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Abstract

We address the message authentication problem in two seemingly different communication
models. In the first model, the sender and receiver are connected by an insecure channel and
by a low-bandwidth auxiliary channel, that enables the sender to “manually” authenticate one
short message to the receiver (for example, by typing a short string or comparing two short
strings). We consider this model in a setting where no computational assumptions are made,
and prove that for any 0 < ǫ < 1 there exists a log∗ n-round protocol for authenticating n-bit
messages, in which only 2 log(1/ǫ)+O(1) bits are manually authenticated, and any adversary (even
computationally unbounded) has probability of at most ǫ to cheat the receiver into accepting
a fraudulent message. Moreover, we develop a proof technique showing that our protocol is
essentially optimal by providing a lower bound of 2 log(1/ǫ)− O(1) on the required length of the
manually authenticated string.

The second model we consider is the traditional message authentication model. In this model
the sender and the receiver share a short secret key; however, they are connected only by an
insecure channel. We apply the proof technique above to obtain a lower bound of 2 log(1/ǫ)−O(1)
on the required Shannon entropy of the shared key. This settles an open question posed by
Gemmell and Naor (CRYPTO ’93).

Finally, we prove that one-way functions are necessary (and sufficient) for the existence of
protocols breaking the above lower bounds in the computational setting.
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1 Introduction

Message authentication is one of the major issues in cryptography. Protocols for message authen-
tication provide assurance to the receiver of a message that it was sent by a specified legitimate
sender, even in the presence of an adversary who controls the communication channel. For more
than three decades, numerous authentication models have been investigated, and many authenti-
cation protocols have been suggested. The security of these protocols can be classified according
to the assumed computational resources of the adversary. Security that holds when one assumes a
suitable restriction on the adversary’s computing capabilities is called computational security, while
security that holds even when the adversary is computationally unbounded is called unconditional
security or information-theoretic security. This paper is concerned mostly with unconditional secu-
rity of a single instance of message authentication protocols. We remark that there are three main
advantages to unconditional security over computational security. The first is the obvious fact that
no assumptions are made about the adversary’s computing capabilities or about the computational
hardness of specific problems. The second, less apparent advantage, is that unconditionally secure
protocols are often more efficient than computationally secure protocols. The third advantage is that
unconditional security allows exact evaluation of the error probabilities.

Shared key authentication. The first construction of an authentication protocol in the literature
was suggested by Gilbert, MacWilliams and Sloane [12] in the information-theoretic adversarial
setting. They considered a communication model in which the sender and the receiver share a
key, which is not known to the adversary. Gilbert et al. presented a non-interactive protocol in
which the length of the shared key is 2max{n, log(1/ǫ)}; henceforth, n is the length of the input
message and ǫ is the adversary’s probability of cheating the receiver into accepting a fraudulent
message. They also proved a lower bound of 2 log(1/ǫ) on the required entropy of the shared key in
non-interactive deterministic protocols. Clearly, a lower bound on this entropy is log(1/ǫ), since an
adversary can merely guess the shared key. This model, to which we refer as the shared key model,
became the standard model for message authentication protocols. Protocols in this model should
provide authenticity of messages while minimizing the length of the shared key.

Wegman and Carter [34] suggested using ǫ-almost strongly universal2 hash functions for authen-
tication. This enabled them to construct a non-interactive protocol in which the length of the shared
key is O(log n log(1/ǫ)) bits. In 1984, Simmons [29] initiated a line of work on unconditionally se-
cure authentication protocols (see, for example, [9, 17, 19, 26, 27, 30, 31]). Gemmell and Naor [11]
proposed a non-interactive protocol with a shared key of length only log n + 5 log(1/ǫ) bits. They
also demonstrated that interaction can reduce the length of the shared key and make it indepen-
dent of the length of the input message. More specifically, they described a log∗ n-round protocol
that enables the sender to authenticate n-bit messages, where the length of the shared key is only
2 log(1/ǫ) + O(1) bits. However, it was not known whether this upper bound is optimal, that is, if
by introducing interaction the entropy of the shared key can be made smaller than 2 log(1/ǫ).

Manual authentication. In 1984, Rivest and Shamir [24] were the first to incorporate human
abilities into an authentication protocol. They constructed the “Interlock” protocol which enables
two parties, who can recognize each other’s voice, to mutually authenticate their public encryp-
tion keys in absence of trusted infrastructure1. Although such a communication model seems very

1However, the security of the protocol relies on very special non-malleability properties of the underlying encryption
scheme. To the best of our knowledge, there is no construction for such an encryption scheme in the plain model.
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realistic, until recently it never received a formal treatment in the literature.
In 2005, Vaudenay [33] formalized such a realistic communication model for message authenti-

cation, in which the sender and the receiver are connected by a bidirectional insecure channel, and
by a unidirectional low-bandwidth auxiliary channel, but do not share any secret information. It is
assumed that the adversary has full control over the insecure channel. In particular, the adversary
can read any message sent over this channel, prevent it from being delivered, and insert a new mes-
sage at any point in time. The low-bandwidth auxiliary channel enables the sender to “manually”
authenticate one short string to the receiver (for example, by typing a short string or comparing
two short strings). The adversary cannot modify this short string. However, the adversary can still
read it, delay it, and remove it. We refer to the auxiliary channel as the manual channel, and to
this communication model as the manual channel model. Protocols in this model should provide
authenticity of long messages2 while minimizing the length of the manually authenticated string. We
remark that log(1/ǫ) is an obvious lower bound in this model as well (see [22]).

The manual channel model is becoming very popular in real-world scenarios, whenever there
are ad hoc networks with no trusted infrastructure3. In particular, this model was found suitable
for initial pairing of devices in wireless networks (see, for example, [14, 15]), such as Wireless USB
[4] and Bluetooth [2]. While in wired connections when a device is plugged in (i.e., when the wire
is connected), the user can see that the connection is made, wireless connections may establish
connection paths that are not straightforward. In fact, it may not be obvious when a device is
connected or who its host is. Therefore, initial authentication in device and host connections is
required so that the user will be able to validate both the device and its host.

Consider, for example, a user who wishes to connect a new DVD player to her home wireless
network. Then, having the user read a short message from the display of the DVD player and type
it on a PC’s keyboard constitutes a manual authentication channel from the DVD player to the
PC. An equivalent channel consists of the user comparing two short strings displayed by the two
devices, as suggested by Gehrmann, Mitchell and Nyberg [10], and by Cagalj, Capkun and Hubaux
[3]. Other possible implementations of the manual channel may include a visual channel [20] and an
audio channel [13].

Constants do matter. The most significant constraint in the manual channel model is the length
of the manually authenticated string. This quantity is determined by the environment in which
the protocol is executed, and in particular by the capabilities of the user. While it is reasonable to
expect a user to manually authenticate 20 or 40 bits, it is not reasonable to expect a user to manually
authenticate 160 bits. Therefore, there is a considerable difference between manually authenticating
log(1/ǫ) or 2 log(1/ǫ) bits, and manually authenticating a significantly longer string. This motivates
the study of determining the exact lower bound on the required length of the manually authenticated
string.

Our contribution. We present an unconditionally secure authentication protocol in the manual
channel model, in which the sender manually authenticates only 2 log(1/ǫ)+O(1) bits. Moreover, we
prove that our protocol essentially minimizes the length of the manually authenticated string. The
proof of optimality involves a careful accounting of how randomness is introduced into the protocol.
In particular, our proof technique identifies the exact amount of randomness that each party is

2Short messages can be manually authenticated without the use of any authentication protocol.
3For example, the recently suggested ZRTP protocol [35] is an RTP (Real-time Transport Protocol) [25] header

extension for a Diffie-Hellman exchange to agree on a session key.
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required to contribute to the manually authenticated string. In the shared key setting, we use it
to settle an open question posed by Gemmell and Naor [11] by deriving a similar lower bound of
2 log(1/ǫ) − 2 on the required entropy of the shared key, which matches their upper bound. Finally,
we consider these two communication models in the computational setting, and prove that one-way
functions are necessary for the existence of protocols breaking the above lower bounds.

Thus, we have now gained a complete understanding of unconditionally secure message authen-
tication in the manual channel and shared key models, for each set of parameters ℓ and ǫ, where
ℓ is the length of the manually authenticated string or the length of the shared key, and ǫ is the
adversary’s probability of cheating the receiver into accepting a fraudulent message. In addition, we
have indicated an exact relation between the computational setting and the information-theoretic
setting for authentication in both models. Figure 1 illustrates the achievable security according to
our results.
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Figure 1: The achievable security for any parameters ℓ and ǫ.

Paper organization. The rest of the paper is organized as follows. We first briefly present some
known definitions in Section 2. In Section 3 we describe the communication and adversarial models
we deal with. Then, in Section 4 we present an overview of our results, and compare them to
previous work. In Section 5 we propose an unconditionally secure message authentication protocol
in the manual channel model. In Section 6 we describe the proof technique, that is then used to
establish the optimality of our protocol. In Section 7 we apply the same proof technique to the shared
key model, and prove a lower bound on the required entropy of the shared key. Finally, in Section
8 we prove that in the computational setting, one-way functions are necessary for the existence of
protocols breaking the above lower bounds.

2 Preliminaries

We first present some notations used in this paper and several fundamental definitions from Infor-
mation Theory. Then, we briefly present the definitions of one-way functions, statistical distance and
distributionally one-way functions. All logarithms in this paper are to the base of 2. For a finite
set S, we denote by x ∈R S the experiment of choosing an element of S according to the uniform
distribution. Given two strings u and v, we denote by u◦v the concatenation of u and v. For random
variables X, Y and Z we use the following definitions:
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• The (Shannon) entropy of X is defined as H(X) = −
∑

x Pr [X = x] log Pr [X = x].

• The conditional entropy of X given Y is defined as H(X|Y ) =
∑

y Pr [Y = y] H(X|Y = y).

• The mutual information of X and Y is defined as I(X;Y ) = H(X) − H(X|Y ).

• The mutual information of X and Y given Z is defined as I(X;Y |Z) = H(X|Z) − H(X|Z, Y ).

Definition 2.1. A function ν : N → R is called negligible if for any c ∈ N there exists an integer nc

such that |ν(n)| < n−c for every n ≥ nc.

Definition 2.2. A function f : {0, 1}∗ → {0, 1}∗ is called one-way if it is computable in polynomial-
time, and for every probabilistic polynomial-time Turing machine4 M it holds that

Pr
[
M(f(x), 1n) ∈ f−1(f(x))

]
< ν(n) ,

for some negligible function ν(n) and for all sufficiently large n, where the probability is taken uni-
formly over all the possible choices of x ∈ {0, 1}n and all the possible outcomes of the internal coin
tosses of M.

