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Abstract

The purpose of this paper is to calculate the running time of dense boolean matrix operations,
as used in stream cipher cryptanalysis and integer factorization. Several variations of Gaussian
Elimination, Strassen’s Algorithm and the Method of Four Russians are analyzed. In particular,
we demonstrate that Strassen’s Algorithm is actually slower than the Four Russians algorithm for
matrices of the sizes encountered in these problems. To accomplish this, we introduce a new model
for tabulating the running time, tracking matrix reads and writes rather than field operations, and
retaining the coefficients rather than dropping them. Furthermore, we introduce an algorithm known
heretofore only orally, a “Modified Method of Four Russians”, which has not appeared in the lit-
erature before. This algorithm is log n times faster than Gaussian Elimination for dense boolean
matrices. Finally we list rough estimates for the running time of several recent stream cipher crypt-
analysis attacks.

Keywords: Matrix Inversion, Matrix Multiplication, Boolean Matrices, GF(2), Stream Cipher Crypt-
analysis, XL Algorithm, Strassen’s Algorithm, Method of Four Russians, Gaussian Elimination, LU-
factorization.

1 Introduction

The objective of this paper is to determine the complexity of solving a dense boolean system of linear
equations via matrix operations. By boolean, or binary matrix, we mean a matrix whose entries are
from the field with two elements. We describe a matrix inversion algorithm1 which is a variant of the
boolean matrix multiplication algorithm called the “Method of Four Russians” [ADKF70]. This inversion
algorithm, which we name MM4R (or Modified Method of Four Russians), achieves log n speed-up over
Gaussian Elimination on dense boolean matrices. Furthermore, we demonstrate that Strassen’s Matrix
Inversion Formula, when used with Strassen’s Matrix Multiplication algorithm, is actually slower than
Gaussian Elimination for matrices of feasible or near-feasible size (less than one trillion entries). We
discuss the impact of these facts upon stream cipher cryptanalysis as well as factoring, both of which
depend heavily upon dense matrix operations.

In order to prove these facts, we propose a simple but effective computational cost model for boolean
matrix operations. This model counts matrix reads and writes rather than floating point operations. It
retains the coefficients of complexity polynomials, allowing one to calculate the crossover point at which
the running times of two competing methods are equal. Since many matrix operations are recursive, it
is critically important to calculate these crossovers. Using this model, we calculate the complexity of
eleven matrix operations, which are summarized in Table 1 on Page 2.

In Section 1.1, the computational cost model used in this paper for boolean matrix operations is
defined. Section 2 describes the data structures used by these algorithms. Section 4 contains the
analysis of three matrix multiplication algorithms: the näıve method, the Method of Four Russians, and

∗Ph.D. Candidate, Applied Mathematics, University of Maryland & Lecturer, Computer Science, American University.
1While this algorithm may have been known anectodally among some, the author has not been able to find it in the

literature. It was shown to me by Nicholas Courtois.
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Algorithm Overdefined Square Underdefined

System Upper-Triangularization
Mod. Meth. of 4 Russians (UUTF) (n3 + 1.5n2m)/(log n) (2.5n3)/(log n) (4.5nm2 − 2m3)/(log m)
Strassen’s—LU-Factorization — 2.2876nlog 7 2.2876mlog 7 + 3mn
Dense Gaussian Elim. (UUTF) 0.75mn2 − 0.25n3 0.5n3 0.75nm2 − 0.25m3

Back Substitution n2 + m n2 m2 + n

Matrix Inversion
Strassen’s—U/L Triang. Inversion — 0.9337nlog 7 —
Strassen’s—General Inversion — 6.4893nlog 7 —
Dense Gaussian Elim. (RREF) 0.75mn2 0.75n3 1.5nm2 − 0.75m3

Mod. Meth. of 4 Russians (RREF) (3n3 + 3mn2)/(2 log n) (3n3)/(log n) (6nm2 + 3m3)/(log m)

Algorithm Rectangular a× b by b× c Square n× n by n× n

Multiplication
Method of 4 Russians (3b2 min(a, c) + 3abc)/(log b) + b max(a, c) (6n3)/(log n)
Näıve Multiplication 2abc 2n3

Strassen’s Algorithm 2.3343(abc)(log 7)/(3) 2.3343nlog 7

Table 1: Algorithms and Asymptotic Performance

Strassen’s Matrix Multiplication Algorithm. This analysis culminates in Section 4.4, which contains an
ideal strategy for boolean matrix multiplication, using the building blocks currently available for general
dense matrices. Section 5 analyzes three matrix inversion methods: Gaussian Elimination, Strassen’s
Matrix Inversion Formula, and the Modified Method of Four Russians. In order to give a sense of scale,
Section 3 lists the sizes of dense linear systems to be solved in stream cipher cryptanalysis and integer
factorization problems. The conclusions and consequences for stream cipher cryptanalysis are given in
Section 6.

1.1 The Computational Cost Model

In papers on matrix operations over the real or complex numbers, the number of floating point operations
is used as a measure of running time. This removes the need to account for assembly language instructions
needed to manipulate index pointers, iteration counters, discussions of instruction set, and measurements
of how cache coherency or branch prediction will impact running time. In the present paper, floating point
operation counts are meaningless, for boolean matrices do not use floating point operations. Therefore,
we propose that matrix entry reads and writes be tabulated, because addition (XOR) and multiplication
(AND) are single instructions, while reads and writes on rectangular arrays are much more expensive.
Clearly these data structures are non-trivial in size and so memory transactions will be the bulk of the
computational burden.

From a computer architecture viewpoint in particular, these matrices cannot fit in the cache of the
microprocessor, and so the fetches to main memory are a bottleneck. Even if exceptionally careful use
of temporal and spatial locality guarantees effective caching (and it is not clear that this is possible),
the data must still travel from memory to the processor and back! The bandwidth of buses has not
increased proportionally to the rapid increase in the speeds of microprocessors. Given the relatively
simple calculations done once the data is in the microprocessor’s registers (i.e. single instructions),
surely the memory transactions are the rate-determining step.

Naturally, the exponents of the complexity polynomials of the algorithms in our model will match
those of the more flexible big-Oh notation counting all operations. On the other hand, counting exactly
the number of memory reads and writes permits us to calculate more directly the coefficients of those
polynomials. These coefficients are helpful in three principal ways. First and foremost, they help
determine the crossover point at which two competing algorithms are of equal efficiency. This is absolutely
critical as matrix multiplication and inversion techniques are often recursive. Second, they help one
compare two algorithms of equal exponent. Third, they help calculate the total CPU running time
required to solve a system. These coefficients are derived mathematically and are not dependent on
machine architectures or benchmarks, but experiments will be performed to confirm them nonetheless.
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Also, due to the variations of computer architectures, the coefficients given here may vary slightly.
On the other hand, by deriving them mathematically, rather than experimentally, one need not worry
about artifacts of particular architectures or benchmarks skewing the results.

When attempting to convert these memory operation counts into CPU cycles, remember that other
instructions are needed to maintain loops, execute field operations, and so forth. Also, memory trans-
actions are not one cycle each, but require several instructions to compute the memory address offsets.
Yet, they can be pipelined. Thus one can estimate that about 40–60 CPU cycles are needed per matrix
memory operation.

1.2 Notational Conventions

Precise performance estimates are useful, and so rather than the usual five symbols O(n), o(n), Ω(n),
ω(n), Θ(n), we will use f(n) ∼ g(n) to indicate that

lim
n→∞

f(n)
g(n)

= 1

in the case that an exact number of operations is difficult to state. While O(n) statements are perfectly
adequate for many applications, coefficients must be known to determine if algorithms can be run in
a reasonable amount of time on particular target ciphers. Also, these coefficients have an enormous
impact upon crossover points, as will be shown in Section 5.3.3, comparing Strassen’s formula for matrix
inversion with the Modified Method of Four Russians.

