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Abstract. We consider the cryptographic two-party protocol task of extending a given
coin toss. The goal is to generate n common random coins from a single use of an ideal
functionality which gives m < n common random coins to the parties. In the framework
of Universal Composability we show the impossibility of securely extending a coin toss for
statistical and perfect security. On the other hand, for computational security the existence
of a protocol for coin toss extension depends on the number m of random coins which can
be obtained “for free”.

For the case of stand-alone security, i.e., a simulation based security definition without
an environment, we present a novel protocol for unconditionally secure coin toss exten-
sion. The new protocol works for superlogarithmic m, which is optimal as we show the
impossibility of statistically secure coin toss extension for smaller m.

Combining our results with already known results, we obtain a (nearly) complete charac-
terization under which circumstances coin toss extension is possible.
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1 Introduction

Manuel Blum showed in [BIu&T] how to flip a coin over the telephone line. His protocol guaran-
teed that even if one party does not follow the protocol, the other party still gets a uniformly
distributed coin toss result. This general concept of generating common randomness in a way
such that no dishonest party can dictate the result proved very useful in cryptography, e.g., in
the construction of protocols for general secure multi-party computation.

Here we are interested in the task of eztending a given coin toss. That is, suppose that two
parties already have the possibility of making a single m-bit coin-toss. Is it possible for them to
get n > m bits of common randomness? The answer we come up with is basically: “it depends.”

The first thing the extensibility of a given coin toss depends on is the required security type.
One type of security requirement (which we call “stand-alone simulatability” here) can simply
be that the protocol imitates an ideal coin toss functionality in the sense of [Gol04], where a
simulator has to invent a realistic protocol run after learning the outcome of the ideal coin-toss.
A stronger type of requirement is to demand universal composability, which basically means
that the protocol imitates an ideal coin toss functionality even in arbitrary protocol environ-
ments. Security in the latter sense can conveniently be captured in a simulatability framework
like the Universal Composability framework [Can0Tal [Can05] or the Reactive Simulatability
model [PWOT], BPW04.

Orthogonal to this, one can vary the level of fulfilment of each of these requirements. For
example, one can demand stand-alone simulatability of the protocol with respect to polynomial-
time adversaries in the sense that real protocol and ideal functionality are only computationally
indistinguishable. This specific requirement is already fulfilled by the protocol of Blum. Alterna-
tively, one can demand, e.g., universal composability of the protocol with respect to unbounded
adversaries. This would then yield statistical or even perfect security. We show that whether such
a protocol exists depends on the asymptotic behaviour of m.

Our results are summarized in the table below. A “yes” or “no” indicates whether a protocol
for coin toss extension exists in that setting. “Depends”’” means that the answer depends on the
size of the seed (the m-bit coin toss available by assumption), and boldface indicates novel
results.

Security type | / level — | Computational | Statistical | Perfect
stand-alone simulatability yes depends®| no
universal composability depends* no no

Known results in the perfect and statistical case. A folklore theorem states, that (perfectly non-
trivial) statistically secure coin-toss is impossible from scratch (even in very lenient security
models). By Kitaev, this result was extended even to protocols using quantum communication
(cf. [ABDRO4). [BGRO6] first investigated the problem of extending a coin-toss. They presented
a statistically secure protocol for extending a given coin-toss (pre-shared using a VSS), if less
than % of the parties are corrupted. Note that their main attention was on the efficiency of the
protocol, since in that scenario arbitrary multi-party computations and therefore in particular
coin-toss from scratch are known to be possible. The result does not apply to the two-party case.
3 Coin toss extension is possible if and only if the seed has superlogarithmic length.

* Coin toss extension is impossible if the seed does not have superlogarithmic length. The possibility

result depends on the complexity assumption we use, cf. Section Bl



Our results in the perfect and statistical case. Our results in the perfect case are most easily
explained. For the perfect case, we show impossibility of any coin toss extension, no matter how
(in-)efficient. We show this for stand-alone simulatability (Coro. H) and for universal compos-
ability (Coro. [[H). Now for the statistical case. When demanding only stand-alone simulatability,
the situation depends on the number of the already available common coins. Namely, we give an
efficient protocol to extend m common coins to any polynomial number (in the security param-
eter), if m is superlogarithmic (Th. [[)). Otherwise, we show that there can even be no protocol
that derives m + 1 common random coins (Coro. H). In the universal composability setting, the
situation is more clear: we show that there simply is no protocol that derives from m common
coins m + 1 coins, no matter how large m is (Th. [[d). (However, here we restrict to protocols
that run in a polynomial number of rounds.)

Known results in the computational case. In [BIu81] Blum gave a computationally secure pro-
tocol. In [Gol04, Proposition 7.4.8], this protocol is shown to be stand-alone simulatable, and
together with the sequential composition theorem [Gol04l Proposition 7.4.3] for stand-alone sim-
ulatable protocols, this gives a computationally stand-alone simulatable protocol for tossing
polynomially many coins.

This makes coin-toss extension trivial in that setting, one just ignores the m-bit coin-toss and
tosses n-bit from scratch.

In the computational universal composability setting, it has been shown in [CEOT] that coin-
toss cannot be achieved from scratch. However, they showed that given a sufficiently large com-
mon reference string (CRS), bit commitment is possible. From this it is easy to see that such a
CRS (and therefore also a sufficiently large coin-toss) can be extended to any polynomial length.
However, it was unclear what the minimum size required from the CRS or the coin-toss is.

Note that there is a subtle difference between the notion of a CRS and a coin-toss. A CRS is
randomness that is available to all parties at the beginning of the protocol, while with coin-toss
the randomness is only generated when all parties agree to run the coin-toss. This makes the
coin-toss actually the stronger primitive, since in some situations it is necessary to guarantee
that not even corrupted parties learn the outcomes of the coin-toss prior to a given protocol
step.

In [CIe86], the task of coin-toss is considered in a scenario slightly different from ours:
in [CIeR6|, protocol participants may not abort protocol execution without generating output. In
that setting, [CIeS6] show that coin-toss is generally not possible even against computationally
limited adversaries. However, to the best of our knowledge, an extension of a given coin toss has
not been considered so far in the computational setting.

Our results in the computational case. We answer the question concerning the minimal size
necessary for a coin-toss to be extensible: If an m-bit coin-toss functionality is given, and m
is not superlogarithmic, then it is already impossible for the parties to derive m + 1 common
random coins (in a universally composable way) from it (Th.[Hl). However, we also show that under
strengthened computational assumptions, there are protocols that extend m to any polynomial
number (in the security parameter) of common random coins, if m is superlogarithmic (Th. H).
In that sense, we give the remaining parts for a complete characterization of the computational
case.

Notation
— A function f is negligible, if for any ¢ > 0, f(k) < k¢ for sufficiently large k (i.e., f € k=(1).
— fis overwhelming, if 1 — f is negligible (i.e., f € 1 — k~«).
— [ is noticeable, if for some ¢ > 0, f(k) > k~¢ for sufficiently large k (i.e., f € k~9M). Note
that functions exists, which are neither negligible nor noticeable.
— f is polynomially bounded, if for some ¢ > 0, f(k) < k¢ for sufficiently large k (i.e., f € k().



— fis polynomially-large, if there is a ¢ > 0s.t. f(k)¢ > k for sufficiently large k (i.e., f € k().

— [ is superpolynomial, if for any ¢ > 0, f(k) > k¢ for sufficiently large k (i.e., f € k‘”(l)).

— f is superlogarithmic, if f/logk — oo (i.e., f € w(logk)). It is easy to see that f is superlog-
arithmic if and only if 277 is negligible.

— [ is superpolylogarithmic, if for any ¢ > 0, f(k) > (logk)® for sufficiently large k (i.e.,
f € (log k)~M).

— f is exponentially-small, if there exists a ¢ > 1, s.t. f(k) < ¢=* for sufficiently large k (i.e.,
fen)y k=220

— [ is subexponential, if for any ¢ > 1, f(k) < c* for sufficiently large k (i.e., f € o(1)* = 2°(k)).

2 Security definitions

In this section we roughly sketch the security definitions used throughout this paper. We dis-
tinguish between two notions: stand-alone simulatability as defined in [Gol04]H and Universal
Composability (UC) as defined in [Can0Tal.

Stand-alone simulatability. In [Gol04] a definition for the security of two-party secure function
evaluations is given (called security in the malicious model). We will give a sketch, for more details
we refer to [Gol04].

A protocol consists of two parties that alternatingly send messages to each other. The parties
may also invoke an ideal functionality, which is given as an oracle (in our cases, they invoke a
smaller coin-toss to realise a larger one).

