
A New Cryptosystem Based On Hidden Order Groups

Amitabh Saxena and Ben Soh

Email: {asaxena, ben}@cs.latrobe.edu.au

Department of Computer Science and Computer Engineering

La Trobe University

VIC, Australia 3086

March 5, 2007

Abstract

Let G1 be a cyclic multiplicative group of order n. It is known that the Diffie-Hellman problem
is random self-reducible in G1 with respect to a fixed generator g if φ(n) is known. That is, given
g, gx

∈ G1 and having oracle access to a “Diffie-Hellman Problem solver” with fixed generator g, it
is possible to compute g1/x

∈ G1 in polynomial time (see Theorem 3.2). On the other hand, it is not
known if such a reduction exists when φ(n) is unknown (see Conjuncture 3.1). We exploit this “gap”
to construct a cryptosystem based on hidden order groups and present a practical implementation of a
novel cryptographic primitive called an Oracle Strong Associative One-Way Function (O-SAOWF).
O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key
agreement protocol for dynamic ad-hoc groups.

1 Introduction

The problem of efficient key agreement in ad-hoc groups is a challenging problem, primarily because
membership in such groups does not follow any specified pattern. We envisage an ad-hoc group as a
broadcast group where members do not have one-to-one channels; rather they share the communication
medium such that everyone within range is able to receive any broadcast message. An efficient group key
agreement protocol in this scenario should satisfy the property that the shared group key is computable
without interaction with the other members. Such protocols are often called one-round key agreement
protocols where the only round consists of the initial key distribution phase. Two notable examples of
one-round key agreement protocols are the classic two-party Diffie-Hellman key exchange [1] and the Joux
tripartite key exchange using bilinear maps [2]. However, till date constructing a generalized one-round
n-party key agreement protocol has remained a challenging and open problem.

1.1 Our Contribution

In this paper, we present the first practical example of a one-round key agreement protocol for arbitrary
size groups. Although our construction enables the group key to be computed non-interactively, it comes
with a caveat; a trusted third party is required to do most of the computation.

We refer the reader to [3, 4] for a survey of key agreement protocols for ad-hoc groups. In the
literature, most group key agreement protocols are categorized as (a) Centralized, (b) Distributed and
(c) Fully Contributory. Our proposed method is fully contributory, yet it uses a central authority. We
elaborate on this below.

1.2 The Main Idea

The original two-party Diffie-Hellman key exchange [1] can be extended to fully contributory multi-party
key exchange as demonstrated in [5] using the Group Diffie-Hellman (GDH) protocol. However, all

1

protocols based on GDH require many rounds of sequential messages to be exchanged between members.
Centralized protocols, on the other hand have their own disadvantages; the central controller needs to

maintain a large amount of state information for the groups it is managing. Our approach is to combine
the two methods and design an efficient one-round key agreement protocol where the central controller
does not maintain any state information.

Our protocol uses a central authority in computing the shared group key. However, the central
authority is not responsible for key distribution and is only used as an “oracle” (i.e. a computing device)
with public access. Users do not require secure channels in communicating with this oracle. Additionally,
we provide a method to verify that the oracle is performing correctly. In our protocol, this oracle has
some trapdoor information that can be efficiently used to compute partial public keys that are sent to
users over an insecure public channel. Thus, our protocol can be directly converted into a de-centralized
(or distributed) one simply by sharing this trapdoor information between a number of trusted authorities
and allowing multiple “copies” of this oracle to function simultaneously. In effect, we present an entirely
new model for secure group communication (see figure 1).

In our model, secure group communication is facilitated by the Oracle. Assuming that public
keys are known in advance, users can use this Oracle to compute a shared secret key indepen-
dently of the other users such that no (active or passive) adversary has the ability to compute
this key. Essentially the oracle is used as a “verifiable computing device” and the adversary as
the communication medium.

Figure 1: Secure group communication in our model.

Our basic idea arises due to the paper of Rabi and Sherman [6], where they described a cryptographic
primitive called a Strong Associative One-Way Function (SAOWF), and discussed as an application a
one-round key agreement protocol in ad-hoc groups. In related work, Boneh and Silverberg also proposed

2

a one-round key agreement protocol for ad-hoc groups based on a similar primitive called a multilinear
map [7]. However, as of now no practical construction of either primitive is known. In this paper we
extend the work of Rabi and Sherman and give a practical construction of a SAOWF under a restricted
model of computation, namely black-box computation. Our construction also gives an example of a
Trapdoor Group with Infeasible Inversion (TGII) discussed in [8].

The rest of the paper is organized as follows. In section 2 we give some background and notation. We
define SAOWFs in section 2.1 and extend this definition to include black-box computation in section 2.4.
Our construction is presented in section 4 and some applications are given in section 5. Finally, we discuss
implementation issues in section 6.

2 Preliminaries

Around 1984, Rivest and Sherman suggested the idea of one-round key agreement in ad-hoc groups using
a class of cryptographic primitives that they called Associative One-Way Functions (AOWFs) [9, 10].
Later in 1993, Rabi and Sherman suggested the use of AOWFs in digital signatures [11]. In subsequent
work, Rabi and Sherman [6] gave an existence proof of complexity theoretic AOWFs under the P 6= NP
hypothesis. Other authors studied complexity theoretic AOWFs with respect to different properties
such as low ambiguity, strong invertibility, totality and commutativity [12, 13, 14]. Finally, in [15],
Hemaspaandra, Rothe and Saxena gave a complete characterization of complexity theoretic AOWFs.

In all the above works, however, the AOWFs considered are complexity theoretic, that is, they exhibit
useful characteristics only in the worst case and not in the average case. Such constructions do not
have much practical significance in the context of cryptography. In this work we focus on cryptographic
AOWFs - that exhibit useful characteristics even in the average case. Additionally, we study only a small
family of AOWFs, namely those that are commutative, total and strongly non-invertible. We call this
the class of Strong Associative One-Way Functions (SAOWFs).

2.1 Strong Associative One-Way Functions

Let (G, ⋆) be a finite abelian group. The mapping

f : G×G 7→ G

(A, B) 7→ A ⋆ B

has the following four properties (we use the notation f(A, B) and A ⋆ B interchangeably):

P1. Associativity: f(f(A, B), C) = f(A, f(B, C)) ∀A, B, C ∈ G.

P2. Commutativity: f(A, B) = f(B, A) ∀A, B ∈ G.

P3. Identity: There exists a unique element I ∈ G such that f(A, I) = A ∀A ∈ G. We say I is the
identity element. Denote by G∗ the set G\{I}.

P4. Inverses: For each A ∈ G∗, there exists a unique B ∈ G∗ such that f(A, B) = I. We say B is the
inverse of A and denote it by A−1.

We now additionally want to enforce the following three properties on (G, ⋆):

P5. Samplability: Elements of G must be efficiently samplable.

P6. Computability: For all A, B ∈ G, f(A, B) must be efficiently computable.

P7. Strong Non-Invertibility: Let A, B
R
← G∗ and C ← f(A, B) ∈ G. Given A, C, computing

B = f(C, A−1) must be infeasible in the average case.

3

Definition 2.1. We say that f is a Strong Associative One-Way Function (SAOWF) if properties P1-P7
are satisfied.1

Remark 2.2. A SAOWF as defined above is analogous to a Group with Infeasible Inversion (GII) defined
in [8].

Although SAOWFs have many applications as demonstrated in [6, 8, 16], exhibiting a practical
construction of a SAOWF is still an open problem. We make a positive progress in this direction by
presenting a practical black-box construction of a SAOWF.

We note that it is possible to construct a SAOWF f under the P 6= NP hypothesis if we replace
“average case” by “worst case” in the statement of property P7 [14, 15]. However, for applications
significant to cryptography we require property P7 to be defined in the average case.

For completeness, we also define weak non-invertibility as follows.

P8. Weak Non-Invertibility: Let C
R
← G∗. Given C, computing any pair (A, B) ∈ G∗2 such that

C = f(A, B) must be infeasible in the average case.

Definition 2.3. We say that f is a Weak Associative One-Way Function (WAOWF) if properties P1-P6
and P8 are satisfied.

The strong non-invertibility condition (P7) requires that for any C
R
← image(f), inverting f with

respect to a given preimage A must be infeasible in the average case. However, this condition does not
say anything about weak non-invertibility (P8), which requires that computing any preimage of C must
be infeasible. In fact, the results of [17] prove that there exists an associative one-way function that is
strongly non-invertible but not weakly non-invertible.2

Thus, a WAOWF may not be a SAOWF and vice-versa. In this work, we do not enforce the weak
non-invertibility requirement. Rather, we allow the function to be weakly invertible. It turns out that
our construction of a SAOWF is strongly non-invertible, yet it is weakly invertible.

Clearly, property P7 implies that computing inverses in G must be infeasible. Since the group (G, ⋆)
is of finite order, the only way to achieve this is to keep the order of this group hidden. This is the main
idea behind our construction.

2.2 Black-Box Constructions

Although the original objective of our research was to exhibit a practical construction of a SAOWF, in this
work, we focus on a slightly different but related problem: exhibiting a practical black-box construction
of a SAOWF by extending the definition of “computation” in property P6 to include oracle computation.

In our black-box model although the group (G, ⋆) is easily samplable, we we do not have access to the
algorithm for computing f . Instead, access to the computing algorithm is only provided via a “black-box”
with public access. This is illustrated in figure 2.

However, for a black-box construction to have any practical significance it must support (a) verifiable
and (b) private computation as elaborated next.

2.3 PV-Oracles

In complexity theory, a black-box with public access is referred to as an oracle. In this work, we restrict
ourselves to constructible oracles (i.e. oracles that can be constructed using some trapdoor), since we
want our system to be practical. Additionally, to justify the use of a (constructible) oracle as one-way
function in a cryptographic protocol, we must provide the same guarantees that a real function provides.

1Most researchers differentiate between commutative and non-commutative SAOWFs [15]. For simplicity, we will enforce
the commutativity property (P2) in our definition.

2We note that the terminology used in this paper is slightly non-standard (but more intuitive). For instance, “weak
non-invertibility” as defined here is simply referred to as “non-invertibility” in the literature [17]. Additionally, “weak” in
the literature is used to refer to non-total functions [14]. However, since we are working in finite abelian groups, we can
dispense off with definitions such as honesty, non-commutativity and totality used in [14, 15] for describing SAOWFs.

4

A

B

//
//
/* Algorithm for f(A, B) */

int compute(int A, int B) {
. . .

return(result);}

// f(A, B)

PRIVATE
VERIFIABLE

COMPUTATION

(a) A real computable function

A

B

//
//

Blackbox
computing

f(A, B)

// f(A, B)

PUBLIC
UNVERIFIABLE
COMPUTATION

(b) A black-box with public access

Figure 2: Comparing a real and black-box computation.

Specifically, a real function is private and verifiable. We define similar properties for oracles. We will
restrict ourselves to an oracle that computes a binary commutative function using two inputs.

Verifiable Oracles. Let f be the binary commutative function computed by an oracle. We say that
the oracle supports verifiable computation if for all A, B ∈ domain(f) and all C ∈ image(f), there
exists a PPT verification algorithm Verify that outputs 1 if C = f(A, B) and 0 otherwise. An oracle
supporting verifiable computation is called a Verifiable Oracle (V-Oracle). A V-Oracle is illustrated
in figure 3.3

A

B

GF ED��
@A BCOO

//
//

Blackbox
computing

f(A, B)
f(A,B) // Verifying

algorithm
// f(A, B)

PUBLIC
VERIFIABLE

COMPUTATION

Figure 3: Public, Verifiable Black-box computation (V-Oracle).

Private And Verifiable Oracles. Let f be the binary commutative function computed by a V-Oracle.
We say that the V-Oracle supports private computation if the inputs and outputs of the compu-

3As an example of a V-Oracle with one input, consider an existentially unforgeable signature scheme. The signing oracle
is a V-Oracle since the signature can obviously be verified.

5

tation can be blinded from the V-Oracle such that the blinding algorithm provides information
theoretic [18] secrecy. Formally, there must exist two PPT algorithms Blind and Unblind as follows.

Blind is a randomized algorithm and takes as input an element A ∈ domain(f) and outputs a
tuple (A′, σ), where A′ ∈ domain(f), σ is some auxiliary information, and the distributions
{A} and {A′} are independent and identical. We say that Blind is the Blinding Algorithm and
σ is the Unblinding Value.

Unblind takes as input a tuple (C′, σ), where C′ ∈ image(f) and σ is some auxiliary information.
It outputs a value C ∈ image(f) such that the following homomorphic property holds (We
call Unblind the Unblinding Algorithm).

Pr





A, B
R
← domain(f);

(A′, σ)
R
← Blind(A);

C ← Unblind(f(A′, B), σ) :
C = f(A, B)




= 1 (1)

We call a V-Oracle supporting a private computation a Private V-Oracle (PV-Oracle). See figure 4
for an illustration of a PV-Oracle.4

unblinding
valueOO

GF ED

��
A

B

//
//
Blinding
algorithm

A′

B′

//
//

GF ED��
@A BCOO

Blackbox
computing

f(A′, B′)
f(A′,B′) // Verifying

algorithm f(A′,B′) // Unblinding
algorithm

// f(A, B)

PUBLIC
VERIFIABLE

COMPUTATION

PRIVATE
VERIFIABLE

COMPUTATION

Figure 4: Private and Verifiable Black-box computation (PV-Oracle).