Let f(n) ≤∼ g(n) signify that there exists an h(n) and n0 such that f(n) ≤ h(n) for all n > n0, and
h(n) ∼ g(n).

Matrices in this paper are over GF(2) unless otherwise stated, and are of size m rows and n columns.
Denote ` as the lesser of n and m. If n > m or ` = m the matrix is said to be underdefined, and if
m > n or ` = n then the matrix is said to be overdefined. The symbol lnx means loge x and log x
means log2 x.

The term unit upper triangular means that the matrix is upper triangular, and has only ones on
the main diagonal. Obviously such matrices have determinant one, and so are non-singular. Likewise
for unit lower triangular.

Finally please note that some authors use the term boolean matrix to refer to matrices operating in
the semiring where addition is logical OR (instead of logical XOR) and multiplication is AND. Those
matrices are used in graph theory, and some natural language processing. Algorithms from the real
numbers can work well over this semiring [F70], and so are not discussed here.

1.3 To Invert or To Solve?

Generally, four basic options exist when presented with a system of equations, A~x = ~b, over the reals as
defined by a square matrix A. First, the matrix A can be inverted, but this is the most computationally
intensive option. Second, the system can be adjoined by the vector of constants~b, and the matrix reduced
into a triangular form U~x = ~b′ so that the unknowns can be found via back-substitution. Third, the
matrix can be factored into LU-triangular form (A = LUP ), or other forms. Fourth, the matrix can be
operated upon by iterative methods to converge to a matrix near to its inverse. Unfortunately, in finite
fields concepts like convergence toward an inverse do not have meaning. This rules out option four.

The second option can be extended to solving the same system for two sets of constants ~b1, ~b2 but re-
quires twice as much work during back substitution. However, back substitution is very cheap (quadratic)
compared to the other steps (near cubic), and so this is desirable. In light of this, it is easy to see that
even if many ~b were available, but fewer than min(m,n), one would pursue the second option rather
than invert the matrix. Therefore, one would normally choose this option, to put the matrix in unit
upper triangular form and use back substitution. Option three, to use LU factorization or another type
of factorization will turn out to be the only way to use Strassen’s matrix inversion formula. Option one,
inverting the matrix, is given in the appendices, but would not normally be used. The exception is if the
computation is taking place long before the interception of the message, and further the attack desires
the plaintext as soon as possible upon receipt.

From the view of operational Stream Cipher Cryptanalysis, a large number of messages may be
intercepted, but all in different keys. The matrix is dependent on the cipher only, but the constants
depend on the messages. Once the matrix is inverted, all the keys can be found rapidly by matrix
multiplication (assuming all the known plaintext is located in the same spots in each message, even
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if those known plaintexts are not similar). Therefore this paper focuses on inverting or factoring the
matrices (the first and third options), though some examples of the second option are given in the
appendices.

2 Data Structure Choices

The most elementary way to store a matrix is as an array of scalars. Two-dimensional arrays are often
stored as a series of one-dimensional arrays, in sequence, or an array of pointers to those arrays. In
either case, it is not obvious if the linear arrays should be rows or columns. For example, in a matrix
multiplication AB with the näıve algorithm, spatial locality will be enhanced if A’s rows and B’s columns
are the linear data structure. The following three data structures are proposed:

An Array with Swaps The cells of the matrix are a two-dimensional array, with the rows being the
linear data structure, since more of the work in the algorithms of this paper is performed upon rows
than upon columns. Additionally, two one-dimensional arrays called row-swap and column-swap are to
be used. Initially these are filled with the numbers 1, 2, . . . ,m and 1, 2, . . . , n. When a swap of rows or
columns is called for, the numbers in the cells of the row-swap or column-swap corresponding to those
rows are swapped. When a cell aij is called for, the result returned is ari.cj

, with ri representing the ith
entry of the row-swap array, and cj likewise. In this manner, row and column swaps can be executed in
constant time, namely two writes each.

To facilitate the rapid taking of transposes, a “transpose flag” can be used. Initially false, every time
the matrix is transposed, this single bit is flipped. When true, requests for aij return aji instead.

Permutation Matrices An identity matrix which has had rows or columns swapped is called a permu-
tation matrix. It is only necessary to store a row-swap and column-swap array as before. The row-swap
and column-swap arrays allow a quick look-up by calculating

aij =
{

1 if ri = cj

0 if ri 6= cj

This means that aij = 1 iff it is on the main diagonal after all row and column swaps have been resolved.
For example, if rows 2 and 3 have been swapped in the 3 × 3 case, r = {1, 3, 2} and c = {1, 2, 3}. One
can see that ri = cj iff (ri, cj) is (1, 1) or (2, 3) or (3, 2). And indeed, the locations of the ones of the
matrix are those coordinates.  1 0 0

0 0 1
0 1 0


Furthermore, “composition” of the swap arrays in the sense of

r′′i = rr′
i

allows for the multiplication of two permutation matrices in time linear to the dimension. The inverse
of a permutation matrix is its transpose, and using the “transpose bit” mentioned earlier, inversion can
be done in constant time. Finally multiplying a permutation matrix by a vector can be done by simply
swapping the elements of that vector according to the swap array.

3 Matrices Found by Algebraic Cryptanalysis and Factoring

The two principal applications of boolean matrices in cryptography are factoring integers and the alge-
braic attacks on stream ciphers. This section will discuss the typical sizes of dense matrices involved.

First, in stream cipher cryptanalysis, a stream cipher is converted to a system of boolean polynomial
equations whose solution is the key to the cipher. The polynomial system is then converted to a boolean
linear system. This system is often sparse but its density will rise very rapidly under Gaussian Elimina-
tion. The number of equations is m, the number of rows, and the number of variables is n, the number
of columns.
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• Courtois and Meier attack Toyocrypt with
(
128
3

)
= 341, 376 equations [CM03]. One must guess

that the system is slightly overdefined, so therefore near square.

• Hongjun Wu attacks Whitenoise with 80189 variables, and 80445 equations. [W].

• Courtois attacks Sfinks 222.5 equations in once case and 236.5 in another [C05]. One must guess
that the system is slightly overdefined, so therefore near square.

• Hawkes and Rose state that the best known attacks against E-0, Lili-128, and Toyocrypt have
218, 212, and 27 equations. It is clear from context that the matrices are nearly square [A02, HR04].

Second, in integer factorization, once all the relations have been found in an algorithm similar to the
Quadratic Field Sieve, one must find a vector in the null space of a matrix. This can be done by first
preconditioning the matrix [PS92], then using Sparse Gaussian Elimination and finally a applying dense
matrix operation step on a matrix of reduced size [AGLL94].

The sizes of this final dense matrix operation in practice can be described by the process to factor
the 120 digit prime number protecting the message “the magic words are squeamish ossifrage” from
the paper of the same name [AGLL94]. A sparse 569, 466 × 524, 339 boolean matrix was reduced to a
dense 188, 614 × 188, 160 dense boolean matrix, which was solved in 12 CPU hours of a Sun Sparc 10
workstation, at that time (see below for today’s estimate).

To give some scale to the feasibility of the algorithms as applied to the attacks discussed here, note
that a Cray X1E2 is a 174 Tflop machine, performing 4.6×1021 operations in a year, or 11.5 . . . 7.6×1019

matrix memory operations using our assumption of 40–60 instructions times the number of reads/writes.
Using 1020 matrix operations per year as a round value, one year of computation could be used to solve
a system of size

• Gaussian Elimination: 5.85× 106 rows and columns.
• Modified Method of Four Russians: 9.75× 106 rows.
• LU Factorization with Strassen: 9.93× 106 rows.
• Direct Inversion with Strassen: 6.85× 106 rows.

This permits us to calculate how long the above attacks would take, ignoring the effects of sparsity
which may be very important in some cases. These are calculated using the 1020 matrix operations per
year figure from above, and Modified Method of Four Russians to Upper Triangular Form, or 2.5n3/log n.

