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There are just three tasks.

Firstly, I would like to move this pile from here to there,
but I'm afraid that all I have is this tiny tweezers.
Secondly, I would like to empty this well and fill the other;
but I have no bucket, so you’ll have to use this eye dropper.
And, lastly, I must have a hole through this cliff,

and here is a needle to dig it.

Norton Juster, The Phantom Tollbooth.

Abstract

Rivest proposed the idea of a chaffing-and-winnowing scheme, in which confidentiality is
achieved through the use of an authentication code. Thus it would still be possible to have
confidential communications even if conventional encryption schemes were outlawed. Hanaoka
et al. constructed unconditionally secure chaffing-and-winnowing schemes which achieve perfect
secrecy in the sense of Shannon. Their schemes are constructed from unconditionally secure
authentication codes.

In this paper, we construct unconditionally secure chaffing-and-winnowing schemes from
unconditionally secure authentication codes in which the authentication tags are very short.
This could be a desirable feature, because certain types of unconditionally secure authentication
codes can provide perfect secrecy if the length of an authentication tag is at least as long as the
length of the plaintext. The use of such a code might be prohibited if encryption schemes are
made illegal, so it is of interest to construct chaffing-and-winnowing schemes based on “short”
authentication tags.
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1 Introduction

The idea of chaffing-and-winnowing was suggested by Rivest [5]. The hypothetical motivating
scenario is that encryption schemes might be outlawed at some future time, while the use of
message authentication codes (i.e., MACs) could still remain legal. The basic idea of a chaffing-and-
winnowing scheme is to use a MAC to provide confidentiality, thus circumventing the hypothetical
ban against encryption. Typically, a sender (Alice) and a receiver (Bob) share a secret key K. Alice
prepares a large number of “authenticated messages”, each having the form m = (z, a) where each
x is an unencrypted plaintext and a is an authentication tag. Then Alice sends all the authenticated
messages to Bob. Bob only accepts the message(s) having authentication tags that are valid under
the key K. An observer O has no way to distinguish between valid and invalid authentication tags,
so O cannot determine the plaintext(s) that Alice is communicating to Bob.

This intriguing idea has not received much study to date. There are two main papers investigat-
ing theoretical aspects of chaffing-and-winnowing subsequent to [5], namely Bellare and Boldyreva
[1] and Hanaoka et al. [4]. The paper [1] gives formal definitions and security treatments of chaffing-
and-winnowing schemes, based on the notion of “find-then-guess” security of encryption schemes.
The paper [4] studies chaffing-and-winnowing in the setting of unconditional security. The desire
is to provide perfect secrecy, based on a suitable unconditionally secure authentication code. That
paper also considers “non-malleability” properties of chaffing-and-winnowing schemes. For a paper
that discusses practical issues regarding the implementation of chaffing-and-winnowing schemes,
see Clayton and Danezis [2].

In this paper, we continue the study of unconditionally secure chaffing-and-winnowing schemes.
One possible difficulty with the schemes constructed in [4] is that the underlying authentication
codes have the property that the authentication tag has the same entropy as the plaintext. Thus
the authentication code might already provide perfect secrecy. Such an authentication code might
not be considered “legal” in our motivating scenario.

We are interested in building unconditionally secure chaffing-and-winnowing schemes that are
constructed from underlying authentication codes that cannot provide perfect secrecy. In fact,
we base our construction on authentication codes that employ only one-bit authenticators. Such
authenticators clearly cannot provide perfect secrecy for any plaintext space of cardinality greater
than two, so it seems to be an interesting result that we can manufacture unconditionally secure
chaffing-and-winnowing schemes from them.

1.1 Owur Contributions

The rest of the paper is organized as follows. In Section 1.2, we briefly present some background the-
ory about authentication and secrecy codes. In Section 2, we decribe our model for unconditionally
secure chaffing-and-winnowing schemes. In Section 3, we review and discuss the main construction
from [4]. In Section 4, we give our new construction for chaffing-and-winnowing schemes based
on one-bit authenticators. We prove our scheme is correct, present a modification and discuss
its efficiency. We also show that our scheme is optimal among chaffing-and-winnowing schemes
with one-bit authentication tags. As well, we present a “hybrid” scheme based on our one-bit
chaffing-and-winnowing schemes. A few final comments are made in Section 5.



