
Cryptanalysis of the Dual Elliptic Curve Pseudorandom Generator

Berry Schoenmakers and Andrey Sidorenko

Dept. of Mathematics and Computer Science, TU Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

berry@win.tue.nl, a.sidorenko@tue.nl

29 May 2006

1 Introduction

The Dual Elliptic Curve Pseudorandom Generator (DEC PRG) is proposed by Barker and Kelsey [2].
It is claimed (see Section 10.3.1 of [2]) that the pseudorandom generator is secure unless the adversary
can solve the elliptic curve discrete logarithm problem (ECDLP) for the corresponding elliptic curve.
The claim is supported only by an informal discussion. No security reduction is given, that is, it is not
shown that an adversary that breaks the pseudorandom generator implies a solver for the ECDLP.

Our experimental results and also empirical argument show that the DEC PRG is insecure. The
attack does not imply solving the ECDLP for the corresponding elliptic curve. The attack is very
efficient. It can be run on an ordinary PC.

Actually, the generator is insecure because pseudorandom bits are extracted from points of the
elliptic curve improperly. The authors of [2] assume that 240 least significant bits of x-coordinate of a
random point of the elliptic curve over the prime field Fp, where ⌈log2 p⌉ = 256, are indistinguishable
from 240 uniformly distributed random bits. We show that this is not the case. Based on this
observation, we construct an algorithm (an adversary) that efficiently distinguishes the pseudorandom
sequences produced by the DEC PRG from the sequences of uniformly distributed random bits.

We note that the complexity of our attack is proportional to 2256−240 = 216, so extracting less
than 240 bits (say, 2176 bits) makes the attack impractical. However, extracting less random bits does
not guarantee that there exists no other attack that successfully breaks the pseudorandom generator.
The reason is that the DEC PRG is not provably secure, its security does not provably rely on the
intractability of the ECDLP. To make a real provably secure pseudorandom generator one has to
construct a security reduction, that is, to show that breaking the generator does imply solving a
well-known and supposedly difficult problem (e.g., ECDLP, factoring, etc.)

In fact, provable security might be the only argument in favor of the relatively slow DEC PRG
versus more efficient generators based on hash functions and block ciphers (e.g., the generators de-
scribed in Sections 10.1 and 10.2 of [2]). Unfortunately, the DEC PRG is not secure so there are no
reasons to use this generator rather than the others.

2 The Dual Elliptic Curve Pseudorandom Generator

Let p = 2256 − 2224 + 2192 + 296 − 1. Let E(Fp) denote the elliptic curve over Fp consisting of all pairs
(x, y) ∈ Fp × Fp such that

y2 = x3 + ax + b,

1



where

a = 115792089210356248762697446949407573530086143415290314195533631308867097853948,

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291

and a point at infinity O. Let P = (xP , yP ) and Q = (xQ, yQ) be two points of the elliptic curve E(Fp)
such that

xP = 48439561293906451759052585252797914202762949526041747995844080717082404635286,

yP = 36134250956749795798585127919587881956611106672985015071877198253568414405109,

xQ = 91120319633256209954638481795610364441930342474826146651283703640232629993874,

yQ = 80764272623998874743522585409326200078679332703816718187804498579075161456710.

The constants are taken from Appendix A.1 of [2]. Note that the constant α such that P = αQ
is difficult to determine due to the intractability of the elliptic curve discrete logarithm problem
(ECDLP).

The seed of the Dual Elliptic Curve pseudorandom generator (DEC PRG) is a random integer
s0 ∈R {0, 1, . . . ,#E(Fp) − 1}, where #E(Fp) denotes the number of points on the curve. Let x :
E(Fp) 7→ Fp denote a function that gives the x-coordinate of a point of the curve. Let lsbi(s) denote
i least significant bits of an integer s. For example lsb3(23) = 7, since 23 = (10111)2. The DEC PRG
transforms the seed into the pseudorandom sequence of length 240k, k > 0, as follows.

Algorithm 1 Dual Elliptic Curve pseudorandom generator

Input: s0 ∈ {0, 1, . . . ,#E(Fp)− 1}, k > 0
Output: 240k bits

for i = 1 to k do

Set si ← x(si−1P )
Set ri ← lsb240(x(siQ))

end for

Return r1, . . . , rk

The authors of [2] claim that

Backtracking resistance is built into the design, as knowledge of s1 does not allow an
adversary to determine s0 (and so forth) unless the adversary is able to solve the ECDLP for
that specific curve. In addition, knowledge of r1 does not allow an adversary to determine
s1 (and so forth) unless the adversary is able to solve the ECDLP for that specific curve.