2.4 Oracle SAOWFs (O-SAOWFs)

We now extend the definition of computation in property P6 of section 2.1 to include computation by
PV-Oracles. We call such a construction an Oracle-SAOWF (O-SAOWF) and formally define it below.

Definition 2.4. A black-box construction of a SAOWF implemented using a PV-Oracle is called an
Oracle-SAOWF (O-SAOWF). An O-SAOWF construction has four PPT “algorithms” as described below
(we use quotes here because one of the algorithms PV-Compute is not a real algorithm in the usual sense;
it involves a call to a PV-Oracle).

Setup This is a randomized algorithm and takes in as input a security parameter τ . It outputs the
system parameters params for the group (G, ⋆) and a master key master-key.

4As an example of a PV-Oracle with one input, consider a RSA decryption oracle w.r.t. a given RSA public key.
Information theoretic privacy for inputs to the decryption oracle can be achieved using Chaum’s blinding technique [19].

6

Sample This is a randomized algorithm and takes in the parameter params. It outputs a uniformly

selected element A
R
← G along with some auxiliary information σA, which we will call the sampling

information in our construction.

Compute This algorithm takes as input the parameter params, the master key master-key and two values
A, B. If (A, B) /∈ G2, it sets C ← I (recall that I is the identity element). On the other hand, if
(A, B) ∈ G2 it computes C ← f(A, B) = A ⋆ B. The output is C ∈ G. We assume that master-key

acts like a trapdoor that enables computation of f .

Define a PV-Oracle O having access to master-key and implementing the compute algorithm. We assume
that master-key is not known to anybody else. The fourth algorithm involves a call to this oracle.

PV-Compute This algorithm takes as input the parameter params and two elements A, B ∈ G. It
uses the Verify, Blind and Unblind algorithms defined in section 2.3 as sub-routines to compute
C ← f(A, B) = A ⋆ B privately and verifiably by querying the PV-Oracle O that implements the
Compute procedure. It outputs C ∈ G.

2.4.1 Security Of O-SAOWFs

Assume that the PV-Compute algorithm performs correctly (that is, the Verify algorithm is correct and the
Blind/Unblind algorithms provide information theoretic secrecy). Also assume that access to the Compute

algorithm is available only in a black-box manner via oracle O that knows the parameter master-key.
We can then define the security of the O-SAOWF as follows. We say that a PPT algorithm A breaks
the O-SAOWF if it is able to “strongly invert” the O-SAOWF and compute inverses in G having only
black-box access to the Compute algorithm. We call this the Group Inversion Problem (GIPG). Formally,
the advantage of A in solving GIPG is defined as

GIP-AdvA(τ) = Pr





AO(Compute(), master-key)(P, params)→ P−1 :

(params, master-key)
R
← Setup(τ),

(P, σP)
R
← Sample(params)




(2)

Definition 2.5. We say that algorithm A (kO, δ, ǫ)-breaks the O-SAOWF f if A runs at most time δ;
A makes at most kO adaptive queries to the oracle O implementing the Compute algorithm; and GIP-
AdvA(τ) is at least ǫ. Alternatively, we say that the O-SAOWF is (kO, δ, ǫ)-secure under an adaptive
attack if no such algorithm A exists.

It is clear that a black-box SAOWF f where we extend the definition of computation in property
P6 to include computation by PV-Oracles, is identical to a “real” computable SAOWF f in terms of
functionality. However, until now it had been an open question to present even a black-box construction
of SAOWFs using PV-Oracles. In this work, we present the first practical construction of a black-box
SAOWF based on a PV-Oracle. In other words, our construction allows private (in the information-
theoretic sense) and verifiable computation.5

Remark 2.6. It should be noted that the above model of an O-SAOWF f that allows black-box com-
putation of the group operation ⋆ on G using a PV-Oracle is different from a black-box group, a notion
introduced by Babai and Szemerédi [20] (see also [21]), where access to the entire group (G, ⋆) is provided
through black-box routines and the representation of group elements is opaque. In contrast, the above
model is an example of a semi black-box group, since the representation of group elements is not opaque
and certain operations like blinding/unblinding, sampling and verification of composition can be done
outside of the black-box.

5It is noteworthy that our construction of a black-box SAOWF using a PV-Oracle also serves an existence proof of real
computable SAOWFs in a way because we achieve almost identical functionality using a black-box construction.

7

3 The Underlying Primitives

In this section, we give a brief overview of the two main underlying primitives of our construction: (i)
composite order bilinear maps, and (ii) the Paillier cryptosystem.

3.1 Bilinear Maps

Let G1 and G2 be two cyclic multiplicative groups both of the same order n such that computing discrete
logarithms in G1 and G2 is intractable. A bilinear pairing is a map ê : G1 ×G1 7→ G2 that satisfies the
following properties:

1. Bilinearity: ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zn.

2. Non-degeneracy: If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability: The map ê is efficiently computable.

The above properties also imply:

ê(ab, c) = ê(a, c) · ê(b, c) ∀a, b, c ∈ G1

ê(a, bc) = ê(a, b) · ê(a, c) ∀a, b, c ∈ G1

Additionally, we assume that it is easy to sample elements from G1. In a practical implementation,
the group G1 is the set of points on an elliptic curve and G2 is the multiplicative subgroup of a finite
field. The map ê is derived either from the modified Weil pairing [22, 23] or the Tate pairing [24]. We will
assume that the smallest prime factor of n is ≥ 2171 so that the fastest algorithm for computing discrete
logarithms in G1 (Pollard’s rho method [25, p.128]) takes ≥ 285 iterations [22].

3.1.1 Problems in Bilinear Maps

It is clear that irrespective of whether n is prime or composite, both G1 and G2 have generators. Fix
some generator g of G1 and define the following problems.

Computational Diffie-Hellman Problem [CDHP(g,G1)]: Given gx, gy ∈ G1 for unknowns x, y ∈ Z,
output gxy ∈ G1.

Decision Diffie-Hellman Problem [DDHP(g,G1)]: Given gx, gy, gz ∈ G1 for unknowns x, y, z ∈ Z,
output 1 if z ≡ xy (mod n); otherwise output 0.

Inverse Diffie-Hellman Problem [IDHP(g,G1)]: Given gx ∈ G1 for unknown x ∈ Z∗
n, output g1/x ∈

G1.

The following result was noted by Joux and Nguyen [26].

Lemma 3.1. DDHP(g,G1) (the decision Diffie-Hellman problem) is easy.

Proof. Clearly, from the properties of the mapping, z ≡ xy (mod n) if and only if ê(g, gz) = ê(gx, gy).
Thus, solving DDHP(g,G1) is equivalent to computing the mapping ê twice.

The next theorem shows that the computational Diffie-Hellman problem is random self-reducible in
the group G1 if φ(n) is known.

Theorem 3.2. IDHP(g,G1) ⇒ CDHP(g,G1) if φ(n) is known.

Proof. We must show that given an IDHP(g,G1) instance gx ∈ G1 for some x ∈ Z∗
n and access to a

CDHP(g,G1) oracle, we can efficiently compute g1/x ∈ G1. This follows from the following facts.

1. Fact. From Euler’s Theorem [25, p.69] we know that ∀u ∈ Z∗
n uφ(n) ≡ 1 mod n. Equivalently,

uφ(n)−1 ≡ 1/u mod n.

8

2. Fact. Given any pair gu, gv ∈ G1 for arbitrary u, v ∈ N we can use the CDHP(g,G1) oracle to
compute guv ∈ G1

3. Fact. Given any value gu ∈ G1, we can use the CDHP(g,G1) oracle to compute gu2i

for any i ∈ N

by the “repeated squaring” method (see [27, p.23] for an example).

Therefore, from gx we can efficiently compute h = gxφ(n)−1

∈ G1 using the CDHP(g,G1) oracle and the

“repeated squaring and multiply” algorithm of [25, p.71] (via facts 2 and 3). Then from fact 1, h = g1/x,
and thus h is the required solution.

Although Theorem 3.2 says that IDHP(g,G1) ⇒ CDHP(g,G1) if φ(n) is known, it is not clear if the
same reduction holds when φ(n) is unknown. In light of this we make the following hypothesis, necessary
for the security of our construction.

Conjuncture 3.1. IDHP(g,G1) 6⇒ CDHP(g,G1) if φ(n) is unknown.

3.1.2 BDH Parameter Generator

We will further assume that n = |G1| = |G2| = pq where p, q are large primes such that given the product
n = pq, factoring n is intractable. We refer the reader to [28] for details on generating composite order
bilinear maps for any given n that is square free.

Using the idea of [23], we define a Bilinear Diffie-Hellman (BDH) parameter generator as a randomized
PPT algorithm BDH that takes a single parameter τ ∈ N and outputs a tuple (ê, G1, G2, p, q) such that
p, q are distinct primes of τ bits each, G1, G2 are two cyclic multiplicative groups of the same order pq,
and ê : G1 ×G1 7→ G2 is a bilinear mapping as defined in section 3.1.

For any PPT algorithm A, denote by CDHP-AdvA(τ), the advantage of A in solving CDHP(g,G1) for
some security parameter τ . Formally,

CDHP-AdvA(τ) = Pr





A(ê, n, G1, G2, g, u, v) = gxy :

(ê, G1, G2, p, q)
R
← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, g
R
← G1 s.t. 〈g〉 = G1, (x, y)

R
← Zn

2, u = gx, v = gy




(3)

Similarly, we denote by IDHP-AdvA(τ) the advantage of A in solving IDHP(g,G1). Formally,

IDHP-AdvA(τ) = Pr





A(ê, n, G1, G2, g, u) = g1/x :

(ê, G1, G2, p, q)
R
← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, g
R
← G1 s.t. 〈g〉 = G1, x

R
← Z∗

n, u = gx




(4)

We will make the following two assumptions for all our constructions.

Diffie-Hellman Assumption: The computation Diffie-Hellman problem (CDHP(g,G1)) is intractable.
In other words, for all PPT algorithms A, CDHP-AdvA(τ) is a negligible function of τ .

Inverse Diffie-Hellman Assumption: The inverse Diffie-Hellman problem (IDHP(g,G1)) is intractable.
In other words, for all PPT algorithms A, IDHP-AdvA(τ) is a negligible function of τ .

3.2 The Paillier Cryptosystem

Our idea of constructing the O-SAOWF is to use an oracle as a “Diffie-Hellman problem solver” in the
bilinear group G1 of composite order n. Since the only known way to solve the Diffie-Hellman problem
is to compute discrete logarithms, we provide the discrete logarithms to the oracle in an encrypted

9

form using an asymmetric cryptosystem. The requirement here is that the encryption algorithm E
must possess the following multiplicative homomorphic property: for any messages m1, m2 ∈ Z∗

n, given
{E(m1), m2} or {m1,E(m2)}, it must be possible to compute E(m1m2 mod n) directly without knowing
the corresponding decryption algorithm D. The Paillier cryptosystem [29] has this property.6

The following facts form the basis of the Paillier cryptosystem. Let n = pq, where p, q are distinct
odd primes. Let λ = lcm(p − 1, q − 1) and φ(n) = (p− 1)(q − 1). For any integer x ≡ 1 (mod n) define
L(x) = (x− 1)/n.

1. Fact 1. |Z∗
n2 | = nφ(n)

2. Fact 2. For all w ∈ Z∗
n2 it is true that wnλ ≡ 1 (mod n2); and (wλ mod n2) ≡ wλ ≡ 1 (mod n).

3. Fact 3. Let t ∈ Z∗
n2 such that the order of t is nν for some 1 ≤ n ≤ λ. Then:

(a) (tν mod n) ≡ 1 (mod n) and L(tν mod n2) ∈ Z∗
n.

(b) For all x ∈ Z, it is true that

x ≡
L(txν mod n2)

L(tν mod n2)
(mod n) (5)

Thus given (t, tx mod n2), we can efficiently compute x mod n if ν is known.

We are now ready to describe the Paillier cryptosystem (see [29] for details).

Key Generation: Generate p, q
R
← N, where p, q are large distinct primes. Set n ← pq and λ ←

lcm(p− 1, q − 1). Generate t
R
← Z∗

n2 such that the order of t is a non-zero multiple of n. This can
be done by checking that L(tλ mod n2) is invertible in Zn. The public key is (t, n) and the private
key is (λ, n).

Encrypt: To encrypt a message m ∈ Zn, generate random r
R
← Z∗

n and set

c← E(m) = tmrn mod n2

The ciphertext is c ∈ Z∗
n2 .

Decrypt: To decrypt, compute

m← D(c) =
L(cλ mod n2)

L(tλ mod n2)
mod n

The correctness follows from Equation 5. The semantic security of the above encryption scheme is proved
under the Decision Composite Residuosity Assumption (DCRA) [29], which states that the following
problem is hard unless the factors of n are known.

Decision Composite Residousity Problem [DCRPn] Given x
R
← Z∗

n2 , output 1 if ∃y ∈ Z∗
n2 s.t.

x ≡ yn (mod n2) otherwise output 0.

