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Abstract

In this paper, we present some more results about the security of
the Kurosawa-Desmedt encryption scheme [9] and a variant of it [13].
We prove that after a modification, those schemes are secure against
adaptive chosen-ciphertext attack not only under the decisional Diffie-
Hellman assumption in standard model as before but also under the
computational Diffie-Hellman assumption in the random oracle model.
These results ensure that both the Kurosawa-Desmedt scheme and the
variant have similar security merits as the Cramer-Shoup encryption
scheme [4, 5], which is proposed as a standard [10].
key words: public-key encryption, standard model, ROM, DDH,
CDH, IND-CCA

1 Introduction

1.1 Background

The notion of chosen-ciphertext security was introduced by Naor and
Yung [12] and developed by Rackoff and Simon [14], and Dolev, Dwork,
and Naor [6]. This notion is now largely considered as the “right” no-
tion for encryption schemes.

In the random oracle model [3], many practical schemes secure
against adaptive chosen-ciphertext attack(IND-CCA) have been pro-
posed: OAEP+ [16], SAEP [1], RSA-OAEP [7] to name just a few.



Although the security analysis in the random oracle model gives us a
strong evidence that the schemes are secure, it does not rule out all
possible attacks.

In standard model, the first practical public key cryptosystem
which is provably IND-CCA secure was discovered by Cramer and
Shoup [4]. The security of the scheme is based on the hardness of the
decisional Diffie-Hellman(DDH) problem. After that, in [15], Shoup
presented a hybrid variant of the Cramer-Shoup cryptosystem. As
a hybrid scheme, the variant is very flexible since messages can be
arbitrary bit strings.

In [9], Kurosawa and Desmedt modified the hybrid scheme pre-
sented in [15], gaining a scheme, called KD scheme for short, which
produces shorter ciphertexts and needs less exponentiations than the
original one. However, their proof of security relied on the use of in-
formation theoretically secure functions KDF (key derivation function)
and MAC(message authentication code), which makes the Kurosawa-
Desmedt scheme as efficient as the original Cramer-Shoup for typical
security parameters, as recently stated in [8]. In that paper, Gennaro
and Shoup also presented a different proof of security for Kurosawa-
Desmedt scheme, which showed that the scheme can be instantiated
with any computationally secure KDF and MAC, thus extended its
applicability and efficiency.

In an attempt to sharpen up KD scheme, Phong and Ogata [13]
recently modified the scheme, obtaining a more efficient scheme called
KD1, which could also be implemented with any computationally se-
cure KDF and MAC. Both KD1 and KD were proved to be IND-CCA
secure in standard model, under DDH assumption.

Continuing that approach, we will try to replace the DDH as-
sumption ensuring the security of KD and KD1 schemes by a much
weaker assumption, the computational Diffie-Hellman(CDH) assump-
tion. The upcoming results show that the security of KD and KD1
schemes has good merits similar to those of the Cramer-Shoup encryp-
tion scheme [4, 5], which is proposed as a standard [10]. The results
in this paper together with the results in [13] can also be seen as a
complete and affirmative response to the belief raised by Gennaro and
Shoup [8] about optimizations and CDH-based security of KD scheme.



1.2 Our Contribution

Our main goal is to show that KD and KD1 schemes possess security
merits as a proposed standard [4, 5, 10] does. In particular, we prove
that

e Both KD and KD1 are still IND-CCA secure under DDH as-
sumption in both standard and random oracle model after a
reasonable modification of their key derivation function KDF.

e Both KD and KD1 are IND-CCA secure under CDH assumption
in the random oracle model.

By the results, KD1, which is more efficient, can be used in practice
with the same security level as the proposed standard.

The rest of this paper is organized as follows: Section 2 reviews
KD and KD1 schemes and their previous security results. Section 3 is
about the modification of key deviation KDF and some more security
results gained from that modification. Section 4 analyses KD and
KD1 in ROM. We finally end up with some discussions in Section 5.

2 Review of KD and KD1 schemes

2.1 Basic Components and Assumptions

Both schemes make use of:

e a group G of prime order ¢, with (random) generators g; and gs.
Security assumption(DDH): Hard to distinguish (¢}, g5) from (g}, g5 ),
where r is a random element of Z, and r' is a random element
of Zg \ {r}.

e a message authentication code M AC, which is a function that
takes two inputs, a key k and message e € {0,1}*, and produces
a “tag” t := MACk(e).