Definition 2.3. The statistical distance between two distributions D and F , which we denote by
∆(D,F), is defined as:

∆(D,F) =
1

2

∑

α

|Prx←D [x = α] − Prx←F [x = α] | .

The distributions D and F are said to be ǫ-statistically far if ∆(D,F) ≥ ǫ. Otherwise, D and F are
ǫ-statistically close.

Definition 2.4. A function f : {0, 1}∗ → {0, 1}∗ is called distributionally one-way if it is computable
in polynomial-time, and there exists a constant c > 0 such that for every probabilistic polynomial-time
Turing machine M, the distribution defined by x◦f(x) and the distribution defined by M(f(x))◦f(x)
are n−c-statistically far when x ∈R {0, 1}n.

Informally, it is hard to find a random inverse of a distributionally one-way function, although
finding some inverse may be easy. Clearly, any one-way function is also a distributionally one-way
function, but the converse is not always true. Nevertheless, Impagliazzo and Luby [16] proved that
the existence of both primitives is equivalent.

3 Communication and Adversarial Models

We consider the message authentication problem in a setting where the sender and the receiver
are connected by a bidirectional insecure communication channel, over which an adversary has full
control. In particular, the adversary can read any message sent over this channel, delay it, prevent
it from being delivered, and insert a new message at any point in time.

4For simplicity we focus on uniform adversaries. However, uniformity is not essential to our results.
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3.1 The Manual Channel Communication Model

In addition to the insecure channel, we assume that there is a unidirectional low-bandwidth auxiliary
channel, that enables the sender to “manually” authenticate one short string to the receiver (for
example, by typing a short string or by comparing two short strings). The adversary cannot modify
this short string. However, the adversary can still read it, delay it and remove it.

The input of the sender S in this model is a message m, which she wishes to authenticate to the
receiver R. The input message m can be determined by the adversary A. In the first round, S sends
the message m and an authentication tag x1 over the insecure channel. In the following rounds only
a tag xi is sent over the insecure channel5. The adversary receives each of these tags xi and can
replace them with x̂i of her choice, as well as replace the input message m with a different message
m̂. In the last round, S may manually authenticate a short string s.

Notice that in the presence of a computationally unbounded adversary, additional insecure rounds
(after the manually authenticated string has been sent) do not contribute to the security of the
protocol. This is due to the fact that after reading the manually authenticated string, the unbounded
adversary can always simulate the sender successfully (since the sender and the receiver do not share
any secret information, and since the adversary has full control over the communication channel from
this point on). Therefore, there is no loss of generality in assuming that the manually authenticated
string is sent in the last round. Under the assumption that distributionally one-way functions do
not exist, this is true also in the computational setting. In this case, as mentioned in Section 8,
simulating the sender can be viewed as randomly inverting functions given the image of a random
input. A generic protocol in this model is described in Figure 2.

1m, x

2x

k-1x

kx

s

Insecure channel

Manual channel

S R

Figure 2: A generic protocol in the manual channel model.

We also allow the adversary to control the synchronization of the protocol’s execution. More
specifically, the adversary can carry on two separate, possibly asynchronous conversations, one with
the sender and one with the receiver. However, the party that is supposed to send a message waits
until it receives the adversary’s message from the previous round.

Definition 3.1. An unconditionally secure (n, ℓ, k, ǫ)-authentication protocol in the manual channel
model is a k-round protocol in the communication model described above, in which the sender wishes
to authenticate an n-bit input message to the receiver, while manually authenticating at most ℓ bits.
The following requirements must hold:

5In every communication round, one party delivers a message to the other party.
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1. Completeness: For all input messages m, when there is no interference by the adversary in
the execution, the receiver accepts m with probability at least 1/2.

2. Unforgeability: For any computationally unbounded adversary, and for all input messages
m, if the adversary replaces m with a different message m̂, then the receiver accepts m̂ with
probability at most ǫ.

We now define the notion of a computationally secure protocol by actually considering a sequence
of protocols. The sequence is parameterized by a security parameter t, that defines the power of the
adversaries against which each protocol in the sequence is secure. The completeness requirement is as
in Definition 3.1. However, the unforgeability requirement should now hold only against adversaries
running in time poly(t), and we allow forgery probability of ǫ + ν(t) for sufficiently large t and a
negligible function ν(·).

Definition 3.2. A computationally secure (n, ℓ, k, ǫ, t)-authentication protocol (sequence) in the
manual channel model is a k(t)-round protocol in the communication model described above, in
which the sender wishes to authenticate an n(t)-bit input message to the receiver, while manually
authenticating at most ℓ(t) bits. The following requirements must hold:

1. Completeness: For all input messages m, when there is no interference by the adversary in
the execution, the receiver accepts m with probability at least 1/2.

2. Unforgeability: For any adversary running in time poly(t) and for every input message m
chosen by the adversary, if the adversary replaces m with a different message m̂, then the
receiver accepts m̂ with probability at most ǫ+ ν(t) for some negligible function ν(t) and for all
sufficiently large t.

An authentication protocol in the manual channel model is said to be perfectly complete if for all
input messages m, whenever there is no interference by the adversary in the execution, the receiver
accepts m with probability 1.

3.2 The Shared Key Communication Model

In this model we assume that the sender and the receiver share a secret key s; however, they are
connected only by an insecure channel. This key is not known to the adversary, but it is chosen from
a probability distribution which is known to the adversary (usually the uniform distribution).

The input of the sender S in this model is a message m, which she wishes to authenticate to
the receiver R. The input message m can be determined by the adversary A. In the first round, S
sends the message m and an authentication tag x1 over the insecure channel. In the following rounds
only a tag xi is sent over the insecure channel. The adversary receives each of these tags xi and can
replace them with x̂i of her choice, as well as replace the input message m with a different message
m̂. As in the manual channel model, we allow the adversary to control the synchronization of the
protocol’s execution. A generic protocol in this model is described in Figure 3.

Definition 3.3. An unconditionally secure (n, ℓ, k, ǫ)-authentication protocol in the shared key model
is a k-round protocol in the communication model described above, in which the sender and the receiver
share an ℓ-bit secret key, and the sender wishes to authenticate an n-bit input message to the receiver.
The following requirements must hold:

1. Completeness: For all input messages m, when there is no interference by the adversary in
the execution, the receiver accepts m with probability at least 1/2.
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Figure 3: A generic protocol in the shared key model.

2. Unforgeability: For any computationally unbounded adversary, and for all input messages
m, if the adversary replaces m with a different message m̂, then the receiver accepts m̂ with
probability at most ǫ.

Similarly to Definition 3.2 we define a computationally secure sequence of authentication protocols
in this model, which is parameterized by a security parameter t.

Definition 3.4. A computationally secure (n, ℓ, k, ǫ, t)-authentication protocol (sequence) in the
shared key model is a k(t)-round protocol in the communication model described above, in which the
sender and the receiver share an ℓ(t)-bit secret key, and the sender wishes to authenticate an n(t)-bit
input message to the receiver. The following requirements must hold:

1. Completeness: For all input messages m, when there is no interference by the adversary in
the execution, the receiver accepts m with probability at least 1/2.

2. Unforgeability: For any adversary running in time poly(t) and for every input message m
chosen by the adversary, if the adversary replaces m with a different message m̂, then the
receiver accepts m̂ with probability at most ǫ+ ν(t) for some negligible function ν(t) and for all
sufficiently large t.

An authentication protocol in the shared key model is said to be perfectly complete if for all input
messages m, whenever there is no interference by the adversary in the execution, the receiver accepts
m with probability 1.

4 Overview of Our Results and Comparison with Previous Work

Vaudenay [33] formalized the manual channel model, and suggested an authentication protocol in
this model. Given 0 < ǫ < 1, Vaudenay’s protocol enables the sender to authenticate an arbitrary
long message to the receiver in three rounds, by manually authenticating log(1/ǫ) bits. This protocol
guarantees that, under the assumption that a certain type of non-interactive commitment scheme
exists, the forgery probability of any polynomial-time adversary is at most ǫ + ν(t), where ν(·) is a
negligible function and t is a security parameter6. Laur and Nyberg [18] proved that the assumption
required by Vaudaney’s protocol is the existence of a non-interactive non-malleable commitment

6Manually authenticating log(1/ǫ) bits was shown to be optimal in the computational setting by Pasini and Vaudenay
[22] for any number of rounds.
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scheme. Their proof shows that Vaudanay’s protocol can rely also on an interactive non-malleable
commitment scheme, and in this case the number of rounds in his protocol is essentially dominated
by the number of rounds in the commitment scheme. Dolev, Dwork and Naor [7] showed how to
construct an interactive non-malleable commitment scheme from any one-way function, and therefore
we obtain the following corollary:

Corollary 4.1 ([7, 18, 33]). If one-way functions exist, then there exists a computationally secure
(n, ℓ, k, ǫ, t)-authentication protocol in the manual channel model, with t = poly(n, ℓ, k) and ℓ =
log(1/ǫ).

However, the non-malleable commitment scheme suggested by Dolev, Dwork and Naor is inef-
ficient, as it utilizes generic zero-knowledge proofs and its number of rounds is logarithmic in its
security parameter. Therefore, the protocol implied by Corollary 4.1 is currently not practical (this
is also true if the protocols in [1, 23] are used). Currently, the only known constructions of efficient
non-malleable commitment schemes are in the random oracle model, or in the common random string
model (see, for example, [5, 6]). These are problematic for the manual channel model, since they
require a trusted infrastructure. This state of affairs motivates the study of a protocol that can be
proved secure under more relaxed computational assumptions or even without any computational
assumptions.

In Section 5, we present an unconditionally secure perfectly complete authentication protocol
in the manual channel model. For any odd integer k ≥ 3, and any integer n and 0 < ǫ < 1, our
k-round protocol enables the sender to authenticate an n-bit input message to the receiver, while
manually authenticating at most 2 log(1/ǫ) + 2 log(k−1) n + O(1) bits. We prove that any adversary
(even computationally unbounded) has probability of at most ǫ to cheat the receiver into accepting
a fraudulent message. We note that our protocol only uses evaluations of polynomials over finite
fields, for which very efficient implementations exist, and therefore it is very efficient and can be
implemented on low-power devices. We prove the following theorem and corollary:

Theorem 4.2. For any odd integer k ≥ 3, and any integer n and 0 < ǫ < 1, there exists an
unconditionally secure perfectly complete (n, ℓ = 2 log(1/ǫ) + 2 log(k−1) n + O(1), k, ǫ)-authentication
protocol in the manual channel model.