The DCRA is a stronger assumption than factoring [29]. See [32, 33] for a discussion on the bit-security
of the Paillier cryptosystem.

3.2.1 Homomorphic Properties

The Paillier cryptosystem has the following homomorphic properties [29].

1. Plaintext multiplication:

∀m1, m2 ∈ Zn D(E(m1)
m2 mod n2) = D(E(m2)

m1 mod n2) = m1m2 mod n

2. Self Blinding:
∀m ∈ Zn ∀r ∈ N D(E(m)rn mod n2) = m

6Although this property is necessary, it is not sufficient; the RSA [30] and Rabin [31] cryptosystems also have this
property. However, our construction based on RSA or Rabin is insecure.

10

4 Our O-SAOWF Construction

Our construction will describe the four algorithms Setup, Sample, Compute and PV-Compute defined in
section 2.4. First we describe the Setup procedure. Then we elaborate on the structure of the group
(G, ⋆) defined by params before describing the remaining algorithms.

4.1 Setup

This algorithm generates the system parameters. The input is a single parameter τ ∈ N.

1. Use the BDH parameter generator BDH of section 3.1.2 to output (ê, G1, G2, p, q) ← BDH(τ),
where p, q are large distinct primes of ≈ τ bits each, G1, G2 are descriptions of two groups both of

order pq and ê : G1 ×G1 7→ G2 is a bilinear map (of section 3.1). Then pick a generator g
R
← G1.

2. Set n ← pq and λ ← lcm(p − 1, q − 1). Then generate an element t
R
← Z∗

n2 such that the order of
t is a non-zero multiple of n. The pair (t, n) is the public key for the Paillier cryptosystem. The
corresponding private key is (λ, n). We will denote the corresponding encryption and decryption
algorithms by E and D respectively.

3. Generate α, r
R
← Z∗

n. Then set h← gα ∈ G1 and β ← E(α) = tαrn ∈ Z∗
n2 .

4. Output params ← (ê, G1, G2, g, t, n, h, β) and master-key ← λ.

Recall that the Compute algorithm requires as input the parameter master-key and is accessible only
as a black-box routine via oracle O that implements this algorithm. The value master-key is sent to O
via a secure channel and the value params is made public.

4.2 Description Of The Underlying Group

From params, the tuple (ê, G1, G2, g, t, n) defines the structure of the group (G, ⋆) and the pair (h, β)
represents a random element of this group. We now describe the structure of this group.

1. Consider the set S (G1 defined as

S = {x|x = gy for some y ∈ Z∗
n}

Clearly, |S| = φ(n) = |Z∗
n| and S is exactly the set of elements of G1 having order n.

2. Define the set G (S× Z∗
n2 as

G = {(x, y)|x = gD(y)} (6)

and define a binary operation ⋆ on G using the multi-valued mapping

f : G×G 7→ G

(A, B) 7→ A ⋆ B

as follows. Let A = (xA, yA) and B = (xB , yB). Then A ⋆ B = (xC , yC), where

xC ← xA
D(yB) = gD(yA)D(yB) = xB

D(yA) ∈ G1 (7)

yC ← E(D(yA)D(yB) mod n) ∈ Z∗
n2 (8)

Thus, xC = gD(yC) and therefore (xC , yC) ∈ G.

3. Finally, define an equivalence relation ∼ on G as follows. For any A, B ∈ G, where A = (xA, yA)
and B = (xB, yB), we say that A ∼ B if and only if xA = xB . This relation is symmetric, reflexive
and transitive. Thus, it indeed forms an equivalence relation.

11

We state without proof the following lemmas (which can be easily verified):

Lemma 4.1. For any A, B ∈ G, it is true that A ⋆ B ∼ B ⋆ A. That is, the relation ∼ transforms ⋆ into
an commutative operation over G.

Lemma 4.2. For any A, B, C ∈ G, it is true that (A ⋆ B) ⋆ C ∼ A ⋆ (B ⋆ C). That is, the relation ∼
transforms ⋆ into an associative operation over G.

For any A ∈ G, denote by [A] (G the equivalence class of A with respect to the relation ∼. Therefore
we can define an equivalence class [I] (G as follows:

[I] = {X |X ∼ (g, t) ∼ (g,E(1))}

Lemma 4.3. For any [A] (G, there exists a unique [B] (G such that [A] ⋆ [B] = [I]. Additionally,
[A] ⋆ [I] = [A].

It is clear from the above lemmas that the relation ∼ transforms the equivalence classes of G into an
abelian group with respect to the binary operation ⋆. The order of this group (φ(n)) is effectively hidden
from anyone who does not know the factors of n.

For any [A] (G, let the symbol [A]i denote [A] ⋆ [A] ⋆ . . . [A] (i times). The inverse of [A] is denoted
by [A]−1. It can be trivially verified that the following are also true.

[A]i ⋆ [A]j = [A]i+j

([A]i)
j

= [A]ij

[A] ⋆ [A]−1 = [A]0 = [I]

([A]i ⋆ [B]j)
k

= [A]ik ⋆ [B]jk






∀ [A], [B] (G

∀ i, j, k ∈ Z

We will slightly abuse notation and denote the equivalence class [A] by A. We will use = instead of
∼ to indicate that we are working with equivalence classes. For any j given elements A1, A2, . . . Aj ∈ G,
we denote A1 ⋆ A2 ⋆ . . . Aj by

j∏

i=1

Ai

4.3 Properties Of The Underlying Group

We now enumerate some important properties of the group (G, ⋆).

1. Samplability: G is efficiently samplable. To sample from G, first generate random σ
R
← Z∗

n. Then
set x← gσ ∈ G1 and y ← E(σ) ∈ Z∗

n2 . We see that (x, y) ∈ G. In this case we call σ, the sampling
information of (x, y). When we say that A ∈ G has been sampled by us, we imply that the sampling
information of A is known. The sampling information acts like a trapdoor in our construction.

2. Trapdoor Computability: Let A, B ∈ G be given. Anyone who has sampled either one of A or
B can compute A ⋆ B efficiently as follows:

Let A = (xA, yA) and B = (xB , yB) be given. Additionally, we are given σA ∈ Z∗
n, the sampling

information of A. That is, xA = gσA ∈ G1 and yA = E(σA) ∈ Z∗
n2 . To compute A⋆B, first generate

random r
R
← Z∗

n. Then set x← xB
σA ∈ G1 and y ← yB

σA · rn ∈ Z∗
n2 .

Therefore, x = xB
D(yA) and due to the homomorphic properties of the Paillier cryptosystem, we

find that y = E(σAD(yB) mod n) = E(D(yA)D(yB) mod n). Thus, (x, y) = A ⋆ B.

3. Trapdoor Strong Invertibility and Exponentiation: Let A, B ∈ G be given. Anyone who has
sampled A ∈ G can also compute A−1 ⋆ B because if σA ∈ Z∗

n is the sampling information for A
then σ−1

A ∈ Z∗
n is the sampling information for A−1. Also, for any i ∈ Z, the sampling information

for Ai ∈ G is (σA)
i ∈ Z∗

n.

12

4. Non-computability: Let A, B ∈ G be given. Anyone who has not sampled at least one of
{A, B, A−1, B−1} cannot compute A ⋆ B without knowledge of λ.

5. Strong Non-invertibility: Let A, B ∈ G be given. Anyone who has not sampled at least one of
{A, A−1} cannot compute A−1 ⋆ B without knowledge of λ.

6. Indistinguishability: Let (x, y) ∈ G1 × Z∗
n2 be given. It is infeasible to decide if (x, y)

?
∈ G

without knowledge of λ.

7. Black-Box Computability: Let A, B ∈ G be given. Anyone knowing λ has the ability to compute
A ⋆ B using equations 8 and 7.

8. Black-Box Distinguishability: Let (x, y) ∈ G1 ×Z∗
n2 be given. Anyone knowing λ, also has the

ability to decide if (x, y)
?
∈ G by virtue of equation 6.

4.4 A Concrete O-SAOWF Construction

We now describe a concrete construction of an O-SAOWF under definition 2.4. In addition to the
four main algorithms Setup, Sample, Compute, PV-Compute and the three algorithms Verify, Blind and
Unblind used as subroutines in PV-Compute, our construction has four ‘auxiliary’ algorithms Verify-In-

Group, Verify-Not-In-Group, TD-Exponentiate and V-Compute. Thus, our construction has a total of eleven
algorithms. The Setup algorithm is described in section 4.1 while the Sample algorithm is described in
section 4.3, item 1.

A-1.

Setup

Input: τ ∈ N

Step-1. Generate {ê, G1, G2, g, t, n, h, β, λ} as described in section 4.1.

Step-2. Set params ← (ê, G1, G2, g, t, n, h, β) and master-key ← λ.

Output: (params, master-key)

A-2.

Sample

Input: params

Step-1. Generate σA, r
R
← Z∗

n

Step-2. Set xA ← gσA ∈ G1; yA ← tσArn mod n2 = E(σA) ∈ Z∗
n2

Step-3. Set A← (xA, yA) ∈ G

Output: (A, σA) ∈ G× Z∗
n [σA is the sampling information of A]

Remark 4.4. From the value params, the pair (h, β) ∈ G such that its sampling information α ∈ Z∗
n is

unknown (see section 4.1).

A high level description of the Compute algorithm is given below.

A-3.

Compute

Input: (master-key, params, A, B), where A, B ∈ G1 × Z∗
n2

Step-1. Use master-key = λ to decide if (A, B)
?
∈ G2 [See section 4.3, item 8]

Step-2. If (A, B) 6∈ G2, set C ← I ∈ G; otherwise, compute A ⋆ B using λ and set C ← A ⋆ B

[See section 4.3, item 7]

Output: C ∈ G

13

Functionality Of Oracle O: Access to Compute is provided in a black-box manner via the oracle O
that knows master-key and params. The oracle works as follows.

Oracle O

Input: A, B ∈ G1 × Z∗
n2

Step-1. Set C ← Compute(master-key, params, A, B)

Output: C ∈ G [We say C = O(A, B)]

Remark 4.5. A query to oracle O on inputs (A, B) /∈ G2 requires at most two exponentiations in G1

and Z∗
n2 . On the other hand, if (A, B) ∈ G2, the query always involves three exponentiations in G1 and

Z∗
n2 . Also, O(A, B) = A ⋆ B whenever (A, B) ∈ G2.

Remark 4.6. Assuming that access to oracle O is authentic, we can use O to decide if any given pair

(x, y)
?
∈ G. Additionally we can use O to compute Ai for any A ∈ G, i ∈ N using the “repeated squaring

and multiply” method [25, p.71].

Since access to oracle O is over an insecure public channel, we cannot assume that oracle replies are
authentic. Denote by O∗ the unauthenticated oracle (which could be an active adversary) supposedly
claiming to be oracle O.

The following algorithm Verify-In-Group uses oracle O∗ to decide that any given pair (x, y) ∈ G1×Z∗
n2

is indeed an element of G. If (x, y) /∈ G the algorithm outputs 0 with a high probability.

A-4.

Verify-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗
n2

Step-1. Generate u1, u2, v1, v2,
R
← Zn and w1, w2

R
← Z∗

n

Step-2. Set x1 ← xu1gv1 ∈ G1; x2 ← xu2gv2 ∈ G1

Step-3. Set y1 ← yu1tv1w1
n mod n2; y2 ← yu2tv2w2

n mod n2; result← 0

Step-4. Set (x′, y′)← O∗((x1, y1), (x2, y2))

Step-5. If ê(x′, g) = ê(x1, x2), set result← 1

Output: result ∈ {0, 1}

We prove in appendix A that the above algorithm is sound (under a non-standard assumption). That
is, if (x, y) 6∈ G then the algorithm outputs 0 with a high probability. However, the converse is not true.
Hence, the above algorithm cannot be used to conclude that (x, y) /∈ G if the output is 0.

In some cases, we may need to decide with certainty that a given pair (x, y) is indeed not an element
of G. The next algorithm Verify-Not-In-Group enables us to do this using oracle O∗. If (x, y) ∈ G the
algorithm outputs 0 with a high probability.7

7The reader should note that the Verify-Not-In-Group algorithm is never used in any of the protocols discussed in this
paper. It is only provided for completeness of our O-SAOWF construction.

14

A-5.

Verify-Not-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗
n2

Step-1. Set a security parameter j and generate a j-bit string a
R
← {0, 1}j. Set result← 0.

Initialize another j-bit string b ∈ {0, 1}j.

Step-2. Repeat for i from 1 to j (denote by ai and bi, the ith bits of a and b respectively).

i. If ai = 1, set (x′, y′)
R
← Sample(params); otherwise, set (x′, y′)← (x, y)

ii. Set bi ← Verify-In-Group(params, x′, y′)

Step-3. If (a = b), set result← 1

Output: result ∈ {0, 1}

The following lemma shows that the Verify-Not-In-Group algorithm is sound if the Verify-In-Group

algorithm is sound.

Lemma 4.1. If the Verify-In-Group algorithm is sound then the Verify-Not-In-Group algorithm is also
sound.