We say the protocol 7 stand-alone simulatably realises a probabilistic function f, if for any
efficient adversary A that may replace none or a single party, there is an efficient simulator S
s.t. for all inputs the following random variables are computationally indistinguishable:

— The real protocol execution. This consists of the view of the corrupted parties upon inputs
and x5 for the parties and the auxiliary input z for the adversary, together with the outputs
I of the parties.

— The ideal protocol execution. Here the simulator first learn the auxiliary input z and possibly
the input for the corrupted party (the simulator must corrupt the same party as the adver-
sary). Then he can choose the input of the corrupted party for the probabilistic function f,
the other inputs are chosen honestly (i.e., the first input is 1 if the first party is uncorrupted,
and the second input x5 if the second party is).

Then the simulator learns the output I of f (we assume the output to be equal for all parties).

It may now generate a fake view v of the corrupted parties. The ideal protocol execution

then consists of v and I.

Of course, in our case the probabilistic function f (the coin-toss) has no input, so the above
definition gets simpler.

What we have sketched above is what we call computational stand-alone simulatability. We
further define statistical stand-alone simulatability and perfect stand-alone simulatability. In
these cases we do not consider efficient adversaries and simulators, but unlimited ones. In the
case of statistical stand-alone simulatability we require the real and ideal protocol execution to
be statistically indistinguishable (and not only computationally ), and in the perfect case we
even require these distributions to be identical.

Universal Composability. In contrast to stand-alone simulatability, Universal Composability
[Can0Ta] is a much stricter security notion. The main difference is the existence of an environment,
that may interact with protocol and adversary (or with ideal functionality and simulator)

® In fact, [Gol04] does not use the name stand-alone simulatability but simply speaks about security in
the malicous model. We adopt the name stand-alone simulatability for this paper to be able to better
distinguish the different notions.



and try to distinguish between real and ideal protocol. This additional strictness brings the
advantage of a versatile composition theorem (the Universal Composition Theorem [Can0Tal).

We only sketch the model here and refer to [Can01al for details.

A protocol consists of several machines that may (a) get input from the environment, (b) give
output to the environment (both also during the execution of the protocol), and (c¢) send messages
to each other.

The real protocol execution consists of a protocol 7, an adversary A and an environment Z.
Here the environment may freely communicate with the adversary, and the latter has full control
over the network, i.e., it may deliver, delay or drop messages sent between parties. We assume
the authenticated model in this paper, so the adversary learns the content of the messages but
may not modify it. When Z terminates, it gives a single bit of output. The adversary may choose
to corrupt parties at any point in timefd

The ideal protocol execution is defined analogously, but instead of a protocol 7 there is an
ideal functionality F and instead of the adversary there is a simulator S. The simulator can only
learn and influence protocol data, if (a) the functionality explicitly allows this, or (b) it corrupts
a party (note that the simulator may only corrupt the same parties as the adversary). In the
latter case, the simulator can choose inputs into the functionality in the name of that party and
gets the outputs appartaining to that party. In the case of uncorrupted parties, the environment
is in control of the corresponding in- and output of the ideal functionality.

We say a protocol 7 universally composably (UC)-implements an ideal functionality F (or
short 7 is universally composable if F is clear from the context), if for any efficient adversary A,
there is an efficient simulator S, s.t. for all efficient environments Z and all auxiliary inputs z
for Z, the distributions of the output-bit of Z in the real and the ideal protocol execution are
indistinguishable.

What has been sketched above we call computational UC. We further define statistical and
perfect UC. In these notions, we allow adversary, simulator and environment to be unlimited
machines. Further, in the case of perfect UC, we require the distributions of the output-bit of Z
to be identical in real and ideal protocol execution.

The Ideal Functionality for Coin Toss. To describe the task of implementing a universally
composable coin-toss, we have to define the ideal functionality of n-bit coin-toss.

In the following, let n denote a positive integer-valued function.

Below is an informal description of our ideal functionality for a m-bit coin toss. First, the
functionality waits for initialization inputs from both parties P; and P». As soon as both parties
have this way signalled their willingness to start, the functionality selects n coins in form of
an n-bit string k£ uniformly and sends this x to the adversary. (Note that a coin toss does not
guarantee secrecy of any kind.)

If the functionality now sent k directly and without delay to the parties, this behaviour would
not be implementable by any protocol (this would basically mean that the protocol output is
immediately available, even without interaction). So the functionality lets the adversary decide
when to deliver x to each party. Note however, that the adversary may not in any way influence
the x that is delivered.

A more detailed description follows:

6 1t is then called an adaptive adversary. If the adversary can only corrupt parties before the start of the
protocol, we speak of static corruption. All results in this paper hold for both variants of the security
definition.



Ideal functionality CT,, (n-bit Coin Toss)

1. Wait until there have been “init” inputs from P; and Ps. Ignore messages from the
adversary, but immediately inform the adversary about the init.
2. Select k € {0,1}" uniformly and send & to the adversary. From now on:
— on the first (and only the first) “deliver to 1” message from the adversary, send k
to Pl,
— on the first (and only the first) “deliver to 2” message from the adversary, send s
to PQ.

Using CT,,, we can also formally express what we mean by extending a coin toss. Namely:

Definition 1. Let n = n(k) and m = m(k) be positive, polynomially bounded and computable
functions such that m(k) < n(k) for all k. Then a protocol is a universally composable (m — n)-
coin toss extension protocol if it securely and non-trivially implements CT,, by having access only
to CT,,. This security can be computational, statistical or perfect.

By a “non-trivial” implementation we mean a protocol that, with overwhelming probability,
guarantees outputs if no party is corrupted and all messages are delivered. (Alternatively, one may
also consider protocols that provide output with overwhelming probability.) This requirement is
useful since without it, a trivial protocol that does not generate any output formally implements

every functionality. (Cf. [CLOSO2] and [BHMQUO5, Section 5.1] for more discussion and formal

definitions of “non-triviality.”)

On unlimited simulators. Following [BPW04], we have modelled statistical and perfect stand-
alone and UC security using unlimited simulators. Another approach is to require the simulators
to be polynomial in the running-time of the adversary. All our results apply also to that case:
For the impossibility results, this is straightforward, since the security notion gets stricter when
the simulators become more restricted. The only possibility result for statistical /perfect security
is given in Theorem [[Il There, the simulator we construct is in fact polynomial in the runtime
of the adversary.

In the following sections, we investigate the existence of such coin toss extension protocols,
depending on the desired security level (i.e., computational / statistical / perfect security) and
the parameters n and m.

3 The Computational Case
3.1 Universal Composability

In the following, we need the assumption of enhanced trapdoor permutations with dense pub-
lic descriptions (called ETD henceforth). Roughly, these are trapdoor permutations with the
additional properties that (i) one can choose the public key in an oblivious fashion, i.e., even
given the coin tosses we used it is infeasible to invert the function, and (ii) the public keys are
computationally indistinguishable from random strings.

Definition 2 (Enhanced trapdoor permutations with dense public descriptions). 4
system of enhanced trapdoor permutations with dense public descriptions (ETD) consists of
the following efficient algorithms: a key generation algorithm I that (given security parameter
k) generates public keys pk and corresponding trapdoors td (we treat pk and td as efficiently
computable functions to facilitate notation), and a domain sampling algorithm S that given pk
outputs an element in the domain of pk, satisfying the following:

For any non-uniform probabilistic polynomial-time algorithm A there is a negligible function
i s.t. the following conditions are satisfied:



— Permutations. Pr[(pk, td) « I(1%) : pk is a valid public key and td = pk_l} >1—u(k), and
any valid public key is a permutation.

Almost uniform sampling. For any wvalid public key pk that can be output by I(1%), the
statistical distance between the output of S(pk) and randomly chosen elements in the domain
(=range) of pk is bounded by (k).

— Enhanced hardness. For all k € N

Pr[(pk, td) — I(1%),y — S(pk), 2" — AQL*, pk,y,r) : pk(') = y] < u(k)

Here r denotes the randomness used by S.
Dense public descriptions. There is a polynomially bounded, efficiently computable function s
(not depending on A) s.t.

’Pr[(pk, td) — I(1F) : A(1%, ph) = 1] — Pr [pk — {0,13*®) uniformly : A(1*, pk) = 1” < u(k).

Exponentially-hard ETD are defined analogously, except that we require the conditions above
to hold for all subexponential-time A and an exponentially-small .

Lemma 3. There is a constant d € N s.t. the following holds:

Assume that ETD exist, s.t. the size of the circuits describing the ETD is bounded by s(k) for
security parameter kﬂ

Then there is a protocol ™ using a uniform common reference string (CRS) of length s(k)?,
s.t. m securely UC-realises a bit commitment that can be used polynomially many times.