Security assumption: For random k, after obtaining t* := M AC(e*)
for (at most one) adversarially chosen e*, it is infeasible for an
adversary Apmqc to compute a forgery pair, i.e., a pair (e, t) such
that e # e¢* and t = M ACy(e).

Define Advprac(Amac) = Pr(Amae succeeds). The assumption
ensures that Advysac(Amac) is negligible for all polynomial-time
adversary Anqc.



e a symmetric key encryption scheme, with encryption algorithm
E and decryption algorithm D, such that for key K and plain-
text m € {0,1}*, e := Ex(m) is the encryption of m under K,
and for key K and ciphertext e € {0,1}*, m := Dg(e) is the
decryption of e under K.
Security assumption(semantic security): hard to distinguish Ex (mg)
and Ex(my) for randomly chosen K and adversarially chosen
mgo and mq, where mg and my are of equal length.

e a key derivation function K DF, such that for v € G, KDF(v) =
(k,K), where k is a message authentication key, and K is a
symmetric encryption key.

Security assumption: hard to distinguish KDF (v) and (k,K),
where v, k and K are random.

Let Agqr be an 0-or-l-output algorithm that takes as input a
pair of message authentication key and symmetric encryption
key. Define

Ad’UKDF(Akdf) = PI‘[Akdf(KDF(U)) — 1]
— Pr[Akdf(k‘,K) — 1].

The assumption ensures that Advi pr(Argr) is negligible for all
polynomial-time adversary Aygqy.

e a hash function H : G x G — Z,,.
Security assumption (target collision resistance): given uj = g
and ub = g4 for random r € Zy, hard to find (u1,uz) € G x G\
{(uj,ub)} such that H(uy,u2) = H(uf,ub).

Note that the key space for the message authentication code is as-
sumed to consist of all bit strings of a given length, so that by a
random key k, we mean a random bit string of appropriate length.
Similarly for the symmetric encryption keys.

Note also that K DF and H may have associated keys, which are
publicly known.

2.2 KD Scheme

KD scheme is described as follows:

Key Generation: The description of the group G is generated, along
with random generators g; and go for G. Any keys for KDF and H



are also generated. Then,

T1,22,Y1,Y2 i Zq7 C < 951019:2027 d 9%1932
The public key consists of the description of G, the generators g; and
92, keys for KDF and H (if any), along with the group elements ¢ and
d. The private key consists of the public key, along with x1, x2,y1, y2.

Encryption of m € {0,1}*:
riZq, up — g1 € G, ug — g5 € G, a — H(uj,up) € Zg,
ve—dd*eqd, (k,K)— KDF(v), e — Eg(m), t — MACk(e).
return C' := (uy,ug, e, t)

Decryption of C = (uy,us,e,t):
o H(up,ug), v e ul %522 € G (k, K) «+ KDF(v).
If t # M AC)(e) then return reject
Else return m « Dk (e)

2.3 KD1 Scheme

The public key and the encryption algorithm of both KD and KD1
are exactly identical. However, the key generation algorithm and the
decryption algorithm of KD1 are different from those of KD, and are
described as follows:

Key Generation: The description of the group G is generated, along
with one random generators g, for G. Any keys for K DF and H are
also generated. Then,

$ * w, $ x Y
W<_Zq792HglvwayHancHglangl'

The public key consists of the description of G, the generators g; and
g2, keys for KDF and H (if any), along with the group elements ¢
and d. The private key consists of the public key, along with w, z, y.

Decryption of C = (uy,us,e,t):
o — H(ug,ug),v « ui ™ € G, (k,K) « KDF(v).
If ug # uy or t # M ACy(e) then return reject
Else return m «— Dg(e)

2.4 Security of KD and KD1
The security of KD and KD1 is ensured by the following theorems.



Theorem 1 (Gennaro, Shoup [8]). KD scheme is IND-CCA secure in
standard model if the assumptions on its components described in the
previous section hold. In particular, Adv}?ﬁl)_cm(/l) 1s negligible for all

probabilistic, polynomial-time adversary A.

Theorem 2 (Phong, Ogata [13]). KDI scheme is IND-CCA secure
under DDH assumption in standard model.

In particular, for all probabilistic, polynomial-time adversary A, there
exist algorithms A1 and As whose resources are essentially the same
as those of A such that

| Advid et (A) — Advizd et (A)| < Qa(Advipr(Ar) + Advarac(As)),
where Q4 is the number of decryption queries made by A.