• Courtois and Meier vs. Toyocrypt: 5.41× 1015 matrix ops, or 28 minutes.
• Hongjun Wu vs. Whitenoise: 7.91× 1013 matrix ops, or 25 seconds.
• Courtois vs. Sfinks (222.5 case): 2.3× 1019 matrix ops, or 84 days.
• Courtois vs. Sfinks (236.5 case): 6.28× 1031 matrix ops, or half a trillion years.
• Best known attack on E-0: 2.5× 1015 matrix ops, or 13 minutes.
• Best known attack on Lili-128: 1.43× 1010 matrix ops, or 5 milliseconds.
• Squeamish Ossifrage: 9.57× 1014 matrix ops, or 5 minutes.

One can conclude three things from this list. First, that matrix operation running times are highly
dependent on dimension. Second, that algebraic attacks are indeed feasible against all but one of the
above systems. Third, that further study is needed. However, one should also mention that while
showing a quick running time is proof an attack is feasible, showing a slow running time is not proof of
infeasibility, because sparse methods may be successful for the trillion year dense attack above.

4 Matrix Multiplication Algorithms

While this paper focuses on matrix inversion algorithms, many of them use matrix multiplication al-
gorithms as subroutines. Therefore, matrix multiplication algorithms must be analyzed also. For com-
parison, we list three algorithms for matrix multiplication. These algorithms are candidates for the
multiplication operations in Strassen’s formula for matrix inversion, and so impact the complexity of
matrix inversion directly.

A great deal of research was done in the period 1969–1987 on fast matrix operations [H, P]. Various
proofs showed that many important matrix operations, such as QR-decomposition, LU-factorization,

2Data from the Cray website.
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inversion, finding determinants, and finding the characteristic polynomial are no more complex than
matrix multiplication, in the big-Oh sense [H, AHU, CLRS]. For this reason, many fast matrix multi-
plication algorithms were developed [S69, S81, S87]. One in particular was intended for GF(2), and has
been named the Method of Four Russians, “after the cardinality and the nationality of its inventors”
[AHU]. While the Method of Four Russians was conceived as a matrix multiplication tool, we show how
to use a substantial modification of it for inversion. Of the general purpose algorithms, the most famous
and frequently implemented of these is Volker Strassen’s 1969 algorithm for matrix multiplication.

4.1 Method of Four Russians Matrix Multiplication

This matrix multiplication algorithm is the original algorithm published by Arlazarov, Dinic, Kronrod,
and Faradzev [ADKF70]. Consider a product of two matrices AB = C where A is an a × b matrix
and B is a b × c matrix, yielding an a × c for C. In this case, one could divide A into b/k vertical
“stripes” A1 . . . Ab/k of k columns each, and B into b/k horizontal stripes B1 . . . Bb/k of k rows each.
(For simplicity assume k divides b). The product of two stripes, AiBi is an a × b/k by b/k × c matrix
multiplication, and yields an a× c matrix Ci. The sum of all k of these Ci equals C.

C = AB =
i=k∑
i=0

AiBi

The algorithm itself proceeds as follows:

• for i = 1, 2, . . . , b/k do

– Make a Gray Code3 table of the 2k linear combinations of the k rows of Bi. Call the xth row
Tx. (Costs (3 · 2k − 4)c reads/writes, see Modified Method of Four Russians, in Section 5.1).

– for j = 1, 2, . . . , a do
∗ Read the entries aj,(i−1)k+1, aj,(i−1)k+2, . . . , aj,(i−1)k+k and treat as a k bit binary number

x. (Costs k reads.)
∗ for h = 1, 2, . . . , c do
· Calculate Cjh = Cjh + Txh (Costs 3 reads/writes).

The innermost loop requires 3 steps, the next loop out requires k + 3c steps, and then the next after
that requires (3 · 2k − 4)c + a(k + 3c) steps. Finally the entire algorithm requires

b((3 · 2k − 4)c + a(k + 3c))
k

=
3b2kc− 4cb + abk + 3abc

k

memory operations. Substitute k = log b, so that 2k = b, and observe,

3b2c− 4cb + ab log b + 3abc

log b
∼ 3b2c + 3abc

log b
+ ab

For square matrices this becomes ∼ (6n3)/(log n).

Transposing the Matrix Product Since AB = C implies that BT AT = CT , one can transpose A
and B, and transpose the product afterward. This would have running time (3b2a + 3abc)/(log b) + cb
and some manipulations will show that this more efficient when c < a, for any b > 1. Therefore the final
complexity is ∼ (3b2 min(a, c) + 3abc)/(log b) + b max(a, c). To see that the last term is not optional,
substitute c = 1, in which case the last term becomes the dominant term.

4.2 Näıve Matrix Multiplication

For comparison, we calculate the complexity of the näıve matrix multiplication algorithm, for a product
AB = P with dimensions as before.

• for i = 1, 2, . . . , a

– for j = 1, 2, . . . , c

∗ Calculate Cij = Ai1B1j + Ai2B2j + · · ·AibBbj . (Costs 2b + 1 reads/writes).

This clearly requires 2abc + ac ∼ 2abc operations, or for square matrices 2n3 + n2 operations.
3A k-bit Gray Code is all 2k binary strings of length k, ordered so that each differs by exactly one bit in one position

from each of its neighbors. For example, one 3-bit Gray Code is {000, 001, 011, 010, 110, 111, 101, 100}.

6



Crossover with Method of Four Russians Using the exact formula, or (6n3−4n2+n2 log n)/(log n)
for square matrices, via the Method of Four Russians, and 2n3 + n2 for the näıve algorithm, a crossover
point can be found. It turns out to be very small, a 6 × 6 matrix requiring 482 for the Method of 4
Russians, versus 468 for the näıve algorithm, and a 7 × 7 requiring 712 for the Method of 4 Russians,
and 735 for the näıve algorithm. In reality the crossover point maybe slightly higher due to machine
architectures, but it is clear that the Method of 4 Russians should be prefered for matrices of any
non-trivial size.

4.3 Strassen’s Algorithm for Matrix Multiplication

Strassen’s Algorithm for multiplying AB = C consists of dividing the matrix into pieces as follows:[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=

[
c11 c12

c21 c22

]
The product is then given explicitly as 18 matrix additions and 7 matrix multiplications (See Appendix
C). The matrices c11 and c22 must be square, but need not equal each other in size. The matrices c12 and
c21 can be rectangular. For simplicity assume that A and B are both 2n×2n matrices. The 18 additions
of a pair of n × n matrices requires 3n2 work (one write and two reads per entry) for a total of 54n2

operations. The seven multiplications are to be performed by repeated calls to Strassen’s algorithm. In
theory one could repeatedly call the algorithm until 1 × 1 matrices are the inputs, and multiply them
with a logical AND operand. However, its unlikely that this is optimal. Instead, the program should
switch from Strassen’s algorithm to some other algorithm below some size n0. Using the formula,

M(2n) = 7M(n) + 54n2

where M(n) is the number of reads and writes required to multiply a n × n matrix with Strassen’s
Algorithm. Some algebra yields (See Appendix C)

M(n) ∼ (nlog 7)
M(n0)

nlog 7
0

Therefore one can determine n0 (to be calculated by the näıve algorithm or, more efficiently, the Method
of Four Russians) by minimizing (M(n0) + 18n2

0)/nlog 7
0 , which becomes

6n3
0/(log n0) + 18n2

0

nlog 7
0

which has a minimum at n0 = 610. This is in contrast to the real and complex case, where Higham
states that the Cray matrix operations library uses Strassen for dimension 130 and higher [H].