Corollary 4.3. For any integer n and 0 < ǫ < 1, the following unconditionally secure perfectly
complete protocols exist in the manual channel model:

1. A log∗ n-round protocol in which at most 2 log(1/ǫ) + O(1) bits are manually authenticated.

2. A 3-round protocol in which at most 2 log(1/ǫ)+log log n+O(1) bits are manually authenticated.

Our protocol exhibits a trade-off between its number of communication rounds over the insecure
channel and the length of the manually authenticated string. Informally speaking, the protocol is
based on the hashing technique presented in [11], in which the two parties reduce in each round
the problem of authenticating the original message to that of authenticating a shorter message. In
each round of our protocol the parties reduce the length of the message roughly by a logarithmic
scale (this explains the additive log(k−1) n factor in the length of the manually authenticated string),
and when the message is sufficiently short (but never shorter than 2 log(1/ǫ) bits), it is manually
authenticated.

In Section 6, we develop a proof technique for deriving lower bounds on unconditionally secure
authentication protocols, which allows us to show that our log∗ n-round protocol is optimal with
respect to the length of the manually authenticated string. Specifically, we prove the following
theorem:
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Theorem 4.4. For any unconditionally secure (n, ℓ, k, ǫ)-authentication protocol in the manual chan-
nel model, it holds that if n ≥ 2 log(1/ǫ) + 4, then ℓ > 2 log(1/ǫ) − 6.

We remark that if log(1/ǫ) ≤ n ≤ 2 log(1/ǫ), then the lower bound of ℓ ≥ log(1/ǫ) (see [22])
implies that at least n/2 bits have to be manually authenticated. Also, in the case n < log(1/ǫ) the
lower bound is n, which is also an upper bound since the sender can manually authenticate the input
message.

In Section 7 we consider the shared key communication model. Intensive research has been
devoted to proving lower bounds on the required entropy of the shared key in unconditionally secure
protocols. It was proved in several papers (see, for example, [19]), that in any perfectly complete
non-interactive protocol, the required entropy of the shared key is at least 2 log(1/ǫ). In addition, for
such protocols, Gemmell and Naor [11] proved a lower bound of log n + log(1/ǫ) − log log(n/ǫ) − 2.
Thus, there does not exist a perfectly complete non-interactive protocol that achieves the 2 log(1/ǫ)
bound. However, they also presented an interactive protocol that achieves the 2 log(1/ǫ) bound. We
remark that it was not previously known whether this bound is optimal, that is, if by introducing
interaction the entropy of the shared key can be made smaller than 2 log(1/ǫ). By applying the proof
technique described in Section 6, we settle this long-standing open question by proving the following
theorem:

Theorem 4.5. For any unconditionally secure (n, ℓ, k, ǫ)-authentication protocol in the shared key
model, it holds that H(S) ≥ 2 log(1/ǫ) − 2, where S is the ℓ-bit shared key.

Theorems 4.4 and 4.5 indicate that the two corresponding communication models are not equiv-
alent: While in the manual channel model a lower bound can hold only when n ≥ log(1/ǫ), in the
shared key model the lower bound holds even when authenticating only one bit. Nevertheless, the
technique we develop applies to both models.

The idea underlying the lower bound proofs for the communication models under consideration
can be briefly summarized as follows. The lower bound proofs involve a careful accounting of how
randomness is introduced into the protocol. First, we represent the entropies of the manually au-
thenticated string and of the shared key by splitting them in a way that captures their reduction
during the execution of the protocol. This representation allows us to prove that both the sender and
the receiver must each independently reduce the entropies by at least log(1/ǫ) bits. This is proved by
considering two possible natural attacks on the given protocol. In these attacks we use the fact that
the adversary is computationally unbounded in that she can sample distributions induced by the
protocol. This usage of the adversary’s capabilities, can alternatively be seen as randomly inverting
functions given the image of a random input.

In Section 8, we take advantage of this point of view and prove that one-way functions are nec-
essary for the existence of protocols breaking the above lower bounds in the computational setting.7

Specifically, we show that if distributionally one-way functions do not exist, then a polynomial-time
adversary can run the above mentioned attacks with almost the same success probability:

Theorem 4.6. If there exists a computationally secure (n, ℓ, k, ǫ, t)-authentication protocol in the
manual channel model, such that n ≥ 2 log(1/ǫ) + 4, t = Ω(poly(n, k, 1/ǫ)) and ℓ < 2 log(1/ǫ) − 8,
then one-way functions exist.

Theorem 4.7. If there exists a computationally secure (n, ℓ, k, ǫ, t)-authentication protocol in the
shared key model, such that n ≥ 2 log(1/ǫ) + 4, t = Ω(poly(n, k, 1/ǫ)) and H(S) < 2 log(1/ǫ) − 6,
where S is the ℓ-bit shared key, then one-way functions exist.

7We note that the existence of an information-theoretic lower bound does not directly imply that breaking this
lower bound in the computational setting implies the existence of one-way functions.
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A similar flavor of statement has recently been proved by Naor and Rothblum [21] in the context
of memory checking, showing that one-way functions are necessary for efficient on-line memory
checking. Both results are based on combinatorial constructions (in our case these are the two attacks
carried by an unbounded adversary), which are shown to be polynomial-time computable if one-way
functions do not exist. However, we note that whereas Naor and Rothblum obtained asymptotic
results (there is a multiplicative constant between the upper bound and the lower bound), we detect
a sharp threshold.

5 The Message Authentication Protocol

In this section we prove Theorem 4.2 and Corollary 4.3 by constructing an authentication protocol,
Pn,k,ǫ. The protocol is based on the hashing technique of Gemmell and Naor [11], in which the
two parties reduce in each round the problem of authenticating the original message to that of
authenticating a shorter message. In the first round the input message is sent, and then in each
round the two parties cooperatively choose a hash function that defines a small, random “fingerprint”
of the input message that the receiver should have received. If the adversary has changed the input
message, then with high probability the fingerprint for the message received by the receiver will not
match the fingerprint for the message that was sent by the sender. In the preliminary version of
[11] (Crypto 1993), this hashing technique was susceptible to synchronization attacks, as noted by
Gehrmann [8]. However, in the later (full) version of their paper, this was corrected by making both
parties choose the random hash function used for fingerprinting the message.

We improve the hashing technique presented in [11] as follows. First, we apply a different hash
function, which enables us to manually authenticate a shorter string. Any adaption of the original
hash function to the manual channel model would require the sender to manually authenticate at
least 3 log(1/ǫ) bits, while our construction manages to reduce this amount to only 2 log(1/ǫ)+ O(1)
bits. In addition, our protocol is asymmetric in the following sense: The roles of the sender and the
receiver in cooperatively choosing the hash function are switched in every round. This enables us to
optimize the number of communication rounds in the protocol.

In addition, we wish to emphasize that although the hash functions we apply in each round
in order to reduce the length of the authenticated message can be viewed as variants of Reed-
Solomon codes, the security of our protocol does not rely only on the properties of such codes. The
security relies in a crucial manner on the particular synchronization that the protocol imposes on
the cooperative choice of the hash function used in each round.

Preliminaries. Denote by GF[Q] the Galois field with Q elements. For a message m = m1 . . . mk ∈
GF[Q]k and x ∈ GF[Q] let Cx(m) =

∑k
i=1 mix

i. In other words, m is parsed as a polynomial of
degree k over GF[Q] (without a constant term), and evaluated at the point x. Then, for any two
different messages m, m̂ ∈ GF[Q]k and for any c, ĉ ∈ GF[Q] the polynomials Cx(m)+c and Cx(m̂)+ ĉ
are different as well, and therefore Prx∈RGF[Q] [Cx(m) + c = Cx(m̂) + ĉ] ≤ k

Q
. The functions we apply

in order to reduce the length of the message m in each round are of the form Cx(·) + c, where one
party chooses a random x ∈ GF[Q] and the other party chooses a random c ∈ GF[Q].

The construction. Protocol Pn,k,ǫ applies a sequence of hash functions C1, . . . , Ck−1 in order to
obtain a shorter and shorter message. Specifically, given the protocol’s parameters: n - the length
of the input message, k - the number of rounds, and ǫ - the upper bound on the adversary’s forgery

probability, each Cj parses nj-bit strings to polynomials over GF[Qj ], where n1 = n,
2k−jnj

ǫ
≤ Qj <
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2k−j+1nj

ǫ
, and nj+1 = ⌈2 log Qj⌉. The protocol’s parameters n, k and ǫ are fixed and are known to both

parties. The protocol is described in Figure 4. Since the adversary can replace any authentication
tag sent by any one of the parties over the insecure channel, then for such a tag x we denote by x̂ the
tag that was actually received by the other party. Note that addition and multiplication are defined
by the GF[Qj] structures, and that 〈u, v〉 denotes the concatenation of the strings u and v.

Protocol Pn,k,ǫ:

1. S sends m1
S = m to R.

2. R receives m1
R.

3. For j = 1 to k − 1:

(a) If j is odd, then
i. S chooses ijS ∈R GF[Qj] and sends it to R.

ii. R receives îjS , chooses ijR ∈R GF[Qj ], and sends it to S.

iii. S receives îjR, and computes mj+1
S = 〈̂ijR, Cj

î
j
R

(mj
S) + ijS〉 .

iv. R computes mj+1
R = 〈ijR, Cj

i
j

R

(mj
R) + îjS〉 .

(b) If j is even, then
i. R chooses ijR ∈R GF[Qj ] and sends it to S.

ii. S receives îjR, chooses ijS ∈R GF[Qj ], and sends it to R.

iii. R receives îjS , and computes mj+1
R = 〈̂ijS , C

j

î
j
S

(mj
R) + ijR〉 .

iv. S computes mj+1
S = 〈ijS , C

j

i
j

S

(mj
S) + îjR〉 .

4. S manually authenticates mk
S to R.

5. R accepts if and only if mk
S = mk

R.

Figure 4: The k-round authentication protocol.

Note that the two parties can combine some of their messages, and therefore the protocol requires
only k − 1 rounds of communication over the insecure channel, and then a single manually authen-
ticated string. An alternative way to describe the protocol is in a recursive fashion. The k-round
protocol consists of S sending the message m1 = m, as well as S and R exchanging i1S , and i1R. Then
the two parties use the (k − 1)-round protocol to authenticate the message m2, which is a computed
hash value of m1 using i1S , and i1R. Clearly, this protocol is perfectly complete.