Proof. We must show that if the Verify-Not-In-Group algorithm outputs 1 then (x, y) 6∈ G.
If (x, y) ∈ G, then (x′, y′) in step 2 of Verify-Not-In-Group is always an element of G. Now assume

that the Verify-In-Group algorithm is sound. Thus, the probability that ai = bi is 1
2 for any i. Also, each

bit ai is independent of other bits. Thus, for a total of j bits, Pr[(ai = bi)∀1 ≤ i ≤ j] = 1
2j . In other

words, if (x, y) ∈ G the probability that the Verify-Not-In-Group algorithm outputs 1 is 1
2j , which can be

made arbitrarily small.

The next algorithm Verify takes as input a 3-tuple (A, B, C), where A, B ∈ G and C ∈ G1 × Z∗
n2 . It

outputs 1 only if C = A ⋆ B

A-6.

Verify

Input: (params, A, B, C) such that A, B ∈ G and C ∈ G1 × Z∗
n2 .

Assume that the input is correct.

Step-1. Set (xA, yA)← A; (xB, yB)← B; (xC , yC)← C; result← 0

Step-2. If ê(xC , g) = ê(xA, xB), set result← Verify-In-Group(params, xC , yC)

Output: result ∈ {0, 1}

Clearly, the Verify algorithm is sound if the Verify-In-Group algorithm is sound. We observe that we
can remove the function call Verify-In-Group(params, xC , yC) in step 2 of the above algorithm (and simply
set result ← 1 instead) without introducing any weakness in the construction. However, including this
call enables us to reduce the soundness of other related algorithms to the soundness of the Verify-In-Group

algorithm.
Algorithm V-Compute takes as input two elements A, B ∈ G. It uses the Verify-In-Group algorithm as

a subroutine and computes A ⋆ B verifiably by querying O∗.

A-7.

V-Compute

Input: (params, A, B) such that A, B ∈ G. Assume that the input is correct.

Step-1. Set C ← O∗(A, B) ∈ G1 × Z∗
n2

Step-2. If Verify(A, B, C) = 0, set C ← I ∈ G

Output: C ∈ G

15

Clearly, the soundness of the above algorithm reduces to the soundness of the Verify algorithm. As a
consequence, we state the following theorem which says that if the Verify algorithm is sound then having
indirect access to the oracle O via some active adversary O∗ is the same has having authentic and public
access to O.

Theorem 4.2. If the Verify algorithm is sound then O is a V-Oracle.

The next algorithm, TD-Exponentiate (“trapdoor-exponentiate”) takes as input (i) the sampling in-
formation σA ∈ Z∗

n of an element A ∈ G, (ii) an arbitrary index i ∈ Z, and (iii) an element B ∈ G. It
outputs Ai ⋆ B ∈ G. TD-Exponentiate will be primarily used as a subroutine in the Blind and Unblind

algorithms.

A-8.

TD-Exponentiate

Input: (params, σA, i, B), where σA ∈ Z∗
n; i ∈ Z; B ∈ G.

Here, σA is the sampling information of A ∈ G. Assume that the input is correct.

Step-1. Generate r
R
← Z∗

n

Step-2. Set σ ← σA
i ∈ Z∗

n; (xB , yB)← B ∈ G1 × Z∗
n2

Step-3. Set x← xB
σ ∈ G1; y ← (yB)

σ
rn = E(σD(yB) mod n) ∈ Z∗

n2

Output: (x, y) ∈ G

The next two algorithms Blind and Unblind work as follows.

Blind takes as input a value A ∈ G. It generates B
R
← G and outputs (A⋆B) ∈ G, along with σB ∈ Z∗

n,
the sampling information of B. Unblind is the inverse of Blind. It takes as input an pair (A, σB) ∈ G×Z∗

n

and outputs A ⋆ B−1 ∈ G such that σB is the sampling information of B ∈ G.

A-9.

Blind

Input: (params, A) such that A ∈ G. Assume that the input is correct.

Step-1. Set (B, σB)
R
← Sample(params) ∈ G× Z∗

n [B will be ignored]

Step-2. Set (x, y)← TD-Exponentiate(params, σB , 1, A) ∈ G

Output: (x, y, σB) ∈ G× Z∗
n

A-10.

Unblind

Input: (params, A, σB), where A ∈ G and σB ∈ Z∗
n.

Here, σB is the sampling information of B ∈ G. Assume that the input is correct.

Step-1. Set (x, y)← TD-Exponentiate(params, σB ,−1, A) ∈ G

Output: (x, y) ∈ G

Lemma 4.3. The Blind/Unblind algorithms provide information theoretic secrecy.

Proof. Clearly, the Blind and Unblind algorithms are inverses of each other. Now, if the output of the
Sample algorithm is uniformly distributed over G then the output of the Blind algorithm is also uniformly
distributed over G, independent of the input.

Algorithm PV-Compute takes as inputs A, B ∈ G. It uses the Blind, Unblind and and V-Compute

algorithms as subroutines to compute A ⋆ B privately and verifiably.

16

A-11.

PV-Compute

Input: (params, A, B) such that A, B ∈ G. Assume that the input is correct.

Step-1. Set (A′, σA′)
R
← Blind(params, A) ∈ G× Z∗

n

Step-2. Set (B′, σB′)
R
← Blind(params, B) ∈ G× Z∗

n

Step-3. Set C′ ← V-Compute(A′, B′) ∈ G1 × Z∗
n2

Step-4. Set C ← Unblind(params, Unblind(params, C′, σA′), σB′) ∈ G

Output: C ∈ G

Since the Blind/Unblind algorithms provide information theoretic secrecy (lemma 4.3), the soundness
of the above algorithm also reduces to the soundness of the Verify algorithm. As a consequence, we state
the following theorem which says that if the Verify algorithm is sound then having indirect access to the
oracle O via some active adversary O∗ is the same has having private and authentic access to O.

Theorem 4.4. If the Verify algorithm is sound then O is a PV-Oracle.

This completes our O-SAOWF construction. Figure 5 gives the dependencies between the eleven
algorithms. We can essentially use PV-Compute(params, A, B) to denote f(A, B), where f is a real
SAOWF defined using (G, ⋆) in Section 2.1. When considering the security, we will assume that O takes
one time unit to respond to each query and that the sum of the number of queries to O and the running
time of an adversary attacking the O-SAOWF is bounded by a polynomial in τ .

TD-ExponentiateOO hh

QQQQQQQQQQQQQ
Sample oo

OO Verify-Not-In-Group

��

Unblind Blind Verify

��
PV-Compute //

OO 66mmmmmmmmmmmmm

V-Compute

66lllllllllllll

O∗

##G

G

G

G

G

G

G

G

G
Verify-In-Group

O∗

���
�

�

�

�

�

Setup Compute
params,master-keyoo

params

��

Figure 5: Dependencies between the algorithms.

4.5 Notation

For convenience we will adopt the following shorthand notation.

1 We will denote TD-Exponentiate(params, σA, i, B) by T (σA, i, B).

2 Since invoking V-Compute is equivalent to making a public query to oracle O (Theorem 4.2), we
will denote V-Compute(params, A, B) simply by O(A, B).

3 Invoking PV-Compute is equivalent to making a private query to oracle O (Theorem 4.4). We will

denote PV-Compute(params, A, B) by Ô(A, B).

17

4 For any set of k elements {A1, A2, . . . Ak} ⊂ G, we denote by
〈
O

〉k

i=1
(Ai) the value

O(O(. . .O(A1, A2), . . .), Ak) =

k∏

i=1

Ai

Similarly, we denote by
〈
Ô

〉k

i=1
(Ai) the value

Ô(Ô(. . . Ô(A1, A2), . . .), Ak) =

k∏

i=1

Ai

5 We will denote by E(A, i) an algorithm to compute Ai for any A ∈ G with the repeated squaring
method using V-Compute as a subroutine. This algorithm does not provide privacy of inputs.
However, the outputs are verifiable.

6 We will denote by Ê(A, i) an algorithm to compute Ai for any A ∈ G with the repeated squaring
method using PV-Compute as a subroutine. This algorithm provides information theoretic privacy
of inputs and verifiability of outputs.

Remark 4.7. Computing Ai using algorithms E and Ê will amount to ≈ c · log i queries to oracle O (for
constant c) with the repeated squaring method [25, p.71].

4.6 Security Of The Construction

The oracle is primarily used as a “computing device” in the proofs. We assume that the oracle always
functions correctly and keeps the trapdoor information λ secret. Recall that out of params, the pair
(h, β) ∈ G. Denote this value by P . The security of our O-SAOWF relies on the difficulty of inverting ⋆
with respect to P . One way to do this would be to extract λ from the oracle. However, this is equivalent
to factoring n so we should look at indirect methods for inverting ⋆ (with respect to P) using the oracle.
The security of all our constructions reduces to the difficulty of the following problem:

Group Inversion Problem [GIPG]: Let P = (h, β)
R
← G be uniformly sampled using secret α

R
← Z∗

n

such that h = gα ∈ G1 and β = E(α) ∈ Z∗
n2 . Given P , compute P−1 = (h′, β′) ∈ G, where

h′ = g1/α ∈ G1 and β′ = E(1/α) ∈ Z∗
n2 , possibly by using the oracle O.

Computing h′ becomes an instance of the inverse Diffie-Hellman problem IDHP(g,G1) defined in Sec-
tion 3.1, which is believed to be hard even if the Diffie-Hellman problem is easy. We hypothesize that
any method of reducing IDHP(g,G1) to CDHP(g,G1) will yield a method of reducing GIPG to the oracle
O. We define the advantage of an algorithm for solving the group inversion problem as follows.

Definition 4.8. For any algorithm A, the advantage of A in solving the group inversion problem GIP-
AdvA(τ) for some security parameter τ is defined as:

GIP-AdvA(τ) = Pr





AO(λ)(ê, G1, G2, n, g, t, h, β) = (g1/α,E(1/α)) :

(ê, G1, G2, p, q)
R
← BDH(τ) s.t. |G1| = |G2| = pq,

n = pq, α
R
← Z∗

n, g
R
← G1 s.t. 〈g〉 = G1,

t
R
← Z∗

n2 s.t. | 〈t〉 | = nλ, h = gα, β = E(α)




(9)

Here BDH is the BDH parameter generator algorithm (Section 3.1.2); E denotes the Paillier en-
cryption algorithm with public key (t, n) (Section 3.2), and O is an oracle implementing the Compute

algorithm (Section 4.4).

18

For any algorithm A, let δA denote the upper-bound on the running time of A, and let k(O,A) denote
the upper-bound on the number of queries to oracle O by A. Our security is based on the following
conjuncture.

Conjuncture 4.9. For any algorithm A such that k(O,A), δA ∈ Poly(τ), GIP-AdvA(τ) is a negligible
function in τ . In other words, for all kO, δ, 1/ǫ ∈ Poly(τ), the O-SAOWF is (kO, δ, ǫ)-secure under an
adaptive attack using definition 2.5.

5 Applications Of O-SAOWFs

In this section we describe three applications of O-SAOWFs: (a) Multiparty-Key Agreement, (b) Signa-
tures and (c) Broadcast encryption (another application, Identity Based Encryption (IBE) is described
in appendix C).

5.1 Key Generation (Setup PKI)

To participate in the protocols, each user i must have a certified public key and the corresponding private
key. Recall that out of params, the pair (h, β) = P ∈ G. This will serve as a common starting value.

1 User i generates (Xi, σXi
)

R
← Sample(params) ∈ G× Z∗

n. The private key is σXi
.

2 User i computes the public key Yi ← T (σXi
, 1, P) = Xi ⋆ P . The public key is made available in

an authentic way (for instance via a certificate).

We give in appendix B a zero-knowledge proof of knowledge that can be used by a Certification
Authority (CA) to ascertain that user i indeed knows the private key σXi

corresponding to the
public key Yi before issuing a certificate.

5.2 Multiparty Key Agreement

In this section, we describe the multiparty key agreement protocol of Rivest, Rabi and Sherman [6] using
O-SAOWFs. At a high level, the objective of a multiparty key agreement protocol is to enable a set of
users to compute a shared secret key (the group private key) such that no one outside the set can compute
this key. In our model each group private key also has a corresponding group public key, which can be used
for join/merge operations and for verifying (group) signatures created using the group private key. We
also define a partial public key that is used in the intermediate steps for group private key computation.

5.2.1 Key Agreement Protocol

[k users] A set a = {1, 2, 3 . . . k} of k users compute a shared group key.

1 Partial public key: Each user j ∈ a first computes the partial public key

Ya\{j} ←
〈
O

〉k

i=1;i6=j
(Yi) =

k∏

i=1;i6=j

Yi = P k−1 ⋆

k∏

i=1;i6=j

Xi

2 Group Private Key: Each user j ∈ a then computes the group private key

Ka ← T (σXj
, 1, Ya\{j}) = Xj ⋆ Ya\{j} = P k−1 ⋆

k∏

i=1

Xi

3 Group Public Key: The group public key for a is computed by anyone as

Ya ←
〈
O

〉k

i=1
(Yi) =

k∏

i=1

Yi = P k ⋆
k∏

i=1

Xi

Thus, the partial public key of user j in set a is the group public key of the set a\{j}.

19

5.2.2 Overview Of The Key Agreement Protocol

1 Complexity: For a group of k users, k − 2 oracle queries are required for each user to compute the
shared key. Thus, total k(k−2) queries are required for all the k users. However, no specific ordering
is required between the users (users can compute the shared key after receiving a ciphertext).
Additionally, oracle queries can be batched.