1.2 Unconditionally Secure Authentication and Secrecy

Unconditionally secure authentication codes were first studied by Gilbert, MacWilliams and Sloane
[3]. Simmons developed the theoretical foundations (for a survey, see [7]) and many constructions
have been provided over the years. We briefly summarize some definitions, notation and basic
results.

An authentication code is a four-tuple (X, A, K, F) such that the following conditions are satis-
fied:

1. X is a set of plaintexts,

2. Ais a set of authentication tags,

3. K is a set of keys, and

4. F={frk : K € K} is a set of authentication functions, where fx : X — A for every K € K.

A key K € K is chosen uniformly at random' by Alice and communicated to Bob over a secure
channel. When Alice wants to send an authenticated message to Bob, she chooses a plaintext z € X
and computes the authentication tag a = fx(z). The message m = (z,a) is sent to Bob over an
insecure channel. Bob accepts a message m = (z,a) if and only if a = fx(z); such a message is
said to be walid under the key K. In this basic model, each key K is to be used to transmit only
one message.

An opponent, denoted by O, may try to cheat Bob by causing him to accept a message that
was not constructed and transmitted by Alice. If O introduces a message (z',a’) into the channel
before Alice sends a message to Bob, then we say that O is attempting to impersonate Alice. On
the other hand, O might intercept a valid message (z, a) that was transmitted by Alice, and replace
it with a message (2,a') where ' # x. This scenario is termed substitution. In each case, O is
hoping that Bob will accept the bogus message (z’,a’).

Let P;r denote the impersonation probability of the authentication code, which denotes the
maximum probability with which O can fool Bob in an impersonation attack. The following bound
on Py is well-known (see, for example, [8, Theorem 4.14]).

Theorem 1.1. Suppose that (X, A, KC,F) is an authentication code. Then Pr > 1/|A|. Further,
equality occurs if and only if

: _ 4 K
{K €K: fk(z) =a}| = A

for every x € X and for every a € A.
The next result is an immediate corollary of Theorem 1.1.

Corollary 1.2. Suppose that (X, A, K,F) is an authentication code with Pr = 1/|A|. Then |K| >
|A|, and equality occurs if and only if

HK € K: fic(w) = a}| =1

for every x € X and for every a € A.

1Tt is possible to consider codes where keys are not chosen equiprobably. Most of the results we state can be
appropriately modified to apply to the more general setting. However, it is simpler and more convenient to restrict
our attention to the simplified setting.



An authentication code in which P; = 1/|A| and |K| = | A| will be termed optimal.

There are also many results about substitution probabilities of authentication codes; however,
we do not need to consider them in this paper.

Now we turn to unconditionally secure secrecy codes, the theory of which was developed by
Shannon [6]. A secrecy code is a five-tuple (X,Y,K,E, D) such that the following conditions are
satisfied:

1. X is a set of plaintexts,

2. Y is a set of ciphertexts,

3. K is a set of keys,

4. D ={di : K € K} is a set of decryption functions such that dg : Y — X for every K € K,

5. &€ ={ex : K € K} is a set of encryption functions such that ex : X — Y for every K € K,
and

6.

di(ex(z)) == (1)
for all x € X and for all K € K.

Observe that (1) implies that ex is injective for every K € K.

As before, a key K € K is chosen uniformly at random by Alice and communicated to Bob over
a secure channel. When Alice wants to send a message to Bob, she chooses a plaintext x € X and
computes the ciphertext y = eg(z), which is sent to Bob over an insecure channel. Bob decrypts
the ciphertext y to the plaintext z = dg (y).

A secrecy code is said to provide perfect secrecy if Pr[z|y] = Pr[z] for all plaintexts x and
all ciphertexts y. That is, the a priori probability of plaintext x is the same as the a posteriori
probability of x given that the ciphertext y is observed. We will assume that Pr[z] > 0 for all x.

In this case, we can apply Bayes’ Theorem, which states that
Prlz|y] x Prly]
P -
ole] = 0 T

and it is easily seen that we have perfect secrecy if and only if Pry|z] = Pr[y] for all plaintexts =
and all ciphertexts y.
Shannon gave the following characterization of secrecy codes that provide perfect secrecy.

Theorem 1.3. [6] A secrecy code (X,Y,K,E,D) provides perfect secrecy if and only if, for every
y € Y, there exists a non-negative integer ry such that

HEK € K:ex() = yh =1y
for every x € X.