An important property in this setting is that the parties will each be able to choose the Qj’s and
the representations of GF[Qj] in a deterministic way8. Otherwise, they will have to agree on these
parameters with some security consequences (see, for example, Vaudenay’s attack on the domain
parameter generation algorithm of ECDSA [32]). This is required, since the sender will manually
authenticate a string of bits and not an actual field element, and the same string represents different
field elements under different representations of the field. One possible solution is for the two parties
to choose Qj as the smallest prime number in the above mentioned interval. Another solution would
be to choose Qj as the unique power of 2 in this interval, then apply a deterministic algorithm to
compute an irreducible polynomial of degree log Qj in GF2[x] (e.g., Shoup’s algorithm [28]), and

8Alternatively, these parameters can be explicitly specified in the description of the protocol, together with the
parameters n, k and ǫ which are known to the parties.
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represent the field in the standard way.
In the remainder of this section we prove the security of our protocol. For any odd integer

k ≥ 3, and any integer n and 0 < ǫ < 1, we argue that protocol Pn,k,ǫ satisfies Definition 3.1
of an unconditionally secure (n, ℓ, k, ǫ)-authentication protocol in the manual channel model for
ℓ = 2 log(1/ǫ) + 2 log(k−1) n + O(1). We fix the parameters k, n and ǫ for the rest of the section.

Lemma 5.1. Any computationally unbounded adversary has probability of at most ǫ to cheat the
receiver into accepting a fraudulent message in protocol Pn,k,ǫ.

Proof. Given an execution of the protocol in which an adversary cheats the receiver into accepting
a fraudulent message, it holds that m1

S 6= m1
R and mk

S = mk
R. Therefore, there exists an integer

1 ≤ j ≤ k − 1 such that mj
S 6= mj

R and mj+1
S = mj+1

R . Denote this event by Dj . In what follows,
we bound the probability of this event, showing Pr [Dj ] ≤

ǫ
2k−j . Therefore, the adversary’s cheating

probability is at most
∑k−1

j=1 Pr [Dj ] ≤
∑k−1

j=1
ǫ

2k−j < ǫ.
For any variable y in the protocol and for a given execution, let T (y) be the time at which the

variable y is fixed, i.e., T (ijR) denotes the time in which R sent the tag ijR, and T (̂ijR) denotes the

time in which S received from the adversary the tag îjR corresponding to ijR.
We first assume that j is odd, then we have to consider three possible cases:

1. T (̂i
j
R

) < T (i
j
R

). In this case, the receiver chooses ijR ∈R GF[Qj ] only after the adversary

chooses îjR. Therefore,

Pr [Dj ] ≤ Pr
i
j
R∈RGF[Qj ]

[
ijR = îjR

]
=

1

Qj

≤
ǫ

2k−j
.

2. T (̂i
j
R

) ≥ T (i
j
R

) and T (̂i
j
S
) ≥ T (i

j
S
). In this case, the adversary chooses îjR not before the

receiver chooses ijR. If the adversary chooses îjR 6= ijR, then mj+1
S 6= mj+1

R , i.e., Pr [Dj ] = 0.

Now suppose that the adversary chooses îjR = ijR. Since j is odd, the receiver chooses ijR only

after he receives îjS , therefore T (ijR) > T (̂ijS) ≥ T (ijS) > T (mj
S), and also T (ijR) > T (mj

R).

This means that ijR is chosen when mj
R, îjS ,m

j
S and ijS are fixed. Since mj

S 6= mj
R and by the

fact that for any choice of ijS and îjS the polynomials Cj

i
j

R

(mj
R) + îjS and Cj

i
j

R

(mj
S) + ijS are

different as functions of ijR, it follows that

Pr [Dj] ≤ Pr
i
j

R∈RGF[Qj ]

[
Cj

i
j
R

(mj
S) + ijS = Cj

i
j
R

(mj
R) + îjS

]
≤

1

Qj

⌈
nj

log Qj

⌉
≤

ǫ

2k−j
.

3. T (̂ij
R

) ≥ T (ij
R

) and T (̂ij
S
) < T (ij

S
). As in the previous case, we can assume that the

adversary chooses îjR = ijR. It always holds that T (ijS) > T (mj
S) and T (ijR) > T (mj

R).

Since j is odd, the receiver sends ijR only after he receives îjS , and therefore we can assume

T (̂ijS) < T (ijR) < T (ijS). This implies that the sender chooses ijS ∈R GF[Qj ] when mj
S , îjS , mj

R

and ijR are fixed. Hence,

Pr [Dj ] ≤ Pr
i
j

S∈RGF[Qj ]

[
ijS = Cj

i
j
R

(mj
R) + îjS − Cj

i
j
R

(mj
S)

]
=

1

Qj

≤
ǫ

2k−j
.

We now assume that j is even, then again we have to consider three possible cases:
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1. T (̂ij
S
) < T (ij

S
). In this case, the sender chooses ijS ∈R GF[Qj] only after the adversary chooses

îjS . Therefore,

Pr [Dj ] ≤ Pr
i
j

S∈RGF[Qj ]

[
ijS = îjS

]
=

1

Qj

≤
ǫ

2k−j
.

2. T (̂ij
S
) ≥ T (ij

S
) and T (̂ij

R
) ≥ T (ij

R
). In this case, the adversary chooses îjS not before the

sender chooses ijS . If the adversary chooses îjS 6= ijS , then mj+1
S 6= mj+1

R , i.e., Pr [Dj ] = 0. Now

suppose that the adversary chooses îjS = ijS . Since j is even, it holds that T (ijS) > T (̂ijR), and

therefore also T (ijS) > T (ijR) > T (mj
R). This means that ijS is chosen when mj

S , î
j
R,mj

R and

ijR are fixed. Since mj
S 6= mj

R and by the fact that for any choice of ijR and îjR the polynomials

Cj

i
j

S

(mj
S) + îjR and Cj

i
j

S

(mj
R) + ijR are different as functions of ijS , it follows that

Pr [Dj ] ≤ Pr
i
j
S∈RGF[Qj ]

[
Cj

i
j

S

(mj
R) + ijR = Cj

i
j

S

(mj
S) + îjR

]
≤

ǫ

2k−j
.

3. T (̂i
j
S
) ≥ T (i

j
S
) and T (̂i

j
R

) < T (i
j
R

). As in the previous case, we can assume that the

adversary chooses îjS = ijS . Since j is even, the sender chooses ijS after she receives îjR, and

therefore we can assume that T (ijR) > T (ijS). It always holds that T (ijR) > T (mj
R), and

T (ijS) > T (mj
S). This implies that the receiver chooses ijR ∈R GF[Qj] when mj

R, îjR, mj
S and

ijS are fixed. Hence,

Pr [Dj ] ≤ Pr
i
j
R∈RGF[Qj]

[
ijR = Cj

i
j

S

(mj
S) + îjR − Cj

i
j

S

(mj
R)

]
=

1

Qj

≤
ǫ

2k−j
.

The following claims conclude this section by showing that our choice of parameters guarantees
that in protocol Pn,k,ǫ the sender manually authenticates at most 2 log(1/ǫ)+2 log(k−1) n+O(1) bits.
We first show that the length nj+1 of the fingerprint computed in round j is roughly logarithmic in
the length nj of the fingerprint computed in round j − 1, and then we use this fact to upper bound
the length nk of the manually authenticated fingerprint.

Claim 5.2. If nj > 2k−j

ǫ
for every 1 ≤ j ≤ k − 2, then nk−1 ≤ max{4 log(k−2) n1 + 4 log 5 + 3, 27}.

Proof. Fix k, n and ǫ and assume that nr > 2k−r

ǫ
for every 1 ≤ r ≤ k − 2. We prove by induction

on j that nj+1 ≤ max{4 log(j) n1 + 4 log 5 + 3, 27} for every 1 ≤ j ≤ k − 2. The claim then follows
by setting j = k − 2.

First note that by the choice of Qj , if nj > 2k−j

ǫ
then

Qj <
2k−j+1nj

ǫ

= 2 ·
2k−j

ǫ
· nj

< 2 · nj · nj

= 2n2
j ,
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and therefore
nj+1 = ⌈2 log Qj⌉ ≤ 4 log nj + 3 .

Now, for j = 1 we have n2 ≤ 4 log n1 + 3, and the claim holds. Suppose now that the claim holds
for j − 1 and we show that it holds for j as well. That is, we assume that nj ≤ max{4 log(j−1) n1 +

4 log 5 + 3, 27}, and we show that nj+1 ≤ max{4 log(j) n1 + 4 log 5 + 3, 27}. If nj ≤ 27, then the

sender can manually authenticate mj
S and stop the protocol. Else, if nj ≤ 4 log(j−1) n1 + 4 log 5 + 3,

then
nj+1 ≤ 4 log nj + 3 ≤ 4 log

(
4 log(j−1) n1 + 4 log 5 + 3

)
+ 3 ,

and there are two cases to consider:

1. If log(j−1) n1 ≤ 4 log 5 + 3, then nj+1 ≤ 4 log(20 log 5 + 15) + 3 < 27.

2. If log(j−1) n1 > 4 log 5 + 3, then nj+1 < 4 log(5 log(j−1) n1) + 3 = 4 log(j) n1 + 4 log 5 + 3.

Therefore nj+1 ≤ max{4 log(j) n1 + 4 log 5 + 3, 27}.

Claim 5.3. In protocol Pn,k,ǫ the sender manually authenticates at most 2 log(1/ǫ) + 2 log(k−1) n +
O(1) bits.

Proof. We consider two possible cases:

1. If nj > 2k−j

ǫ
for every 1 ≤ j ≤ k − 2, then Claim 5.2 implies that nk−1 ≤ max{4 log(k−2) n1 +

4 log 5 + 3, 27}. Therefore nk = ⌈2 log Qk−1⌉ ≤ ⌈2 log
4nk−1

ǫ
⌉ ≤ 2 log(1/ǫ) + 2 log(k−1) n + O(1).

2. If there exists some 1 ≤ j ≤ k − 2 such that nj ≤
2k−j

ǫ
, then nk−2 ≤ 4

ǫ
, and therefore

Qk−2 ≤
2k−(k−2)+1nk−2

ǫ
≤

32

ǫ2
,

nk−1 = ⌈2 log Qk−2⌉ ≤ 4 log
1

ǫ
+ 11 .

In this case it is sufficient to choose Qk−1 = Θ(1/ǫ) (instead of Qk−1 = Θ
(

1
ǫ
log 1

ǫ

)
), which

implies that nk = 2 log(1/ǫ) + O(1).

6 Lower Bound in the Manual Channel Model

In this section we prove a lower bound on the length of the manually authenticated string. The
same proof technique will be used again in Section 7 to prove a similar lower bound in the shared
key model. For simplicity, we first present in Section 6.1 a proof for the simplified case of a perfectly
complete 3-round protocol where n ≥ 3 log(1/ǫ). This simplified proof already captures the main
ideas and difficulties of the general proof. The general proof is based on the same analysis, and is
described in Section 6.2.

