

1

is invertible.


hoose I

2

= fpositions of the k smalles entries of vg s.t. G

�I

2

is invertible.

u

1

= y

I

1

G

�1

�I

1

u

2

= y

I

2

G

�1

�I

2

if weight(u

1

G� y) � t then

u = u

1

else

u = u

2

The work fa
tor for algorithm 4.3.1 is

O

�

n � jH

w

j+ 2k

3

+ kn

�
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M
Elie
e parameters w jp� qj jH

w

j

�

n

w

�

2

�k

Workfa
tor

(2

m

; k; d = 2t+ 1) StatDe


(1024; 524; 101) 137 0:2 � 10

�7

2

51

2

52:5

2

61

(1024; 524; 101) 153 0:21 � 10

�8

2

58

2

94

2

68

(2048; 1278; 141) 363 0:41 � 10

�14

2

96

2

96:9

2

107

(65536; 65392; 9) 32000 0:17 � 10

�13

2

93

2

109:7

2

109

Table 1: StatDe
 for example parameter sets

binary operations having 
omputed the setH

w

in advan
e. The author of [25℄


laims that the latter 
an be done e.g. by the methods of [8℄, whi
h is to be

doubted (
ompare [39℄ and [14℄).

The di�eren
e between p and q is very small for large 
odes, so we need a large

set H

w

to distinguish the relative frequen
y estimates for p and q respe
tively.

Al Jabri's initial analysis of the size of H

w

needed for error 
orre
tion seems to

be too optimisti
. A more realisti
 bound seems to be

jH

w

j � 5:4p(1� p)

1

(p� q)

2

: (18)

from [39℄, whi
h is about a fa
tor 2

14

larger than Al Jabri's original bound

(
ompare as well [14℄).

It is obvious, that a setH

w

of the desired size will not even exist if w is 
hosen

to small. Goppa 
odes, BCH 
odes and GRS 
odes have a weight distribution

\
lose" to the expe
ted weight distribution of a random 
odes, whi
h is the

binomial distribution [25℄. Consequently, we get the following 
ondition for H

w

:

jH

w

j �

�

n

w

�

2

�k

.

Table 1 shows some example sizes to atta
k M
Elie
e this way, where the

work fa
tor refers to the 
omputational 
osts after having 
omputed the set

H

w

. One 
an see, that the M
Elie
e 
ryptosystem resists this kind of atta
k for

all parameter sets se
ure against CC-LWCW. Further, for all parameter sets

proposed, StatDe
 has no advantage over CC-LWCW. However, so far there

is no algorithm known, whi
h performs the pre
omputation eÆ
iently.

In [39℄, a improved version of StatDe
 is proposed, but the author 
on-


ludes, that this improvement is not suÆ
ient to atta
k the M
Elie
e Cryptosys-

tem by statisti
al de
oding due to the large amount of pre
omputation needed.

The authors of [14℄ 
on
lude, that for iterative de
oding a smaller set H

w

as for

the initial StatDe
 is suÆ
ient as well. However, the size of H

w

needed is still

very large and in 
onsequen
e it is infeasible to 
ompute H

w

by the existing

methods.
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4.4 Latti
e Atta
ks

In [6℄, the authors suggest to apply the low density algorithm from [29℄ to break

Niederreiter 
ryptosystem. In this se
tion we give an idea of this atta
k and

explain why this atta
k doesn't work with Niederreiter/M
Elie
e 
ryptosystems

based on binary Goppa 
odes.

The atta
k pro
eeds as follows. Given a parity 
he
k matrix H 2 F

n�(n�k)

q

of a Goppa 
ode and 
ipher text 
 =mH, wherem is a message, i.e. wt(m) = t

(see se
tion 1.4). Let L be the latti
e generated by the row ve
tors in the matrix

Q =

0

�

Id

n+1

rH

r


T

0 qrId

n�k

1

A

where Id

s

is the identity matrix of dimension s and r is an integer. The ve
tor

m

�

= (m

1

; : : : ;m

n

;�1; 0; : : : ; 0) is a ve
tor in the latti
e and has at most t+1

nonzero entries. If r � t, then the authors 
laim that m

�

is a shortest ve
tor in

the latti
e. So by �nding this ve
tor we 
an determine the 
orresponding plain

text.