Remark. It is easy to verify that Pr[y|z] = r,/|K| if we have perfect secrecy.

The following corollary is useful; for a detailed proof, see [8, Theorem 2.4]).

Corollary 1.4. Suppose that a secrecy code (X,Y,K,E,D) provides perfect secrecy. Then |K| >
|Y| > |X|. Further, |K|=|Y|=|X] if and only if, for every y € Y and every x € X, there exists a
unique key K € K such that ex(x) =y (i.e., ifry =1 forally € )).



Protocol 2.1: Unconditionally Secure Chaffing-and-Winnowing Scheme Suppose
(X, A, E,F) is a chaffing-and-winnowing scheme.

1. A secret key K € K is chosen randomly by Alice and communicated to the receiver, Bob,
over a secure channel. K is the decryption key.

2. Later, Alice wants to encrypt a plaintext z € X = {0,...,n — 1} to send to Bob. Alice
chooses an encryption function e € £(K,z) uniformly at random. Then Alice computes
a; = e(j) for all j, 0 < j <n— 1. The list of n ordered pairs,

Y= ((07 CL()), sy (n - ]-7 an—l))a
is sent to Bob; y is the ciphertext.

3. Bob computes b; = fx(j) for all j, 0 < j < n — 1. Bob decrypts y to the plaintext z
if and only if {j : b; = a;} = {z}. (Because (2) holds, there will be exactly one ordered
pair m = (z,a) such that a is a valid authentication tag under the key K. This plaintext
element x is defined to be the decryption of y.)

2 Unconditionally Secure Chaffing-and-Winowing

In this section, we develop necessary and sufficient conditions for a chaffing-and-winnowing scheme
to achieve perfect secrecy. First, we give a careful description of the structure of a chaffing-and-
winnowing scheme.

Let (X, A, K, F) be an authentication code, and for convenience, let X = {0,...,n — 1} be the
set of possible plaintexts. A secret key K € K will be used as a decryption key in the chaffing-and-
winnowing scheme. Given any decryption key K € K and any plaintext = € X', there will be a set
E(K, x) of possible encryption functions. For each encryption function e € £(K,z), e: X — A.

In order for unambiguous decryption to be possible, we will require that the following property
must hold for all K € K, for all z € X, and for all e € (K, z):

{7:0<j<n—1land fk(j) = ()} = {z}. (2)

We denote the set of all the encryption keys by £. The set

e= |J &K a).

KeK,zeX

We will assume, for simplicity, that all the sets £(K, z) have the same cardinality, which we denote
by S.

A chaffing-and-winnowing scheme is denoted by a five-tuple (X, A, K, &, F). The chaffing-and-
winnowing schemes we study in this paper follow the general structure set out in Protocol 2.1. This
is essentially the model for unconditionally secure chaffing-and-winnowing introduced in [4].

Before continuing, we make a few observations and remarks about Protocol 2.1.



Remarks.

1. As is common in the unconditionally secure setting, each key is to be used for only one
encryption or decryption.

2. In the unconditionally secure setting, we generally consider plaintexts that are chosen from
a finite set of possible plaintexts (e.g., the set {0,...,n — 1} for some fixed integer n, or all
bitstrings of some fixed length). In the computationally secure setting, it is more common to
consider plaintexts of arbitrary length.

3. In the computationally secure setting, it is not necessary for a ciphertext to include all possible
plaintexts. However, this is clearly required if we hope to attain perfect secrecy in the setting
of unconditional security.

4. In a later section, we will consider schemes based on breaking a plaintext into smaller blocks
and using multiple keys. This was suggested by Rivest [5] in his original paper, and it can be
done in the unconditionally secure setting as well.

5. An interesting feature of chaffing-and-winnowing schemes is that the encryption key is chosen
after the plaintext to be encrypted is chosen.

6. None of the schemes we construct in this paper are very effficient from the point of view of
message expansion, key size, etc. This is because we are attempting to achieve a strong type
of confidentiality with a tool that is deliberately chosen in order to not provide confidentiality
(at least, it does not provide confidentiality when it is used in its intended manner).