In the following proofs, given any authentication protocol in the manual channel model, we
identify the messages sent by the sender and the receiver with corresponding random variables.
More specifically, when the input message m is chosen uniformly at random, the honest execution
of the protocol defines a probability distribution on the message m, the tags xi and the manually
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authenticated string s. We denote by M,Xi and S the random variables corresponding to m,xi and
s, respectively. We note that our lower bound holds even for protocols which are secure only when
authenticating a random message m. This should not be confused with the security properties of our
protocol in Section 5 which is secure even if the adversary is allowed to pick any message m (which
corresponds to the security model described in Section 3.1).

6.1 A Simplified Proof

We prove the following theorem:

Theorem 6.1. For any perfectly complete (n, ℓ, 3, ǫ)-authentication protocol in the manual channel
model, where no authentication tag is sent in the last round, if n ≥ 3 log(1/ǫ), then ℓ ≥ 2 log(1/ǫ)−2.

As mentioned above, when the input message m is chosen uniformly at random, the honest
execution of the protocol defines a probability distribution on the message m, the authentication tag
x1 (sent by the sender in the first round together with m), the authentication tag x2 (sent by the
receiver in the second round), and the manually authenticated string s (sent by the sender in the
third round). We denote by M,X1,X2 and S the corresponding random variables.

The main idea of this proof is representing the entropy of the manually authenticated string S
by splitting it as follows:

H(S) = (H(S) − H(S|M,X1)) + (H(S|M,X1) − H(S|M,X1,X2)) + H(S|M,X1,X2)

= I(S;M,X1) + I(S;X2|M,X1) + H(S|M,X1,X2) .

This representation captures the reduction of H(S) during the execution of the protocol, and allows
us to prove that both the sender and the receiver must each independently reduce this entropy by at
least log(1/ǫ) − 1 bits. We prove this by considering two possible man-in-the-middle attacks on the
given protocol. In these attacks we use the fact that the adversary is computationally unbounded
in that she can sample distributions induced by the protocol. For example, in the first attack, the
adversary samples the distribution of X2 given M , X1 and S. While the distribution of X2 given
only M and X1 can be sampled by merely following the protocol, this is not the case when sampling
the distribution of X2 given M , X1 and S.

We first state and prove two lemmata on the reduction in H(S) during the execution of the
protocol, and then show that these lemmata and the above representation of H(S) imply Theorem
6.1.

Lemma 6.2. If n ≥ 2 log 1
ǫ
, then I(S;M,X1) + H(S|M,X1,X2) > log 1

ǫ
− 1.

Proof. Consider the following attack:

1. The adversary A chooses m̂ ∈R {0, 1}n and runs an honest execution with the receiver. Denote
by s the manually authenticated string fixed by this execution. Now, A’s goal is to cause the
sender to manually authenticate this string.

2. A chooses m ∈R {0, 1}n as the sender’s input, and receives x1 from the sender.

3. If Pr [m,x1, s] = 0 in an honest execution, then A quits (in this case A has zero probability in
convincing the sender to manually authenticate s). Otherwise, A samples x̂2 from the distri-
bution of X2 given (m,x1, s), and sends it to the sender. The sender manually authenticates
some string.
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4. If the sender did not authenticate s, A quits. Otherwise, A forwards s to the receiver.

By the unforgeability requirement of the protocol we obtain:

ǫ ≥ Pr [R accepts and m 6= m̂] ≥ Pr [R accepts] − 2−n .

Therefore, the assumption n ≥ 2 log 1
ǫ

implies that Pr [R accepts] ≤ ǫ + 2−n ≤ ǫ + ǫ2 < 2ǫ. Now we
analyze the probability that the receiver accepts. Notice that:

• m and x1 are chosen independently of s.

• x̂2 is chosen conditioned on m,x1 and s.

• The manually authenticated string sent by the sender is chosen conditioned on m,x1 and x2.

Therefore9,

Pr [R accepts] =
∑

s

Pr [s] Pr [R accepts|s]

=
∑

s

Pr [s]
∑

m,x1:
Pr[m,x1,s]>0

Pr [m,x1] Pr [R accepts|m,x1, s]

=
∑

m,x1,s:
Pr[m,x1,s]>0

Pr [s] Pr [m,x1]
∑

x̂2

Pr [x̂2|m,x1, s] Pr [R accepts|m,x1, x̂2, s]

=
∑

m,x1,x̂2,s:
Pr[m,x1,x̂2,s]>0

Pr [s] Pr [m,x1] Pr [x̂2|m,x1, s] Pr [s|m,x1, x̂2]

=
∑

m,x1,x̂2,s:
Pr[m,x1,x̂2,s]>0

Pr [m,x1, s]
Pr [s]

Pr [s|m,x1]
Pr [x̂2|m,x1, s] Pr [s|m,x1, x̂2] (6.1)

=
∑

m,x1,x̂2,s:
Pr[m,x1,x̂2,s]>0

Pr [m,x1, x̂2, s] 2
−
{
log

Pr[s|m,x1]

Pr[s]
+log 1

Pr[s|m,x1,x̂2]

}

,

where Equation (6.1) follows from Bayes’ rule. By Jensen’s inequality,

Pr [R accepts] ≥ 2
−
∑

m,x1,x̂2,s:
Pr[m,x1,x̂2,s]>0

Pr[m,x1,x̂2,s]
{
log

Pr[s|m,x1]
Pr[s]

+log 1
Pr[s|m,x1,x̂2]

}

= 2−{I(S;M,X1)+H(S|M,X1,X2)} ,

and therefore I(S;M,X1) + H(S|M,X1,X2) > log 1
ǫ
− 1.

Lemma 6.3. If n ≥ 3 log 1
ǫ

and ℓ < 2 log(1/ǫ) − 2, then I(S;X2|M,X1) ≥ log 1
ǫ
− 1.

Proof. Consider the following attack:

1. A chooses m ∈R {0, 1}n, as the sender’s input, and runs an honest execution with the sender.
At the end of this execution, the sender manually authenticates a string s. A reads s, and
delays it. Now, A’s goal is to cause the receiver to accept this string together with a different
input message m̂.

9For any random variable Z we write Pr [z] instead of Pr [Z = z].
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2. A samples (m̂, x̂1) from the joint distribution of (M,X1) given s, and sends them to the receiver,
who answers x2.

3. If Pr [m̂, x̂1, x2, s] = 0, then A quits. Otherwise, A forwards s to the receiver.

As in Lemma 6.2, ǫ ≥ Pr [R accepts] − Pr [m̂ = m]. However, in this attack, unlike the previous
attack, the messages m and m̂ are not chosen uniformly at random and independently. First m is
chosen uniformly at random, then s is picked from the distribution of S given m, and then m̂ is
chosen from the distribution of M given s. Therefore,

Pr [m̂ = m] =
∑

s

Pr [s]
∑

m

(Pr [m|s])2 ≤
∑

s

Pr [s]max
m

Pr [m|s]
∑

m

Pr [m|s]

=
∑

s

Pr [s]max
m

Pr [m|s] =
∑

s

max
m

Pr [m, s] ≤
∑

s

max
m

Pr [m] .

Since the distribution of messages is uniform, and the authenticated string takes at most 2ℓ values,
we obtain Pr [m̂ = m] ≤ 2−n+ℓ. From the assumptions that ℓ < 2 log(1/ǫ)− 2 and n ≥ 3 log(1/ǫ) we
get that Pr [m̂ = m] < ǫ, and therefore Pr [R accepts] < 2ǫ. Now we analyze the probability that
the receiver accepts. Notice that,

• m̂ and x̂1 are chosen conditioned on s.

• x2 is chosen conditioned only on m̂ and x̂1.

Therefore,

Pr [R accepts] =
∑

m̂,x̂1,s

Pr [m̂, x̂1, s] Pr [R accepts|m̂, x̂1, s]

=
∑

m̂,x̂1,s

Pr [m̂, x̂1, s]
∑

x2:
Pr[m̂,x̂1,x2,s]>0

Pr [x2|m̂, x̂1]

=
∑

m̂,x̂1,x2,s:
Pr[m̂,x̂1,x2,s]>0

Pr [m̂, x̂1, x2, s]
Pr [x2|m̂, x̂1]

Pr [x2|m̂, x̂1, s]
(6.2)

=
∑

m̂,x̂1,x2,s:
Pr[m̂,x̂1,x2,s]>0

Pr [m̂, x̂1, x2, s] 2
− log

Pr[x2|m̂,x̂1,s]

Pr[x2|m̂,x̂1] ,

where Equation (6.2) follows from Bayes’ rule. By Jensen’s inequality,

Pr [R accepts] ≥ 2
−
∑

m̂,x̂1,x2,s:
Pr[m̂,x̂1,x2,s]>0

Pr[m̂,x̂1,x2,s] log
Pr[x2|m̂,x̂1,s]
Pr[x2|m̂,x̂1]

= 2−I(S;X2|M,X1) ,

and therefore I(S;X2|M,X1) > log 1
ǫ
− 1.

Now, Theorem 6.1 can be derived as follows. Suppose for contradiction that there exists a
perfectly complete (n, ℓ, 3, ǫ)-authentication protocol, where no authentication tag is sent in the last
round, and n ≥ 3 log(1/ǫ) but ℓ < 2 log(1/ǫ) − 2. By using the fact that ℓ ≥ H(S), we can easily
derive a contradiction: The above mentioned representation of H(S) and Lemmata 6.2 and 6.3 imply
that H(S) > 2 log(1/ǫ) − 2. Therefore ℓ ≥ 2 log(1/ǫ) − 2 in any such protocol. This concludes the
proof of Theorem 6.1.
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6.2 Proof of Theorem 4.4

In this section we present the proof Theorem 4.4. This proof is a natural generalization of the proof
presented in Section 6.1. Note that, we can assume that in the last round the sender does not
send an authentication tag xi over the insecure channel. We represent the entropy of the manually
authenticated string S by splitting it as follows:

H(S) = H(S) − H(S|M,X1) +

k−2∑

i=1

(H(S|M,X1, . . . ,Xi) − H(S|M,X1, . . . ,Xi+1))

+ H(S|M,X1, . . . ,Xk−1)

= I(S;M,X1) +

k−2∑

i=1

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) .

Lemma 6.4. If n ≥ 2 log 1
ǫ
, then

I(S;M,X1) +
∑

even
i

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) > log
1

ǫ
− 2 .