Unfortunately, this is not true for �elds of 
hara
teristi
 2. The reason

for this failure is that m

�

isn't the shortest ve
tor for q = 2. The shortest

ve
tors are 2e

1

; : : : ; 2e

n+1

, where e

i

= (0; : : : ; 0

| {z }

i�1

; 1; 0; : : : ; 0). These ve
tors 
an

be obtained by taking the �rst (resp. se
ond, et
.) row twi
e and erase the last

(n � k) elements in the ve
tor by taking appre
iate rows from the sub-matrix

qrId

n�k

. Sin
e these ve
tors have nothing to do with original message m, this

atta
k doesn't work with the Niederreiter 
ryptosystem based on binary Goppa


odes.

5 Atta
ks infeasible with CCA2 Conversions

The atta
ks outlined in the following aim at revealing partial information about

the message sent, or the error ve
tor used for en
ryption in the M
Elie
e 
ase.

Thus they are not stand alone atta
ks, i.e. they 
annot be used to re
over the

plaintext 
ompletely or to get the private keys, but they provide ways to redu
e

the system size and thus the 
omplexity of 
onse
utive atta
ks.

One thing all atta
ks dealt with in this se
tion have in 
ommon is that they


an be avoided 
ompletely by suitable 
onversions for the originalM
Elie
e 
ryp-

tosystem [27℄. Thus the atta
ks are mentioned here mostly for 
ompleteness'

sake and to underline the importan
e for using one of the proposed 
onversions,

some of whi
h we present later.

5.1 Taking advantage of partially known plaintexts

An atta
ker for the M
Elie
e 
ryptosystem may use known bits of a sent mes-

sage to re
over the whole plaintext. More pre
isely, the partial knowledge of
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the originally sent message 
orresponds to a redu
tion in the 
ryptosystems

parameters.

Suppose an adversary knows the target plaintext bits m

I

for an index set

I � f1; 2; : : : ; kg: Denote with J the 
omplement of I in f1; 2; : : : ; kg: Then the

adversary may try to re
over m

J

using the following redu
tion:

mG =m

I

G

�I

�m

J

G

�J

:

Therefore, we have


�m

I

G

�I

=m

J

G

�J

� z




0

=m

J

G

�J

� z:

An analogous redu
tion 
an be a
hieved for the Niederreiter s
heme. All atta
ks

des
ribed in the previous se
tion, that do snot use the parti
ular stru
ture of

the 
ode 
an be applied to try and solve this equation for m

J

: In parti
ular,

this in
ludes the Generalized Information-Set-De
oding atta
k and the Finding-

Low-Weight-Codeword atta
k. (Note that their su

ess is no longer guaranteed

as we do not know wether G

�J


ontains an Information Set, whi
h is needed in

both 
ases.) However, the 
omputational 
ost for those atta
ks 
an be 
riti
ally

redu
ed as k drops to jJ j:

5.2 Taking advantage of known relations between mes-

sages

An adversary for the M
Elie
e s
heme may use the relation between two en-


rypted messages to determine error bits [5℄. This atta
k 
annot be adapted to

the Niederreiter 
ryptosystem. Let m

1

;m

2

be two messages related by �; e.g.

�(m

1

;m

2

) =m

1

�m

2

: Then




1

� 


2

� �(m

1

;m

2

) = z

1

� z

2

:

Zero bits on the left hand side of this equation imply

z

1

j

k

� z

2

j

k

= 0)

(

1 = z

1

j

k

= z

2

j

k

0 = z

1

j

k

= z

2

j

k

:

Sin
e the weight of the error ve
tors z

1

; z

2

is small, the �rst 
ase is highly

unlikely:

Pr(1 = z

1

j

k

= z

2

j

k

) =

�

t

n

�

2

:

This enables an adversary to eÆ
iently guess error bits.

A spe
ial 
ase is themessage-resend atta
k where the atta
ker 
an re
over

z

1

� z

2

= 


1

� 


2

:
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5.3 Rea
tion Atta
k

This atta
k is a weaker version of an adaptively 
hosen 
ipher text atta
k, in

that it does not require any de
ryptions, but only depends on the observation

of the re
eiver's rea
tion on potential 
iphertexts [27℄. This atta
k again aims

at determining error bits and is therefore only appli
able to the M
Elie
e 
ryp-

tosystem.

An adversary may inter
ept 
iphertexts, 
hange a few bits, and wat
h the

rea
tion of the designated re
eiver on these modi�ed 
iphertexts. Sending mod-

�
ations of an authenti
 
iphertext amounts to adding further error bits. If the

re
eiver 
annot de
ode (rea
tion: repeat request), the 
orresponding bits were

not in error originally. This may enable a Generalized Information-Set-De
oding

atta
k, for example.