Crossover with Four Russians Clearly things would work better with powers of two (our equations
assume log n is an integer, and ignore the consequences of rounding if it is not) so one can evaluate the
above expression at n0 = 512 or n0 = 1024 and see that 512 is lower. Therefore the author recommends
a crossover at 512. Square matrix multiplications of size less than 513 should be done via the Method of
Four Russians, and of size 513 and higher by Strassen’s Algorithm. The final performance is therefore

M(n) ∼ (nlog 7)
M(512)
512log 7

∼ (nlog 7)
6(512)3

log 512

512log 7
∼ 2.3343nlog 7

Strassen Without Four Russians If one were to attempt to use Strassen’s Algorithm with näıve
multiplication, the crossover would be the minimum of

M(n0) + 18n2
0

nlog 7
0

=
2n3

0 + 19n2
0

nlog 7
0

which has a minimum at n0 = 40, coefficient equal to 5.037, but for reasons mentioned above, powers
of two are more convenient. One can try n0 = 32 and n0 = 64 and observe 32 is better, with M(n) ∼
5.057nlog 7, almost twice as slow as the Strassen-Four Russian combination.
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Pure Strassen In its purest form, Strassen’s algorithm would be used to divide the matrices into 2×2
pieces, which can be multiplied in 8 reads and 4 writes, or 12 operations. The coefficient is then

M(n) = nlog 7 12 + 18 · 22

2log 7
= 12nlog 7

which is more than 5 times slower than the Strassen-Russians combination.

4.4 Best Choices for Matrix Multiplication

We have explicitly calculated that the most efficient square matrix multiplication algorithms are

• For n < 7 (or slightly higher) by the näıve algorithm.
• For 7 ≤ n ≤ 512 by the Method of Four Russians.
• For n > 513 by Strassen’s Algorithm

It is more difficult to figure out where crossover should be for rectangular matrices. Schönhage and
Strassen ([S87, S81] but not in [S69]) both state that an a× b by b× c multiplication is (abc)(log 7)/3 with
Strassen’s algorithm. Note that 7 ≤ (abc)(log 7)/3 ≤ 512 if and only if 8 ≤ abc ≤ 786, therefore a good
guideline is

• For abc < 8 (or slightly higher) by the näıve algorithm.
• For 8 ≤ abc ≤ 768 by the Method of Four Russians.
• For abc > 769 by Strassen’s Algorithm

5 Dense Matrix Triangulation Techniques

As stated earlier, even if one has several ~b1, ~b2, ~b3, . . . , ~bn, it is far more efficient to solve A~xi = ~bi by
appending the bi as columns to the end of matrix A, and putting matrix A in unit upper triangular form
(UUTF). Then, one can solve for each xi by running the back substitution algorithm (See Appendix D)
to obtain the xi. The alternative is to invert A, and Appendix B contains algorithms for that approach,
by putting A into row reduced echelon form (RREF).

5.1 Modified Method of Four Russians

The author would like to express gratitude to Nicolas Courtois who explained the following algorithm to
him after Eurocrypt 2005 in Århus, Denmark. The Method of Four Russians, proposed in [ADKF70],
is a boolean matrix multiplication algorithm (given in Section 4), and is not well known. However, the
variant shown to the author is for inversion, given below, and it does not seem to be in the literature.

In Gaussian Elimination (UUTF) of an m × n matrix, each iteration i operates on the submatrix
aii . . . amn, with the objective of placing a one at aii and a zero at every other entry of the column i
below row i. In the Modified Method of Four-Russians (UUTF) algorithm, k columns are processed at
once, producing a k× k identity matrix in the correct spot (aii . . . a(i+k−1),(i+k−1)), with all zeros below
it, and leaving the region above it untouched.

Stage 1: Denote the first column to be processed in a given iteration as ai. Then, perform Gaus-
sian elimination on the first 3k rows after and including the ith row to produce an identity matrix in
aii . . . a(i+k−1),(i+k−1). (To know why it is reasonable to expect this to succeed, see Section 5.1.2).

Stage 2: Construct a table consisting of the 2k binary strings of length k in a Gray Code. The first
entry is all zeroes, and is associated with an all zero row of length equal to n − (i + k) + 1. The next
entry is 0 · · · 01, and is associated with the entries from the ith row, from column i + k until column n.
The next entry after that is 0 · · · 11, and is associated with the entries from the ith and (i + 1)th rows,
same columns, added together. Since any Gray Code has each line differing from the previous by exactly
one bit, only one vector addition is needed to calculate each line of this table.
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Stage 3: One can rapidly process the remaining rows from i + k until the last row m by using the
table. For example, suppose the jth row has entries aji . . . aj,(i+k−1) in the columns being processed.
Selecting the row of the table associated with this k-bit string, and adding it to row j will force the k
columns to zero, and adjust the remaining columns from i+k to n in the appropriate way, as if Gaussian
Elimination had been performed.

5.1.1 Performance Analysis

Surely k must be small, otherwise exponential work is required to produce the 2k entry table. But if 2k

is small compared to the number of rows m, then each row of the table will be used several times. This
saves computation, which must be offset by the cost of table construction. The value of k is usually set
to log n and numerical experimentation4 has shown that 1 + log ` − log log ` is a local minimum if not
global. (Recall, ` = min(m,n)). Assume for simplicity that log n divides n.

• For i = 0 . . . `/k − 1 do

– Do Gaussian Elimination on rows ki + 1 to ki + 3k to obtain a k× k identity matrix starting
at a(ki+1)(ki+1).

– For j = 1 . . . 2k − 1 do
∗ Generate the n− ik − k entries of this row of the Gray Code table by vector addition of

the previous row, and the appropriate row of the matrix. Denote Tx the xth row of the
table. (Costs 2 reads and 1 write per each of n− ik − k entries).

– For j = ik + 3k + 1 . . .m do
∗ Read the k bit string at a(ik+1),j . . . a(ik+k),j . (Costs k reads). Consider this string as a

binary number x.
∗ Set to zero the k entries at a(ik+1),j . . . a(ik+k),j . (Costs k writes).
∗ For p = ik + k + 1 . . . n do
· Execute ajp = ajp + Tx,(p−ik−k) (Costs 2 reads/1 write).

The first stage is a 3k × n− ik underdefined Gaussian Elimination (RREF), which by the appendix
requires ∼ 1.5(3k)(n− ik)2 − 0.75((3k)3) operations. This will be negligible.

The second stage, constructing the table, requires 3(n − ik − k) steps per row. The first row is all
zeroes and can be hard-coded, and the second row is a copy of the appropriate row of the matrix, and
requires (n− ik− k) reads followed by writes. Thus we obtain 2(n− ik− k) + (2k − 2)(3)(n− ik− k) =
(3 · 2k − 4)(n− ik − k) steps.

The third stage, executed upon (m−ik−3k) rows (if positive) requires 2k+3(n−ik−k) reads/writes
per row. This becomes (m− ik − 3k)(3n− 3ik − k) operations in total, when that total is positive. For
example, in a square matrix the last 2 iterations of stage 1 will take care of all of these rows and so there
maybe no work to perform in Stage 3 of those iterations. To denote this, let pos(x) = x if x > 0 and
pos(x) = 0 otherwise.

Adding steps one, two and three yields

i=`/k−1∑
i=0

1.5(3k)2(n− ik)− 0.75((3k)3)(3 · 2k − 4)(n− ik − k) + (pos(m− ik − 3k))(3n− 3ik − k)i=`/k−3∑
i=0

1.5(3k)2(n− ik)− 0.75((3k)3)(3 · 2k − 4)(n− ik − k) + (m− ik − 3k)(3n− 3ik − k)


+1.5(3k)2(n− ` + 2k)− 0.75((3k)3)(3 · 2k − 4)(n− ` + k)
+1.5(3k)2(n− ` + k)− 0.75((3k)3)(3 · 2k − 4)(n− `)

≤ ∼ 1
4k

[
2k(−6k` + 12n`− 6`2)− 6m`2 − 6n`2 + 4`3 + 12mn`

]
Substituting k = log ` and thus 2k = `,

1
4 log `

(
6n`2 − 2`3 − 6m`2 + 12mn`

)
4Experiments run in an OpenOffice spreadsheet, using the running time formulas given here, for square matrices.
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Thus for the over-defined case (` = n) this is (4n3 + 6n2m)/(4 log n), and for the under-defined case
(` = m) this is (18nm2 − 8m3)/(4 log m), and for square (5n3)/(2 log n).