Lemma 2.1. Suppose a chaffing-and-winnowing scheme (X, A, K,E,F) satisfies (2). Let K € K
and suppose x1,x2 € X, x1 # x2. Then E(K,x1) NE(K, z2) = 0.

Proof. Suppose that e € E(K,z1) N E(K, xz2). Because e € (K, z1), property (2) implies that

{7:0<j <n-1and fk(j) =e(j)} = {z1}.

However, because e € £(K, x2), property (2) implies that

{7:0<j<n—1land fk(j) =e(i)} = {2}

It follows that z1 = x9, a contradiction. O

2.1 Security of the Scheme

Consider an observer O who sees a ciphertext y in the channel. We do not want O to be able to
determine any information about the value of the plaintext x. We assume that O has complete
information about the chaffing-and-winnowing scheme, but O does not know the values of K, x
and e that are used. Also, O has unlimited computing power, since we are working in the model
of unconditional security.

Remember that we are considering chaffing-and-winnowing schemes (X, A, IC, €, F) in which
|E(K,z)| = S for all z € X and for all K € K. Fix an excryption function e € £. For z € X and
e €&, define re, = {K € K:e € &K, z)}|. The following theorem gives a characterization of
perfect secrecy in terms of the quantities ., (there is an obvious similarity between the following
theorem and Theorem 1.3).



Theorem 2.2. Suppose that (X, A, K, E,F) is a chaffing-and-winnowing scheme in which |E(K, x)| =
S for all x € X and for all K € K. Then the scheme achieves perfect secrecy if and only if re s s
independent of x for every e € £.

Proof. In this proof, we make use of the fact that there is an obvious correpondence between the
encryption functions and ciphertexts defined by the following mapping;:

e—y=((0,e(0)),...,(n—1,e(n—1))).

It is clear that the above-defined mapping is a bijection. In the rest of this proof, we will denote
the encryption function corresponding to a ciphertext y by e,.

Perfect secrecy is achieved for a chaffing-and-winnowing scheme if and only if Pr[y|z] = Pr[y]
for every x € X and every y € ). Equivalently, we have perfect secrecy if and only if Pry|z] is
independent of z, for every y € V.

For a ciphertext y € ), let e = e, and consider the values 7., (z € X') as defined above. Now,
it is easy to see that

Tex
Priy|lz] = ==.
vl = 5o
Therefore we have perfect secrecy if and only if r , is independent of x. O

3 The Hanaoka et al. Construction

We describe the basic construction from [4], which we term the H3WI scheme. Suppose that
(X, A, K,F) is an authentication code. Define two keys K and K’ to be disjoint if fx(x) #
fxi(x) for all z, 0 < z < n — 1. In the H3WI construction, we require that there exist |X| = n
mutually disjoint keys, which implies that | A| > |X| = n. The paper [4] suggests to use an optimal
authentication code that is secure against impersonation. In view of Theorem 1.1 and Corollary
1.2, this is equivalent to saying that || = |A| = |X| and the n keys are mutually disjoint.

For convenience, suppose that £ = {K),..., K,,—1}. We need to describe the sets of encryption
functions (K, z), 0 <t <n-—-1,0<z <n-—1. Given t and z, let P(t,z) denote the set of all
permutations 7 of {0,...,n — 1} subject to the constraint that 7(z) = ¢. For each permutation

m € P(t,z), there is an associated encryption function e = e(w), which is defined as follows:
e(.j) = fK,r(j) (])
for all j, 0 < j <n—1. Then we define
E(fk,z) ={ex :m € P(t, )}

The property (2) is clearly satisfied, so unambiguous decryption is achieved. We now use
Theorem 2.2 to verify that the chaffing-and-winnowing scheme provides perfect secrecy. It is easy
to see that |€| = n!, since there is a one-to-one correspondence between the encryption keys and
permutations of {0,...,n — 1}. For any K € K, the n sets £(K,z) (x € X) form a partition of £
into n sets of size (n — 1)!. Then it is easy to see, for any z € X, that the n sets £(K,z) (K € K)
form a partition of £ into n sets of size (n — 1)!. Applying Theorem 2.2, it follows that the scheme
(X, A, K,E,F) achieves perfect secrecy.