2 Universal Escrow : Given a public key Yi = Xi ⋆ P , the oracle O can compute the corresponding
private key σXi

. Therefore, O has universal escrow capability.

3 Restricted Private Keys : Observe that any computation with the private key σXi
(except inversion

w.r.t. Xi) is efficiently possible just from Xi using the PV-Compute algorithm.8 Thus Xi can be
considered as a ‘restricted’ private key corresponding to the ‘un-restricted’ private key σXi

, the
restriction being the inability to invert ⋆ w.r.t. Xi.

4 Non-interactivity: Assuming that all the public keys Yi are known in advance, any user can compute
the shared key without interacting with the other users.

5 Multiple copies of the Oracle: An arbitrary number of “copies” of the oracle can be run without
any compromise in security.

5.2.3 Join And Merge Operations

Clearly, members can join any group and many groups can merge arbitrarily. For simplicity we only
demonstrate the merge operation between two disjoint sets a and b of users.

Example [Merge] A set a of users merges with another set b of users such that a ∩ b = ∅. Further
assume that a has the private key Ka and the public key Ya. Similarly, b has the private key Kb and the
public key Yb

1 Group private key: Each member i ∈ a computes Ka∪b ← Ô(Ka, Yb), while each member j ∈ b

computes Ka∪b ← Ô(Kb, Ya).

2 Group public key: The group public key corresponding to the group private key Ka∪b can be
computed as Ya∪b ← O(Ya, Yb) = Ya ⋆ Yb.

In the above merge procedure, we assumed that a and b are disjoint (i.e. they have no common members).
In case the sets are not disjoint, we could still use the above merge procedure without any serious draw-
back as long as this instantiation of O-SAOWF is only used for key agreement (and not for signatures,
which are discussed below in Section 5.3). In case the same instantiation of O-SAOWF is also used for
signatures, we would require the merge procedure to eliminate duplicate users in the merged set (this can
be efficiently done if the intermediate values in the partial public key computation are cached).

Forward Secrecy: Due to the above mentioned merge procedure, the compromise of the group pri-
vate key of a set a of users compromises the group private key of any other set c of users whenever c) a.
To overcome this weakness, if the private key of group a is compromised, at least one member of a must
compute a new public-private key pair. Compromise of a group private key of a set a of users, however,
does not compromise the group private key of any set c of users whenever c (a.

5.2.4 Security Of The Key Agreement Protocol

From the key agreement procedure, it is clear that if the adversary knows the private key of user i ∈ a
then the adversary knows the group private key of the set a of users. Additionally, if the adversary knows
the group private key of the set a then the adversary also knows the group private key of any set that
properly includes a. Thus, we restrict the adversary to output the private key of any set a of users such

8With only a polynomial amount of increase in the number of oracle queries.

20

that the adversary knows neither the group private key of any proper subset of a nor the private keys
of any users in the set a. We show that any algorithm that breaks the key agreement protocol with this
restriction can be used to compute P−1. First observe that the secret key Ka for the set a = {1, 2, . . . k}
of users is related to the public keys {Y1, Y2, . . . Yk} as:

Ka = P k−1
k∏

i=1

Xi = P−1 ⋆

k∏

i=1

Yi (10)

We use the security model of security of multiparty key agreement similar to the one used in [7],
namely security under a one-time key attack. The difference here is that we allow the attacker to choose
the set of public keys to attack. Formally, we define a one-time key attack on a multiparty key agreement
using game 1.

Game 1

Initialize. To initialize the game, the challenger C gives a security parameter τ to the adversary.
The adversary A responds with a value µ1 ∈ N

Challenge. The challenger performs the key generation phase and gives a set {Y1, Y2, . . . Yµ1} of
µ1 public keys to A.

Output. Eventually A outputs a pair 〈a, Ka〉.

Result: A wins the game if a ⊆ {1, 2, . . . µ1} and Ka is the group private key of a.

Definition 5.1. We say that adversary A (µ1, δ1, ǫ1)-breaks the key agreement protocol in the one-time
key attack if for a total of µ1 public keys output in the setup phase A runs at most time δ1 and the
probability of A winning game 1 is at least ǫ1. Alternatively, we say that the key agreement protocol is
(µ1, δ1, ǫ1)-secure under a one-time key attack if no such adversary exists.

The next theorem shows that the key agreement protocol is secure under a one-time key attack if the
group inversion problem is hard.

Theorem 5.1. Let the O-SAOWF be (·, δ, ǫ)-secure under an adaptive attack. Then the multiparty key
agreement protocol is (µ1, δ1, ǫ1)-secure in a one-time key attack, where δ ≤ δ1 + Θ(c1µ1) and ǫ = ǫ1.
Here, c1 is the time for a multiplication in Z∗

n.

Proof. Let the O-SAOWF be (·, δ, ǫ)-secure under an adaptive attack and let A be an algorithm that
(µ1, δ1, ǫ1)-breaks the key agreement protocol in a one-time key attack. We construct an algorithm B
that uses A to solve GIPG in at most δ time with probability at least ǫ, thus arriving at a contradiction.
The input to B is P ∈ G and its goal is to output P−1. B simulates the challenger of game 1 and runs
algorithm A as follows.

Initialize. B gives the security parameter τ to A who replies with µ1.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . (Yµ1 , σYµ1
)

R
← Sample(params) ∈ G × Z∗

n and gives
the (µ1 + 1)-tuple (Y1, Y2, . . . Yµ1 , P) to A.

Output. Eventually A outputs a pair 〈a, Ka〉.

Result: If 〈a, Ka〉 is a winning configuration, then a ⊆ {1, 2, . . . µ1} and Ka = P−1 ⋆
∏

i∈a Yi by
virtue of equation 10. Clearly, the simulation provided by B is perfect. Algorithm B then proceeds
as follows:

i. If 〈a, Ka〉 is not a winning configuration, B reports failure and terminates.

ii. We know that 〈a, Ka〉 is a winning configuration. Algorithm B sets σY ←
∏

i∈a σYi
mod n.

Thus, σY is the sampling information of
∏

i∈a Yi (see Section 4.3, item 3).

iii. B sets result← T (σY ,−1, Ka) and outputs result.

21

Algorithm B is correct because

T (σY ,−1, Ka) = (
∏

i∈a

Yi)
−1

⋆ Ka = (
∏

i∈a

Yi)
−1

⋆ P−1 ⋆
∏

i∈a

Yi = P−1

The running time of B is the running time of A plus the time required for generating the µ1 public
keys; the time required for computing T ; and the time required for at most µ1 multiplications in Z∗

n.
The probability of B’s success is the same as the probability of A’s success. This gives the bounds.

5.3 Signatures

As noted in [11], SAOWFs give rise to signature schemes. Here, we describe two signature schemes
using O-SAOWFs: ordinary signatures and multi-user signatures. A signature scheme consists of three
algorithms KeyGen, Sign and VerifySig, where the algorithms have their usual constraints [22]. Our
message space is N.

5.3.1 Single-User Signatures

This is a variation of the scheme for single-user signatures described in [6].

KeyGen. This algorithm is described in Section 5.1. The private key of user i is σXi
∈ Z∗

n. The
public key is Yi = Xi ⋆ P ∈ G.

Sign. Let m ∈ N be the message. To sign m, user i computes the signature S(i,m) as:

S(i,m) ← T (σXi
, m, P) = Xi

m ⋆ P

VerifySig. To verify a signature S(i,m) of user i on message m, we check if the following holds:

E(Yi, m)
?
= O(S(i,m), E(P, m− 1))

In other words, we check if Yi
m ?

= S(i.m) ⋆ Pm−1

5.3.2 Multi-User And Ring Signatures

The above construction of single-user signatures can be trivially extended to multi-user signatures. To
sign messages, members of a group must share a secret group key.

KeyGen. This algorithm is described in Section 5.2. Without loss of generality, assume that any of
the set a = {1, 2, . . . k} of users want to independently sign messages using the group private

key Ka = P k−1 ⋆
∏k

i=1 Xi such that the signatures can be verified using the group public key

Ya =
∏k

i=1 Yi.

Sign. Let m ∈ N be the message. To sign m, any member i ∈ a computes the signature S(a,m) as:

S(a,m) ← Ô(Ê(Ka, m), P) = Ka
m ⋆ P

VerifySig. To verify a signature S(a,m) of user i ∈ a on message m, we check if the following holds:

E(Ya, m)
?
= O(S(a,m), E(P, m− 1))

In other words, we check if Ya
m ?

= S(a,m) ⋆ Pm−1

Given a signature of some set a, it is not possible for any group controller to revoke the anonymity of
the signer (since there is no group controller). Thus, the above scheme is an example of ring signatures [34].

22

5.3.3 Security Of The Signature Schemes

The strongest model for security of signatures is security against existential forgery under an adaptive
chosen message attack [22], where the attacker is required to output a successful forgery under the
challenge public key after having access to the signing oracle. However, we only prove the security of our
schemes in a weaker model that we call security against existential forgery under a non-adaptive chosen
message attack. In a non-adaptive attack, the attacker is not allowed to make any signature queries.
We define this using the following game between the challenger C and an adversary A. For technical
convenience we bound the value of the message in the forgery to be ≤ n, although this bound could be
any polynomial function of n

Game 2

Initialize. To initialize the game, the challenger gives a security parameter τ to the adversary.
The adversary A outputs µ2 ∈ N.

Challenge. The challenger C performs the key generation phase and gives a set {Y1, Y2, . . . Yµ2}
of µ2 public keys to A.

Output. Eventually A outputs a tuple
〈
a, S(a,m), m

〉
.

Result: A wins the game if a ⊆ {1, 2, . . . µ2} and S(a,m) is a valid signature by a on the message m
and m ≤ n.

Definition 5.2. We say that adversary A (µ2, δ2, ǫ2)-breaks the signature scheme in a non-adaptive
chosen message attack if for a total of µ2 public keys output in the setup phase A runs at most time δ2

and the probability of A winning game 2 is at least ǫ2. Alternatively, we say that the signature scheme is
(µ2, δ2, ǫ2)-secure under a non-adaptive chosen message attack if no such adversary exists.

The next theorem shows that any algorithm that is successful in existential forgery of signatures
under a non-adaptive chosen message attack can be used to solve GIPG. First observe that S(a,m) can
be rewritten as

S(a,m) = Ka
m ⋆ P = P 1−m ⋆ (

k∏

i=1

Yi)
m

(11)

Also note that game 2 considers both single and multi-user signatures.

Theorem 5.2. If there exists an algorithm A that (µ2, δ2, ǫ2)-breaks the signature scheme under a non-
adaptive chosen message attack then there exists an algorithm B that (kO, δ, ǫ)-breaks the O-SAOWF
under an adaptive attack, where kO < Θ(3 log n); δ ≤ δ2 + Θ(c2µ2); and ǫ = ǫ2. Here, c2 is a constant
that depends on G.

Proof. Let the O-SAOWF be (kO, δ, ǫ)-secure under an adaptive attack and let A be an algorithm that
(µ2, δ2, ǫ2)-breaks the signature scheme in a non-adaptive chosen message attack. We construct an al-
gorithm B that uses A to solve GIPG in at most δ time with probability at least ǫ, thus arriving at a
contradiction. The input to B is P ∈ G and its goal is to output P−1. B simulates the challenger of game
2 and runs algorithm A.

Initialize. B gives the parameter τ to A, who outputs µ2 ∈ N.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . (Yj , σYµ2
)

R
← Sample(params) ∈ G × Z∗

n and gives
the (µ2 + 1)-tuple (Y1, Y2, . . . Yµ2 , P) as the input to A.

Output. Finally A outputs a tuple
〈
a, S(a,m), m

〉
.

Result: If the tuple
〈
a, S(a,m), m

〉
represents a winning configuration, then a ⊆ {1, 2, . . . µ2},

S(a,m) = P 1−m ⋆ (
∏

i∈a Yi)
m

(by virtue of equation 11), and m ≤ n. Algorithm B then proceeds as
follows:

i. If
〈
a, S(a,m), m

〉
not a winning configuration, algorithm B reports failure and terminates.

23

ii. We know that a ⊆ {1, 2, . . . µ2} and S(a,m) = P 1−m ⋆ (
∏

i∈a Yi)
m

. Algorithm B sets C ←
E(P, m − 2) = Pm−2 and σY ←

∏
i∈a σYi

mod n. Thus, σY is the sampling information of∏
i∈a Yi (see Section 4.3, item 3).

iii. Finally, B sets result← T (σY ,−m,O(S(a,m), C)) and outputs result.

Algorithm B is correct because

T (σY ,−m,O(S(a,m), C)) = (
∏

i∈a

Yi)
−m

⋆ S(a,m) ⋆ C

= (
∏

i∈a

Yi)
−m

⋆ (P 1−m ⋆
∏

i∈a

Yi) ⋆ (Pm−2) = P−1

The running time of B is the running time of A plus the time required for generating the µ2 public
keys; the time required for computing T once; and the time required for at most µ2 multiplications in
Z∗

n. Therefore δ ≤ δ2 + Θ(c2µ2), where c2 is the time for generating one public key plus the time for one
multiplication in Z∗

n.
Clearly, the simulation provided to A is perfect. Hence the probability of B’s success is the same as

the probability of A’s success. Finally, B queries the oracle for computing O(S(a,m), C) and E(P, m− 2).
This amounts to a maximum of Θ(c1 log m) queries for some constant c1 < 3. Considering that m ≤ n,
we have the required bounds.