5.1.2 The Rank of 3k Rows

The reader may be curious why 3k rows are selected instead of k rows at the small Gaussian Elimination
step (Stage 1 of each iteration). The answer is that the probability of k vectors of length 3k having rank
k is very high, as proved below. The small Gaussian Elimination will only fail to produce the identity
matrix followed by rows of zeroes, if this submatrix is not of full rank.

Lemma 1 A random boolean matrix of dimension 3k×k, filled by fair coins, has full rank with probability
∼ 1− 2−2k.

Proof: Consider the columns of the matrix as vectors. We now attempt to count the number of possible
full rank matrices. The first vector can be any one of 23k−1 non-zero length 3k vectors. The second one
can be any non-zero vector distinct from the first, or 23k − 2 choices. The third one can be any non-zero
vector not equal to the first, the second, or their sum, or 23k−4. The ith vector can be any vector not in
the space spanned by the previous i− 1 vectors (which are linearly independent by construction). Thus
23k − 2i−1 choices are available. Therefore, the probability of any k vectors of length 3k being linearly
independent is∏i=k

i=1 (23k − 2i−1)
(23k)k

=
i=k∏
i=1

(1− 2i−12−3k) ≈ 1−
i=k∑
i=1

2i−12−3k ≈ 1− 2k2−3k ≈ 1− 2−2k

And this is the desired result. ♣
In the case k = 5, the actual probability of less than full rank is 9.46× 10−4, and the above formula has
a relative error of 3.08× 10−6, and would be even more accurate for higher k. Also, note when k = log `
then the probability of full rank is 1− `−2. Since there will be (`)/(log `)− 1 iterations, the probability
of even one failure during all passes is less than 1/(` log `), which is very low.

5.1.3 Using Bulk Logical Operations

The above algorithm can be improved upon if the microprocessor has instructions for 32-bit (or even
64-bit) logical operations. Stages 2 and 3 essentially consist of repeated row additions. The matrix can
be stored in an 8-bits per byte format instead of the 1-bit per byte format, and long XOR operations can
perform these vector additions. The 3k rows being operated upon in stage 1 must be “expanded” out
to 1 bit per byte (assuming single byte addressing is available) and “compressed back” before stages 2
and 3. However, stages 2 and 3 can proceed 32 or 64 times as fast as normal if single-instruction logical
operators are available.

The expansion and compression will be performed three times upon each cell in the first ` rows. An
expansion consists of one read, and eight writes per byte, and a compression of eight reads and one write
per byte, or 9/8 reads/writes per bit. Therefore the total cost is 3(2)(9/8)(`n), which is quadratic and
therefore negligible in our analysis. Since only stages 2 and 3 were non-negligible, it is safe to say that
the algorithm would proceed 32 or 64 times faster, for sufficiently large matrices.

5.2 Strassen’s Formula for the Inversion of Real Matrices

In Strassen’s original paper on matrix multiplication, the following formula appeared for matrix inversion.
However, it can be used to show that for any matrix multiplication algorithm which is ω(n2), matrix
inversion can be done in time upper-bounded by matrix multiplication in the big-Oh sense [CLRS, AHU].
We refer to the following as Strassen’s matrix inversion formula, as distinct from Strassen’s matrix
multiplication algorithm. (A more detailed exposition is found in [CLRS], using the same notation).

A =
[

B C
D E

]
⇒ A−1 =

[
B−1 + B−1CS−1DB−1 −B−1CS−1

−S−1DB−1 S−1

]

where S = E −DB−1C, which is the Schur Complement of A with respect to B.
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It is routine to check that the product of A and the matrix formula for A−1 yields the identity matrix,
multiplying on the left or on the right. If an inverse for a matrix exists, it is unique, and so therefore
this formula gives the unique inverse of A.

However, it is a clear requirement of this formula that B and S be invertible. One can show that if
A and B are non-singular, then S is non-singular also [CLRS]. The problem is to guarantee that the
upper-left submatrix, B, is invertible.

In contrast to the present situation, over the reals the possible noninvertibility of B is not a problem.
It turns out that the upper-left submatrix of a symmetric positive-definite matrix is symmetric positive-
definite. All symmetric positive-definite matrices are invertible, and so the above formula can be used.
If A is not symmetric positive-definite, note that AT A will be. Furthermore,

A−1 = (AT A)−1AT

Therefore any real or complex matrix can be inverted by calculating AT A, applying Strassen’s formula
for matrix inversion, and multiplying by AT on the right.

5.3 Inversion of Boolean Matrices

Unfortunately, the reduction to positive definite matrices does not work without modification over GF(2).
Consider

A =


1 0 0 0
1 0 1 0
0 1 0 0
0 1 0 1

 AT A =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1


Both A and AT A have det = 1, thus are invertible. Yet in both cases the upper-left hand 2x2 submatrices
have det = 0, and therefore are not invertible. Thus Strassen’s formula for inversion is unusable without
modification.

If the matrix is unit upper (or lower) triangular with all ones on the main diagonal, then it clearly has
det = 1, and thus invertible. Likewise its upper-left hand submatrices (of any size) also are unit upper
(or lower) triangular, and so also have det = 1 and are invertible. For this reason, Strassen’s inversion
formula can be used to invert matrices that are unit upper/lower triangular.

5.3.1 Triangular Inversion with Strassen’s Algorithm

When A is a 2n× 2n upper-triangular matrix (with ones on the main diagonal), the Schur Complement
of A with respect to B (which was denoted S earlier) is merely E. Thus Strassen’s formula becomes

A =
[

B C
0 E

]
⇒ A−1 =

[
B−1 −B−1CE−1

0 E−1

]
Since A is unit upper triangular, so are B and E. Thus the cost is two calls to a triangular inversion
algorithm, of size n× n, and two calls to a multiplication algorithm, of size n× n, plus 4n2 work to fill
in the output matrix.

It(2n) = 2It(n) + 2M(n) + 4n2

The subscripts here denote that these algorithms are for the triangular case. Since matrix inversion
and matrix multiplication are the same complexity in the big-Theta sense [CLRS], It(n) ∼ kn(log 7), and
It(2n) ∼ 2(log 7)It(n) ∼ 7It(n), yielding,

7It(n) ∼ 2It(n) + 2M(n) + 4n2

It(n) ∼ (2M(n) + 4n2)/(5)
It(n) ∼ 0.9337nlog 7

with the substitution M(n) = 2.3343n(log 7) calculated in Section 5.3.2, a general formula for the mul-
tiplication of large boolean matrices. One can also verify that our assumption of It(2n) = 7It(n) is
consistent. (If Strassen’s Algorithm were used näıvely, this would be It(n) ∼ 4.8nlog 7, or more than five
times slower).
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5.3.2 LU-Factorization

The generalized algorithm for doing LU-Factorization using multiplication and inverting subroutines of
smaller size is given in [AHU], originally from [BH74], but is not straightforward. The full details are
specified in Appendix E, but we summarize as follows.

The algorithm can take any full rank underdefined m × n matrix A (thus m < n) for input. The
goal is to output an m × m lower triangular matrix L, an m × n upper-triangular matrix U , and a
n× n permutation matrix P , such that A = LUP . Also, both L and U will have only ones on the main
diagonal and so are non-singular.

It does this by cutting A in half horizontally, into two m/2 × n pieces, repeatedly. When down to
single 1×n rows, the LU-factorization is easy. The permutation matrix P is that which puts a non-zero
element in the first cell of A. The upper-triangular matrix is U = AP , and the lower triangular matrix
L is the 1× 1 matrix [1]. Assembling the LU-factorizations of the larger pieces from those of the smaller
takes many steps. The reader is encouraged to try a full-rank real-valued matrix with no zeroes using
the full specification in Appendix E, because this algorithm works over any field. The absence of zeroes
and full rank imply that the permutation matrices will always be the identity.