Proof. Consider the following attack:

1. The adversary A chooses m̂ ∈R {0, 1}n, and runs an honest execution with the receiver. Denote
by s the manually authenticated string fixed by this execution. Now, A’s goal is to cause the
sender to manually authenticate this string.

2. A chooses m ∈R {0, 1}n as the sender’s input, and receives x1 from the sender.

3. It may be that x1 is illegal given (m, s) (i.e., Pr [m,x1, s] = 0 in an honest execution), in which
case A quits. Otherwise, A samples x̂2 from the distribution of X2 given (m,x1, s) and sends
it to the sender, who replies with x3.

4. The rest of the attack is described as follows. Suppose that the sender replied with xi−1.
It may be that Pr [m,x1, x̂2, . . . , xi−1, s] = 0 in an honest execution, in which case A quits.
Otherwise, A samples x̂i from the distribution of Xi given (m,x1, x̂2, . . . , xi−1, s) and sends it
to the sender, who replies with xi+1.

5. In the last round, the sender manually authenticates some string. If the sender did not au-
thenticate s, A quits. Otherwise, A forwards s to the receiver.

By the unforgeability requirement of the protocol we obtain:

ǫ ≥ Pr [A cheats and m 6= m̂] ≥ Pr [R accepts] − 2−n .

Therefore, the assumption n ≥ 2 log 1
ǫ

implies that Pr [R accepts] < 2ǫ. Now we analyze the proba-
bility that the receiver accepts. For ease of notation, we denote by ti the transcript of the protocol
before round i+1, i.e., ti = (m,x1, . . . , x̂i) for even values of i, and ti = (m,x1, . . . , xi) for odd values
of i. Notice that,

• m and x1 are chosen independently of s.

• The x̂i’s are chosen conditioned on ti−1 and on s.
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• The xi’s and s are chosen conditioned only on ti−1.

Therefore, similarly to the analysis in Lemma 6.2 and by using Bayes’ rule (note that in this general
case the protocol is not perfectly complete, and therefore we are only guaranteed that the receiver
accepts “good” transcripts with probability at least 1/2),

Pr [R accepts] ≥
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

(
Pr [s] Pr [m,x1]

×






∏

even
i<k−1

Pr [x̂i|ti−1, s] Pr [xi+1|ti]





Pr [x̂k−1|tk−2, s] Pr [s|tk−1]

)

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

(

Pr [m,x1, s]
Pr [s]

Pr [s|m,x1]

×






∏

even
i<k−1

Pr [x̂i, xi+1|ti−1, s]
Pr [xi+1|ti]

Pr [xi+1|ti, s]





Pr [x̂k−1|tk−2, s] Pr [s|tk−1]

)

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [tk−1, s]
Pr [s]

Pr [s|m,x1]





∏

even
i

Pr [xi+1|ti]

Pr [xi+1|ti, s]




Pr [s|tk−1]

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [tk−1, s] 2
−

{
log

Pr[s|m,x1]
Pr[s]

+
∑

even
i

log
Pr[xi+1|ti,s]
Pr[xi+1|ti]

+log 1
Pr[s|tk−1]

}

.

By Jensen’s inequality,

Pr [R accepts] ≥ 2

−
∑

tk−1,s:

Pr[tk−1,s]>0

Pr[tk−1,s]

{
log

Pr[s|m,x1]
Pr[s]

+
∑

even
i

log
Pr[xi+1|ti,s]
Pr[xi+1|ti]

+log 1
Pr[s|tk−1]

}
−1

= 2
−
{

I(S;M,X1)+
∑

even
i

I(S;Xi+1|M,X1,...,Xi)+H(S|M,X1,...,Xk−1)+1
}

.

and therefore I(S;M,X1) +
∑

even
i

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) > log 1
ǫ
− 2.

Lemma 6.5. If n ≥ 3 log 1
ǫ

and ℓ < 2 log(1/ǫ) − 4, then

∑

odd
i

I(S;Xi+1|M,X1, . . . ,Xi) > log
1

ǫ
− 2 .

Proof. Consider the following attack:

1. A chooses m ∈R {0, 1}n, as the sender’s input, and runs an honest execution with the sender.
At the end of this execution, the sender manually authenticates a string s. A reads s, and
delays it. Now, A’s goal is to cause the receiver to accept this string together with a different
input message m̂.
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2. A samples (m̂, x̂1) from the joint distribution of (M,X1) given s, and sends them to the receiver,
who answers x2.

3. The rest of the attack is described as follows. Suppose that the receiver answers with xi−1. It
may be that Pr [m̂, x̂1, . . . , xi−1, s] = 0 in an honest execution, in which case A quits. Otherwise,
A samples x̂i from the distribution of Xi given (m̂, x̂1, . . . , xi−1, s) and sends it to the sender,
who replies with xi+1.

4. In the last round, A forwards s to the receiver.

As in Lemma 6.3, Pr [R accepts] < 2ǫ. Now we analyze the probability that the receiver accepts.
For ease of notation, we denote again by ti the transcript of the protocol before round i + 1, i.e.,
ti = (m̂, x̂1, . . . , x̂i) for odd values of i, and ti = (m̂, x̂1, . . . , xi) for even values of i. Notice that,

• m̂ and the x̂i’s are chosen conditioned on ti−1 and on s.

• The xi’s are chosen conditioned only on ti−1.

Therefore, similarly to the analysis in Lemma 6.3 and by using Bayes’ rule,

Pr [R accepts] ≥
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [m̂, x̂1, s] Pr [x2|t1]
∏

odd
3≤i<k

Pr [x̂i|ti−1, s] Pr [xi+1|ti]

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [m̂, x̂1, x2, s]
Pr [x2|t1]

Pr [x2|t1, s]

∏

odd
3≤i<k

Pr [x̂i, xi+1|ti−1, s]
Pr [xi+1|ti]

Pr [xi+1|ti, s]

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [tk−1, s]
∏

odd
i

Pr [xi+1|ti]

Pr [xi+1|ti, s]

=
1

2

∑

tk−1,s:

Pr[tk−1,s]>0

Pr [tk−1, s] 2
−
∑

odd
i

log
Pr[xi+1|ti,s]
Pr[xi+1|ti] .

By Jensen’s inequality,

Pr [R accepts] ≥ 2

−





∑

tk−1,s:

Pr[tk−1,s]>0

Pr[tk−1,s]
∑

odd
i

log
Pr[xi+1|ti,s]
Pr[xi+1|ti]

+1






= 2
−

{∑
odd

i

I(S;Xi+1|M,X1,...,Xi)+1

}

,

and therefore
∑

odd
i

I(S;Xi+1|M,X1, . . . ,Xi) > log 1
ǫ
− 2.

Now, Theorem 4.4 can be derived as follows. Let Π be an unconditionally secure (n, ℓ, k, ǫ)-
authentication protocol, and suppose for contradiction that n ≥ 2 log(1/ǫ)+4 and ℓ ≤ 2 log(1/ǫ)−6.
Then, a similar argument to that in Lemma 8.1 implies that there exists an unconditionally secure
(n′ = 3 log(1/ǫ), ℓ, k′, 2ǫ) authentication protocol Π′, for some k′ > k, where no authentication
tag is sent in the last round. Now, the above mentioned representation of H(S) (where S is the
manually authenticated string in Π′) and Lemmata 6.4 and 6.5 imply that H(S) > 2 log(1/2ǫ)− 4 =
2 log(1/ǫ)−6, and in particular ℓ > 2 log(1/ǫ)−6. This contradicts the existence of Π, and concludes
the proof of Theorem 4.4.
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7 Lower Bound in the Shared Key Model

In this section we prove a lower bound on the entropy of the shared key. For simplicity, we first
present in Section 7.1 a proof for the simplified case of a perfectly complete 3-round protocol. This
simplified proof already captures the main ideas and difficulties of the general proof. The general
proof is based on the same analysis, and is described in Section 7.2.

As in Section 6, in the following proofs given any authentication protocol in the shared key model
we identify the messages sent by the sender and the receiver and the shared key with corresponding
random variables. More specifically, when the shared key is chosen from its specified distribution
(which is defined by the given protocol), and the input message m is chosen uniformly at random, the
honest execution of the protocol defines a probability distribution on the shared key s, the message
m, and the tags xi. We denote by S,M and Xi the random variables corresponding to s,m and
xi, respectively. We note that our lower bound holds even for protocols which are secure only when
authenticating a random message m.

7.1 A Simplified Proof

We prove the following theorem:

Theorem 7.1. For any perfectly complete (n, ℓ, 3, ǫ)-authentication protocol in the shared key model,
it holds that H(S) ≥ 2 log(1/ǫ), where S is the ℓ-bit shared key.

As mentioned above, when the shared key s is chosen from its specified distribution, and the input
message m is chosen uniformly at random, the honest execution of the protocol defines a probability
distribution on the shared key s, the message m, the authentication tag x1 (sent by the sender in the
first round together with m), the authentication tag x2 (sent by the receiver in the second round),
and the authentication tag x3 (sent by the sender in the third round). We denote by S,M,X1,X2

and X3 the corresponding random variables.
We apply again the proof technique described in Section 6, and represent the entropy of the

shared key S by splitting it as follows:

H(S) = (H(S) − H(S|M,X1)) + (H(S|M,X1) − H(S|M,X1,X2))

+ (H(S|M,X1,X2) − H(S|M,X1,X2,X3)) + H(S|M,X1,X2,X3)

= I(S;M,X1) + I(S;X2|M,X1) + I(S;X3|M,X1,X2) + H(S|M,X1,X2,X3) .

As in Section 6.1, we first state and prove two lemmata on the reduction in H(S) during the execution
of the protocol, and then show that correctness of Theorem 7.1 follows. Notice that in this model
we manage to prove the lower bound for the entropy of the shared key and not only for its length,
as in Section 6.

Lemma 7.2. I(S;M,X1) + I(S;X3|M,X1,X2) ≥ log 1
ǫ
.

Proof. Consider the following attack, in which A impersonates the sender, and tries to cheat the
receiver into accepting a fraudulent message m̂:

1. Denote by s the actual shared key. A chooses (m̂, x̂1) according to the joint distribution of
(M,X1). It may be that the chosen x̂1 is illegal given (m̂, s) (i.e., Pr [m̂, x̂1, s] = 0 in an honest
execution), in which case the receiver will quit the protocol. Otherwise, the receiver answers
x2.
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2. A chooses x̂3 according to the distribution of X3 given (m̂, x̂1, x2). By the perfect completeness
assumption, if the chosen x̂3 is legal given (m̂, x̂1, x2, s), then the receiver must accept m̂.