5.4 Broadcast Encryption

In a broadcast encryption scheme [35], anyone can encrypt a message addressed to a closed set of users
using their public keys such that only those users have the ability to decrypt the message (we do not con-
sider schemes that allow traitor tracing [36]). Using our method, the size of ciphertexts and public/private
keys is O(1) and for a set of k users, a total of O(k) calls to the oracle O are required for encryption and
decryption. A broadcast encryption scheme consists of four algorithms BC-Setup, BC-KeyGen, BC-Encrypt

and BC-Decrypt, where the algorithms have their usual meanings and constraints [35]. (We use the prefix
‘BC’ to indicate ‘broadcast’).

BC-Setup This algorithm is used to set up the initial system parameters and is described in Sec-
tion 5.1, where the initial public key infrastructure is created for individual users. We ad-
ditionally require a cryptographic hash function H : G1 7→ {0, 1}l, that will be treated as a
random oracle in the proofs.9 The message space is {0, 1}l, where l ≤ log2 n.

BC-KeyGen. Without loss of generality, assume that messages will be encrypted to any arbitrary
set a = {1, 2, . . . k} of k users with public keys {Y1, Y2, . . . Yk}.

Encryption Key: The sender of the message generates the group public key Ya =
∏k

i=1 Yi by
making k − 1 oracle queries (as described in Section 5.2).

Decryption Key: Any receiver j ∈ a must independently compute the group private key
Ka = P k−1 ⋆

∏k
i=1 Xi = P−1 ⋆

∏k
i=1 Yi by making k − 2 oracle queries (as described in

Section 5.2).

BC-Encrypt. To encrypt m ∈ {0, 1}l to the set a = {1, 2, . . . k} of k users with group public key

Ya, generate (R, σR)
R
← Sample(params) ∈ G× Z∗

n and compute

c1 ← m⊕H(T (σR, 1, Ya)) = m⊕H(R ⋆ Ya)

C2 ← T (σR, 1, P) = R ⋆ P

Here ⊕ denotes the XOR operator. The ciphertext is C = (c1, C2) ∈ {0, 1}l ×G.

9To construct this hash function, let A = (x, y) ∈ G ∈ G1 × Z∗

n be some input and let H1 : G1 7→ {0, 1}l be a hash
function. Then H(A) = H1(x).

24

BC-Decrypt. To decrypt ciphertext (c1, C2) using group private key Ka, compute

m← c1 ⊕H(Ô(Ka, C2)) = c1 ⊕H(Ka ⋆ C2)

The decryption is correct, because for a legitimate ciphertext we have

(Ka ⋆ C2) = (P k−1 ⋆

k∏

i=1

Xi) ⋆ (R ⋆ P) = R ⋆ P k ⋆

k∏

i=1

Xi = R ⋆ Ya

5.4.1 Security Of Broadcast Encryption

We use a restricted model for security called security under an adaptive chosen plaintext attack (IND-

CPA). In this model, we fix some arbitrary set a = {1, 2, . . . k} of k users and require the adversary to
attack the semantic security of the scheme without access to a decryption oracle. However, we allow the
adversary to choose the subset of keys it is attacking. Since full security in the sense of adaptive chosen
ciphertext attacks (IND-CCA) in the random oracle model can be achieved using the Fujisaki-Okamoto
transformation [37], we only prove security in the IND-CPA model. IND-CPA security of a broadcast
encryption scheme is defined using the following game between a challenger C and an adversary A.

Game 3

Initialize. The challenger C gives a security parameter τ to the adversary A, who outputs a tuple
µ3. The challenger performs the key generation phase and gives a set {Y1, Y2, . . . Yµ3} of µ3

public keys to A.

Challenge. A generates two messages m0, m1 along with a set a ⊆ {1, 2, . . . µ3} of users. The

challenger chooses a bit b
R
← {0, 1} and outputs the encryption of mb under the group public

key Ya of a.

Guess. Eventually A outputs a bit b′ ∈ {0, 1}

Result: A wins the game if b = b′.

We refer to such an adversary A as an IND-CPA adversary. We define A’s advantage in attacking
the broadcast encryption scheme Adv-cpaA(τ) as:

Adv-cpaA(τ) =

∣∣∣∣Pr[b = b′]−
1

2

∣∣∣∣ ,

where the probability is taken over the random coin tosses of C and A.

Definition 5.3. Let H be a random oracle. We say that an IND-CPA adversary A (µ3, δ3, k3, ǫ3)-breaks
the broadcast encryption scheme in an adaptive chosen plaintext attack if for a total of µ3 public keys
output in the setup phase A runs at most time δ3; A makes at most k3 queries to the oracle for H; and
Adv-cpaA(τ) at least ǫ3. Alternatively, we say that the broadcast encryption scheme is (µ3, δ3, k3, ǫ3)-
secure under an adaptive chosen plaintext attack if no such adversary A exists.

The next theorem shows that any IND-CPA adversaryA with non-negligible advantage Adv-cpaA(τ) in
the random oracle model can be used to solve the group inversion problem with non-negligible advantage.
The proof is similar to the proof of [23, lemma 4.3]

Theorem 5.3. Let H be a random oracle and let the O-SAOWF be (kO, δ, ǫ)-secure under an adaptive
attack. Then the broadcast encryption scheme is (µ3, δ3, k3, ǫ3)-secure under an adaptive chosen plaintext
attack, where kO ≤ k3; δ ≤ δ3+Θ(c1µ3)+Θ(c2k3); and ǫ ≥ 2ǫ3. Here, c1 is the time for one multiplication
in Z∗

n, and c2 is a constant that depends on the oracle O.

25

Proof. Let the O-SAOWF be (kO, δ, ǫ)-secure under an adaptive attack and let A be an algorithm that
(µ3, δ3, k3, ǫ3)-breaks the key agreement protocol in an adaptive chosen plaintext attack. We construct
an algorithm B that uses A to solve GIPG in at most δ time with probability at least ǫ and making at
most kO oracle queries, thus arriving at a contradiction. The input to B is P ∈ G and its goal is to
output P−1. B simulates the challenger of game 3 and runs A.

Initialize. B gives the security parameter τ to A who replies with µ3. B generates

(Y1, σY1), (Y2, σY2), . . . (Yµ3 , σYµ3
)

R
← Sample(params) ∈ G× Z∗

n,

and gives the (µ3 + 1)-tuple (Y1, Y2, . . . Yµ3 , P) to A.

H-queries. At any time, A may query the random oracle H. To respond to these queries, B
maintains a list of tuples called the Hlist. Each entry in this list is a tuple of the form
〈Zj ,Hj〉. Initially this list is empty. To respond to a H query on Zi, algorithm B does the
following:

i. If the query Zi already appears on the Hlist in a tuple 〈Zi,Hi〉, then B responds with
H(Zi) = Hi.

ii. Otherwise, B just picks a random string Hi ∈ {0, 1}l and adds the tuple 〈Zi,Hi〉 to the
Hlist. It responds with H(Zi) = Hi.

Challenge. A generates two messages m0, m1 along with a set a ⊆ {1, 2, . . . µ3} and sends the

tuple (m0, m1, a) to B. Algorithm B picks random c1 ∈ {0, 1}l; generates (C2, σC2)
R
← Sample;

defines the ciphertext C = (c1, C2); and gives C as the challenge ciphertext to A. Observe
that by definition the decryption of C is c1 ⊕H(P−1 ⋆ C2 ⋆

∏
i∈a Yi).

Algorithm B also computes (and keeps secret) σW ← σC2 ·
∏

i∈a σYi
mod n. Clearly, σW is the

sampling information of W = C2 ⋆
∏

i∈a Yi (see Section 4.3, item 3).

Guess. Eventually A outputs a bit b′ ∈ {0, 1}. At this point, B searches the Hlist to find a tuple
〈Zj ,Hj〉 such that

O(Zj , P) = W (12)

If such a tuple does not exist in the Hlist, algorithm B reports failure and terminates. Other-
wise, B sets result ← T (σW ,−1, Zj) = W−1 ⋆ Zj . Algorithm B outputs result as the solution
to the GIPG instance.

Clearly, the simulation provided by algorithm B is perfect. Therefore, from claims 1 and 2 in the
proof of [23, lemma 4.2], we can conclude that

Pr
[
a tuple 〈Zj,Hj〉 appears in the Hlist such that equation 12 is satisfied

]
≥ 2ǫ3

Thus ǫ ≥ 2ǫ3. Also, algorithm B makes at most k3 queries to O. The running time of B is the running
time of A plus the time required for generating the µ3 public keys; the time required for computing
T ; the time required for searching up to k3 entries in the Hlist; and the time required for at most µ3

multiplications in Z∗
n. Therefore δ ≤ δ3 + Θ(c1µ3) + Θ(c2k3), where c1 is the time for one multiplication

in Z∗
n, and c2 is the time for checking one entry of the Hlist. Checking each entry in this list involves a

query to O. Combining the above results, we have the required bounds

6 Implementation And Efficiency

In this section, we will briefly touch upon issues relating to implementation and efficiency of our primitive.
Although our construction of O-SAOWF has other applications as demonstrated, we feel that its primary
use will be for highly dynamic group key agreement in applications like “secure chat”. Our system offers
the advantage that the group key need not be precomputed for communication between group members.
Thus, there is no specific ordering between the users.

26

6.1 Key Size

Factoring n enables an attacker to solve GIPG. Based on the current state-of-the-art factoring algorithms,
we suggest using the modulus n of about 313 decimal digits (≈ 1024 bits) for moderate security applica-
tions.10 This also makes computing discrete logarithms in G1 intractable using Pollard’s rho method [25,
p.128]. Using these parameters elements of G can be represented with at most ≈ 384 bytes. The public
keys Yi of Section 5.1, which are elements of G will be 384 bytes each. The private keys σXi

on the other
hand, which are elements of Z∗

n will be 128 bytes.

6.2 Query Overhead

In all the above protocols, we have been working in the equivalence classes of G rather than the individual
elements themselves. For any A = (x, y) ∈ G, the equivalence class [A] is completely characterized by the
first element x. The second element y is used only as an ‘auxiliary’ input for the oracle, and is useless
to anyone who does not know the factorization of n. Thus, verification of the second element cannot
provide additional security. With this consideration in mind, we slightly modify the Verify algorithm of
Section 4.4 and remove the call to the Verify-In-Group subroutine, since computing the bilinear pairing
allows verification of the first element x. The computation overhead is given in table 1.

Algorithm Exp G1 Exp Z∗

n2 Multi Z∗

n2 Multi Z∗

n Pairing

Compute 3 4 1 2 -

V-Compute 3 4 1 2 2

PV-Compute 5 5 1 2 2

Table 1: Computation involved in a query

6.3 Fast Paillier Decryption

Since each computation of ⋆ requires two decryptions, it is desirable to obtain a faster decryption pro-
cedure. In [29, Section 6], a fast variant of the Paillier cryptosystem is presented where decryption does
not require the factors of n and runs with almost quadratic complexity. In this variant, λ = (p−1)(q−1)
has a large prime factor ν. The public key is (t, n) such that the order of t ∈ Z∗

n2 is νn. The private key
is ν. Encryption and decryption is described below.

Encrypt Plaintext is m ∈ Zn. Generate r
R
← Z∗

n and compute c = tm+nr mod n2. The ciphertext is c.

Decrypt Ciphertext is c ∈ Z∗
n2 . Compute m = L(cν mod n2)

L(tν mod n2) mod n.

Semantic security of this variant does not depend on the DCRA (Section 3.2) but instead relies on
the weaker Decisional Partial Discrete Logarithm Assumption (DPDLA) [29, Theorem 20], which states
that the following problem is hard.

Decisional Partial Discrete Logarithm Problem (DPDLP(t,n)) Fix any t ∈ Z∗
n2 such that the

order of t is νn for unknown ν. Given w ∈ 〈t〉 and x ∈ Zn, output 1 if ∃y ∈ Z∗
n s.t w ≡ txyn

(mod n2) otherwise output 0.

6.4 Verifiability Of The Oracle

In this section we discuss two simplification of the construction. The above construction used bilinear
maps to implicitly verify the output of the black-box computation. However, since we already trust

10See the RSA factoring challenge (http://www.rsasecurity.com/rsalabs/node.asp?id=2092) and the article “TWIRL and
RSA key size” (http://www.rsasecurity.com/rsalabs/node.asp?id=2004). It is thought that 1024 bit keys will be secure till
the year 2010 while 2048 bit keys will be secure till the year 2030.

27

the black-box to keep the trapdoor information (λ) secret, we can also trust the black-box to correctly
evaluate the SAOWF.11

1 Our first simplification is to authenticate (i.e. verify) the output of the oracle via an existentially
unforgeable signature scheme. In this construction, instead of the bilinear group G1, we use a finite
field having a multiplicative subgroup of order n. The set S defined in Section 4.2 is then the φ(n)
elements of this field of order n. Note that in addition to the trapdoor information λ, the oracle will
also contain a private key for creating signatures. For all inputs (X, Y) ∈ G2, the oracle responds
with Z = X ⋆ Y ∈ G and a signature SigX,Y,Z on the tuple (X, Y, Z).