The proof of Theorem 2 is shown in Appendix C.

3 Modification of Key Deviation Func-
tion

The key deviation function KDF is modulated as follows: the input of
it is now two elements from the group G instead of one as before, i.e.,
for v,u; € G, KDF(v,u;) = (k, K), where k is a message authentica-
tion key, and K is a symmetric encryption key. This KDF is required
to satisfy a new security assumption as follows:

New security assumption on KDF: For all u; € G, it is infeasible
to distinguish KDF(v,uy) and (k, K), where v, k, K are random.

There are many constructions for the above KDF. One may use a
pairwise independent hash function together with the Leftover Hash
Lemma for constructing that KDF [5]. However, the construction is
not quite efficient, since the order of the group G needs to be large,
so that long enough keys can be generated(e.g., G should be at least
of order 512 to generate keys (k, K) of 256 bit length). Therefore, in
practice, we can simply use a dedicated cryptographic hash function,
like SHA1, for KDF. We refer readers to [10] for the concrete construc-
tion of KDF using hash functions. From now on, KDF is considered
as a hash function in this paper, so we can model it as a random oracle
when needed.

Theorem 1 and Theorem 2 remain valid after the modification
of KDF. In fact, what these theorems’s security analysis(in [8, 13])
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requires is that the output of KDF is indistinguishable from random
keys (k, K) if v is random, which is the previous security assumption
of KDF in Section 2.1. The requirement is clearly fulfilled by the new
security assumption on KDF.

We can gain more from the modification of KDF. In particular, some
results similar to Theorem 1 and Theorem 2 can be obtained if KDF
is modeled as a random oracle. We first state those results.

Theorem 1. KD scheme is IND-CCA secure under DDH assump-
tion in ROM. In particular, for all probabilistic, polynomial-time ad-
versary A, the advantage Advf,?%_cca(A) is negligible if KDF is con-
sidered as a random oracle.

Theorem 27°". KDI1 scheme is IND-CCA secure under DDH as-
sumption, if KDF is modeled as a random oracle.
In particular, for all probabilistic, polynomial-time adversary A, there

exists algorithm A’ whose resources is essentially the same as those of
A such that

|Adv5,(A) — Advid*(A)] < QD(% + Advprac(4')),
where Qp and Qgr are respectively the number of decryption queries
and random oracle queries made by A.

Sketch of Proof. We first revise the proofs of Theorem 1 [8] and The-
orem 2 [13] and then show how to adapt the proofs to ROM. Those
proofs employed “game-playing technique”, which changed the IND-
CCA attack game into a final easy-to-deal-with game using many in-
termediate ones. Some games utilized the indistinguishability between
the output of KDF and random bit strings in “KeySpace” as follows:

Game ¢ Game i +1

- =
ve—G ve—G
(k,K) — KDF(v,u1) || (k,K) <« “KeySpace”

In standard model, Game i and Game i + 1, which are Game 3’
and Game 4’ in Appendix C, are the same with overwhelming proba-
bility, 1 — €rqr, where €qs is the probability that one can distinguish
KDF(v,uy) and (k, K) where v, k, K are random. Now, in ROM, if
KDF is modeled as a random oracle, it behaves as in Algorithm 1 to
evaluate random oracle query (v, uq).
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Algorithm 1 Implemetation of random oracle KDF

1 if (v,uy, k, K) € Table K DF for some k, K then

2
3
4
5:
6
7

return (k, K)

. else

(k, K) & “KeySpace”
Add (v, u1, k, K) to TableKDF
return (k, K)

. end if

In Algorithm 1, TableKDF, initially empty, is a data structure that
records all random oracle queries which have been asked before. Note
that the number of elements in TableKDF is always less than Qg,
which is the total number of random oracle queries.

In ROM, Game ¢ + 1 may be different from Game 1 if the value v
in Game 7 + 1 has been in some previous random oracle query. The
probability that this event occurs is less than % since v (in both
games) is uniformly distributed over G. Thus Game i and Game
i 4+ 1 are also the same with overwhelming probability in ROM as
in standard model. This fact makes the proofs of Theorem 1 and
Theorem 2 can be reused in ROM, resulting in Theorem 17" and
Theorem 27°™. O

4 Security Analysis of KD1 and KD
in ROM

Theorem 3. Both KD and KD1 schemes are IND-CCA secure under
CDH assumption in the random oracle model.