A protocol for realising bit commitment using a CRS has been given in [CLOS02|. To show
this lemma, we only need to review their construction to see, that a CRS of length s? is indeed
sufficient. For details, see Appendix

Lemma 4. Let s(k) be a polynomially bounded function, that is computable in time polynomial
n k.
Assume one of the following holds:
— ETD exist and s is a polynomially-large function.
— Ezponentially-hard ETD exist and s is a superlogarithmic function.
Then there also exist a constant e € N independent of s and ETD, s.t. the size of the circuits
describing the ETD is bounded by s(k)¢ for security parameter k.

This is shown by scaling the security parameter of the original ETD. The proof is given in
Appendix A3

Theorem 5. Let n = n(k) and m = m(k) be polynomially bounded and efficiently computable
functions. Assume one of the following conditions holds:

— m s polynomially-large and ETD exist, or

— m is superpolylogarithmic and exponentially-hard ETD exist.

Then there is a polynomial-time computationally universally composable protocol w for (m — n)-
coin toss extension.

T By the size of the circuits we means the total size of the circuits describing both the key generation
and the domain sampling algorithm. Note that then trivially also the size of the resulting keys and
the amount of randomness used by the domain sampling algorithm are bounded by s(k).



Proof. Let d be as in Lemma Bl Let further e be as in Lemma Bl If m is polynomially-large or
superpolylogarithmic, then s := m!/(?®) is polynomially-large or superlogarithmic, resp. So, by
Lemma B there are ETD, s.t. the size of the circuits describing the ETD is bounded by s¢ = m!/¢.
Then, by Lemma Bl there is a UC-secure protocol for implementing n bit commitments using an
(m'/1)4 = m-bit CRS.

Given n bit commitments, the following protocol = UC-realises an n-bit coin-toss (based on
the protocol of [BIuR1]): Upon input (init), party P commits to n random bits r;. Upon input
(init), and after P; has committed itself, party P, sends n random bits 7 to P;. Then P; unveils
the bits r1. The output of the parties is the n-bit string r = r; @ ry, where @ denotes the bit-wise
exclusive or.

It is easy to see, that this protocol UC-realises an n-bit coin-toss. We only roughly sketch the
simulator S: As soon as all uncorrupted parties got input (init), S learns what value r the ideal
n-bit coin-toss has. When P, is or gets corrupted, S learns the value r; as soon as P; commits,
so the simulated 75 can be chosen as r; @ r. When P, is or gets corrupted, but P; is uncorrupted
at least during the commitment to r1, the simulator S unveil value 1 to 72 @ r. In the case that
both parties get corrupted, the environment does not learn the value from the ideal coin-toss, so
the simulator can simply chose it to be 71 @ ro.

Furthermore, an m-bit CRS can be trivially implemented using an m-bit coin-toss. Using
the Composition Theorem we can put the above constructions together and get a protocol that
UC-realises an n-bit coin-toss using an m-bit coin-toss. O

Note that given stronger, but possibly unrealistic assumptions, the lower bound for m in
Theorem H can be decreased. If we assume that for any superlogarithmic m, there are ETD
s.t. the size of their circuits is bounded by m!/? (where d is the constant from Lemma ), we get
coin-toss extension even for superlogarithmic m (using the same proof as for Theorem B, except
that instead of Lemma H we use the stronger assumption).

However, we cannot expect an even better lower bound for m, as the following theorem shows:

Theorem 6. Let n = n(k) and m = m(k) be functions with n(k) > m(k) > 0 for all k,
and assume that m is not superlogarithmic (i.e., 2™ is non-negligible). Then there is no non-
trivial polynomial-time computationally universally composable protocol for (m — n)-coin toss
eztension.

Proof (sketch). Assume for contradiction that protocol 7, with parties P; and P, using CT,,,
implements CT,, (with m,n as in the theorem statement). Let .4; be an adversary on 7 that,
taking the role of a corrupted party P;, simply reroutes all communication of P; (with either P,
or CT,,) to the protocol environment Z; and thus lets Z; take part as P; in the real protocol.

Imagine a protocol environment Z;, running with 7 and A4; as above, that keeps and internal
simulation P; of P, and lets this simulation take part in the protocol (through A;). After a
protocol run, Z; inspects the output &1 of P; and compares it to the output o of the uncorrupted
Ps.

In areal protocol run with 7, Ay, and 21, we will have "1 = ko with overwhelming probability
since 7 non-trivially implements CT,,, and CT,, guarantees common outputs. So a simulator Sy,
running in the ideal model with CT, and Z;, must be able to achieve that the ideal output ko
(that is ideally chosen by CT,, and cannot be influenced by S;) is identical to what the simulation
Py of P inside Z; outputs. In that sense, S; must be able to “convince” P; to also output xg. To
this end, & may—and must—fake a complete real protocol communication as A; would deliver
it to Z; (and thus, to Py).

However, then we can construct another protocol environment Z that expects to take the
role of party P» in a real protocol run (just like Z; expected to take the role of P;). To this



end, an adversary Ay on 7w with corrupted P; is employed that forwards all communication of
P, with either Py or CT,, to Z5. Internally, Z5 now simulates S; (and not P»!) from above and
an instance CT,, of the trusted host CT,. Recall that &7, given a target string x by CT,, mimics
an uncorrupted P, along with an instance of CT,,. In that situation, S&; can convince an honest
P, with overwhelming probability to eventually output x.

Chances are 27™ that the CT,,-instance made up by S; outputs the same seed as the real
CT,, in a run of Z; with 7 and As. So with probability at least 27" — u for negligible p, in such
a run, Z, observes a Pj-output x that is identical to the output of the internally simulated CT,,.
But then, by assumption about the security of m, there is also a simulator Sy for Ay and Z5 that
provides Z, with an indistinguishable view. In particular, in an ideal run with S and CT,,, 2
observes equal outputs from CT,, and CT,, with probability at least 2=™ — y’ for negligible 1.
This is a contradiction, as both outputs are uniformly and independently chosen n-bit strings,
and n > m + 1. O

4 Statistical and Perfect Cases
4.1 Stand-alone simulatability

We start off with a negative result:

Theorem 7. Let m < n be functions in the security parameter k. If m is not superlogarithmic,
there is no two-party n-bit coin-toss protocol m (not even an inefficient one) that uses an m-bit
coin-toss and has the following properties:
— Non-triviality. If no party is corrupted, the probability that the parties give different, invalid
or no output is negligible (by invalid output we mean output not in {0,1}").
— Security. For any (possibly unbounded) adversary corrupting one of the parties there is a
negligible function u, s.t. for every security parameter k and every ¢ € {0,1}", the probability
for protocol output ¢ is at most 27" + u(k).
If we require perfect non-triviality (the probability for different or no outputs is 0) and perfect
security (the probability for a given output ¢ is at most 27"), such a protocol ™ does not ewist,
even if m is superlogarithmic.

Proof (sketch). It is sufficient to consider the case n =m + 1.

Without loss of generality, we can assume that the available m-bit coin toss is only used
at the end of the protocol. Similarly, we can assume that in the honest case, the parties never
output distinct values. A detailed proof for these statements can be found in the full proof.

To show the theorem, we first consider “complete transcripts” of the protocol. By a complete
transcript we mean all messages sent during the run of a protocol, excluding the value of the
m-bit coin-toss. We distinguish three sets of complete transcripts: the set 2 of transcripts having
non-zero probability for the protocol output 0", the set 9B of transcripts having zero probability
of output 0™ and zero probability that the protocol gives no output, and the set € of transcripts
having non-zero probability of giving no output. Note that, since for a complete transcript, the
protocol output only depends on the m-bit coin-toss, any of the above non-zero probabilities is
at least 27,

For any partial transcript p (i.e., a situation during the run of the protocol), we define three
values «, 3, 7. The value a denotes the probability with which a corrupted Alice can enforce
a transcript in 2{ starting from p, the value § denotes the probability with which a corrupted
Bob can enforce a transcript in B, and the value v denotes the probability that the complete
protocol transcript will lie in € if no-one is corrupted. We show inductively that for any partial
transcript p, (1 — «)(1 — ) < . In particular, this holds for the beginning of the protocol. For



simplicity, we assume that 27™ is not only non-negligible, but noticeable (in the full proof, the
general case is considered). Since a transcript in € gives no output with probability at least 27,
the probability that the protocol generates no output (in the uncorrupted case) is at least 27"~.
By the non-triviality condition, this probability is negligible, so v must be negligible, too. So
(1 — «)(1 — B) is negligible, too. Therefore max {1 — «,1 — S} must be negligible. For now, we
assume that 1 — « is negligible or 1 — 3 is negligible (for the general case, see the full proof).