The probability to need more than k rounds before hitting an error position

is

�

n�k

t

�

�

n

t

�

:

5.4 Malleability

Adding 
odewords, i.e. rows of G to a 
iphertext yields another valid 
iphertext.

Therefore, the original M
Elie
e 
ryptosystem does not satisfy non-malleability.

Note that this is no problem in the Niederreiter 
ase, as there is no known

relation that may be used to 
reate new de
odable syndromes from old ones.

6 Conversions a
hieving CCA2-Se
urity

Suppose an adversary who wants to re
over a message from its 
iphertext only,

has a

ess to a de
ryption ora
le. He may not query the ora
le on the target


iphertext. Apart from that, the ora
le provides him with 
iphertext-plaintext

pairs of his 
hoi
e. A 
ryptoystem is se
ure against adaptive 
hosen 
iphertext

atta
ks (CCA2 se
ure) if su
h atta
ker has no advantage in de
iphering a given


iphertext. It is indistinguishable in the CCA2-model if the atta
ker has no

advantage in determining for a given 
iphertext and two plaintexts whi
h of

them was en
rypted.

In [27℄ Kobara and Imai review two generi
 
onversion. One was origi-

nally presented by Point
heval [41℄ and the other by Fujisaki and Okamoto [15℄.

Both 
onversions were designed to a
hieve CCA2 se
urity for a restri
ted 
lass

of publi
 key 
ryptosystems. Kobara and Imai show, that these 
onversions 
an

su

essfully be applied to the M
Elie
e 
ryptosystem.

Furthermore they and propose three 
onversion s
hemes spe
i�
ally tailored for

the M
Elie
e 
ryptosystem. To explain these 
onversions, we introdu
e the fol-

lowing notation:
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r; r

0

Random numbers

Conv Bije
tive 
onversion of any number in Z=Z

�

n

t

�

to the 
orresponding

error ve
tor of length n

H Cryptographi
 hash fun
tion, outputting bit-strings of length log

2

�

n

t

�

R Cryptographi
ally se
ure pseudo random number generator from �xed

length seeds

E M
Elie
e en
ryption fun
tion, taking as �rst argument the message to

be en
rypted and as se
ond one the error ve
tor: E(m; z) = 


D M
Elie
e de
ryption fun
tion: D(
) = (m; z)

MSB

n

(m) The n rightmost bits of m.

LSB

n

(m) The n leftmost bits of m.

6.1 Point
heval's Generi
 Conversion

A fun
tion f : X � Y ! Z; (x; y) 7! z is partially trapdoor one-way (PTOWF)

if it is impossible to re
over x or y from their image z alone, but the knowledge

of se
ret enables a partial inversion, i.e. �nding x from z: Point
heval [41℄

demonstrated how any PTOWF 
an be 
onverted to a publi
-key 
ryptosystem

that is indistinguishable against CCA2.

The M
Elie
e 
ryptosystem draws is se
urity from the assumption that its

primitive is PTOWF: The fun
tion (m; z) 7! E(m; z) 
an be inverted to re
over

m i� the private key, i.e. the generator matrix of the underlying Goppa 
ode,

is known.

Algorithm 6.1.1 Point
heval's generi
 
onversion { En
ryption

Input: Random r; r

0

and the (possibly padded) message m:

Output: A M
Elie
e-based 
ipher 
:

z = H(mjjr)

z = Conv(z)




1

= E(r

0

; z)




2

= R(r

0

)� (mjjr)


 = (


1

jj


2

)

6.2 Fujisaki-Okamoto's Generi
 Conversion

Fujisaki and Okamoto propose hybrid en
ryption that merges a symmetri
 en-


ryption s
heme whi
h is se
ure in the Find-Guess model, with an asymmet-

ri
 One-Way-En
ryption s
heme whi
h is suÆ
iently probabilisti
, to obtain a

publi
-key 
ryptosystem whi
h is indistinguishable against CCA2. See [15℄ for

more details. The adaptation of Kobara and Imai to the M
Elie
e primitive uses

one-time padding with random numbers for the symmetri
 part, and M
Elie
e
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Algorithm 6.1.2 Point
heval's generi
 
onversion { De
ryption

Input: A 
ipher 
 and the 
orresponding M
Elie
e de
ryption fun
tion D

Output: The target plaintext m




1

=MSB

n

(
)




2

= LSB

Len(m)+Len(r)

(
)

(r

0

; z) = D(


1

)

(mjjr) = 


2

�R(r

0

)

if 


1

= E(r

0

;Conv(H(mjjr))) then

return m

else

reje
t 


en
ryption for the asymmetri
 one.