By the unforgeability requirement, we have that ǫ ≥ Pr [R accepts]. Notice that,

• m̂ and x̂1 are chosen independently of s.

• x2 is chosen conditioned on m̂, x̂1 and s.

• x̂3 is chosen conditioned only on m̂, x̂1 and x2.

Therefore,

Pr [R accepts] =
∑

s

Pr [s] Pr [R accepts|s]

=
∑

s

Pr [s]
∑

m̂,x̂1:
Pr[m̂,x̂1,s]>0

Pr [m̂, x̂1] Pr [R accepts|m̂, x̂1, s]

=
∑

m̂,x̂1,s:
Pr[m̂,x̂1,s]>0

Pr [s] Pr [m̂, x̂1]
∑

x2

Pr [x2|m̂, x̂1, s] Pr [R accepts|m̂, x̂1, x2, s]

=
∑

m̂,x̂1,x2,s:
Pr[m̂,x̂1,x2,s]>0

Pr [s] Pr [m̂, x̂1] Pr [x2|m̂, x̂1, s]
∑

x̂3:
Pr[m̂,x̂1,x2,x̂3,s]>0

Pr [x̂3|m̂, x̂1, x2]

=
∑

m̂,x̂1,x2,x̂3,s:
Pr[m̂,x̂1,x2,x̂3,s]>0

Pr [s] Pr [m̂, x̂1] Pr [x2|m̂, x̂1, s] Pr [x̂3|m̂, x̂1, x2]

=
∑

m̂,x̂1,x2,x̂3,s:
Pr[m̂,x̂1,x2,x̂3,s]>0

Pr [m̂, x̂1, s]
Pr [s]

Pr [s|m̂, x̂1]
Pr [x2, x̂3|m̂, x̂1, s]

Pr [x̂3|m̂, x̂1, x2]

Pr [x̂3|m̂, x̂1, x2, s]

=
∑

m̂,x̂1,x2,x̂3,s:
Pr[m̂,x̂1,x2,x̂3,s]>0

Pr [m̂, x̂1, x2, x̂3, s] 2
−
{

log
Pr[s|m̂,x̂1]

Pr[s]
+log

Pr[x̂3|m̂,x̂1,x2,s]
Pr[x̂3|m̂,x̂1,x2]

}

.

By Jensen’s inequality,

Pr [R accepts] ≥ 2
−
∑

m̂,x̂1,x2,x̂3,s:
Pr[m̂,x̂1,x2,x̂3,s]>0

Pr[m̂,x̂1,x2,x̂3,s]
{
log

Pr[s|m̂,x̂1]
Pr[s]

+log
Pr[x̂3|m̂,x̂1,x2,s]
Pr[x̂3|m̂,x̂1,x2]

}

= 2−{I(S;M,X1)+I(S;X3|M,X1,X2)} ,

and therefore I(S;M,X1) + I(S;X3|M,X1,X2) ≥ log 1
ǫ
.

Lemma 7.3. I(S;X2|M,X1) + H(S|M,X1,X2,X3) ≥ log 1
ǫ
.

Proof. Consider the following attack, in which A impersonates the receiver, runs the protocol with
the sender, and then tries to guess the shared key. If A guessed correctly, she can then impersonate
the sender, and run the protocol with the receiver on any message she wishes.

1. Denote by s the actual shared key. A chooses m ∈R {0, 1}n as the sender’s input, and receives
x1 from the sender.
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2. A chooses x̂2 according to the distribution of X2 given (m,x1). It may be the chosen x̂2 is
illegal given (m,x1, s) (i.e., Pr [m,x1, x̂2, s] = 0 in an honest execution), in which case the
sender will quit the protocol. Otherwise, the sender answers x3.

3. A tries to guess the shared key by sampling the distribution of S given (m,x1, x̂2, x3). There-
fore, A guesses the correct value s with probability Pr [s|m,x1, x̂2, x3].

By the unforgeability requirement, we have that ǫ ≥ Pr [A guesses S]. Notice that,

• x1 is chosen conditioned on m and s.

• x̂2 is chosen conditioned only on m and x1.

• x3 is chosen conditioned on m,x1, x̂2 and s.

Therefore, similarly to the analysis in Lemma 6.2 and by using Bayes’ rule,

Pr [A guesses S] =
∑

m,x1,s

Pr [m,x1, s] Pr [A guesses S|m,x1, s]

=
∑

m,x1,s

Pr [m,x1, s]
∑

x̂2:
Pr[m,x1,x̂2,s]>0

Pr [x̂2|m,x1] Pr [A guesses S|m,x1, x̂2, s]

=
∑

m,x1,x̂2,s:
Pr[m,x1,x̂2,s]>0

Pr [m,x1, s] Pr [x̂2|m,x1]
∑

x3

Pr [x3|m,x1, x̂2, s] Pr [A guesses S|m,x1, x̂2, x3, s]

=
∑

m,x1,x̂2,x3,s:
Pr[m,x1,x̂2,x3,s]>0

Pr [m,x1, s] Pr [x̂2|m,x1] Pr [x3|m,x1, x̂2, s] Pr [s|m,x1, x̂2, x3]

=
∑

m,x1,x̂2,x3,s:
Pr[m,x1,x̂2,x3,s]>0

Pr [m,x1, x̂2, s]
Pr [x̂2|m,x1]

Pr [x̂2|m,x1, s]
Pr [x3|m,x1, x̂2, s] Pr [s|m,x1, x̂2, x3]

=
∑

m,x1,x̂2,x3,s:
Pr[m,x1,x̂2,x3,s]>0

Pr [m,x1, x̂2, x3, s] 2
−
{

log
Pr[x̂2|m,x1,s]
Pr[x̂2|m,x1]

+log 1
Pr[s|m,x1,x̂2,x3]

}

By Jensen’s inequality,

Pr [A guesses S] ≥ 2
−
∑

m,x1,x̂2,x3,s:
Pr[m,x1,x̂2,x3,s]>0

Pr[m,x1,x̂2,x3,s]
{
log

Pr[x̂2|m,x1,s]
Pr[x̂2|m,x1]

+log 1
Pr[s|m,x1,x̂2,x3]

}

= 2−{I(S;X2|M,X1)+H(S|M,X1,X2,X3)} ,

and therefore I(S;X2|M,X1) + H(S|M,X1,X2,X3) ≥ log 1
ǫ
.

Now, Theorem 7.1 can be derived as follows. Let Π be any perfectly complete (n, ℓ, 3, ǫ)-
authentication protocol in the shared key model. Then, the above representation of the entropy
of the shared key used in Π and Lemmata 7.2 and 7.3 imply that H(S) ≥ 2 log(1/ǫ). This concludes
the proof of Theorem 7.1.
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7.2 Proof of Theorem 4.5

In this section we present the proof of Theorem 4.5. This proof is a natural generalization of the
proof presented in Section 7.1. Again, we represent the entropy of the shared key S by splitting it
as follows:

H(S) = H(S) − H(S|M,X1) +

k−2∑

i=1

(H(S|M,X1, . . . ,Xi) − H(S|M,X1, . . . ,Xi+1))

+ H(S|M,X1, . . . ,Xk−1)

= I(S;M,X1) +

k−2∑

i=1

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) .

We first state and prove two lemmata on the reduction of H(S) during the execution of the protocol,
and then show that these lemmata, and the above representation of H(S) imply Theorem 4.5. Notice
that in this model we manage to prove the lower bound for the entropy of the shared key and not
only for its length, as in Section 6.2.

Lemma 7.4. I(S;M,X1) +
∑

even
i

I(S;Xi+1|M,X1, . . . ,Xi) > log 1
ǫ
− 1.

Proof. Consider the following attack, in which A impersonates the sender, and tries to cheat the
receiver into accepting a fraudulent message m̂:

1. Denote by s the actual shared key. A chooses (m̂, x̂1) according to the joint distribution of
(M,X1). It may be that the chosen x̂1 is illegal given (m̂, s) (i.e., Pr [m̂, x̂1, s] = 0 in an honest
execution), in which case the receiver will quit the protocol. Otherwise, the receiver answers
x2.

2. The rest of the attack is described as follows. Suppose that the receiver replied xi. A chooses
x̂i+1 according to the distribution of Xi+1 given (m̂, x̂1, . . . , xi). If the chosen x̂i+1 is legal given
(m̂, x̂1, . . . , xi, s), then the receiver continues the protocols, and answers xi+2.

3. In the last round, if A chooses x̂k that is legal given (m̂, x̂1, . . . , xk−1, s), then the receiver must
accept with probability at least 1/2.

Then, ǫ ≥ Pr [R accepts]. For ease of notation, we denote again by ti the transcript of the protocol
before round i+1, i.e., ti = (m̂, x̂1, . . . , x̂i) for odd values of i, and ti = (m̂, x̂1, . . . , xi) for even values
of i. Notice that,

• m̂ and the x̂i’s are chosen conditioned only on ti−1.

• The xi’s are chosen conditioned on ti−1 and on s.

Therefore, similarly to the analysis in Lemma 7.2 and by using Bayes’ rule,

Pr [R accepts] =
1

2

∑

tk,s:

Pr[tk,s]>0

Pr [s] Pr [m̂, x̂1]
∏

even
i

Pr [xi|ti−1, s] Pr [x̂i+1|ti]

=
1

2

∑

tk,s:

Pr[tk,s]>0

Pr [m̂, x̂1, s]
Pr [s]

Pr [s|m̂, x̂1]

∏

even
i

Pr [xi, x̂i+1|ti−1, s]
Pr [x̂i+1|ti]

Pr [x̂i+1|ti, s]

=
1

2

∑

tk,s:

Pr[tk,s]>0

Pr [tk, s] 2
−

{
log

Pr[s|m̂,x̂1]
Pr[s]

+
∑

even
i

log
Pr[x̂i+1|ti,s]
Pr[x̂i+1|ti]

}

.
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By Jensen’s inequality,

Pr [R accepts] ≥ 2
−
∑

tk,s:

Pr[tk,s]>0

Pr[tk,s]

{
log

Pr[s|m̂,x̂1]
Pr[s]

+
∑

even
i

log
Pr[x̂i+1|ti,s]
Pr[x̂i+1|ti]

}
−1

= 2
−
{
I(S;M,X1)+

∑
even

i
I(S;Xi+1|M,X1,...,Xi)+1

}

,

and therefore I(S;M,X1) +
∑

even
i

I(S;Xi+1|M,X1, . . . ,Xi) ≥ log 1
ǫ
− 1.

Lemma 7.5.
∑

odd
i

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) > log 1
ǫ
− 1.