If 1 — « is negligible, the probability for output 0" is at least 27"« Since « is overwhelming
and 27™ noticeable, this is greater than 27" = %2*7” by a noticeable amount, which contradicts
the security property.

If 1 — 3 is negligible, we consider the maximum probability a corrupted Bob can achieve
that the protocol output is not 0. By the security property, this probability should be at most
(2™ —1)27" plus a negligible amount, which is not overwhelming. However, since every transcript
in B gives such an output with probability 1, the probability of such is 3, which is overwhelming,
in contradiction of the security property.

The perfect case is proven similarly. O

The full proof is given in Appendix

Corollary 8. By a non-trivial coin-toss protocol we mean a protocol s.t. (in the uncorrupted
case) the probability that the parties give no or different output is negligible. By a perfectly
non-trivial coin-toss protocol where this probability is zero.

Let m be not superlogarithmic and n > m. Then there is no non-trivial protocol realising
n-bit coin-toss using an m-bit coin-toss in the sense of statistical stand-alone simulatability.

Let m be any function (possibly superlogarithmic) and n > m. Then there is no perfectly
non-trivial protocol realising n-bit coin-toss using an m-bit coin-toss in the sense of perfect
stand-alone simulatability.

Proof. A statistically secure protocol would have the security property from Theorem [dand thus,
if non-trivial, contradict Theorem [ Analogously for perfect security. O

However, not all is lost:

Now we will prove that there exists a protocol for coin toss extension from m to n bit
which is statistically stand-alone simulatably secure. The basic idea is to have the parties P;
and P, contribute random strings to generate one string with sufficiently large min-entropy (the
min-entropy of a random variable X is defined as min, — log Pr[X = z]). The randomness from
this string is then extracted using a randomness extractor. Interestingly the amount of perfect
randomness (i.e., the size of the m-bit coin-toss) one needs to invest is smaller than the amount
extracted. This makes coin toss extension possible.

To obtain the coin toss extension we need a result about randomness extractors able to extract
one bit of randomness while leaving the seed reusable like a catalyst.

Lemma 9. For every m there exists a function hy, : {0,1}™ x {0,1}™~! — {0,1},(s,z) — r
such that for a uniformly distributed s and for an x with a min-entropy of at least t the statistical
distance of s|hm(s,x) and the uniform distribution on {0,1}™+1 is at most 274/2/\/2.

Proof. Let hp,(s,x) := ($1...8m—-1,2) ® S$m. Here (-,-) denotes the inner product and & the
addition over GF(2). It is easy to verify that h,,(s,-) constitutes a family of universal hash
functions [CWT9], where s is the index selecting from that family. Therefore the Leftover Hash
Lemma [[LLRY, Sfi02] guarantees that the statistical distance between s||h,, (s, ) and the uniform
distribution on {0,1}™*! is bounded by 1v/2.2-t = 271/2/,/2, 0
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With this function h,, a simple protocol is possible which extends m (k) coin tosses to m(k)+1
if the function m(k) is superlogarithmic.

Theorem 10. Let m(k) be a superlogarithmic function, then there exists a constant round sta-
tistically stand-alone simulatable protocol that realises an (m + 1)-bit coin-toss using an m-bit
coin-toss.

Proof. Let hy, be as in Lemma [l Then the following protocol realises a coin toss extension by
one bit. Assume m := m(k) where k is the security parameter.

1. P; uniformly chooses a € {0, 1}LmTflJ and sends a to P

2. P uniformly chooses b € {0, 1}[%” and sends b to P;

3. If one party fails to send a string of appropriate length or aborts then this string is assumed
by the other party to be an all-zero string of the appropriate length

4. P, and P, invoke the m-bit coin toss functionality and obtain a uniformly distributed s €
{0,1}™. If one party P; fails to invoke the coin toss functionality or aborts, then the other
party chooses s at random

5. Both P; and P, compute ||, (s, al|b) and output this string.

Similar to construction 7.4.7 in [Gol04] the protocol is constructed in a way that the adversary
is not able to abort the protocol (not even by not terminating). Hence we can safely assume
that the adversary will send some message of the correct length and will invoke the coin toss
functionality. We assume the adversary to corrupt P», corruption of P; is handled analogously.
Further we assume the random tape of A to be fixed in the following. Due to these assumptions
there exists a function fa : {0,1}™/2] — {0,1}I™/2] for each real adversary A such that the
message b sent in step 2 of the protocol equals f4(a). There is no loss in generality if we assume
the view of the parties to consists of just a,b, s and the protocol output to be sk, (s, al|b).

Now for a specific adversary A with fixed random tape the output distribution of the real
protocol (i.e., view and output) is completely described by the following experiment: choose

ac {0,1}™/2] et b« fa(a), choose s € {0,137 et 7 « s||hy, (s, al|b) and return ((a, b, s), 7).
We now describe the simulator. To distinguish the the random variables in the ideal model
from their real counterparts, we decorate them with a ~, e.g., a,b,§. The simulator in the

ideal model obtains a string 7 e {0,1}™+! from the ideal n-bit coin-toss functionality and sets

m—1
2

§=r1...7. Then the simulator chooses @ & {0,1}1"=7) and computes b = f4(a) by giving a
to a simulated copy of the real adversary. If h,, (8, @||b) = Fpyy then the simulator gives 3 to the
simulated real adversary expecting the coin toss. Then the simulator outputs the view (a, l;, 5). If
however, h,, (3, @||b) # 7m+1 then the simulator rewinds the adversary, i.e., the simulator chooses

a fresh a € {0,1}1"7) and again computes b = f4(a). If now A, (5,al|b) = Fpmi1 the simulator
outputs (@,b, 5). If again hy,(3,al|b) # 7m41 then the simulator rewinds the adversary again.
If after k& invocations of the adversary no triple (a, B, 5) was output, the simulator aborts and
outputs fail.

To show that the simulator is correct, we have to show that the following to distributions are
statistically indistinguishable: ((a, b, s),r) as defined in the real model, and ((a, b, 5), 7).

By construction of the simulator, it is obvious that the two distributions are identical under
the condition that r,, = 0, 7,, = 0 and that the simulator does not fail. The same holds given
rm = 1, 7, = 1 and that the simulator does not fail. Therefore it is sufficient to show two things:
(i) the statistical distance between r and the uniform distribution on n bits is negligible, and
(ii) the probability that that the simulator fails is negligible. Property (@) is shown using the
properties of the randomness extractor h,,. Since a is chosen at random, the min-entropy of a is
at least [1] > 2 — 1, so the min-entropy of al|b is also at least 2 — 1. Since s is uniformly

2
distributed, it follows by Lemma [ that the statistical distance between r = s||h,.(s,ald) is
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bounded by 2-"/4=1/2 /\/2 = (27™)1/4 /2. Since for superlogarithmic m it is 2~™ negligible, this
statistical distance is negligible.

Property () is then easily shown: From () we see, that after each invocation of the adversary
the distribution of h,, (3, a||b) is negligibly far from uniform. So the probability that &, (3, a||b) #
Fm is at most negligibly higher than 1. Since the h, (3, a||b) in the different invokations of the
adversary are independent, the probability that h,, (3, &||l~7) # T'm after each activation is neglibigly
far from 27%. So the simulator fails only with negligible probability.

It follows that the real and the ideal protocol execution are indistinguishable, and the protocol
stand-alone simulatably implements an (m+1)-bit coin-toss. O

The idea of the one bit extension protocol can be extended by using an extractor which
extracts a larger amount of randomness (while not necessarily treating the seed like a catalyst).
This yields constant round coin toss extension protocols. However, the simulator needed for
such a protocol does not seem to be efficient, even if the real adversary is. To get a protocol
that also fulfils both the property of computational stand-alone simulatability and of statistical
stand-alone simulatability, we need a simulator that is efficient if the adversary is.

Below we give such a coin toss extension protocol for superlogarithmic m(k) which is sta-
tistically secure and computationaly secure, i.e., the simulator for polynomial adversaries is
polynomially bounded, too. The basic idea here is to extract one bit at a time in polynomially
many rounds.

Theorem 11. Let m(k) be superlogarithmic, and p(k) be a positive polynomially-bounded func-
tion, then there exists a statistically and computationally stand-alone simulatable protocol that
realises an (m + p)-bit coin-toss using an m-bit coin-toss.