This chaffing-and-winnowing scheme can be modified so that the encryption keyspace is smaller.
This reduces the number of random bits required by Alice to choose an encryption function. Given



t and x, we define P*(t,x) to consist of only one permutation, namely the permutation = such that
m(j) =t—x+ jmodn for all j, 0 < j <n— 1. Then let

E(fr,x) ={er:me€P*(t,x)}
and

&= |J &K

KeKzeX
It is easy to prove the following facts about the chaffing-and-winnowing scheme (X, A, K, E*, F):
L. [&*] =mn,
2. for any K € K, the n sets £*(K, z) (z € X) form a partition of £* into n sets of size one, and

3. for any x € X, the n sets £*(K,z) (K € K) form a partition of £* into n sets of size one.

Applying Theorem 2.2, it follows that the scheme (X, A, K, E*, F) achieves perfect secrecy.
Here are two examples to illustrate the scheme.

Example 3.1. Suppose that fx,(i) = i — j mod n for all 7 and j. This authentication code is
optimal (cf. Theorem 1.1). Then it is easy to see that the ciphertext is

y=(0,z—1¢t), 1,z —1t),...,(n— 1z —1t)).

We illustrate with the case n = 4. First we present the four decryption functions (i.e., authen-
tication functions) and then we present the encryption functions in each £*(Ky, x). All encryption
and decryption functions are written as 4-tuples.

KJ‘ IK; t’ z=0 z=1 T = T =
Ky | (0,1,2,3) 0((0,0,0,0) (1,1,1,1) (2,2,2,2) (3,3,3,3)
K, (3,0,1,2) 11(3,3,3,3) (0,0,0,0) (1,1,1,1) (2,2,2,2)
K> |(2,3,0,1) 21(2,2,2,2) (3,3,3,3) (0,0,0,0) (1,1,1,1)
K3 | (1,2,3,0) 31(1,1,1,1) (2,2,2,2) (3,3,3,3) (0,0,0,0)
Since ag = - -+ = a,_1 in this scheme, it would be sufficient to simply transmit one copy of this

common value, which we denote by a, to Bob. Then, Bob can decrypt the ciphertext by computing
z = a4+ tmodn. Now, it is easy to see from Corollary 1.4 that the constituent authentication
code already provides perfect secrecy. Therefore it could be argued plausibly that this is not a
permissible chaffing-and-winnowing scheme.

Example 3.2. Suppose that fx; (¢) = j mod n for all ¢ and j. This is also an optimal authentication
code. It is easy to see that the ciphertext is

y=((0,t—x),(Lt—z+1),...,(n—1,t —x —1)).

We illustrate the chaffing-and-winnowing scheme in the case n = 4, as we did in the previous
example:



K| fx t| =0 =1 T =2 =3
Ky (0,0,0,0) 0 (0717273) (3a0a1a2) (2737071) (1727370)
K| (1,1,1,1) 1](1,2,3,0) (0,1,2,3) (3,0,1,2) (2,3,0,1)
Ky | (2,2,2,2) 2((2,3,0,1) (1,2,3,0) (0,1,2,3) (3,0,1,2)
K3 | (3,3,3,3) 31(3,0,1,2) (2,3,0,1) (1,2,3,0) (0,1,2,3)

In this chaffing-and-winnowing scheme, Bob can decrypt y to be the unique value x such that
a, = t. This authentication code does not provide perfect secrecy. However, it is still the case that
|A| = |X| =n. As mentioned earlier, in a strict prohibition of encryption schemes, it might not be
permitted to have |A| > |X].

These two examples illustrate that the authentication codes used in the construction from [4]
may or may not achieve perfect secrecy. However, in both cases, the entropy of the authentication
tag is equal to the entropy of the plaintext space. As we have noted already, it is possible to achieve
perfect secrecy solely from an authentication code in this situation.

We are interested in finding constructions where the underlying authentication codes cannot
possibly achieve perfect secrecy. This is pursued in the next section.

4 A New Chaffing-and-winnowing Scheme

We describe a chaffing-and-winnowing scheme that we denote by CW(n), where n > 2 is an
integer. For our construction of CW(n), we use an authentication code (X,.A,K,F) in which
X ={0,...,n—1}, K ={0,1}" and A = {0,1}. For every key K = (ko,...,6n-1) € {0,1}",
we have an authentication function fx where fx (i) = k; for 0 < ¢ < n — 1. Note that each key
basically specifies the list of authenticators of all n possible plaintexts.