Algorithm 6.2.1 Fujisaki-Okamoto's generi
 
onversion { En
ryption

Input: Random r; and the (possibly padded) message m:

Output: A M
Elie
e-based 
ipher 
:

z = H(rjjm)

z = Conv(z)




1

= E(r; z)




2

= R(r) �m


 = (


1

jj


2

)

6.3 Kobara-Imai's Spe
i�
 Conversions

Kobara and Imai also present three 
onversions of their own. Their main 
on
ern

is to de
rease data overhead introdu
ed by the previously mentioned s
hemes.

One of the 
orresponding 
onversions is given below.
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Algorithm 6.2.2 Fujisaki-Okamoto's generi
 
onversion { De
ryption

Input: A 
ipher 
; and the 
orresponding M
Elie
e de
ryption fun
tion D

Output: The target plaintext m




1

=MSB

n

(
)




2

= LSB

Len(m)

(
)

(r; z) = D(


1

)

m = 


2

�R(r)

if 


1

= E(r;Conv(H(rjjm))) then

return m

else

reje
t 


Algorithm 6.3.1 Kobara-Imai's Spe
i�
 Conversion 
 { En
ryption

Input: Random r; a predetermined publi
 
onstant 
onst and the (possibly

padded) message m:

Output: A M
Elie
e-based 
ipher 
:

Note: It is assumed that the message m is prepared so that Len(m) �

log

2

b

�

n

t

�


+ k�Len(
onst)�Len(r) where n; k and t are the parameters used

for M
Elie
e en
ryption.




1

= R(r) � (mjj
onst)




2

= r �H(


1

)




3

= LSB

blog

2

(

n

t

)


+k

(


2

jj


1

)




4

= LSB

k

(


3

)




5

=MSB

b

(

n

t

)




(


3

)

z = Conv(


5

)

if Len(


2

jj


1

)� blog

2

�

n

t

�


 � k > 0 then




6

=MSB

Len(


2

jj


1

)�blog

2

(

n

t

)


�k

(


2

jj


1

)


 = (


6

jjE(


4

; z))

else


 = E(


4

; z)
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Algorithm 6.3.2 Kobara-Imai's Spe
i�
 Conversion 
 { De
ryption

Input: A 
ipher 
; the bit length of the random number used in en
ryption

Len(r) and the 
orresponding M
Elie
e de
ryption fun
tion D

Output: The target plaintext m




6

=MSB

Len(
)�n

(
)

(Again, 


6

may be empty)

(


4

; z) = D(LSB

n

(
))




5

= Conv

�1

(z)




2

=MSB

Len(r)

(


6

jj


5

jj


4

)




1

= LSB

Len(
)�Len(r)

(


6

jj


5

jj


4

)

r

0

= 


2

�H(


1

)

(mjj
onst

0

) = (


1

)�R(r

0

)

if 
onst

0

= 
onst then

return m

else

reje
t 


Conversions and Data Redundan
y

a

Conversion Dataredundan
y = Ciphertext size - Plaintext size

(n,k) (1024, 524) (2048,1608) (2048, 1278)

t 50 40 70

Point
h. Len(r) + n 1184 2308 2308

Fujisaki

Okamoto

n 1024 2048 2048

Kobara

Imai

n + Len(
onstjjr)

� log

2

b

�

n

t

�


 � k

536 480 655

Original

M
Elie
e

n� k 500 440 770

a

We follow the suggestion of Kobara and Imai and use Len(r) = Len(Const) = 160.

Kobara and Imai 
laim to a
hieve a redu
tion in data redundan
y even below

the values for the original M
Elie
e PKCS for large parameters. We point out

that this is only true if the message is prepared in su
h a way that

Len(m) � log

2

b

�

n

t

�


+ k � Len(r) � Len(
onst):

Nonetheless, the 
ut in data overhead is remarkable. Their main result 
on
ern-

ing se
urity is the following:

Theorem 6.3.1 Breaking indistinguishability in the CCA2 model using any of
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the 
onversions presented above, is as hard as breaking the original M
Elie
e

publi
 key system.

Furthermore, the Known-Partial-Plaintext Atta
k, the Related Message At-

ta
k, the Rea
tion Atta
k and the Malleability Atta
k, all be
ome impossible,

sin
e relations among plaintexts do no longer result in relations among 
ipher-

texts. Already the simple hashing of messages before en
ryption prevents this.