Proof. Let h,, be as in Lemma [l Then the following protocol realises a coin toss extension by
p(k) bits.
1. fori=1 to p(k) do
(a) P; uniformly chooses a; € {0, 1}LmTflj and sends a; to P»
(b) P, uniformly chooses b; € {0,1}[*="1 and sends b; to P
(c) If one party fails to send a string of appropriate length or aborts then this string is
assumed by the other party to be an all-zero string of the appropriate length
2. P; and P, invoke the m-bit coin toss functionality and obtain a uniformly distributed
s €{0,1}™. If one party P; fails to invoke the coin toss functionality or aborts, then the
other party chooses s at random
3. Py and P, compute s||/hy, (s, a1[[b1)]] ... ||hm(s, apu)llbp)) and output this string.
We only roughly sketch the differences to the proof of Theorem [[ML For each protocol round the
simulator follows the strategy described in the proof of Theorem[I (i.e., the simulator rewinds the
adversary by one round, if the coin-toss produced is not the correct one.) Then using standard hy-
brid techniques it can be shown that this simulator indeed gives an indistinguishable ideal proto-
col run. Here it is only noteworthy that we use the fact that s||h,, (s, a1[[b1)| - . . [P (S, ape) |bp(x))
is statistically indistinguishable from the uniform distribution on m-p bits. However, this follows
directly from Lemma [ and the fact that each a;||b; has min-entropy at least |5 | even given

2
the values of all a,||b, for p < i. O

4.2 Universal Composability (statistical/perfect case)

In the case of statistical security, adversary and protocol environment are allowed to be com-
putationally unbounded. In that case, we show that there is no simulatably secure coin toss
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extension protocol that runs in a polynomial number of rounds. This is forced by requiring the
parties to halt after a polynomial number of activations. However, note that we do not impose
any restrictions on the amount of computational work these parties perform in one of those
activations.

The proof of this statement is done by contradiction. Furthermore, the proof is split up into
an auxiliary lemma and the actual proof. In the auxiliary lemma, we show that without loss of
generality, a protocol for statistically universally composable coin toss extension has a certain
outer form. Then we show that any such protocol (of this particular outer form) is insecure.

For the following statements, we always assume that m = m(k),n = n(k) are arbitrary
functions, only satisfying 0 < m(k) < n(k) for all k. We also restrict to protocols that proceed in
a polynomial number of rounds. That is, by a “protocol” we mean in the following one in which
each party halts after at most p(k) activations, where p(k) is a polynomial which depends only
on the protocol. (As stated above, the parties are still unbounded in each activation.) We start
with a helping lemma whose proof is available in Appendix A6

Lemma 12. If there is a non-trivial statistically universally composable protocol for (m — n)-
coin toss extension, then there is also one in which each party

— has only one connection to the other party and one connection to CT,,,

— in each activation sends either an “init” message to CT,, or some message to the other
party,

— sends in each protocol run at most one message to CT,,, and this is always an “init” message,

— the internal state of each of the two parties consists only of the view that this party has
experienced so far, and

— after P; sends “init” to CT,,, it does not further communicate with Ps_; (for i =1,2 and
in case of no corruptions).

We proceed with

Lemma 13. There is no non-trivial statistically universally composable protocol for (m — n)-
coin toss extension which meets the requirements from Lemma [I2.

Proof. Assume for contradiction that =, using CT,,, is a statistically universally composable
implementation of CT,,, and also satisfies the requirements from Lemma [[A

Assume a fixed environment Zj that gives both parties “init” input and then waits for both
parties to output a coin toss result. Consider an adversary Ag that delivers all messages between
the parties immediately. The resulting setting Dy is depicted in Figure [1l

Denote the protocol communication in a run of Dy, i.e., the ordered list of messages sent
between P; and P, by com. Denote by k1 and k4 the final outputs of the parties. For M C {0, 1}"
and a possible protocol communication prefix ¢, let E(M,¢) be the probability that the protocol
outputs are identical and in M, provided that the protocol communication starts with ¢, i.e.,

E(M.¢) :==Pr[k1 = ko € M | T < com],

where z < y means that x is a prefix of y.

Note that the parties have, apart from their communication com, only the seed w € {0,1}™
provided by CT,, for computing their final output x. So we may assume that there is a deter-
ministic function f for which k1 = k2 = f(com,w) with overwhelming probability.

For a fixed protocol communication com = ¢, consider the set

M, = {0,1}" \ { fle,s) | s€{0,1}™ }
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Fig. 1. Left: The initial setting Dy for the statistical case. (Some connections which are not
important for our proof have been omitted.) Right: Setting D, with a corrupted P;. Setting Do
(with P, corrupted instead of P;) is defined analogously.

of “improbable outputs” after communication c. Then obviously |M.| > 27 — 2™ > 2"~1 By
definition of the ideal output (i.e., the output of CT,, in the ideal model), this implies that for
sufficiently large security parameters k, the probability that k1 = ko € M, is at least 2/5. (Here,
any number strictly between 0 and 1/2 would have done as well.) Otherwise, an environment
could distinguish real and ideal model by testing for k3 = ko € M,. Since E(M,,¢) is exactly
that probability, we have E(M,,e) > 2/5 for sufficiently large k. Also, E(M,, ¢) is negligible by
definition, so M, satisfies

E(M.,e) — E(M.,c) > (1)

Wl

for sufficiently large k.

Since the protocol consists by assumption only of polynomially many rounds, c is a list of
size at most p(k) for a fixed polynomial p. This means that there is a prefix ¢ of ¢ and a single
message m (either sent from P; to P» or vice versa) such that ¢m < ¢ and

_ _ 1
E(M.,¢) — E(M.,em) > T(k) (2)

for sufficiently large k. Intuitively, this means that at a certain point during the protocol run, a
single message m had a significant impact on the probability that the protocol output is in M..

Note that such an m must be either sent by P, or P. So there is a j € {1,2}, such that
for infinitely many k, party P; sends such an m with probability at least 1/2. We describe a
modification D; of setting Dy. In setting D;, party P; is corrupted and simulated (honestly)
inside Z;. Furthermore, adversary A; simply relays all communication between this simulation
inside Z; and the uncorrupted party Ps_;. For supplying inputs to the simulation of P; and to
the uncorrupted P;_;, a simulation of Z; is employed inside Z;. The situation (for j = 1) is
depicted in Figure [l

Since D; is basically only a re-grouping of Dy, the random variables com, w, and k; are
distributed exactly as in Dy, so we simply identify them. In particular, in Dj, for infinitely many
k, there is with probability at least 1/2 a prefix ¢ and a message m sent by P; of com that
satisfy ().
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Now we slightly change the environment Z; into an environment Z’. Each time the simulated
Pj sends a message m to P3_;, Z} checks for all subsets M of {0,1}" whether

n . = - 1
M C{0,1}": E(M,¢)—E(M,em) > ) (3)
where ¢ denotes the communication between P; and P;_; so far.

If @) holds at some point for the first time, then Z} tosses a coin b uniformly at random, and
proceeds as follows: if b = 0, then ij keeps going just as Z; would have. In particular, ij then
lets P; send m to P5_;. However, if b = 1, then ZJ rewinds the simulation of P; to the point
before that activation, and activates P; again with fresh randomness, thereby letting P; send a
possibly different message m/. In the further proof, ¢, m, and M refer to these values for which
@) holds.

In any case, after having tossed the coin b once, ZJ’» remembers the set M from (@), and
does not check (Bl again. After the protocol finishes, Z; outputs either (L, 1) (if ([Bl) was never
fulfilled), or (b, 3) for the evaluation /3 of the predicate [k; = ko € M] (i.e., 8 = 1 iff the protocol
gives output, the protocol outputs match and lie in M).

Now by our choice of j, Pr[b # L] > 1/2 for infinitely many k.

Also, Lemma [[A guarantees that the internal state of the parties at the time of tossing b
consists only of ¢. So, when ZJ’» has chosen b = 1, and rewound the simulated P;, the probability
that at the end of the protocol k1 = ko € M is the same as the probability of that event in
the setting D; under the condition that the communication com begins with €. This probability
again is exactly E(M,¢) by definition.

Similarly, when ZJ’< has chosen b = 0, the probability that at the end of the protocol k1 =
k2 € M is the same as the probability of that event in the setting D; under the condition that
the communication com begins with ém, i.e. E(M,em).

Therefore just before Z} chooses b (i.e., when ¢ and M are already determined), the probability
that at the end we will have 3 = 1A b = 1 is %E(M, ¢) and the probability of 5 = 1A b =
0 is $E(M,¢m). Therefore the difference between these probabilities is at least 3 (E(M,¢c) —
E(M, Em)) > #(k).

Since this bound on the difference of the probabilities always holds when b # L, by averaging
we get

1
PriB=1Ab=1|b# L] =Pr[B=1Ab=0|b# 1] > ——
| [b# 1] —Pr] b L) o
and using the fact that Pr[b # L] > 1 for infinitely many k we then have that
1
PriB=1Ab=1] —Pr[f=1Ab=0] > —— 4
| |~ Pr] 2 o (@

for infinitely many k& when ij runs with the real protocol as described above.