The computational cost of this factoring is given by

F (m,n) ∼ 2.2876mlog 7 + 1.5mn

and for square matrices

F (n, n) ∼ 2.2876nlog 7

(See Appendix E for details).

5.3.3 Crossover Between LU-Factorization and Modified Method of 4 Russians

We have calculated that ∼ 2.2876nlog7 is the number of matrix operations for Strassen’s algorithm for
LU factorization, while ∼ 0.5n3 and ∼ 2.5n3/logn are the number required for Gaussian Elimination
and the Modified Method of Four Russians for upper triangular form. Big Oh notation would make
one believe that Strassen’s algorithm is the best choice. However, we will show that this is misleading.
Solving the following inequality for n,

2.2876nlog7 < 2.5n3/logn

one obtains that n = 6.65 × 106 rows. Recall, this is the point where the two algorithms are of equal
performance. The point at which Strassen is twice as fast as the Modified Method of Four Russians is
n = 1.02× 109 rows. These matrices are have 4.4× 1013 and 1.04× 1018 entries respectively.

Meanwhile, we can calculate the crossover between Gaussian Elimination and the Modified Method
of Four Russians, by solving

0.5n3 > 2.5n3/logn

The crossover here is at n = 32 rows, or 1024 elements. It is also interesting to see where the
Modified Method of Four Russians is twice as fast as Gaussian Elimination, and that point is n = 1024,
or 1.05× 106 elements. Therefore the Modified Method of Four Russians should be used for the solution
of systems of linear boolean equations, if 32 < n < 6.65× 106.

5.3.4 Parallelism

It should be noted that Strassen’s formula for matrix inversion lends itself particularly well to parallel
computing environments. Suppose there are 2d machines available. Then during LU-factorization each
horizontal n/(2d)× n strip of the matrix can be factored by one particular processor. This means that
d − 1 levels of recursion would consist of transferring the task to new processors, and the work would
be performed locally beginning at the dth level. The inverses and multiplications during the recombine
step could be handled similarly, divided so that each processor has exactly one piece to work upon. The
following inequality would be used to check if parallel execution of Strassen’s formula is better than
running the Modified Method of Four Russians on one machine:

2−d6.4893nlog 7 ≤ (3n3)/(log n)
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For example, if a million by million square dense matrix is the result of the sparse stage, then the Modified
Method of Four Russians requires 1.505× 1017 steps. Using Strassen’s formula requires 2−d4.532× 1017.
Thus with four machines available, Strassen’s formula would take less absolute (clock) time, but even
with two machines it would be better to leave one idle and have the other use the Modified Method of
Four Russians. In the case of four machines, however, they could each independently solve four separate
stream ciphers using the Modified Method of Four Russians in only slightly longer time (1.505 × 1017

versus 1.133× 1017). If a particular cipher needs to be solved post haste then massive parallelism could
work (though careful analysis would need to be made as to how to handle the enormous communications
overhead) but otherwise, to maximize the total amount of matrices inverted per unit time, parallelism
is better utilized by each machine working on its own problem in isolation.

6 Conclusions

A new model for the computational cost of boolean matrix operations has been proposed, namely that of
counting the number of matrix reads and writes, (to the input and output matrices but also including to
large matrix-like temporary data structures). Instead of O(f(n)) or Θ(f(n)) notation, ∼ f(n) notation
has been used, permitting the study of coefficients. Particular coefficients for many algorithms have
been calculated and appear in Table 1. For matrix multiplication, a strategy has been shown balancing
the näıve algorithm, the Method of Four Russians and Strassen’s Algorithm. This hybrid algorithm has
a low coefficient. For solving a linear system of equations, the Modified Method of Four Russians has
been shown to be dominant for all practical matrix sizes, despite big-Θ analysis to the contrary, when
compared to Strassen’s formula or dense Gaussian Elimination. Strassen’s formula for matrix inversion
can take advantage of parallelism, but this is only useful in lowering latency between submission of a
problem and a solution, not the throughput of solutions solved per unit time.
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A Dense Gaussian Elimination

A.1 Dense Gaussian Elimination to Reduced Row Echelon Form

The algorithm known as Gaussian Elimination is very familiar, and has been known since antiquity in
China5. It has many variants, but two are useful to us. As a subroutine for calculating the inverse

5The important Chinese mathematical text The Nine Chapters on the Mathematical Art, written about 150 bc, known
as Jiuzhang Suanshu, has the earliest known presentation of Gaussian Elimination [wiki].
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of a matrix, we refer to adjoining an n × n matrix with the n × n identity matrix to form an n × 2n
matrix. This will be processed to output the n × n identity on the left, and A−1 on the right. The
second is to solve a system directly, in which case one column is adjoined with the constant values. The
more useful variant, which finishes with a triangular rather than identity submatrix in the upper-left,
is listed in Appendix A.2. (That variant requires 2/3 as much time when used for solving a system of
equations, but is not useful for finding matrix inverses). Since Gaussian Elimination is probably known
to the reader, it is not described here, but it has the following cost analysis.

• For each column i = 1, 2, . . . , `

– Search for a non-zero entry in region aii . . . amn (Expected cost is 2 reads). Call this entry
axy.

– Swap rows i and x, swap columns i and y. (Costs 4 writes).
– For each row j = 1, 2, . . . ,m, but not row i

∗ If aji = 1 (Costs 1 read) then for each column k = i, i + 1, . . . , n

· Calculate ajk = ajk + aik. (Costs 2 reads, 1 write).

The total number of reads and writes is given by

=
i=∑̀
i=1

6 + (m− 1)(1 + 0.5(3)(n− i + 1))

= 1.5nm`− 0.75m`2 + 1.75m`− 1.5n` + 0.75`2 + 4.25`

∼ 1.5nm`− 0.75m`2

Thus for the overdefined case (` = n) one obtains 0.75mn2, and for underdefined (` = m) the total is
1.5nm2 − 0.75m3. For a square matrix this is 0.75n3.

A.2 Dense Gaussian Elimination to Upper Triangular Form

Below we list an alternative form of the Gaussian Elimination algorithm, which leaves in the last step
an upper-triangular matrix rather than an identity matrix in the upper-left `× ` submatrix. This is not
useful for finding the inverse of a matrix, but for solving a system of m equations in n unknowns. Here
it is assumed that one column is adjoined that contains the constants for a system of linear equations.

• For each column i = 1, 2, . . . , `

– Search for a non-zero entry in region aii . . . amn (Expected cost is 2 reads). Call this entry
axy.

– Swap rows i and x, swap columns i and y. (Costs 4 writes).
– For each row j = i + 1, i + 2, . . . ,m

∗ If aji = 1 then for each column k = i, i + 1, . . . , n

· Calculate ajk = ajk + aik (Costs 2 reads, and 1 write).

The total number of reads and writes is given by

=
i=∑̀
i=1

6 + (m− i)(1 + 0.5(3)(n− i + 1))

=
i=∑̀
i=1

6 + (m− i)(2.5 + 1.5 ∗ n− 1.5 ∗ i)

= 1.5nm`− 0.75m`2 − 0.75n`2 + 0.5`3 + 2.5m`− 1.25`2 − 0.75m`− 0.75n` + 0.75`2 + 5`

∼ 1.5nm`− 0.75m`2 − 0.75n`2 + 0.5`3

Thus for the overdefined case (` = n) one obtains 0.75mn2 − 0.25n3, and for underdefined (` = m) the
total is 0.75nm2 − 0.25m3. For a square matrix this is 0.5n3.
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B Matrix Inversion Algorithms

B.1 Reduced Row Echelon Form in the Modified Method of Four Russians

Like Gaussian Elimination, it is possible to change the Modified Method of Four Russians for inversion
to output a reduced row echelon form matrix, with ones on the main diagonal. This is useful for finding
A−1.