Proof. Consider the following attack, in which A impersonates the receiver, runs the protocol with
the sender, and then tries to guess the shared key. If A guessed correctly, she can then impersonate
the sender, and run the protocol with the receiver on any message she wishes.

1. Denote by s the actual shared key. A chooses m ∈R {0, 1}n as the sender’s input, and receives
x1 from the sender.

2. The rest of the attack is described as follows. Suppose that the sender replied xi. A chooses
x̂i+1 according to the distribution of Xi+1 given (m,x1, . . . , xi). It may be the chosen x̂i+1 is
illegal given (m,x1, . . . , xi, s), in which case the sender will quit the protocol. Otherwise, the
sender replies xi+2.

3. A tries to guess the shared key by sampling the distribution of S given (m,x1, . . . , xk). There-
fore, A guesses the correct value s with probability Pr [s|m,x1, . . . , xk].

Then, ǫ ≥ 1
2Pr [A guesses S]. We denote again by ti the transcript of the protocol before round i+1,

i.e., ti = (m,x1, . . . , xi) for odd values of i, and ti = (m,x1, . . . , x̂i) for even values of i. Notice that

• The x̂i’s are chosen conditioned only on ti−1.

• The xi’s are chosen conditioned on ti−1 and on s.

Therefore, similarly to the analysis in Lemma 7.3 and by using Bayes’ rule,

Pr [A guesses S] =
∑

tk,s:

Pr[tk,s]>0

Pr [m,x1, s] Pr [x̂2|t1]






∏

odd
1<i

Pr [xi|ti−1, s] Pr [x̂i+1|ti]





Pr [s|tk]

=
∑

tk,s:

Pr[tk,s]>0

Pr [m,x1, x̂2, s]
Pr [x̂2|t1]

Pr [x̂2|t1, s]






∏

odd
1<i

Pr [xi, x̂i+1|ti−1, s]
Pr [x̂i+1|ti]

Pr [x̂i+1|ti, s]





Pr [s|tk]

=
∑

tk,s:

Pr[tk,s]>0

Pr [tk, s] 2
−

{∑
odd

i

log
Pr[x̂i+1|ti,s]
Pr[x̂i+1|ti]

+log 1
Pr[s|tk]

}

.

By Jensen’s inequality,

Pr [A guesses S] ≥ 2
−
∑

tk,s:

Pr[tk,s]>0

Pr[tk ,s]

{∑
odd

i

log
Pr[x̂i+1|ti,s]
Pr[x̂i+1|ti]

+log 1
Pr[s|tk]

}

= 2
−

{∑
odd

i

I(S;Xi+1|M,X1,...,Xi)+H(S|M,X1,...,Xk−1)

}

,

and therefore
∑

odd
i

I(S;Xi+1|M,X1, . . . ,Xi) + H(S|M,X1, . . . ,Xk−1) ≥ log 1
ǫ
− 1.

25



Now, Theorem 4.5 can be derived as follows. Let Π be any (n, ℓ, k, ǫ)-authentication protocol in
the shared key model. Then, the above representation of the entropy of the shared key used in Π
and Lemmata 7.4 and 7.5 imply that H(S) ≥ 2 log(1/ǫ) − 2. This concludes the proof of Theorem
4.5.

8 Breaking the Lower Bounds Implies One-Way Functions

In this section we prove Theorems 4.6 and 4.7, namely, we show that in the computational setting
one-way functions are necessary for the existence of protocols breaking the lower bounds stated in
Theorems 4.4 and 4.5. We prove here only the result for the manual channel model, since the proof
for the shared key model is very similar and can be easily derived from the following proof.

The idea underlying the proof is showing that if distributionally one-way functions do not exist,
then the attacks described in Section 6 can be carried out by a polynomial-time adversary with almost
the same success probability. In Section 6 we used the fact that the adversary is computationally
unbounded in that she can sample distributions induced by the protocol. This usage of the adversary’s
capabilities, can alternatively be seen as randomly inverting functions given the image of a random
input. The proof proceeds in two stages:

1. In Lemma 8.1 we prove that if there exists an authentication protocol that enables the user to
authenticate relatively short messages, then this protocol can be used to efficiently authenticate
long messages.

2. In Lemma 8.2 we prove that if there exists a computationally secure (n, ℓ, k, ǫ, t)-authentication
protocol, such that n ≥ 1/ǫ, ℓ < 2 log(1/ǫ)− 6 and t = Ω(poly(n, k, 1/ǫ)), then distributionally
one-way functions exist.

We note that the lengthening of the input messages in the first stage is necessary for the second
stage, since the polynomial-time adversary succeeds with almost the same probability as in Section
6. Therefore, in order to overcome this inaccuracy we need input messages which are much longer
than the manually authenticated strings.

Lemma 8.1. If there exists a computationally secure (n = 2 log(1/ǫ) + 4, ℓ, k, ǫ, t)-authentication
protocol Π in the manual channel model, then for any n′ = poly(t) there exists a computationally
secure (n′, ℓ, k′ = k + log∗ n + 2, ǫ′ = 2ǫ, t)-authentication protocol Π′.

Proof. We construct the protocol Π′ by composing the protocol Plog∗ n′+2, which was described
in Section 5, with the given protocol Π as follows. Given an n′-bit input message m, the sender
and the receiver execute protocol Plog∗ n′+2 for authenticating m with ǫ as the bound on the adver-
sary’s forgery probability. However, they replace step 4 of the execution with an execution of Π to

authenticate mlog∗ n′+2
S (rather than manually authenticating it).

This composition is possible, since a proof similar to that of Claim 5.3 shows that the length of

mlog∗ n′+2
S is at most 2 log(1/ǫ) + 4 bits. Clearly, Π′ is a (k + log∗ n′ + 2)-round protocol, in which

at most ℓ bits are manually authenticated. Moreover, for any adversary running in time poly(t) and
for any constant c > 0, the forgery probability of the adversary is at most 2ǫ + t−c for sufficiently
large t (otherwise, such an adversary can be used to forge either in Plog∗ n′+2 or in Π).

Lemma 8.2. If there exists a computationally secure (n, ℓ, k, ǫ, t)-authentication protocol in the man-
ual channel model, such that n = ⌈1/ǫ⌉, ℓ < 2 log(1/ǫ) − 6 and t = Ω(poly(n, k, 1/ǫ)), then distribu-
tionally one-way functions exist.
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Proof. As mentioned above, we prove that if distributionally one-way functions do not exist, then
the attacks described in Section 6 can be carried out by a polynomial-time adversary with almost
the same success probability. As in section 6, we present here the proof for the simplified case of a
perfectly complete 3-round protocol, and then explain how it can be generalized. We first focus on
the attack described in Lemma 6.2.

Let f be a function defined as follows: f takes as input three strings rS , rR and m, and outputs
(m,x1, x2, s) – the transcript of the protocol, where rS , rR and m are the random coins of the sender,
the random coins of the receiver, and the input message, respectively. Let f ′ denote the function
that is obtained from f by eliminating its third output, i.e., f ′(rS , rR,m) = (m,x1, s).

If distributionally one-way functions do not exist, then for any constant c > 0 there exists a
probabilistic polynomial-time Turing machine M that on input (m,x1, s) produces a distribution
that is n−c-statistically close to the uniform distribution on all the pre-images of (m,x1, s) under f ′.
The polynomial-time adversary will use this M in the attack.

Let A denote the unbounded adversary that carried the attack described in Lemma 6.2, and
let APPT denote a polynomial-time adversary that carries the following attack (our goal is that the
receiver will not be able to distinguish between A and APPT):

1. APPT chooses m̂ ∈R {0, 1}n and runs an honest execution with the receiver. Denote by s the
manually authenticated string fixed by this execution.

2. APPT chooses m ∈R {0, 1}n as the sender’s input, and receives x1 from the sender.

3. APPT executes M on input (m,x1, s), and then applies f to M’s answer to compute x̂2 and
send it to the sender. The sender manually authenticates some string s∗.

4. APPT forwards s∗ to the receiver (who must accept m̂ if s∗ = s by the perfect completeness).

Let ProbR and ProbPPT,R denote the probabilities that the receiver R accepts m̂ when interacting
with A and when interacting with APPT, respectively. Then, from the point of view of the receiver,
the only difference in the these two executions is in the distribution of s∗. Therefore, |ProbR −
ProbPPT,R| is at most twice the statistical distance between s∗ in the interaction with A and s∗ in
the interaction with APPT. By the above mentioned property of M, this statistical difference is at
most n−c. Therefore, for sufficiently large t, we obtain as in Lemma 6.2

2ǫ > ProbPPT,R ≥ ProbR − 2n−c ≥ 2−{I(S;M,X1)+H(S|M,X1,X2)} − 2n−c .

In particular, and since n ≥ 1/ǫ, we can choose the constant c such that 2n−c < ǫ, and obtain

3ǫ > 2−{I(S;M,X1)+H(S|M,X1,X2)} ,

which implies that I(S;M,X1)+H(S|M,X1,X2) > log 1
ǫ
− 2. In the general case, where the number

of rounds is some integer k, APPT has to carry out k−1
2 inversions, therefore

2ǫ > ProbPPT,R ≥ ProbR − (k − 1)n−c ≥ 2−{I(S;M,X1)+H(S|M,X1,X2)} − (k − 1)n−c .

However, since the number of rounds k is at most polynomial in n, and since n ≥ 1/ǫ, we can again
choose the constant c such that (k − 1)n−c < ǫ, and obtain the same result.

A similar argument applied to the attack described in Lemma 6.3 yields I(S;X2|M,X1) > log 1
ǫ
−

2, and therefore H(S) > 2 log 1
ǫ
− 4. We note that when the protocol is not perfectly complete, a

more careful analysis yields H(S) > 2 log 1
ǫ
− 6.
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Finally, we derive Theorem 4.6 from the above lemmata. Suppose that there exists a computation-
ally secure (n, ℓ, k, ǫ, t)-authentication protocol Π, such that n ≥ log(1/ǫ) + 4, t = Ω(poly(n, k, 1/ǫ))
and ℓ < 2 log(1/ǫ) − 8. Then, Lemma 8.1 implies that there exists a (n′, ℓ, k′, ǫ′, t)-authentication
protocol Π′, such that n′ = ⌈1/ǫ′⌉, t = Ω(poly(n′, k′, 1/ǫ′)) and ℓ < 2 log(1/ǫ′) − 6 (here, ǫ′ = 2ǫ).
Therefore, by Lemma 8.2, distributionally one-way functions exist, and as mentioned in Section 2,
the existence of one-way functions is equivalent to the existence of distributionally one-way functions.
This concludes the proof of Theorem 4.6.
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