We show that no simulator S; can achieve property @) in the ideal model, where ij runs
with CT,, and S;. To distinguish random variables during a run of Z} in the ideal model from
those in the real model, we add a tilde to a random variable in a run of ZJ’- in the ideal model,
e.g., b, b.

Since the protocol 7 is non-trivial, for any S; achieving indistinguishability of real and ideal
model, we can assume without loss of generality that S; always delivers outputs.

By construction of b and K, the variable b and the tuple (M, k) are independent given b #+ 1.
Hence, since 3 is a function of M and &,

Pr[(z},ﬁ) — (0,1)} - Pr[(é, 3) = (1,1)]. (5)
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So comparing (@) and and (H), ZJ’-’S output distribution differs non-negligibly in real and ideal
model. So no simulator S; can simulate attacks carried out by ZJ'» and Aj;, which gives the desired
contradication. O

Combining the above Lemmas [[A and [[3 we therefore get:

Theorem 14. There is no non-trivial statistically universally composable protocol for (m — n)-
coin toss extension that proceeds in a polynomial number of rounds.

In the proof of Lemma [[3 we have used that the protocol has only polynomially many
rounds only in one place. Namely, we obtained in () that one party sends a message that has
non-negligible impact on the probability that x € M. For perfect security, we need only that
one party has some non-zero impact on that probability, i.e., we can drop the requirement on
the polynomial number of protocol rounds in the perfect case. The reasoning in the proof stays
exactly the same, only that we end up with the left-hand side of @) being non-zero instead of
non-negligible. This suffices to show that the considered protocol is not perfectly secure, and
thus:

Corollary 15. There is no non-trivial perfectly universally composable non-trivial protocol for
(m — n)-coin toss extension (the number of rounds does not matter here).

However, we do not know whether or not there is a protocol for the statistical case that proceeds
in a superpolynomial number of rounds.

Note that all discussions above assume that statistical security means security with respect to
unlimited adversaries, simulators and environments, i.e., machines that can implement any prob-
abilistic function, even e.g., the halting problem or similar. Often however, statistical security
is instead defined with respect to unlimited Turing machines, i.e., machines that can only im-
plement computable functions. To show the above results for this case, one could try and check
whether all constructions given in the proof above are indeed computable or can be replaced
by computable approximations. Fortunately, however, there is an easier way, using results from

[Unr(6].

Corollary 16. Say a protocol is bounded-time if there is a (not necessary small or computable)
bound on the execution time of that protocol (e.g., all efficient protocols are bounded-time). Let
further n,m be computable functions, and m > n.

Then there is no non-trivial bounded-time protocol for (m — n)-coin toss extension that
proceeds in a polynomial of rounds and that is statistically universally composable with respect to
adversaries / environments / simulators that are unlimited Turing machines.

Proof. [Unr06]| show that a bounded-time protocol is universally-composably implements a bounded-
time functionality with respect to unlimited adversaries / environments / simulators if and only
if it universally-composably implements that functionality with respect to unlimited Turing ad-
versaries / environments / simulators. Since the n-bit and m-bit coin-toss functionalities are
bounded-time, too (n(k) can be evaluated in finite time), a protocol contradicting this corollary
would also contradict Theorem [T4 O

Similar reasoning applies to the perfect case, we omit the details here.
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A Detailed Proofs

A.1 An auxiliary lemma

Lemma 17. For any interactive machine M, there is a (not necessarily efficient) interactive
machine M’ that has the same behaviour as ME but M’ additionally fulfils the following property:
In each activation, the output of M’ depends only on the input and output M’ received so far
and on fresh randomness, but not on any internal state.

Proof. We transform the machine M into M’ as follows: In an activation of M’, let com denote
the communication so far. Let I.,,, denote the inputs of M’ in com and O, the outputs. Then,
for any possible output x, M’ calculates the conditional probability p, that M gives output x
when receiving I.,,, under the condition that it gave outputs O.., so far. Then M’ outputs x
with probability p,. By construction, the probability that M’ outputs a sequence Oy, given
inputs I, is the same as the probability that P outputs O, given inputs Iop,. It follows that
M and M’ behave identically. O

A.2 Proof of Lemma

Proof (of Lemma [3). The main work (i.e., finding the protocol and proving its security) has
been done in [CLOS02). It is left to show that for their construction a CRS of length poly(s) is
sufficient. By poly(s) we mean a polynomially-bounded function in s which is independent of s
and the chosen ETD. (In [CLOS02] it is only shown that a CRS of length p(k) is sufficient, where
k is the security parameter and p a polynomial depending on the ETD.)

In [CTOS02], there is a protocol UAHC that, assuming a uniform CRS and the existence of
ETD, implements multiple commitments. The CRS is assumed to contain the following: (i) a
random image under a one-way function fi (that depends on the security parameter k). (ii) a
public key for a semantically secure cryptosystem E. (iii) a public key for a CCA2-secure cryp-
tosystem F..q.

The one-way function f may be constructed from the ETD as follows: f interprets its input r
as randomness to be used in the ETD key generation algorithm and outputs the resulting public
key. Then for security parameter k, the images of f have length s; < s (since they are public
keys). Further, since the public keys are indistinguishable from uniform randomness by definition
of the ETD, random images of f are computationally indistinguishable from s;-bit randomness.

Second, a semantically secure cryptosystem FE can be constructed from the ETD using the
construction from [GMS&4] [GT.RI|. Then the public key for E is just a public key for the ETD. It
follows that the length of the public keys is s1(k), and random public keys are indistinguishable
from s;-bit randomness.

The construction of E.., (from [DDN9T]) is more involved. For this, we first need a non-
interactive zero knowledge proof system (NT1ZK). [Gol01l Constr. 4.10.4 and 4.10.7] together with
the additional remarks in [Gol04, C.4.1] present such a scheme, based on enhanced trapdoor
permutations. We will now examine the size of the CRS needed for that protocol. To prove a
statement that is described by a circuit of size so, the CRS consists—for one iteration of the
proof—of poly(ss) commitments to random bits using a trapdoor permutation. The length of each
commitment is O(s) since s bounds the size of the circuits describing the trapdoor permutation
scheme. To guarantee soundness, poly(ss) - m-parallel executions of the scheme are necessary
(using the same trapdoor permutation, see [Gol01l Constr. 4.10.4]) where m is a superlogarithmic

8 By having the same behaviour we mean, that given a fixed sequence of inputs, the outputs of M and
M’ have the same probability distribution.
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function in the security parameter. So if we choose m := s, the length of the CRS used by the
NIZK scheme is bounded by poly(s(k) + s2(k)).

Another ingredient we need is a universal family of one-way hash functions. In [Rom90] a
scheme is presented, that converts a one-way-function f into a universal family of one-way hash
functions. Here both description and image of the hash function have a length s3 € poly(sa),
where s, is the length of the images of f. If we use the f constructed above, s4 < s.

Now, we come back to the construction of F..,. In this construction, the public key consists of
(i) a hash function h from the abovementioned family (s3 bit), (ii) 2s4 public keys for a trapdoor
permutation scheme (2s4s bit) and (iii) a CRS for the NIZK scheme above to show a statement
that can be described by a circuit of size polynomial in 2s, and the size of the circuits describing
the trapdoor-permutation scheme (which is bounded by s). So the CRS has a length of at most
poly(s+ s4) bit. Putting this together, and noting that s, < s, we see that the public key of F,
has a length in s3 4 2545 + poly(s + s4) C poly(s).

Finally, since the protocol UAHC from [CLOS02| uses a CRS consisting of a public key for
E, a public key for E.., and an image of f. By our calculations above, the total length of that
CRS lies in poly(s). O

A.3 Proof of Lemma @

Proof (of Lemma[j). Let I be the key generation algorithm and S be the sampling algorithm
of the system for (exponentially-hard) ETD. We now construct a new scheme (I’, S”) as follows:
I'(K') :=1(s(k')) and S” := S. Since I and S can be described by polynomial-size circuits, (I’, S")
satisfies the restriction of the circuit size to s¢ for some ¢ € N. It is left to show, that (I’,5") is
system for ETD.

We will use the following notation: When talking about the original ETD (I, S), we will use
the names from Def. A (e.g., 4, k, ). When talking about (I’,5”), we will add a prime (e.g., A’,
K, ).

Let a polynomial-time A’ be given. W.l.o.g., we can assume that A’ behaves identically for
k' =k} and k' := k) with s(ky1) = s(k2).

We then construct a machine A as follows: Upon input 1%, A chooses k' to be the smallest
K with s(k') = k (i.e., ¥ := mins~({k})). Then it runs A’(1¥).