2 Our second simplification is to do away with the finite field and the signature scheme altogether by
using a deterministic variant of Paillier encryption defined in Section 3.2 and setting r = 1. In this
case, the set S = {y|y = E(x) ∧ x ∈ Z∗

n}.
12

6.5 Batch Queries

For increased efficiency in partial public key computation, we will assume that calls to the oracle can be
batched as follows, for any i inputs A1, A2, . . . Ai ∈ G, the oracle outputs A1 ⋆ A2 ⋆ . . .Ai. In this case,
for key computation in a group of m users each user must make a batch call requiring a message of size
O(m) bits to be sent to the oracle. Batch queries make sense in the first simplification discussed above.

6.6 Decentralizing The Oracle

Distributing the oracle is desirable, since each oracle call involves 3 exponentiations in G1 (irrespective of
the decryption algorithm). It is possible to share the Paillier decryption key (known only to the oracle)
between different trusted authorities with the weakness that compromise of even one would compromise
the entire system. We close this section with a comparison of our scheme with previously proposed group
key agreement methods in table 2.

7 Conclusion

In this paper, we presented a practical implementation of a new cryptographic primitive known as an
Oracle Strong Associative One-Way Function (O-SAOWF). As some practical applications of this prim-
itive, we presented a one-round key agreement scheme for dynamic ad-hoc groups based on the protocol
due to Rabi and Sherman [6]. The scheme can be extended to group signatures as demonstrated in Sec-
tion 5.3. In reality, we also demonstrate a “pay-per-use” cryptographic primitive using the oracle. The
advantage of our scheme in comparison with other centralized schemes is that the central controller does
not maintain any state information of the groups it is managing. It just acts as a “computing device” for
users registered with it. We envisage several interesting applications of this primitive in the near future.

As we demonstrate, the ability to “multiply” using the oracle does not give us the ability to “divide”
in G because its order is unknown. The curious property of our O-SAOWF is that it is weakly invertible.
In other words, given A ∈ G, it is possible to compute two pairs (B, B′) ∈ G2 such that A = B ⋆ B′ even

without using the oracle (To see this, sample B
R
← G. Then B′ = B−1 ⋆ A). We conclude this section

with some open questions.

1 Prove/disprove Conjuncture 4.9.

2 Prove/disprove that (IDHP(g,G1) ⇒ CDHP(g,G1)) implies that (GIPG ⇒ Oracle O).

3 Remove the oracle from our construction. In other words, exhibit a practical SAOWF construction.

11However, the fact that a separation between the two trust models exists may have complexity theoretic significance.
To see the separation, consider a game where the oracle always keeps λ secret but may cheat in its computation, its goal
being to convince us to accept an invalid group element as valid.

12We note that the deterministic variant of the Paillier cryptosystem is not semantically secure and may lead to other
subtleties. For instance in this variant we cannot select t = n + 1.

28

Membership size is m O-SAOWF GDH basic [5] AGKE [38] GKE[39]

Number of rounds 1 m − 1
sequential

2
sequential

2
sequential

Synchronization /
ordering needed?

No Yes Yes Yes

Controller needed? No No Yes (initial key
distribution)

Yes (group key
distribution)

Interaction needed? No Yes Yes Yes (for
synchronization)

Key Agreement
method

Oracle Self
(interactive)

Self
(broadcast)

Controller

Message size per
user (sent)∗

(m − 1)k1 (m − 1)k2 k3 (broadcast
only, otherwise
mk3

2k4 (to
controller)

Message size per
user (rcvd)∗

k1 (no verification),
otherwise
(m − 2)k1

(m − 1)k2 mk3 k4

Merge with m1 users 1 round
(total 2(m + m1)
messages)

O(m + m1)
rounds
(fresh key)

2 rounds
(total m + m1

broadcasts)

2 rounds
(total 2m1 + m

messages)

Part with m1 users no oracle calls
needed if partial
keys are cached

O(m − m1)
rounds
(fresh key)

2 rounds (m−m1

to m + m1

broadcasts)

1 round
(total m − m1

messages)

Partial Public
keys reusable ?

Yes No No No

Optimization
Possible?

Yes∗∗ Not likely Not likely Not likely

Protection under
active attack

Yes#

(Verifiable Oracle)
Susceptible to a
man-in-the-
middle attack

Authentication
after 2nd
round

Insecure under an
active attack [40]

Protection under
passive attack

Group Inversion
Problem

Diffie-Hellman
Problem

Diffie-Hellman
Problem

Diffie-Hellman
Problem

* We assume that k1, k2 . . . kn are constants.

** Assuming that intermediate controllers are used and partial public keys are cached.
If public keys are known in advance, the verifiability of the oracle ensures implicit group key authentication.

Table 2: Comparison of our group key agreement scheme

Note: We have made a prototype of the construction for cryptanalysis. The implementation is avail-
able online at http://homepage.cs.latrobe.edu.au/asaxena/oracle.htm. In the implementation, we
used the fast variant of the Paillier cryptosystem [29] and a finite field as discussed in Section 6.4.

Acknowledgment

We would like to thank Ronald Rivest, Leonid Levin, Virendra Sule, Pascal Paillier and Chunbo Ma for
useful feedback during the preparation of this manuscript.

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

29

[2] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-IV: Proceedings of the
4th International Symposium on Algorithmic Number Theory, pages 385–394, London, UK, 2000.
Springer-Verlag.

[3] Sandro Rafaeli and David Hutchison. A survey of key management for secure group communication.
ACM Comput. Surv., 35(3):309–329, 2003.

[4] Xukai Zou, Byrav Ramamurthy, and Spyros S. Magliveras. Secure Group Communications Over
Data Networks. Springer, New York, NY, USA, 2005.

[5] Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A new approach to group key
agreement. In Proceedings of the 18th International Conference on Distributed Computing Systems
(ICDCS’98), pages 380–387, Amsterdam, 1998. IEEE Computer Society Press.

[6] Muhammad Rabi and Alan T. Sherman. An observation on associative one-way functions in com-
plexity theory. Inf. Process. Lett., 64(5):239–244, 1997.

[7] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, American Mathematical Society, 324:71–90, 2003.

[8] Susan Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s thesis,
Massachusetts Institute of Technology, 2003. Supervised by: Ronald L. Rivest.

[9] Alan T. Sherman. Cryptology and VLSI (a two-part dissertation). I, II, Detecting and exploiting
algebraic weaknesses in cryptosystems. Algorithms for placing modules on a custom VLSI chip. Thesis
(Ph.D.), Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
USA, October 1986. Supervised by Ronald Linn Rivest.

[10] Burton S. Kaliksi, Jr., Ronald L. Rivest, and Alan T. Sherman. Is the Data Encryption Standard a
group? Journal of Cryptology, 1(1):3–36, 1988.

[11] M. Rabi and A. Sherman. Associative one-way functions: A new paradigm for secret-key agree-
ment and digital signatures. Technical Report CS-TR-3183/UMIACS-TR-93-124, Department of
Computer Science, University of Maryland Baltimore County, Baltimore, MD, 1993, 1993.

[12] C. M. Homan. Low Ambiguity in Strong, Total, Associative, One-Way Functions. ArXiv Computer
Science e-prints, October 2000.

[13] Alina Beygelzimer, Lance A. Hemaspaandra, Christopher M. Homan, and Jörg Rothe. One-way
functions in worst-case cryptography: algebraic and security properties are on the house. SIGACT
News, 30(4):25–40, 1999.

[14] Lane A. Hemaspaandra and Jörg Rothe. Creating strong, total, commutative, associative one-way
functions from any one-way function in complexity theory. J. Comput. Syst. Sci., 58(3):648–659,
1999.

[15] Lane A. Hemaspaandra, Jörg Rothe, and Amitabh Saxena. Enforcing and defying associativity,
commutativity, totality, and strong noninvertibility for one-way functions in complexity theory. In
Mario Coppo, Elena Lodi, and G. Michele Pinna, editors, ICTCS, volume 3701 of Lecture Notes in
Computer Science, pages 265–279. Springer, 2005.

[16] Amitabh Saxena and Ben Soh. A novel method for authenticating mobile agents with one-way
signature chaining. In Proceedings of The 7th International Symposium on Autonomous Decentralized
Systems (ISADS 05), pages 187–193, China, 2005. IEEE Computer Press.

[17] Lane A. Hemaspaandra, Kari Pasanen, and Jörg Rothe. If P 6= NP then some strongly nonin-
vertible functions are invertible. In FCT ’01: Proceedings of the 13th International Symposium on
Fundamentals of Computation Theory, pages 162–171. Springer-Verlag, 2001.

30

[18] Ueli Maurer. Information-theoretic cryptography. In Michael Wiener, editor, Advances in Cryptology
— CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 47–64. Springer-Verlag,
August 1999.

[19] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82: Advances in Cryptology, pages 199–203, New York, 1982.
Plenum Press.

[20] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In FOCS’1984,
pages 229–240, 1984.

[21] Ronald L. Rivest. On the notion of pseudo-free groups. In Moni Naor, editor, TCC, volume 2951 of
Lecture Notes in Computer Science, pages 505–521. Springer, 2004.

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In ASIACRYPT
’01: Proceedings of the 7th International Conference on the Theory and Application of Cryptology
and Information Security, pages 514–532, London, UK, 2001. Springer-Verlag.

[23] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Comput., 32(3):586–615, 2003.

[24] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[25] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton, FL, USA, 1996.

[26] Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in crypto-
graphic groups. Journal of Cryptology, 16(4):239–247, 2003.

[27] Neal Koblitz. A course in number theory and cryptography. Springer-Verlag New York, Inc., New
York, NY, USA, 1987.

[28] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe
Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer,
2005.

[29] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[30] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[31] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1979.

[32] Dario Catalano, Rosario Gennaro, and Nick Howgrave-Graham. The bit security of Paillier’s encryp-
tion scheme and its applications. In EUROCRYPT ’01: Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques, pages 229–243, London, UK, 2001.
Springer-Verlag.

[33] D. Catalano, R. Gennaro, and N. H. Graham. Paillier’s trapdoor function hides up to O(n) bits.
Journal of Cryptology, 15(4):251–269, 2002.

[34] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. Lecture Notes in Computer
Science, 2248:552–??, 2001.

31

[35] Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO ’93: Proceedings of the 13th annual
international cryptology conference on Advances in cryptology, pages 480–491, New York, NY, USA,
1994. Springer-Verlag New York, Inc.

[36] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor tracing
schemes. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 542–558. Springer, 2005.

[37] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Lecture Notes in Computer Science, 1666:537–554, 1999.

[38] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-round authenticated group key exchange
for dynamic groups. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in
Computer Science, pages 245–259. Springer, 2004.

[39] E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval. Mutual authentication and group key
agreement for low-power mobile devices, 2003.

[40] Junghyun Nam, Seungjoo Kim, and Dongho Won. Attacks on Bresson-Chevassut-Essiari-
Pointcheval’s group key agreement scheme for low-power mobile devices. Cryptology ePrint Archive,
Report 2004/251, 2004.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, 1991.

[42] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In CRYPTO’ 86: Proceedings on Advances in cryptology, pages 186–194, London, UK,
1987. Springer-Verlag.

[43] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1(2):77–
94, 1988.

[44] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. Lecture Notes in Computer
Science, 740:390–420, 1993.

APPENDIX

A Soundness Of Verify-In-Group Algorithm

The reader is referred to Section 4.4, algorithm A-4 for the notation used here. First we define the
following problem.

Decision Exponent Class Problem [DECP(t,n,g,G1)]: Given {t, n, g, G1} ⊂ params and a pair (x, y) ∈

G1 × Z∗
n2 , where x = ga and y = tbrn mod n2 for unknowns (a, b, r) ∈ Zn × Zn × Z∗

n, output 1 if
[a ≡ b (mod p) ⊻ a ≡ b (mod q)], otherwise output 0.

The following theorem shows that the Verify-In-Group algorithm is sound if the problems DECP(t,n,g,G1)

and CDHP(g,G1) are intractable.

Theorem A.1. If the decision exponent class problem and the computational Diffie-Hellman problem
are hard then the Verify-In-Group algorithm is sound.

Proof. The input to the Verify-In-Group algorithm is (x, y) ∈ G1×Z∗
n2 . We must show that if the algorithm

outputs 1 then (x, y) ∈ G. Let x = ga and y = tbrn mod n2 for unknowns (a, b, r) ∈ Zn × Zn × Z∗
n. The

transformation of (x, y) to (x1, y1) and (x2, y2) in step 2 of the algorithm can be denoted by the mapping

f1 : Zn × Zn × Z∗
n 7→ G1 × Z∗

n2

(u, v, w) 7→ (gau+v, tbu+vrunwn mod n2)

Consider the cases when the algorithm outputs 1.

32

Case 1. [a ≡ b (mod p) ∧ a ≡ b (mod q)]: In this case a = b and so (x, y) ∈ G. Therefore, f1(u, v, w) ∈
G ∀ (u, v, w) ∈ domain(f1). In this case, the output of Verify-In-Group algorithm is consistent with
its requirements.