It is not hard to see that this authentication code has impersonation probability P; = 1/2. The
value of Pr meets the bound given in Theorem 1.1. Of course, P = 1/2 does not provide much
security against impersonation.

For each K = (Ko, ...,kn—1) € K and each z € X, we define £(K,z) = {ex s}, where

. Kj ifj:x
T = 3
e i) {1_@- i 3)

That is, each set £(K,z) consists of one encryption function, denoted eg ,. The authentication
function fx and the encryption function ek , are “complements” of each other, except for the input
x, where they agree.

The resulting chaffing-and-winnowing scheme is denoted CW(n). The following easily verified
properties show that CW(n) provides perfect secrecy:

L. €| =27,
2. for any K € IC, the n sets £(K,z) (z € X) are disjoint, and
3. for any = € X, the 2" sets £(K, z) (K € K) form a partition of £ into 2" sets of size one.

Applying Theorem 2.2, it follows that the chaffing-and-winnowing scheme (X, A4, K, &, F) achieves
perfect secrecy.



4.1 A Modified Scheme

It is possible to prove that a modified version of CW(n) remains unconditionally secure. In the
modified scheme, we restrict the set of decryption keys to be

n—1
Kg = {K = (Iio,...,lin_l) S {0,1}”,2/% = Omon} .
i=0
We are reducing the number of decryption keys by a factor of two by only using keys with even
hamming weight.
We denote the sets of encryption functions in the modified scheme by £ and £g(K,x). The
modified scheme is denoted by CWg(n).
The following properties show that CWg(n) provides perfect secrecy:

1. |&g| =274
2. for any K € K, the n sets Eg(K, z) are disjoint, and

3. for any = € X, the 2" ! sets £g(K,z) (K € Kg) form a partition of £ into 2"~ ! sets of size
one.

Applying Theorem 2.2, it follows that the chaffing-and-winnowingscheme (X', A, Kg, £g, F) achieves
perfect secrecy.

Example 4.1. In the case n = 4, we present the sets Eg (K, x) in the scheme (X, A, Kg, g, F):

K z=0 z=1 =2 =3
(0707070) (0717171) (1’0’1’1) (1717071) (1717170)
(0,0,1,1) | (0,1,0,0) (1,0,0,0) (1,1,1,0) (1,1,0,1)
(0717071) (0707170) (1’]"1’0) (1707070) (1707171)
(0,1,1,0) | (0,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,0)
(1,0,0,1)|(1,1,1,0) (0,0,1,0) (0,1,0,0) (0,1,1,1)
(1,0,1,0) | (1,1,0,1) (0,0,0,1) (0,1,1,1) (0,1,0,0)
(1,1,0,0) ]| (1,0,1,1) (0,1,1,1) (0,0,0,1) (0,0,1,0)
(1,1,1,1) | (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

We will measure the efliciency of a chaffing-and-winnowing scheme in terms of the length of a
ciphertext and the length of a key (in bits). Suppose that |X| = n = 2F. Then there are 27!
possible decryption keys in the improved scheme, so the length of a decryption key is n—1 = 2¥ —1

bits. For exammple, a decryption key K = (ko,...,kn—1) € Kg is determined uniquely from the
n — 1 values ko, ..., Kk, 2, because
n—2
Kn_1 = Z Kk; mod 2.
i=0

A ciphertext has the form y = ((0,ap),...,(n — 1,a,—1)). Since the first co-ordinates are
0,...,n—1, in that order, we can eliminate them from the ciphertext if desired, and just transmit
the vector of authenticators, namely, @ = (ag, ..., an—1). Under this assumption, the length of the
ciphertext is n = 2*.

Summarizing, we have shown the following.
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Theorem 4.1. For any integer k > 1, the scheme CWE(Zk) is an unconditionally secure chaffing-
and-winnowing scheme for k-bit plaintexts, based on 1-bit authenticators, in which a decryption key
consists of 28 — 1 bits and a ciphertext consists of 28 bits.

4.2 Optimality of the Schemes CWg(n)

We now show that the schemes CWg(n) are optimal in the set of all chaffing-and-winnowing schemes
that have 1-bit authenticators for a plaintext space of cardinality n. To show this, we prove that
there must be at least 2"~ ! keys in such a scheme.