• For i = 0 . . . `/k − 1 do

– Do Gaussian Elimination on rows ik + 1 to ik + 3k to obtain a k× k identity matrix starting
at a(ki+1)(ki+1).

– For j = 1 . . . 2k − 1 do
∗ Generate the n− ik − k entries of this row of the Gray Code table by vector addition of

the previous row, and the appropriate row of the matrix. Denote Tx the xth row of the
table. (Costs 2 reads and 1 write per each of n− ik − k entries).

– For j = 1 to ik and also j = ik + 3k + 1 to m do
∗ Read the k bit string at a(ik+1),j . . . a(ik+k),j . (Costs k reads). Treat this string as a

binary number x.
∗ Set to zero the k entries at a(ik+1),j . . . a(ik+k),j . (Costs k writes).
∗ For p = ik + k + 1 . . . n do
· Calculate ajp = ajp + Tx,(p−ik−k) (Costs 2 reads/1 write).

Stages one and two are identical to the variant for unit upper triangular form. Stage three is identical
except that it runs for more steps, namely m−3k iterations instead of pos(m−3k−ik) (Recall pos(x) = x
if x is positive, 0 otherwise). Assume m > 3k. Adjusting for these changes, we obtain

i=`/k−1∑
i=0

1.5(3k)2(n− ik)− 0.75((3k)3)(3 · 2k − 4)(n− ik − k) + (m− 3k)(3n− 3ik − k)

∼ 1
4k

[
2k(12n`− 6`2 − 6k`) + 12mn`− 6m`2

]
Substituting k = log ` and thus 2k = `,

1
4 log `

(
12n`2 − 6`3 + 12mn`− 6m`2

)
Thus for the over-defined case (` = n) this is (3n3 + 3mn2)/(2 log n), and for the under-defined case
(` = m) this is (6nm2 − 3m3)/(log m), and for square (3n3)/(log n).

B.2 Strassen’s Algorithm for Matrix Inversion

After using LU-factorization, as described in Section E, one has A = LUP . Since A−1 = P−1U−1L−1,
and P−1 = PT , then only two unit triangular matrix inversions and one matrix multiplication are
required to invert A.

I(n) = F (n, n) + 2It(n) + Ms(n)
I(n) = (2.2876 + 1.8674 + 2.3343)nlog 7

I(n) = 6.4893nlog 7

C Strassen’s Algorithm for Matrix Multiplication

To find: [
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=

[
c11 c12

c21 c22

]
Use the following steps:
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• Calculate 10 sums, namely: s1 = a12 − a22, s2 = a11 + a22, s3 = a11 − a21, s4 = a11 + a12,
s5 = a21 + a22, s6 = b21 + b22, s7 = b11 + b22, s8 = b11 + b12, s9 = b12 − b22, and s10 = b21 − b11.

• Calculate 7 products, namely: m1 = s1s6, m2 = s2s7, m3 = s3s8, m4 = s4b22, m5 = a11s9,
m6 = a22s10, and m7 = s5b11.
• Calculate 8 sums, namely: s11 = m1 + m2, s12 = −m4 + m6, s13 = −m3 + m2, s14 = −m7 + m5,

c11 = s11 + s12, c12 = m4 + m5, c21 = m6 + m7, and c22 = s13 + s14.

One can see that this consists of 18 matrix additions and 7 matrix multiplications,

M(2n) = 7M(n) + 54n2

allowing one to calculate, for a large matrix,

M(4n0) = 72M(n0) + (4 + 7) · 54n2
0

M(8n0) = 73M(n0) + (16 + 7 · 4 + 72) · 54n2
0

M(16n0) = 74M(n0) + (64 + 16 · 7 + 72 · 4 + 73) · 54n2
0

M(2in0) = 7iM(n0) + (4i−1 + 4i−27 + 4i−372 + · · ·+ 4 · 7i−2 + 7i−1)54n2
0

M(2in0) ≈ 7iM(n0) + 7i−1(1 + 4/7 + 16/49 + 64/343 + · · ·)54n2
0

M(2in0) ≈ 7iM(n0) + 7i18n2
0

M(n) ≈ 7log n

7log n0
M(n0) +

7log n

7log n0
18n2

0

M(n) ≈ nlog 7 M(n0) + 18n2
0

nlog 7
0

M(n) ∼ nlog 7 M(n0)

nlog 7
0

C.1 Crossover between Method of Four Russians and Strassen’s Algorithm

Since the Modified Method of Four Russians is Θ(n3/ log n) and Strassen’s algorithm is Θ(nlog 7) it is
true that Strassen’s Algorithm will be more efficient for large matrices. However, solving the inequality
below will determine at what n will Strassen’s Algorithm defeat the Modified Method of Four Russians
(for inversion of a square matrix).

6.4893nlog 7 ≤ (3n3)/(log n)

The crossover point is roughly n=3,370,000,000. Since this is a dense matrix algorithm, that means the
matrix would have 1.1357 × 1019 entries, or require (at one bit per byte) 11 Exabytes of memory. The
number of instructions required to calculate the inversion is 3.628× 1027 operations, or 115 million years
for a teraflop machine. In the next Section we show that Dense Gaussian Elimination is not efficient for
any non-trivially sized matrix. Therefore, the Modified Method of Four Russians is the winning strategy
for matrix inversion.

D Back Substitution

We assume the algorithm is familiar and trivial to the reader, so we simply list the performance analysis.
First, we example the underdefined case, where A~x = ~b, and A is upper triangular m× n, ~x is n× 1

and ~b is m by 1. Recall underdefined means m < n. The following algorithm sets the “extra” n −m
degrees of freedom of ~x to zero, and then solves for the m remaining values of ~x.

• xm ← bm

• For i:=m− 1 down to 1 do

– temp ← bi

– For j:=m down to i + 1 do

∗ temp← aijxj
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– xi ← temp

• For i:=m+1 to n do

– xi ← 0

The the inner loop is two matrix reads per iteration, and runs m− i iterations. Each run of the outer
loop is then 1 + (m− i)(2) + 1 or 2m− 2i + 2. Since i runs from m− 1 down to 1, the outer loop comes
to (2m + 2)(m − 1) − 2(m2 − m)/2, or more simply m2 + m − 2. The later loop costs one write per
iteration, or n−m writes in total. Therefore the whole algorithm costs m2 +n− 1 ∼ m2 +n. For square
matrices, this is ∼ n2.

In the overdefined case, m > n but the last m − n rows are all zero, since A is upper triangular. If
the last m− n entries of ~b are not all zero, then the system is inconsistent (it takes m− n matrix reads
to check this). If the last m − n entries of ~b are zero, then it suffices to ignore the all-zero rows of A,
and all zero tail of ~b, and proceed as if the matrix were square. As noted above, this is ∼ n2 steps, for a
total of ∼ n2 + m.

E LU-Factorization

Given the reasonable running time for matrix inversion in the triangular case, it is desirable to provide
an algorithm for LU-factorization, which reduces any matrix to a product of triangular and permutation
matrices. The variant shown here is taken from Aho, Hopcroft, and Ullman’s textbook [AHU] and always
returns (L,U, P ) such that A = LUP . This would then enable the calculation A−1 = P−1U−1L−1 =
PT U−1L−1.

Initially A is an n× n matrix. However, the algorithm functions by repeatedly cutting the matrix in
half horizontally, and calling itself on the two n/2 × n pieces. Once these are factored, some steps are
required to convert this to an LU-factorization of A. Therefore the algorithm is written to accept any
m × n matrix as input, such that m < n (underdefined). This implies m/2 < n and m/4 < n and so
forth, and so the overdefined case cannot occur. The symbol F (m,n) is the cost of this algorithm on an
m× n matrix. The output matrices L, U , and P , are of size m×m, m× n, and n× n respectively. An
excellent proof of correctness is found in [AHU].