Proof. Since Theorem 27°™ ensures that the advantages of an adver-
sary against KD and KD1 are almost the same, it is sufficient to prove
that KD1 scheme is IND-CCA secure under CDH assumption when
KDF(-,-) is modeled as a random oracle.

Suppose that KD1 is IND-CCA insecure in G, i.e., there is a
polynomial-time adversary A with non-negligible probability in the
attack game, we will build a polynomial-time algorithm to solve CDH
problem in G. Since KD1 is supposed to be insecure, Theorem 27
also provides us with a polynomial-time algorithm solving DDH prob-
lem in G, called DHP algorithm for short. We will use the adversary



A together with this DHP algorithm to build an efficient algorithm B
solving CDH problem in G.

The input of algorithm B is a random triple (g1, u},\) € G3, and
its output must be non-negligibly a value v € G such that DH P (g1, uj, \,v) =
1. Algorithm B runs the adversary A as a sub-routine and also simu-
lates the environment for A as follows:

e Public-key simulation:
—we Zg, 92 < g5, ul — ui®
— Key(if any) for H is generated, and o* «— H (uj, u})
— yﬁZq,ng?f, ce— A~
B gives the values pk = (g1, 92, ¢, d, Key of H) to A as the public

key. Note that the simulated public key has the same probabilis-
tic distribution as the “real” public key.

e Encryption oracle simulation: algorithm B processes the encryp-
tion oracle query (mg, m1) as follows:

— (k*, K*) & “KeySpace”, b < {0,1}
— e* — Ex+(my), t* — MACk«(e¥)

B gives the computed values C* = (uj,u3,e*,t*) to A as the
target ciphertext.

It is worth noting that, in this simulated environment for A, the
symmetric key K* is truly random and is not used elsewhere
except for encrypting my. This fact implies that the advantage
of A in the simulated environment is equal to advantage of an
efficient algorithm Ag,. distinguishing Ex+(mo) and Ex+(m;).
Denoting the advantage of Agpe by €ene, which is negligible by
assumption, we have

Advind e t(AS) = e, (1)

where A means the adversary A in the simulated environment.
Of course, equation (1) can only be accepted if the random oracle
K DF and the decryption oracle of A are successfully simulated.
The goal of algorithm B now is to simulate those oracles. In
order to do that, B utilizes initially empty data structures Vy,
Vs, V3, where

— V) is the set of all (v,uy,k, K) for which B has assigned
the keys (k, K) to KDF(v,u;). The manner an element is
added to V; is in Algorithm 2.



— Vs is the set of all (v, uq) for which (v, uy, k, K) € V; for some
(k,K) and DHP(gy,uy,cd?(:49) 4) = 1. The manner an
element is added to Vs is also in Algorithm 2.

— Vs is the set of all (uj,ug,k, K) which is added to V5 in
Algorithm 3 for simulating the decryption oracle.

e Random Oracle Simulation: The simulation is given in Algo-
rithm 2. It can be checked by inspection that this algorithm
returns random keys (k, K) to A if (v, u1) has not been queried
before, and returns the same value if the query is identical, except
some cases. These cases is very important and will be considered
later.

Algorithm 2 Simulation of random oracle KDF with input (v, u)

L oug «— uy, o «— H(uy,us)
2: if (v,uy, k, K) € V; for some (k, K) then

3: return (k, K) to A

4: else if DHP(gy,u1,cd® v) =0 then

5: (k, K) & “KeySpace”

6: Add (v, uq, k, K) to Vy

7: return (k, K) to A

8: else

9: if u; = uj then

10: B halts and outputs v > F) occurs
11: else if @ = a* then

12: Abort the game > F, occurs
13: else > a# ot =>vF#0*
14: if (u1,u9, k, K) € V5 for some (k, K) then

15: return (k, K) to A

16: else

17: (k, K) < “KeySpace

18: Add (v,uq, k, K) to Vy

19: Add (v,uq) to Vo

20: return (k, K) to A

21: end if

22: end if

23: end if
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e Decryption Oracle Simulation: The simulation is given in Algo-
rithm 3. It may need some elaborations. In this algorithm, B do
not know the input value v for KDF(-,-), but it do know that
v here must satisfy DHP(uy,cd?(142) v) = 1. Thus the value
v is surely determined by the input values w1, u2, and hence we
can define KDF(v,u;) as in line 3 of Algorithm 3. The set Vs
is to keep the defined value of KDF(v,uy).