The optimality proof is based on the observation that the encryption function sets £(K, z) and
Er(K,x) used in the schemes CW(n) and CWg(n) (respectively) provide the only way to ensure
unambiguous decyption. In fact, this follows immediately from equation (2). Therefore, we have
the following.

Lemma 4.2. Suppose (X, A, K,E,F) is any chaffing-and-winnowing scheme in which |X| = 2.
Then, for every x € X and every K € K, £(K,z) = {ex g}, where ek 5 is as defined in equation

(3)-

Lemma 4.3. Suppose (X, A,K,E,F) is any chaffing-and-winnowing scheme in which |X| = 2.
Suppose that K = (ko,...,kn-1) € K, K' = (ky,...,kl,_1) and dist(K,K') = 2, where dist(-,-)
denotes the hamming distance between two vectors. Then K' € K.

Proof. Suppose that {j : k; # k;} = {z,2'}. We have that £(K,z) = {e}, where
: Kj ifj==
e@=9." .-
1-k; ifj#e.

Now, {e} = E(K",a'} for some K" = (k{,...,kl_;) € K. However, it must be the case that

oy p—1
, K if j =1
e(]) = {1]_ I‘LI-, lfj 7é iC,
: .
From this, it is immediate that K" = K’, and therefore K' € K. O

Theorem 4.4. Suppose (X, A, K,E,F) is any chaffing-and-winnowing scheme in which |X| = 2.
Then IC must consist of all the binary n-tuples of even weight, all the binary n-tuples of odd weight,
or all the binary n-tuples.

Proof. Let K € K be any key. Applying Lemma 4.3, it follows that every binary n-tuple that has
hamming distance two from K is also a decryption key. From this, it is easily seen that X contains
all the binary n-tuples that have even hamming distance from K. The desired result follows. [

Corollary 4.5. Suppose (X, A, K,E,F) is any chaffing-and-winnowing scheme in which |X| = 2.
Then |K| > 2771,
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4.3 A Hybrid Scheme

Suppose we have an £-bit plaintext, where £ = rk, and we break it into r blocks, each of which
contains k bits. Each k-bit block is then encrypted using a scheme CWg(2*). In total, we have
independent schemes CWg(2*), each of which has an independently chosen key. Each possible ¢-bit
plaintext receives an r-bit authenticator, which is the concatenation of the 1-bit authenticators of
each of the r blocks in the plaintext. This hybrid scheme, which will be denoted by HCW(r, k), has
the following properties.

Theorem 4.6. For integers k,r > 1, the scheme HCW(r, k) is an unconditionally secure chaffing-
and-winnowing scheme for rk-bit plaintexts, based on r-bit authenticators, in which a decryption
key consists of (2% — 1) bits and a ciphertext consists of 7 2F bits.

Theorem 4.6 illustrates a trade-off between authenticator size and efficiency. The parameter
k denotes the ratio between the length of a plaintext and the length of an authenticator in the
scheme HCW(r, k). The situation when k = 1 is problematic because the underlying authentication
schemes might already provide perfect secrecy (a plaintext and authentication tag have the same
length when k£ = 1). Clearly, as k is increased, the system becomes less and less efficient, so the
“best value” of k to use is the smallest one that would be permitted by law.?

For example, when we set k = 1, our scheme HCW(r, 1) has r-bit plaintexts and r-bit authen-
ticators, an r-bit decryption key and a 2r-bit ciphertext. This is a two-fold message expansion,
as compared to the classical one-time pad or any other optimal secrecy code that provides perfect
secrecy (see Corollary 1.4). For the next case, k = 2, we have 2r-bit plaintexts and r-bit authenti-
cators, a 3r-bit decryption key and a 4r-bit ciphertext. For larger values of k, the situation becomes
progressively worse.

5 Conclusion

We do not claim that our new chaffing-and-winnowing scheme is “practical.” The interesting
contribution of our paper is that we can still obtain perfect secrecy even when we are forced to use
particularly ill-suited tools, namely, authentication codes with very short authentication tags.

It would be of interest to develop bounds (i.e., necessary conditions) on the parameters of
unconditionally secure chaffing-and-winnowing schemes. We have shown that our schemes CWg(n)
are optimal in the set of all chaffing-and-winnowing schemes that have 1-bit authenticators and
k-bit plaintexts. We ask if there are more efficient “r-bit schemes” than the schemes HCW(r, k)
that we have constructed.
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