Case 2. [a 6≡ b (mod p) ∧ a 6≡ b (mod q)]: It is not hard to prove that the mapping f1 is a bijection in
this case. Since both sides of f1 have the same number of elements n2φ(n), it is enough to prove
that f1 is invertible with respect to every element in G1×Z∗

n2 . Let (ga1 , tb1r1
n mod n2) ∈ G1×Z∗

n2

be an element of the right side of f1. If a preimage (u1, v1, w1) of f1 exists for this element, then
we must have

a1 ≡ au1 + v1 (mod n)
b1 ≡ bu1 + v1 (mod n)
r1 ≡ ru1w1 (mod n)




 (13)

Clearly equation 13 has a unique solution in (u1, v1, w1) for all (a1, b1, r1) if and only if (a−b) ∈ Z∗
n.

In other words, if and only if gcd(a− b, n) = 1. Note that gcd(a− b, n) = 1 is another way of saying
that [a 6≡ b (mod p) ∧ a 6≡ b (mod q)].

Since f1 is a bijection, the distributions {(x1, y1)} and {(x2, y2)} are identical to a random distrib-
ution in G1 × Z∗

n2 . If the oracle O∗ can make the algorithm output 1 then we can use O∗ to solve
CDHP(g,G1) (see Section 3.1) as follows:

1 Input is g, gσ1 , gσ2 and our goal is to output gσ1σ2 .

2 Generate y1, y2
R
← Z∗

n2

3 Set x1 ← gσ1 and x2 ← gσ2

4 Give (x1, y1), (x2, y2) as input to oracle O∗ in step 3 of the algorithm instead of the real values.

Since the forged and real distributions of {(x1, y1)} and {(x2, y2)} are identical, the oracleO∗ cannot
distinguish between the forged and real inputs. Accordingly it will reply with (x′, y′) such that the
algorithm outputs 1 in step 4. In this case x′ is the required solution to the CDHP(g,G1) instance.

Case 3. [a ≡ b (mod p) ∧ a 6≡ b (mod q)]: (or gcd(a− b, n) > 1 and a 6= b)

The probability of a randomly picked pair (x, y) ∈ G1 × Z∗
n2 such that gcd(a− b, n) > 1 and a 6= b

is p+q−2
pq which can be neglected for large p, q. On the other hand, if the adversary (O∗) knows in

advance that gcd(a − b, n) > 1 but does not know both of {a, b}, then the adversary knows that
the distribution of the image

f1(u1, v1, w1) = (ga1 , tb1r1
n mod n2)

always satisfies a1 ≡ b1 (mod p). In this case, our security relies on the adversary’s inability to
distinguish elements of this distribution from randomly chosen elements of G1 × Z∗

n2 assuming
the hardness of DECP(t,n,g,G1). Under this assumption, we can use the adversary O∗ to solve
CDHP(g,G1) as in the previous case. The case of [a 6≡ b (mod p) ∧ a ≡ b (mod q)] is handled
similarly.

Thus, we have proved that the algorithm is sound under the assumption that the problems DECP(t,n,g,G1)

and CDHP(g,G1) are intractable.

B Proof Of Knowledge Of Private Keys Of Section 5.1

Recall from Section 5.1 that the private key of user i is σXi
, the sampling information for some Xi ∈ G,

while the public key is Yi = Xi ⋆ P . In this section we give two constructions of zero-knowledge proofs
for this setting. The first construction enables user i to claim knowledge of the value Xi ∈ G such that
Yi = Xi ⋆ P (without saying anything about σXi

). The second construction enables user i to claim

33

knowledge of not only Xi but also σXi
such that Yi = Xi ⋆ P and σXi

is the sampling information of Xi.
The first construction is useful when the sampling information of some group element is not known, yet
a proof of knowledge of that group element must be given (see item 3 in Section 5.2.2).

For conveinence we will drop the subscript i in what follows and consider the public key as Y = X ⋆P
with σX being the sampling information of X . The zero-knowledge proofs given below are similar to the
proofs of graph isomorphism [41] and quadratic residuosity [42, 43].

B.1 Zero-Knowledge Proof Of Knowledge Of Group Element

In this section we give a zero-knowledge proof of knowledge that can be used by a prover P to prove to
a verifier V , the knowledge of a value X such that Y = X ⋆ P for some given pair (P, Y). The proof of
knowledge is as follows.

PROTOCOL (P ,V)

Common input: (Y, P) ∈ G2.
P’s auxiliary input: X ∈ G such that Y =X ⋆ P .
V’s auxiliary input: none
Claim: P claims to know X such that Y =X ⋆ P .

1 P samples U0
R
← G using the method described earlier and computes U1 = X ⋆ U0

−1 ∈ G. Thus
U0 ⋆ U1 = X (essentially P will prove knowledge of (U0, U1) such that the X = U0 ⋆ U1). P then
computes Wj = Uj ⋆ P for j ∈ {0, 1} and sends the pair (W0, W1) of commitments to V .

2 V checks if the following equality holds

W0 ⋆ W1
?
= Y ⋆ P (14)

and terminates the protocol if this check fails. Otherwise, V picks up a random bit b
R
← {0, 1} and

sends b as its challenge to P .

3 On receiving b ∈ {0, 1}, P replies with Ub.
On receiving Ub, V checks if the following equality holds:

Wb = Ub ⋆ P (15)

If the equality does not hold then P outputs REJECT. Otherwise P outputs ACCEPT.

The above protocol (P ,V) is a atomic zero-knowledge proof of knowledge of X with knowledge error
1/2 using the definitions of [44]. The protocol is (sequentially) repeated k times to reduce this knowledge
error to 1/2k. The next theorem shows that the above protocol is indeed a zero-knowledge proof of
knowledge of X .

Theorem B.1. The above protocol (P ,V) is a zero-knowledge proof of knowledge of X.

Proof. First note that the protocol is complete (i.e. if both parties are honest, the verifier always accepts).
To finish the prove, we must show that the protocol is a proof of knowledge (i.e. has an extractor [44])
and is zero-knowledge (i.e. has a simulator [41]).

Proof Of Knowledge: To prove that protocol (P ,V) is a proof of knowledge, we must exhibit
an extractor for X . Our extractor is similar to that of [43]. Construction of this extractor is trivial
by rewinding the prover P and giving it different challenge bits b on the same commitment (W0, W1)
and obtaining both U0 and U1. We already know that W0 ⋆ W1 = Y ⋆ P = X ⋆ P 2 (equation 14) and
Ub = Wb ⋆ P−1 (equation 15). Therefore, once we obtain (U0, U1) we can compute X = U0 ⋆ U1.

Zero-Knowledge: We will demonstrate the zero-knowledge property of protocol (P ,V) using an
idea similar to the one used in [43]. We assume that the simulator knows in advance what the challenge

bit b is going to be. The simulator runs as follows: It samples Ub
R
← G. Then it computes Wb = Ub ⋆ P

34

and W1−b = Ub
−1 ⋆ Y . The commitment of step 1 is (W0, W1). It is easily checked that W0 ⋆ W1 =

Wb ⋆ W1−b = Ub ⋆ P ⋆ Ub
−1 ⋆ Y = Y ⋆ P as needed in equation 14. Finally after the challenge bit b is

received, the simulator simply reveals Ub. We have Wb = Ub ⋆ P as required in equation 15. Clearly, the
transcript of the simulation is distributed identically to the transcript of the real interaction.

B.2 Zero-Knowledge Proof Of Knowledge Of Sampling Information

In this section we give a zero-knowledge proof of knowledge that can be used by a prover P to prove to
a verifier V , the knowledge of a value σX such that Y = X ⋆ P for some given pair (P, Y) and σX is the
sampling information of X . The proof of knowledge is as follows.

PROTOCOL (P ,V)

Common input: (Y, P) ∈ G2.
P’s auxiliary input: σX ∈ Z∗

n such that σX is the sampling information of X ∈ G and Y = X ⋆ P .
V’s auxiliary input: none
Claim: P claims to know σX , the sampling information of X ∈ G such that Y = X ⋆ P .

1 P generates (U, σU)
R
← Sample(params) ∈ G×Z∗

n and computes W = U ⋆ Y ∈ G. The commitment
W is sent to V .

2 V checks that W ∈ G using the Verify-In-Group algorithm of Section 4.4 and terminates the protocol

if W /∈ G. Otherwise, V picks up a random bit b
R
← {0, 1} and sends b as its challenge to P .

3 On receiving b ∈ {0, 1}, P replies with σZ = σU · σX
b mod n ∈ Z∗

n.
On receiving σZ , V computes Z ∈ G such that σZ is the sampling information of Z and checks if
the following equality holds:

W = Z ⋆ Y 1−b ⋆ P b (16)

If the equality does not hold then P outputs REJECT. Otherwise P outputs ACCEPT.

Like the previous protocol the above protocol (P ,V) is a atomic zero-knowledge proof of knowledge
of X with knowledge error 1/2 using the definitions of [44]. The protocol is (sequentially) repeated k
times to reduce this knowledge error to 1/2k. The next theorem shows that the above protocol is indeed
a zero-knowledge proof of knowledge of σX .

Theorem B.2. The above protocol (P ,V) is a zero-knowledge proof of knowledge of σX .

Proof. First note that the protocol is complete (i.e. if both parties are honest, the verifier always accepts).
To finish the prove, we must show that the protocol is a proof of knowledge (has an extractor) and is
zero-knowledge (has a simulator).

Proof Of Knowledge: To prove that protocol (P ,V) is a proof of knowledge, we must exhibit an
extractor for σX . Construction of this extractor is trivial by rewinding the prover P and giving it different
challenge bits b on the same commitment W to obtain both σZ = σU for b = 0 and σZ′ = σU · σX for
b = 1. Clearly σX = σZ′/σZ .

Zero-Knowledge: Assume that the simulator knows in advance what the challenge bit b is going

to be. The simulator runs as follows: It generates (Z, σZ)
R
← Sample(params) ∈ G × Z∗

n and computes
W = Z ⋆ Y 1−b ⋆ P b ∈ G as the commitment. On receiving the challenge bit b, it replies with σZ . It is
clear that equation 16 will be satisfied irrespective of the choice of bit b.

C Identity Based Encryption Using O-SAOWFs

In this section we give (without a security proof) an Identity Based Encryption (IBE) scheme as another
application of our O-SAOWFs. We refer the reader to [23] for the definitions of an IBE scheme and to
Section 4.4 for the notation used here. In summary, our IBE scheme has four PPT algorithms Setup-IBE,
KeyGen, ID-Encrypt and ID-Decrypt. The definition of “PPT” has the usual caveat; oracles are considered
as algorithms.

35

1 The Setup-IBE algorithm takes as input some security parameter. It outputs the IBE system
parameters par and the IBE master key m-key.

2 The KeyGen algorithm takes as input the value par, m-key and a random string i. It outputs the
private key prv-keyi corresponding to the string i.

3 The ID-Encrypt algorithm takes as input par, a random message m and a random string i. It outputs
a ciphertext c.

4 The ID-Decrypt algorithm takes as input par, a private key prv-keyi (corresponding to some string
i) and ciphertext c. It outputs a message m.

The ID-Encrypt and ID-Decrypt algorithms satisfy the standard consistency constraint:

∀m ∀i ID-Decrypt(par, ID-Encrypt(par, m, i), KeyGen(par, m-key, i)) = m

In an IBE scheme, the master key m-key is known only to a trusted authority known as the Key
Generating Center (KGC) that is responsible for distributing private keys. In our construction although
the oracle O is required for computation, it need not be the Key Generating Center (KGC). The four
algorithms are described below.

1 Setup-IBE: Set (X, σX), (Y, σY)
R
← Sample(params) and set Z ← T (σX , 1, Y) = X ⋆ Y . Finally set

par← (Y, Z) ∈ G2; m-key← (σX , σY) ∈ Z∗
n

2 and output (par, m-key).

2 KeyGen: Let i ∈ N be the input string. Set prv-keyi ← T (σX ,−i, Y) = X−i ⋆ Y ∈ G and output
prv-key.

3 ID-Encrypt: Our message space is {0, 1}l where l < log2(n) and we require a cryptographic hash
function H : G 7→ {0, 1}l. To encrypt a message m ∈ {0, 1}l using input string i ∈ N, first generate

random (R, σR)
R
← Sample(params). Then compute

c1 = m⊕H(T (σR, 1, E(Y, i + 1))) = m⊕H(Y i+1 ⋆ R)

C2 = T (σR, 1, E(Z, i)) = Zi ⋆ R = X i ⋆ Y i ⋆ R

The ciphertext is (c1, C2).

Both c1 and C2 can be directly computed if Y i+1 and Zi are precomputed.

4 ID-Decrypt: To decrypt arbitrary ciphertext (c1, C2) compute

m = c1 ⊕H(Ô(C2, prv-keyi)) = c1 ⊕H(C2 ⋆ X−i ⋆ Y)

Decryption is correct, because for a legitimate ciphertext:

C2 ⋆ X−i ⋆ Y = (X i ⋆ Y i ⋆ R) ⋆ (X−i ⋆ Y) = Y i+1 ⋆ R

The security of the above construction will be discussed in the full version of this paper.

36