Algorithm 3 Simulation of decryption oracle, with input (uy, us, €, t)

1. if (uq, ug, k, K) € V3 for some (k, K) then

2: if ug # uy or t # M ACy(e) then
3: return reject
4: else
5: return m «— Dg(e)
6: end if
7: else
8: if (v,uq,k, K) €V for some v, k, K then
9: if ug # uf or t # M ACk(e) then
10: return reject
11: else
12: return m «— Dk (e)
13: end if
14: else
15: (k, K) < “KeySpace” > defining K DF' (v, uy)
16: Add (ul,u2,k‘,K) to Vs
17: if uy # uy or t # M AC(e) then
18: return reject
19: else
20: return m « Dk (e)
21: end if
22: end if
23: end if

Let Fi, F5 be respectively the event that line 10 and line 12 in Algo-
rithm 2 are executed. Note that the environment of A given by B and
the actual environment in the IND-CCA attack game are the same
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until £} V Fy occurs. Thus, by the Difference Lemma(Appendix 1),
| Advid et (AR) — Advind cco(A5))] Pr[Fy V F)]

<
< PriF] 4+ Pr[Fy],  (2)

where AR is the adversary A in the real environment, which is the
environment of the IND-CCA attack game.
The event Fj occurs if and only if B outputs a value v such that

DHP(gy,u},cd® ,v) =1.

Note that cd®” = X, and thus F} occurs if and only if B successfully
solve the CDH problem in G.

The event F5 occurs if and only if there is a collision in hash func-
tion, H(uj,u2) = H(uj,u3) and (ui,u2) # (uj,u3). Therefore the
probability that F5 occurs is equal to the advantage of an algorithm
Apash, finding a (target) collision in hash function H while using sub-
stantially the same resources as A. Denote the advantage of Aj.sp by
€hash, Which is negligible by assumption, we have

PI‘[FQ] = €hash (3)

Recall that Adv%‘%‘lcca(AR) is assumed to be non-negligible. Moreover,
by (1), (2), and (3),

PI‘[Fl] > ’Adv?%_lcca(AR) - eenc’ — €hash

The above inequality implies that B successfully solves the CDH prob-
lem with non-negligible probability, which concludes the proof. O

5 Discussions

The reduction in Theorem 3 is not very efficient as desired, since
many DDH instances need to be solved in order to solve just one
CDH instance. In particular, let T" be the running time of DHP, then
the running time of B is essentially that of A plus O(T - Qr), where
QR is the total number of random oracle queries.

However, that fact does not have much sway on the IND-CCA
security of both KD and KD1. In fact, in certain group G, like Gap
Diffie-Hellman group [11] where DDH is easy, while CDH remains
hard, we really have a fast DHP, and the reduction in Theorem 3
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become quite reasonable. On the other hand, if DDH is hard in G,
the security of KD and KD1 is still ensured by Theorem 1 and 2.

In a word, both KD and KD1 have good merits such as the Cramer-

Shoup cryptosystem [4, 5], which is proposed as a standard [10]. Since
KD, KD1 and the Cramer-Shoup cryptosystem are quite similar, the
designed components used in the proposed standard can be used in
KD and KD1 as well. In practice, KD1, which is more efficient, and
the proposed standard, can be used interchangeably with the same
level of security.
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A Security against Adaptive Chosen
Ciphertext Attack

For the readers’ convenience, we recall here the definition of IND-CCA
security. The definition used here is essentially the same as the one
in [15]. The attack scenario, which is also called (IND-CCA) attack
game, has four stages as follows.

First, the key generation algorithm is run, generating the public
key and private key for the cryptosystem. The adversary A, of course,
obtains the public key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a de-
cryption oracle. Each query is a ciphertext C' that is decrypted by the
decryption oracle, making use of the private key of the cryptosystem.
The resulting decryption is given to the adversary. The adversary is

14



free to construct the ciphertexts in an arbitrary way, namely it is not
required to compute them using the encryption algorithm.

Third, the adversary prepares two messages mg and mq and gives
these to an encryption oracle. The encryption oracle chooses b € {0, 1}
at random, encrypts my, and gives the resulting “target” ciphertext
C* to the adversary. The adversary is free to choose mg and mq in
an arbitrary way, except that if message lengths are not fixed by the
cryptosystem, then these two messages must nevertheless be of the
same length.

Fourth, the adversary continues to submit ciphertexts C' to the
decryption oracle, subject only to the restriction that C' # C*.