7 Other 
ryptographi
 appli
ations

In this se
tion we want to look into digital signature and identi�
ation s
hemes

using error 
orre
ting 
odes. Up to now there has been little resear
h 
on
erning

the development of se
ure and eÆ
ient digital signatures based on the M
Elie
e

Cryptosystem. In fa
t M
Elie
e 
laimed in his original paper \the de
ryption

algorithm [: : : ℄ 
annot be used to produ
e unforgeable 'signatures'."[37℄

The �rst ideas to derive digital signatures from error-
orre
ting 
odes have

been presented by Xinmei in [52℄. Xinmei's suggestion uses a M
Elie
e-type

en
ryption but was atta
ked and modi�ed by Harn and Wang [22℄ and �nally

broken by Alabbadi and Wi
ker in 1992 [1℄.

One year later, J. Stern proposed an identi�
ation s
heme based on syndrome

de
oding [49℄ but a
knowledged himself that it 
ould not be modi�ed to an

eÆ
ient signature s
heme.

Alabbadi andWi
ker reviewed the 
han
es to design digital signature s
hemes

based on error-
orre
ting 
odes in [2℄ but did not �nd feasible models. Their

own proposal was su

essfully atta
ked by Stern [50℄.

Thus all attempts to 
reate se
ure and reasonably eÆ
ient digital signatures

on the basis of the M
Elie
e 
ryptosystem have failed until the paper of Courtois,

Finiasz and Sendrier [11℄.

7.1 Stern's identi�
ation s
heme

Stern's identi�
ation s
heme is based on the Niederreiter 
ryptosystem.

Let H be a (n � k) � n matrix 
ommon to all users. Chosen randomly,

Stern 
laims that H generally will provide a parity 
he
k matrix for a 
ode with

good error 
orre
ting 
apability. Every user re
eives an n bit private key s of

pres
ribed weight p:

� Publi
 key H; Hs

t

= i; p

� Private key s

The se
urity of the s
heme relies on the diÆ
ulty of the syndrome de
oding

problem, that is on the diÆ
ulty of determining the preimage s of i = Hs

t

:

Without the se
ret key, an adversary has two altenatives to de
eive the veri�er:
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Proto
ol 7.1.1 Stern's Identi�
ation s
heme

Prover Veri�er

Choose random n-bit ve
tor y and ran-

dom permutation �; to 
ompute




1

= (�;Hy

t

) 


2

= �(y) 


3

= �(y � s)

Send 
ommitments for (


1

; 


2

; 


3

)

Send random request b 2 f0; 1; 2g

If b = 0 ) reveal y; �

If b = 1 ) reveal y � s; �

If b = 2 ) reveal �(y); �(s)

If b = 0 ) 
he
k 


1

; 


2

If b = 1 ) 
he
k 


1

; 


3

and

Hy

t

= H(y

t

� s

t

)� i

If b = 2 ) 
he
k 


2

; 


3

and

!(�(s) = p

1. He 
an work with a random s

0

of weight p instead of the se
ret key. He

will su

eed if he is asked b 2 f0; 2g but in 
ase b = 1 he will hardly be

able to produ
e the 
orre
t 


1

; 


3

sin
e Hs

0

6= Hs = i:

2. He 
an 
hoose s

0

from the set of all preimages of i under H; i.e. s 2

H

�1

(i

t

): This time he will fail to answer the request b = 2 sin
e !(s

0

) 6= p:

Thus the atta
ker has 
han
es 2=3 to de
eive the veri�er in any round. The

identi�
ation s
heme of Stern has not been broken. Unfortunately, it 
an not

be adapted to obtain an eÆ
ient signature s
heme. The standard method to


onvert the identi�
ation pro
edure into a prodedure for signing, is to repla
e

veri�er-queries by values suitably derived from the message to be signed. This

leads to a blow-up of ea
h (hashed) plaintext bit to 2n signature bits and is

therefore hardly appli
able here.

7.2 CFS Signature S
heme

The only working signature s
heme based on the M
Elie
e, or rather on the

Niederreiter en
ryption was presented by Courtois, Finiasz and Sendrier in [11℄.

Analogously to the results on the original M
Elie
e PKCS, the se
urity of the

CFS s
heme 
an be redu
ed to the Bounded Distan
e De
oding Problem. The

Bounded Distan
e De
oding Problem (BD) is the Syndrome De
oding Problem

for 
odes with known minimal distan
e. This extra knowledge allows the de
oder

to restri
t his sear
h to 
odewords within the given distan
e to the re
eived one.