As we will show below, A runs in polynomial-time (or subexponential-time in the case of
exponentially-hard ETD). So there is negligible (or exponentially-small) u s.t., all conditions in
Def. Bl hold. Let p/(k") := wu(s(k’)). Then by construction, all the conditions in Def. B also hold
for A’, 1/ and the modified system (I’,S”) (to see this, simply substitute (k') for k). Since p is
negligible (as we will show below), it follows that (I’,S’) is a system for ETD.

It is left to show that A runs in polynomial-time (or subexponential-time in the case of
exponentially-hard ETD), and that ' is negligible.

Since A runs in time polynomial in k := mins~'({k}) (note that calculating k takes time
polynomial in l;), it is sufficient to show that % is polynomially-bounded (or subexponential, resp.)
in k. We distinguish two cases. Case 1: If s is polynomially-large, then there is a ¢ s.t. s(k")¢ > &k’
for almost all k. Then we have s(k’) > k’Y/¢ and then (since k/¢ is increasing and invertible)
kE=mins~ ' ({k}) < k¢ for almost all k.

Case 2, s is superlogarithmic: Let ¢ € N be arbitrary. Then 25(F) > ke for sufficiently large k'.
It follows s(k’) > clog k’, and (since c¢log K’ is increasing and invertible) k = min s~ ({k}) < 2¥'/¢
for sufficiently large k. Since this holds for every ¢ € N, k € 2°(%) i.e., k is subexponential in k.

It remains to show that u’ is negligible. In the first case (where s is polynomially-large), u is
negligible. We can assume w.l.0.g., that u is also strictly increasing. Since s is polynomially-large,
there is a ¢ € N, s.t. for sufficiently large &' it is s(k’) > k’*/¢. Then p/ (k') = pu(s(k')) > u(k'*/°)
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is negligible. In the second case s is superlogarithmic and p is exponentially-small. So we can
w.l.o.g. assume that p(k) = ¢~* for some ¢ > 0 and sufficiently large k. Then we have that
W (k') = (275%))leg e for almost all k’. Since 275K is negligible, so is p'. 0

A.4 Proof of Theorem

Proof (of Theorem [@). We use the notation from the proof sketch. So assume for contradiction
that 7, using CT,,, implements CT,. We start with a network Cjy of machines as in a real
protocol run with corrupted P;. More specifically, Cy consists of a party P, a helping coin toss
functionality CT,,, an adversary A; that takes the role of a corrupted P, and an environment
Z. Note that the corrupted party P; has been removed, since it is taken over by the adversary.

The machine A; simply relays the connections of the corrupted P; to Z;. That is, every
message sent from CT,, or P, to the corrupted P; is forwarded to Z;, and A; lets Z; send
messages to CT,, or P, in the name of P;. Now Z; in turn internally simulates an instance P,
of party P; and lets this simulation take part in the protocol through A;. The machine Z only
gives “init” inputs to the parties P; and P, and then collects their outputs. At the end of the
execution, Z gives output 1 iff both parties give output and both outputs are identical. The
output is passed through by Z;. The situation is depicted in Figure 2

CT,. CT,
W9 K1
Al P2 Sl
w1 K2 w1 K2
P ez Pz
z ¥

Fig. 2. Left: The real protocol with corrupted P; and relaying A;. Right: The real protocol with
corrupted P; and simulator Sj.

Our first claim is that in runs of this network C7, eventually identical &1 and ks are observed
by Z; with overwhelming probability. Indeed, by definition of CT,,, in an ideal protocol run with
no corruptions, the outputs x; and ko must be identical if both are output. By simulatability, this
must also hold with overwhelming probability in runs of the real protocol without corruptions.
Since protocol 7 is non-trivial, in such a case output is guaranteed, and we have thus k1 = ko
with overwhelming probability. This carries over to Cy, since C is formed from an uncorrupted
real protocol simply by relaying some messages through A; and by re-grouping machines. So in
C1, 21 gives output 1 with overwhelming probability.

Now by simulatability, there must be a simulator S; in the ideal setting with CT,, that
simulates attacks carried out by A;. In our situation (depicted in Figure B), this simulator must
in particular achieve that K1 = ko with overwhelming probability. In other words, S; must
“convince” the simulation of P; to output the x; that was chosen by the ideal CT,,. To this end,
S1 may make up an initial seed w; from a machine CT,, that is actually not present in the ideal
model. Also, §; may make up suitable responses from a faked party P, (that is also not present
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in the ideal model) to communication from P;. Call this network (consisting of S, CT,,, and 21)
Cs. Since the probability that Z gave output 1 was overwhelming in C1, the same holds for Cs
by the definition of UC-security.

Now we modify network Cs. First, we re-group machines and make the simulation P; of P
a machine of its own. (This machine is then identical to P;.) Then, we introduce a new machine
CT,, that ideally selects and delivers an wy to P;. Both the @3 also output by CT,, and the wy
still output by S&; are simply collected by a dummy machine * that does nothing. The resulting
collection is called C3 and depicted in Figure

CT,. CT,
Wy k1
w1
S,

w1 Ko

Fig. 3. Left: The modification C5 of C5. Right: The re-grouping Cy4 of Cs.

Z

The collections Cy and C3 provide completely identical views for P; when w; = @y in C3. This
again happens with probability 27" be definition. Since in Cy Z gave output 1 with overwhelming
probability, it follows that in C5 the probability is at least 27 — u for some negligible p.

Now comes the crucial part: we combine Z, S;, CT,,, and the dummy machine  (that is to
say, all machines but P; and CT,,) into a large protocol environment Z;. A new real adversary is
added that only relays the connection between S; to P; and the connection between * and CT,,.
(The connection between Z and P; need not be relayed since this constitutes an input-output
connection and no connection for intra-protocol communication.)

This re-grouping of machines gives a new network Cy (cf. Figure Bl). Note that Cj is only a
re-grouping of C5 (followed by the insertion of a machine Ay) that just forwards messages, and
hence it still holds that Z gives output 1 with probability 2= — u. Note further, that C4 actually
is a configuration of the real protocol with environment Z5 and real adversary As; in this case
however, this is a configuration in which the adversary A, takes the place of a corrupted party
Ps.

Now by simulatability, there must be a simulator Sy that in an ideal setting with CT,, (here
we use the different name CT,, only to avoid conflicting names with the CT,,-instance inside Z5).
This simulator simulates attacks carried out by As on the real protocol.

In particular, this simulator achieves that a 1-output of Z is at most negligibly less probable
than in the real setting Cy. However, in the real setting this probability has a lower bound of
27™ — i for some negligible . On the other hand, in the ideal setting of C5, both 1 and k9 are
chosen in an ideal manner as independent uniform n-bit strings by instances of the trusted host
CT,.. So the probability that "1 = k2 in C5 is at most 27" (note that it is also possible, that no
output is generated), and therefore the probability of an 1-output in C5 is bounded by 27". So
the difference between the probabilities that Z outputs 1 in runs of Cy and Cj is at least

9—m 7[/[/72771 Z 27m71 —
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which is not negligible since m is not superlogarithmic. This contradicts the fact derived above
that the difference of the probabilities is negligible. So 7 cannot securely implement an n-bit coin
toss. O

A.5 Proof of Theorem

Proof (of Theorem [@). We first consider the statistical (i.e., non-perfect) case. Let us assume
that such a 7 exists.

W.lo.g., we can assume the following facts about : (i) If no party is corrupted, both always
give the same output or no output (the latter we write as L). Further, the outcome of the
protocol (for the honest parties) is a deterministic function of the messages sent and the value s
of the m-bit coin-toss. If this is not the case, we can modify 7 to contain confirmation messages
at the end, where both parties tell each other what they are going to output. If these values
do not match, both output L. (ii) No messages are sent after invoking the m-bit coin-toss. If
7w sends messages after the m-bit coin-toss, we can transform 7 s.t. when the m-bit coin-toss
s would have been invoked, both parties perform the remainder of the protocol in parallel for
each possible value of s (i.e., each message sent consists of 2™ different messages, one for each
value of s). At the end, when s is finally chosen, the protocol execution corresponding to s is
chosen and the coin-toss. Note that this transformation does not invalidate assumption (). The
resulting protocol is inefficient (unless m is logarithmic), but this does not matter, since we prove
the theorem even for inefficient protocols 7. (iii) The honest parties maintain no internal state
except for the list of the messages sent so far. Since we do not require the parties to be efficient,
a machine can be transformed into such a machine without change of behaviour (by Lemma [[7).
Further, we can w.l.o.g. assume that n = m + 1.

We call the parties Alice and Bob.

In the following, by a complete transcript ¢ we mean all messages sent during a run of the
protocol 7, excluding the value s of the m-bit coin-toss. The protocol outcome (of the honest
parties) is then f(t,s) € {0,1}™U{L} for some deterministic function f. By a partial transcript
we mean a prefix of a complete transcript.