Just before the adversary terminates, it outputs b € {0, 1}, repre-
senting its “guess” of b.

The adversary’s advantage in this attack scenario is defined to be
the distance from 1/2 of the probability that b= b, i.e.,

, . 1
Adv™ e (4) = [Prlb = b] - o .

A cryptosystem is defined to be IND-CCA secure if for any efficient
adversary A, the value Adv™?=¢°?(A) is negligible.

B The Difference Lemma

We state here a useful lemma, which is called the Difference Lemma'

(see [17]).

Lemma 1 (Difference Lemma). Let A, B, F be events defined in some
probability distribution, and suppose that ANF <= B ANF. Then

IPr[A] — Pr[B]|< Pr[F].

This lemma, is used intensively in “game” technique, which will be
used to analyze the security of the upcoming schemes.

C Proof of Theorem 2 [13]

Proof. Consider a probabilistic, polynomial-time adversary A. We
will begin with the game used to define IND-CCA security of KD
scheme.

!This lemma is called “The Fundamental Lemma of Game-Playing” in [2]
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Game 0 (attack game on KD scheme)

This game is an interactive computation between A and a simula-
tor. Initially, the simulator runs the key generation algorithm of KD
scheme, obtaining the description of G, generators gi, g2, keys for
KDF and H (if any), along with the values x1,22,91,y2 € Z; and
¢,d € G. The simulator gives the public key to A.

During the execution of the game, the adversary A makes a number
of “decryption requests.” Assume these requests are (), ... C(@4)
where ' '

c® = (ugl) , ug), e , t(i)).
For each such request, the simulator decrypts the given ciphertext, and
gives A the result. We denote by a®, @ k@ K@ the correspond-
ing intermediate quantities computed by the decryption algorithm on
input C®.

The adversary may also make a single “challenge request.” For
such a request, the adversary submits two messages mg, my of equal
length bit strings to the simulator; the simulator chooses b € {0,1}
at random, and encrypts m; using the encryption algorithm of KD
scheme, obtaining the “target ciphertext” C* = (uj,u3, e*,t*).

The only restriction on the adversary’s requests is that after the
“challenge request”, subsequent decryption requests must not be the
same as the target ciphertext.

At the end of the game, the adversary outputs b € {0,1}.

Let Ty be the event that b = b in this game. Advantage of the
adversary with respect to KD scheme is defined as

ind—cca 1
Advid s (A) = |Pr[To] - 5\-

We will consider other games, which are slightly-modified versions
of Game 0. The games will be built in the order as follows:

Gy

ol
G

All those games are viewed as operating on the same underlying
probability space, i.e., all the random variables Coins(of A), w (in
Game 1), 21, x2, y1, Y2, r* (for encrypting my), b take the same value
in those games.

1/ e G2/ _— G3/ e G4/

Game 1
This game is the same as Game 0, except that
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e instead of being randomly chosen from G, the generator go is
generated as
w e Zq, 92 g7

e the simulator not only chooses x1,x2,y1,y2 randomly from Z,
but also puts x := 21 +wxo and y := y1; +wys. The values ¢ and
d are now computed as

c—gi,d—g.

e in processing a decryption request C' = (uq,ug, e, t), the simula-
tor proceeds as follows

— a« H(up,ug),v ugfﬂ‘y

(k,K) «— KDF(v)
— Test if ug = u{ and t = MACy(e); if this is not the case,
then return reject .

— Return m < Dg/(e)

It is obvious that Game 1 is really the attack game of A against
KD1. Let T7 be the event that b = b in this game. Thus the advantage
of A with respect to KD1 scheme is

ind—cca 1
Advindect(A) = |Pr[Th] — 5l

Therefore, in order to bound |Advi?% *(A) — AdviiEcca(A)), it is
sufficient to bound |Pr[T1] — Pr[Tp]|.

Let F} be the event that some ciphertext is rejected in Game 1 by
the decryption oracle, but would have passed the test of the decryption
algorithm in Game 0. Game 0 and Game 1 are then the same until
Fy occurs. Thus T} A Fy and Ty A F are identical. By the Difference
Lemma,

|Pr[T] — Pr[Tp]| < Pr[F].
We will use the below games G/, Gy, Gy, G, to bound Pr[F].