Some believe this problem not to be NP-
omplete, as determining the minimum

distan
e of a linear 
ode in itself already is NP-
omplete, and this additional

information is given in the BD 
ase.
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Let the underlying 
ode be a (n; k)-Goppa 
ode, with error-
orre
ting 
apa-

bility t, where n = 2

m

and k = n� tm; for some integer m: Denote with G the

generator matrix and with H the parity 
he
k matrix, respe
tively.

The idea of the CFS algorithm is to repeatedly hash the do
ument aug-

mented by a 
ounter, until the ouptput is a de
odable syndrome. The signer

uses his se
ret key to determine the 
orresponding error-ve
tor. Together with

the 
urrent value of the 
ounter, this error ve
tor will then serve as signature.

The error-ve
tor length n 
an be redu
ed 
onsiderably, taking into a

ount

that only t of its bits are nonzero. With the parameters suggested by Cour-

tois, Finiasz and Sendrier the number of possible error-ve
tors is approximately

given by

�

n

t

�

=

�

2

16

9

�

� 2

125:5

so that a 126-bit 
ounter suÆ
es to address ea
h

of them. We need the following ingredients:

h Publi
 hash fun
tion

I Fun
tions that assigns ea
h word of weight t and length n a unique

index in the set of all these words.

T M
Elie
e trapdoor fun
tion, outputting the error-ve
tor for a given

de
odable syndrome

H The publi
 parity 
he
k matrix.

Algorithm 7.2.1 CFS digital signature { Signing

Input: h; I; T ; r and the do
ument to be signed d

Output: A CFS-signature s:

z = h(d)


hoose a r-bit Ve
tor i at random

s = h(zjji)

while s is not de
odable do


hoose a r-bit Ve
tor i at random

s = h(zjji)

e = T (s)

s = (I(e)jji)

The average number of attempts needed to rea
h a de
odable syndrome 
an

be estimated by 
omparing the total number of syndromes N

tot

to the number

of 
orre
table syndromes N

de


:

N

tot

= 2

n�k

= 2

mt

= n

t

N

de


=

t

X

i=0

�

n

t

�

�

n

t

t!

N

de


N

tot

=

1

t!

Thus ea
h syndrome has a probabillity of

1

t!

to be de
odable. The CFS s
heme
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Algorithm 7.2.2 CFS signature s
heme { Veri�
ation

Input: A signature s = (I(e)jji); the do
ument d and the M
Elie
e publi


key H

Output: Is the signature valid?

e = I

�1

(I(e))

s

1

= H(e

t

)

s

2

= h(h(d)ji)

if s

1

= s

2

then

a

ept s

else

reje
t s

Parameter Sizes and Costs

parameters n 2

15

2

16

2

17

t 10 9 10 8 9 10

size publi


key in MB

k(n�k)=(8�

1024

2

)

0:58 1:12 1:12 2:38 2:38 2:38

signature


ost

t!t

2

m

3

2

40

2

37

2

40

2

34

2

38

2

41

veri�
ation


ost

t 
olumn

operations

2

2

18

2

19

2

19

2

20

2

20

2

20

signature

length

log

2

(n

t

) 150 144 160 136 153 170

needs about t! iterations, produ
ing signatures of length log

2

(r

�

n

t

�

) � log

2

(n

t

).

Thus, r has to be be larger than log

2

(t!).

Atta
king the CFS signature s
heme via the birthday paradoxon is the best

method so far, whi
h is infeasible (
ompare [11℄).

8 Performan
e and Parameters

The main reason why M
Elie
e re
eived little attention in pra
ti
e is be
ause

of the huge key sizes in 
omparison to RSA. Like RSA, its se
urity remains

unbroken in its original form. It is as old as RSA, but less well studied. In the

following we review some aspe
ts of implementation, performan
e and (good)


hoi
e of parameters.

As we have already mentioned, the key sizes are quite big in 
omparison to

RSA. However, the M
Elie
e Cryptosystem has a mu
h faster en- and de
ryp-

tion. We to take a look at the running times �rst and analyze the key sizes

afterwards.
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8.1 Performan
e of En-/De
ryption and Key Generation

The en
ryption of a messgage in the original M
Elie
e s
heme takes about

k=2 � n+ t

binary operations plus the time to generate the error ve
tor. For de
ryption,

the de
ryption algorithm gets faster if we store some matri
es in advan
e, whi
h

only depend on the private key. We return to the notations of se
tion 1.3 and

1.4 respe
tively.