Also, note that Ms(n) is the cost of multiplying a square n×n matrix, Mr(a, b, c) that of multiplying
an a× b matrix by a b× c matrix, and Ar(a, b) that of adding two a× b matrices. These are 2.3343nlog 7,
and (a, b, c)(log 7)/3, and 3ab respectively.

• If m 6= 1

– Denote B the rows 1, 2, . . . m/2 of A. (No cost).
– Denote C the rows m/2 + 1,m/2 + 2, . . . m of A. (No cost).
– Call (L1, U1, P1)← Factor(B) (Costs F (m/2, n)).
– Let D = CP−1

1 . (Costs 4n reads/writes).
– Denote E the columns 1, 2, . . . ,m/2 of U1. (No cost).
– Denote F the columns 1, 2, . . . ,m/2 of D. (No cost).
– Let F ′ = FE−1. (Costs Ms(m/2) + It(m/2)).
– Let G = D − F ′U1. (Costs Mr(m/2,m/2, n) + Ar(m/2, n)).
– Denote G′ the columns m/2 + 1,m/2 + 2, . . . , n of G. (No cost).6

– Call (L2, U2, P2)← Factor(G′) (Costs F (m/2, n−m/2)).
– Extend P2 to a n× n matrix by

P3 =
[

P2 0
0 Im/2

]
(Costs 2(n−m/2) reads/writes, since this is nothing more than copying the swap list).

– Let H = U1P
−1
3 . (Costs 4n reads/writes).

– Let P = P3P1. (Costs 6n reads/writes).
– Let

L =
[

L1 0
F ′ L2

]
6The first m/2 columns of G are all zeroes.
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(Costs 3(m/2)2 reads and 4m2 writes).
– Let

U =
[
← U →
0 U2

]
(Costs 3(m/2)2 reads and 4m2 writes).

– Return (L,U, P ).

• else (when m = 1)

– Find an entry a1j 6= 0 in A. (Costs at most n reads).
– Let L be the 1× 1 matrix [1]. (Costs 1 write).
– Let P be the identity matrix with columns 1 and j swapped. (Costs 2 writes).
– Let U = AP (Costs 2 writes).
– Return (L,U, P ).

Once can see that the recursive call requires

F (m,n) = F (m/2, n) + 4n + Ms(m/2) + It(m/2) + Mr(m/2,m/2, n) + Ar(m/2, n) +
F (m/2, n−m/2) + 2(n−m/2) + 4n + 6n + 4.75m2 + 4.75m2

F (m,n) = F (m/2, n) + F (m/2, n−m/2) + µ1(m/2)log 7 + µ2(m/2)log 7 + µ1(m2n/4)(log 7)/3

+1.5mn + 9.5m2 + 24n + 2m

F (m,n) ∼ F (m/2, n) + F (m/2, n−m/2) + µ3(m/2)log 7 + µ1(m2n/4)(log 7)/3

Now since an m/2×n−m/2 matrix is smaller than an m/2×n matrix, one can say that F (m/2, n−
m/2) ≤ F (m/2, n), or that F (m/2, n) + F (m/2, n−m/2) < 2F (m/2, n). We now have

F (m,n) ∼ 2F (m/2, n) + µ3(m/2)log 7 + µ1(m2n/4)(log 7)/3

Let the symbols µ1 and µ2 refer to the coefficients of square matrix multiplication and triangular matrix
inversion, 2.3343 and 0.9337, respectively. Their sum is µ3, or 3.268. The symbol ω = log 2 and γ = ω/3

We begin with three recursive steps:

F (m,n) ∼ 2F (m/2, n) + µ3(m/2)ω + µ1(m2n/4)γ

F (2m0, n0) ∼ 2F (m0, n0) + mω
0 µ3 + µ1m

2γ
0 nγ

0

F (4m0, n0) ∼ 4F (m0, n0) + 2mω
0 µ3 + (2m0)ωµ3 + 2m2γ

0 nγ
0µ3 + (2m0)2γnγ

0µ1

∼ 4F (m0, n0) + (2 + 2ω)mω
0 µ3 + (2 + 22γ)m2γ

0 nγ
0µ1

F (8m0, n0) ∼ 8F (m0, n0) + (22 + 2 · 2ω)mω
0 µ3 + (4m0)ωµ3 + (22 + 2 · 22γ)m2γ

0 nγ
0µ1 + (4m0)2γnγ

0µ1

∼ 8F (m0, n0) + (22 + 2 · 2ω + 4ω)mω
0 µ3 + (22 + 2 · 22γ + 42γ)m2γ

0 nγ
0µ1

Which generalizes to

F (2im0, n0) ∼ 2iF (m0, n0) + (2i−1 + 2i−22ω + · · ·+ 22(2i−3)ω + 2(2i−2)ω + (2i−1)ω)mω
0 µ3

+(2i−1 + 2i−222γ + · · ·+ 22(2i−3)2γ + 2(2i−2)2γ + (2i−1)2γ)m2γ
0 nγ

0µ1

Which can become

F (2im0, n0) ∼ 2iF (m0, n0) + (2ωi−1)
(

(
2
2ω

)i + (
2
2ω

)i−1 + (
2
2ω

)i−2 + (
2
2ω

)i−3 + · · ·+ 1
)

mω
0 µ3

+(22γi−1)
(

(
2

22γ
)i + (

2
22γ

)i−1 + (
2

22γ
)i−2 + (

2
22γ

)i−3 + · · ·+ 1
)

m2γ
0 nγ

0µ1

∼ 2iF (m0, n0) +
2ωi−1

1− 21−ω
mω

0 µ3 +
22γi−1

1− 21−2γ
m2γ

0 nγ
0µ1
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One extreme is to allow the algorithm to run until it has partitioned the m× n matrix into m strips
that are 1× n. In this case, m0 = 1, i = log m, and 2i = m. This gives us

F (m,n0) ∼ mF (1, n0) +
2ω(log m)−1µ3

1− 21−ω
+

22γ(log m)−1nγ
0µ1

1− 21−2γ

But note 2ω log m−1 = 2(log mω)−1 = mω/2 and therefore

F (m,n0) = mF (1, n0) +
µ3

2(1− 21−ω)
mω +

nγ
0µ1

2(1− 21−2γ)
m2γ

But, 2γ < ω since γ = ω/3, so we can drop the last term.

F (m,n0) ∼ mF (1, n0) + µ4m
ω

Where

µ4 =
µ3

2(1− 21−ω)
≈ 2.2876

This only leaves F (1, n0). To perform the LU-factorization of a single row, the L is the 1× 1 matrix
consisting of a one, the U is the vector with a one swapped into the first location, and the P is a
permutation matrix that does swap that one into the first location. This can be calculated by searching
for a one (at most n reads), performing the swap (2 writes), and copying the vector into U , (2n reads
and writes). Thus F (1, n0) ≤ 3n0 + 2, and

F (m,n) ∼ 3mn + µ4m
ω = 3mn + 2.2876m2.807

For square matrices,

F (n) ∼ 3n2 + µ4n
ω = 2.2876n2.807

Sub-Optimality Since Θ(n2.807) is asymptotically less than Θ(n3), one knows that this algorithm as
written will eventually be faster than LU-factorization or triangularization with Gaussian Elimination
or the Modified Method of Four Russians. However, for smaller sizes, surely simpler algorithms will be
faster. Therefore, there is a crossover “horizon” of ordered pairs (m,n), on the one side of which this
algorithm should be avoided and upon the other side of which it should be used.

That being the case, one should not go to F (1, n), but to some F (m′, n) and no smaller, and then
switch to the algorithms that are faster for smaller matrices. This will lower the coefficient of the algo-
rithm. The author believes that this horizon will probably be found experimentally and not analytically,
but is open to suggestions. Future work will report on such experiments. Nonetheless, the results here
are a valid upper bound to the cost of LU factorization via Strassen’s algorithm.
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