Game 1’
This game is the same as Game 0, except that

e instead of being randomly chosen from G, g5 is generated by

$
w e Zg,92 < 97 -
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e in processing a decryption request C' = (uy,u2,e,t), the simula-
tor proceeds as follows

r1tay1, rotay:
— o — H(up,ug),v « uj Us

— (k,K) «— KDF(v)
— Test if ug = u¢ and t = MACy(e); if this is not the case,
then return reject .

— Return m < Dg/(e)

Note that Game 1 and Game 1 are exactly identical from the
viewpoint of the adversary A. In fact, if A submits a ciphertext C =
(u1,ug, e, t) with ug # uf, then A will receive reject in the both
games. On the other hand, if up = u{, then the value v in Game 1 and
Game 1’ is the same, which ensures that the ciphertext is identically
decrypted in those games. Thus a ciphertext is rejected in Game 1" if
and only if it is rejected in Game 1, and hence

PI‘[Fl] = PI‘[Fll],

where I/ be the event that some ciphertext is rejected in Game 1/,
but would have passed Game 0.

Let Fl(,j ) be the event that the j* ciphertext C'Y) is rejected in
Game 1, but would have passed the test in Game 0. Then

<
Pr[F1 ] <Qa &

()
as (P,
Note that FY) occurs if and only if ugj) #* (ugj))“’ and t) = MAC, 4 (el)),

1/
; N oz ald) - )
where kU) is the first part of KDF((ugj)) v (ué])) e ). Our

task now is to bound Pr[Fl(,j)].

Game 2'
This game is the same as Game 1l, except that the simulator now
proceeds a decryption request C' = (uq,usg, e, t) as follows

DOl : o — H(uy,ug)

D02 : If up # vy then

D03, . v — uﬂlc1+ay1u9262+ay2

Do4’ (k,K) — KDF(v)

D05’ : Test if ¢ = M AC(e); if this is not the

case, then return reject .

18



D06’ : m «— Dg(e). Return reject

/

D07 Else

DOS: . v — u{f1+0¢y1u§2+ay2

D09 : (k,K) «— KDF(v)

D10’ : Test if t = M ACy(e); if this is not the
case, then return reject .

D11’ : m «— Dg(e). Return m.

The change, which is purely conceptual, is that the simulator now
considers two cases, ua # u{ and uz = u{ in decryption. Note that
whenever line D03 is reached, then the output is always reject .
Moreover, Pr[Fl(,j )] = Pr[F 2(7 )], where F, 2(7 ) is the event that line D06’
is executed in the j** decryption request.

Game 3’

This game is the same as Game 2', except that we change line D03’
as follows

D03’ - v G

Let F, ?f,] ) be the event that line D06’ is executed in the G decryp-

tion request in Game 3". We claim that F?f,] ) — F2(,] ). This follows from
the fact that v = u]' T U T2 ¢ = g1 T9%2 and d = gV TY? are
mutually independent and uniformly distributed over G if uy # uf.
In fact, if we put

r1 = logg u1,

re = log92u2,

then the condition uy # u{ implies r1 # ra, so the following values

logg,, ¢ = 1+ wwe,
logg, d = 11+ wys,
log, v = ri(z1+ ayr) + ra(z + ays),

are linearly independent. This means that v can take any value over
G. Thus Game 3’ and Game 2" are identical, and hence F 3(,] ) F 2(,] ),

Game 4’
This game is the same as Game 3, except that we change line D04’
as follows

19



D04’ - (k,K) & “KeySpace”

Let F4(,J ) be the event that line D06 is executed in the 7t decryp-

tion request in Game 4'. Tt is clear that we can build an algorithm
Aq, using similar resources to those of A, such that

Pr[FD) — Pr{FY]| < Advicpr(Ay).

Note that the key k of the message authentication code in this
game is completely random and is not used anywhere except as input
for MAC. Thus, the probability that line D06  is executed in the ;"
decryption request must be less than the probability that an algorithm
Ao can break the MAC, i.e.,

Pr[FY)] < Advprac(As).

In fact, Ag/ just employs A and ,its simulator, and returns (e, t) at D05’
in Game 4 whenever line D06 is executed. Summing up,
Pr[Fi] = Pr[F/]
< Qa 1;125A{Pr[F1(7)]}
= Qa max {Pr[F))]}

Q4 max {Pr[F?f,])]}

1<5<Qa
(4)
Qa(Advkpr(Ar) + lggéA{Pr[F4, I
< Qa(Advgpr(Ar) + Advarac(As2)),

IN

which completes the proof. O
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