Theorem 8.1.1 The de
ryption of a 
iphertext of a M
Elie
e instan
e gener-

ated by a (n = 2

m

; k; d) binary irredu
ible Goppa 
ode requires O

�

ntm

2

�

binary

operations.

Proof. Let J � f1; � � � ; ng with jJ j = k and G

J

invertible. We may 
ompute

mSG � zP

�1

in n � m binary Operations and the 
orresponding syndrome in

n � (n� k) more. Applying the algorithm of Patterson ([40℄, algorithm 2.3.1) we

need O

�

n � t �m

2

�

binary operations to identify the ve
tor zP

�1

and n more to

getmSG. Having 
omputed (SG

J

)

�1

we need only further k

2

binary operations

to re
over the message m.

The time needed to en
rypt a message with Niederreiter depends on the

method of representing the message by a appropriate plaintext e of length n

and weight t. This 
ould be done in several ways. We just want to point out,

that the distribution of the support of e should be (almost) uniform to avoid


orre
t guessing of the positions of the zeros (
ompare [42℄). For example one


ould use methods derived from [51℄ or simple enumeration of all possible error

ve
tors. The time of de
ryption depends on the time to re
over the plaintext

and the time to re
onstru
t the original message from that plaintext.

Theorem 8.1.2 Re
overing the plaintext from a 
iphertext of a Niederreiter

instan
e generated by a (n; k; d) Goppa 
ode requires O

�

ntm

2

�

binary opera-

tions.

Proof. The proof is analogeous to the one of the theorem above.

When generating an instan
e of the M
Elie
e Cryptosystem with n = 2

m

we

suppose that we already know a polynomial F 2 F

2

[X ℄ s.t. (F

2

[X ℄) =F = F

2

m

.

From [19℄ we know that the number of moni
 irredu
ible polynomials of degree

t over F

2

m

is bigger than (2

mt

� 1) =t. Thus the probability of getting an irre-

du
ible polynomial by 
hoosing a random one of degree t with leading 
oeÆ
ient

6= 0 is larger than 1=t. To 
he
k the irredu
ibility requires O

�

t

2

m

2

+ t

3

m

�

op-

erations [24℄. Having found an irredu
ible generator polynomial g we need 2

m

evaluations of (g (x))

�1

and n (t� 1) multipli
ations in F

2

m

to generate the par-

ity 
he
k matrix. For the M
Elie
e 
ryptosystem we need a Gaussian elimination

(O((n�k)

3

) binary operations) at that point, to 
ompute the generator matrix.
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Next we have to generate the permutation and the s
ramble matrix and multiply

them with the generator matrix whi
h 
an be done in O

�

k

2

n+ n

2

�

(M
Elie
e)

and O

�

(n� k)

2

n+ n

2

�

(Niederreiter) binary operations respe
tively. Together

with the time ne
essary to invert SG

J

andM, this leads to the following theorem:

Theorem 8.1.3 The running time (in binary operations) to generate a key

pair for the M
Elie
e 
ryptsystem is O

�

k

2

n+ n

2

+ t

3

(n� k) + (n� k)

3

�

and

O

�

(n� k)

2

n+ n

2

+ t

3

(n� k)

�

for the Niederreiter 
ryptosystem.

8.2 Key Sizes

The method of storing the private key o�ers some variants. First we would

want to store the Goppa polynomial and the generator polynomial of F

2

m

and

additionally the 
he
k matrix H. Se
ond it would be better to store M

�1

or

(SG

�J

)

�1

, to enhan
e the performan
e of de
ryption. The private key stored

that way has the size of

(n� k)n+ (n� k + 1 + 2 � log

2

n) + k

2

+ n � log

2

n

bits for M
Elie
e Cryptosystem and

(n� k + 1 + 2 � log

2

n) + (n� k)

2

+ n � log

2

n

for the Niederreiter version. Alternatively, the holder of the se
ret key 
an omit

storing the matrixH, as it is not needed to 
ompute the syndrome of the re
eived


iphertext. However, this would de
rease the speed of de
ryption.

To store the publi
 key requires n �k bits for the M
Elie
e 
ryptosystem. For

the CCA2-se
ure variants of the M
Elie
e PKC it is possible to give the publi


generator matrix G in its systemati
 form. If we 
hoose the �rst k 
olumns of

G to be the identity matrix, then we 
an des
ribe the publi
 key by only giving

the last (n� k) 
olumns of G, 
alled the redundant part. This requires

k � (n� k)

bits. The same is true for the the Niederreiter PKC. Table 2 shows the perfor-

man
e of the original M
Elie
e PKC for some example parameters.