We can now distinguish three sets of complete transcripts ¢: The set 2 of transcripts, where
the probability is non-zero that the output 0™ is generated, the set 9 of transcripts, where
the probability of output 0™ and of output L is zero, and the set € of transcripts, where the
probability of output _L is non-zero. Formally:

A= {t:3s e {0,1}™: f(t,s) =0"}
B = {t:Vse{0,1}": f(t,s) #0", f(t,s) # L}
C:={t:3se{0,1}™: f(t,s) =L}

We now associate to each partial transcript p values «,, 8, and 7,. The value oy, is defined
as the maximum probability, going over all adversaries, that with corrupted Alice the complete
transcript of the protocol will lie in 2(, when starting with the partial transcript p (this is well-
defined, since the honest parties do not maintain a state except for the transcript so far). In other
words, «, denote, with what probability a corrupted Alice can enforce a complete transcript in
2. Similarly, 3, is defined as the maximum probability that the complete transcript will lie in B
for corrupted Bob. And finally, v, is the probability that in the uncorrupted case, the complete
transcript will lie in € when starting from p.

Let now ¢ be a complete transcript. Then «, 8,7 € {0,1}. Furthermore, since AU B U €
contains all complete transcripts, at least one of av, 3¢, ¢ is not 0. So, for every complete transcript
t, it holds (1 — O[t)(l — ﬂt) S Y-

21



Now consider a partial transcript p that is not complete. Let us assume that at that point
of the protocol, it is Alice’s turn to sent a message. Then there is a set M of partial transcripts
that can immediately succeed p (one for each message that Alice can send). Furthermore, for
each partial transcript ¢ € M, there is a well-defined probability r; that given an uncorrupted
Alice the next partial transcript will indeed be 7. It is ) 3, ,, 7 = 1. Then we have

e D DL ot ©

€M ie M

since a corrupted Alice may choose the partial transcript ¢ that maximises «, while if only Bob
or no-one is corrupted, the next partial transcript is chosen accordingly to the probabilities r;
prescribed by the protocol. Let us assume that (1 — «;)(1 — ;) < ; holds for all ¢ € M. Then
we can conclude (1 — a,)(1 — 8,) < 7, as follows: First we write @, for 1 — o, and analogously
for the other values. Then

@po = Zﬁ'@p@ < Zﬁ@zﬂ_z‘ < ZH%‘ =
i i

i

(note that since ), _,,m = 1, (@) also holds for B... and 7. instead of 3. and v, ).

Analogous reasoning can be applied when Bob is corrupted. By induction we therefore get
(1—a,)(1—0p) < 7, for any partial transcript p. Let () denote the empty partial transcript, i.e., the
beginning of the protocol. Then for « := ay, 5 := By, v := yp it also holds that (1—a)(1—2) < 7.
Since 7 was assumed to be non-trivial, the probability that the protocol gives output L in the
uncorrupted case is negligible. If a protocol reaches a complete transcript in €, it will output L
with probability at least 27™, so the probability that = output L is at least 27+, so 27"y is
negligible, too. Since 27" is non-negligible, there exists an infinite set K, s.t. 27" is noticeable
on K. If v was non-negligible on K, 27"~ would be non-negligible on K. So v must be negligible
on K. Since (1 —«)(1—3) > v, for each k € K, one of 1 — and 1 — 3 is bounded by /7 which
is negligible on K. So there is an infinite set K’ C K, s.t. 1 — « or 1 — (3 is negligible on K.

Let us consider the first case, i.e., a is overwhelming on K’. By assumption, the probability
P for protocol output 0" (with corrupted Alice) is bounded from above by 27" + u for negligible
1. But since a complete transcript in 2 has probability at least 2" of giving output 0™, we have
P>2""a=2""+(a—1)27™ (note n = m+1), so u > (o — 1)27™. Since « is overwhelming
and 27" noticeable on K, 1 is not negligible, which concludes the proof in this case.

Let us consider the second case, i.e., 8 is overwhelming on K’. By assumption, the maximum
probability P for an output in {0, 1}™\{0™} (with corrupted Bob) is at least 27 (2" —1)+pu(2"—1)
for some negligible . On the other hand, since a complete transcript in 8 has probability 1 of
giving output in {0,1}™\ {0"}, we have P > (3. Tt is

P2[=2"2" -1+ (grgr—y — 7o) (2" = 1)

and thus p > ﬁ"—l) — ;n;_ﬁ Since 27™ is noticeable on K’, 2" = 2. 2™ is polynomially

bounded on K’, so is noticeable on K’. Further 1 — /3 is negligible, so the lower bound

1
272" —1
for p is also noticeabl(e on )K . Tt follows that g is not negligible, which concludes the proof in
the statistical (non-perfect) case.

For the perfect case, the proof of (1 —«)(1— ) <« is performed identically (since we did not
use the non-triviality and the security of 7 in that part of the proof). By the perfect non-triviality
we get v = 0, so for every k, at least one of o, 5 is 1. If a« = 1, the probability for an output of 0™
is (for suitable adversary) > 27 > 27", If § = 1, the probability for an output in {0,1}"\ {0"}
is 1 > (2™ — 1)27". Both cases contradict the security property. O
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A.6 Proof of Lemma
Proof (of Lemma[Id). We split the proof up in several lemmas:

Lemma 18. If there is a statistically universally composable protocol for (m — n)-coin toss
extension, then there is also one in which each party

— has only one connection to the other party and one connection to CT,,,
— in each activation sends either an “init” message to CT,, or some message to the other

party,
— sends in each protocol run at most one message to CT,,, and this is always an “init” message.

Proof. This is proven by a straightforward conversion of a statistically universally composable
(m — m)-coin toss extension protocol into one that satisfies the lemma requirements. We omit
the details. O

Lemma 19. If there is a statistically universally composable protocol for (m — n)-coin toss
extension, then there is also one in which

— the parties satisfy the requirements from Lemma I8,
— the internal state of each of the two parties consists only of the view that this party has
experienced so far.

Proof. This is a direct consequence of Lemmas [[8 and [ O

Lemma 20. If there is a statistically universally composable protocol for (m — n)-coin toss
extension, then there is also one in which

— the parties satisfy the requirements from Lemmas[I8 and I3,
— after P; sends “init” to CT,,, it does not further communicate with Ps_; (for i =1,2 and
in case of no corruptions).

Proof (sketch). First, using Lemmas [[8 and [@, we can transform any statistically universally
composable (m — n)-coin toss extension protocol into one satisfying the requirements from these
lemmas. Call the transformed protocol 7 (with parties P; and P»). The remaining transformation
modifies 7 such that all requirements from Lemma B0 are met.

First, we change each P; (for i € {1,2}) so as to signal the other party Ps;_; before it sends
an “init” message to CT,,. Then P; proceeds to send “init” to CT,, only after it has received
an acknowledgement message from Ps_;. This slightly modified protocol 7; realizes the original
protocol 7 since a simulator (running with 7) is informed whenever a party P; has sent an “init”
message to CT,.

Second, each P; is modified to wait for CT,,-output as soon as P; itself has sent “init” to
CT,, and P5;_; has also signalled to do so. All messages from Ps_; are buffered and processed by
P; only when that CT,,-output arrives. This protocol 7 realizes w1 (and by transitivity also )
since the modified behaviour of the mo-parties can be simulated by a simulator in 71 simply by
delaying message delivery in 7.

Now comes the interesting part: we modify each P; so as to postpone the “init” message
to CT,, to the end of the protocol run. Instead, P; carries on with 7o as if it had sent “init”.
When it goes into the waiting state (for CT,,-output w, which will now certainly not arrive), it
immediately leaves that waiting state. Then P; makes 2" copies of its current internal state and
carries on with 2™ parallel executions of 7. In execution number j (0 < j < 2™), P; behaves as
if it had gotten a seed w = j from CT,,. At the end of the protocol run, when all the parallel
executions have fixed their output, P; then queries CT,, with an “init” message and waits for
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a seed w to arrive. Finally, P; outputs whatever the wth execution of the parallelized protocol
would have outputE Call the protocol with these modified parties 3.

This protocol obviously fulfills the requirements in the theorem statement, and it only remains
to show that 73 realizes mo (and thus 7), and hence is a universally composable protocol for coin
toss extension. An attack on 73 can be simulated in the setting of 7 as follows: up to the point
where the first mo-party queries CT,,, the parties from 7o behave exactly as those from 3. But
after the first “init” query, a simulator running with 75 needs to simulate the messages of 2" —1
virtual, parallel executions of w3-parties. This is possible, since by Lemma[[d, the internal state of
the parties consists only of the received communication so far and is known to the simulator. 0O
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