8.3 Choi
e of Parameters

Unfortunately, there is no simple 
riterion for the 
hoi
e of t with respe
t to n.

One should try to make it as diÆ
ult as possible to atta
k the 
ryptosystem

using the known atta
ks. For the sample parameter sets from Table 2, Table 3

shows the theoreti
al work fa
tors for the M
Elie
e 
ryptosystem (the CCA2-

se
ure variants and the original one). In 
omparison, Table 4 gives the estimated

work fa
tors for the RSA 
ryptosystem.

As one 
an observe from the tables, today the best atta
k against M
Elie
e's


ryptosystem is CC-LWCW (Algorithm 4.2.3), whi
h is Stern-LWCW with
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M
Elie
e Size publi
 Workfa
tor

system parameters key in bytes (binary operations)

(n; k; d = 2t+ 1) plain CCA2-se
ure en
ryption de
ryption

(1024; 524; 101) 67,072 32,750 2

18

2

22

(2048; 1608; 81) 411,648 88,440 2

20:5

2

23

(2048; 1278; 141) 327,168 123,008 2

20

2

24

(2048; 1025; 187) 262,400 131,072 2

20

2

24:5

(4096; 2056; 341) 1,052,672 524,280 2

22

2

26:5

Table 2: Performan
e of the M
Elie
e PKC

M
Elie
e Workfa
tor (binary operations)

system parameters GISD Leon-LWCW CC-LWCW

3

(n; k; d = 2t+ 1) p = 2 p = 3, l = m p = 2, l = 2m� 1

(1024; 524; 101) 2

70

2

69

2

64

(2048; 1608; 81) 2

110

2

107

2

98

(2048; 1278; 141) 2

120

2

118

2

110

(2048; 1025; 187) 2

115

2

112

2

106

(4096; 2056; 341) 2

195

2

193

2

184

Table 3: Atta
king the M
Elie
e PKC

3

Approximation without determining the exa
t value of the number of expe
ted iterations.

The exa
t evaluation uses a Markov 
hain and thus no 
losed formula is available (see [9℄).

System Size Workfa
tor (binary operations)

publi
 key en- de- best

in bytes 
ryption 
ryption atta
k

5

RSA 1024-bit Modulus 256 2

30

2

30

2

79

RSA 2048-bit Modulus 512 2

33

2

33

2

95

RSA 4096-bit Modulus 1024 2

36

2

36

2

115

Table 4: Performan
e of the RSA PKC

5

this is the NFS atta
k for fa
toring the RSA modulus, see [31℄.
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Markov 
hain improvement. CC-LWCW has a polynomial spa
e 
omplexity

and its work fa
tor may be approximated by

O(n

3

)2

�t log

2

(1�k=n)

,

if t is small and k=n is not too 
lose to 1 (
ompare [43℄). Sin
e n = 2

m

and

k = n � tm, N. Sendrier 
on
ludes, that the maximum degree of se
urity is

obtained for an information rate k=n � 1� 1= exp(1). We omitted to 
onsider

the statisti
al de
oding atta
k on the M
Elie
e Cryptosystem be
ause of serious

doubts regarding the assumptions made by the author of [25℄, 
ompare se
tion

4.3.

9 Con
lusion

After more than twenty years of resear
h the M
Elie
e PKC 
ryptosystem slowly


omes to the fore as a pra
ti
al alternative to RSA in appli
ations where long

term se
urity is needed. There are no known 
lassi
al or quantum 
omputer

atta
ks on M
Elie
e's 
ryptosystem, whi
h have sub-exponential running time.

Despite the la
k of eÆ
ient atta
ks on M
Elie
e's proposal, none of the 
ryp-

tographi
 s
hemes based on 
oding theory is proven to be as se
ure as some


lassi
 problem of 
oding theory. Nevertheless, a key size of 123KB seems to be

se
ure until the year 2041.

The fast in
reasing amount of storage spa
e on small devi
es like USB To-

kens, PDAs and mobile phones would even allow an appli
ation of the M
Elie
e

PKC nowadays. We believe, that the M
Elie
e PKC might be used within the

next de
ades, even if no quantum 
omputer is available. The advantage of 
ode

based 
ryptography lies in the faster en- and de
ryption, whi
h helps to redu
e

the battery drain of 
ryptographi
 appli
ations on mobile devi
es.

Another interesting property of 
ode based 
ryptography is the fa
t, that one


an build a 
omplete infrastru
ture from it. Identi�
ation s
hemes, signature

s
hemes and even random number generators as well as hash fun
tions are

available.
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