Note that backtracking (in other words, predicting) is equivalent to distinguishing the output of
the pseudorandom generator from the sequence of uniformly distributed random bits [6]. In the next
section we show that the output of the DEC PRG can be efficiently distinguished from the sequence
of uniformly distributed random bits. The distinguishing attack does not imply solving the ECDLP
for the given curve. It means that the pseudorandom generator is insecure and cannot be used for
cryptographic purposes.

3 The Distinguishing Attack on the DEC PRG

The output of the pseudorandom generator consists of k 240-bit blocks. For a block r ∈ {0, 1}240 let
φ(r) denote the number of points T on the elliptic curve E(Fp) such that lsb240(x(T )) = r.

2



At each step i, the DEC PRG outputs ri = lsb240(x(siQ)). The generator is secure if and only if
ri is indistinguishable from 240 uniformly distributed random bits for all i = 1, . . . , k. We will see,
however, that ri can be distinguished from 240 uniformly distributed random bits.

The argument of this section does not pretend to be a strict justification of the attack. On the
contrary, it just gives the reader an intuition of how the attack works.

It is shown by Brown [3] that the sequence of points siQ is indistinguishable from the sequence
of points chosen uniformly at random under the assumption that the DDH problem and the non-
standard x-logarithm problem are intractable in in E(Fp). Therefore, it is reasonable to assume that
siQ behaves like a random point on the curve, i = 1, . . . , k. Then, for r ∈ {0, 1}240 the probability that
a certain output block is equal to r is φ(r)/#E(Fp). Thus, if φ(r1) > φ(r2) for rk ∈ {0, 1}240, k = 1, 2,
the probability that a certain output block is equal to r1 is higher than the probability that this block
is equal to r2. Moreover, we will see that the difference between the probabilities is observable.

The number of points on the elliptic curve is close to 2256 (the difference is of order 2224). Therefore,
for r ∈R {0, 1}240, where the notation ”∈R” means that the element is chosen uniformly at random
from the corresponding set, the average expected value of φ(r) approximately equals 2256−240 = 216.
On the contrary, for a block r generated by the DEC PRG the expected value of φ(r) is higher than 216.
Figures 1 and 2 provide an experimental evidence for this fact. Figure 1 gives the number of output
blocks r with a certain value of φ(r) (the total number of generated blocks is 1320000). Intuitively,
the outcome distribution should fit the normal distribution. The least-squares method shows that the
closest normal distribution has parameters µ = 65537.0 (rather than 65536) and σ = 255.6. Figure 2
shows that the two distributions are very close indeed.

The latter observation suggests a simple attack on the pseudorandom generator. Take an output
block r and calculate φ(r). The calculation takes time proportional to 216. If φ(r) > 216 conclude
that the sequence is produced by the DEC PRG. Otherwise, conclude that the sequence is random
with uniform distribution. Due to the above argument, for a block r output by the DEC PRG

Pr[φ(r) > 216] = 1− 1

σ
√

2π

∫
2
16

−∞

exp[(z − µ)2/(2σ2)]dz ≈ 0.50156.

Therefore, our attack guesses correctly with probability about 0.50078.
The success probability of the attack can be improved if one takes into account more than one

output block, say k blocks, k > 1, and calculates the average value of φ(r). In our experiments, we
used k = 4000. Note that the sum of k random variables that have normal distribution with mean µ
and variance σ2 has normal distribution with mean kµ and variance kσ2. Then,

Pr[φ(r1) + · · ·+ φ(rk) > 216k] = 1− 1

σ
√

2kπ

∫
2
16k

−∞

exp[(z − kµ)2/(2kσ2)]dz ≈ 0.59757,

so the success probability of the improved attack is 0.548785. The running time is proportional to
4000 · 216 ≈ 228.

The simulation was implemented in C++ programming language using the NTL library [5] both
for Windows and Linux platforms. In total 330 files of pseudorandom data were generated by the DEC
PRG. Each file contained 4000 240-bit blocks. The seed for the DEC PRG was obtained using the
RtlGenRandom() generator of the Platform SDK that is claimed to be cryptographically secure1. The
analysis of 1 file took about 2 hours and 30 minutes on a 3GHz Linux machine with 1Gb of memory.

1This pseudorandom generator is built according to FIPS 186-2 Appendix 3.1 with SHA-1 as the iterated function
[1]. It gets the seed from the current system information (current process ID, current thread, current time, etc.)

3



An independent work is done by Gjøsteen [4] who shows that there exists an algorithm that predicts
the next bit of the DEC PRG with advantage 0.0011. The work by Gjøsteen is based on similar ideas
to those proposed in this paper.

4 Conclusion

The following lines open Section 10.3 of [2].

A DRBG2 can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generators properties of random-
ness and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. This section specifies a DRBG based on the elliptic curve discrete logarithm
problem.

Our result shows that the Dual Elliptic Curve pseudorandom generator is not done correctly. The
authors of [2] only claim the generator to be secure, no security proof is given. We present an efficient
algorithm that distinguishes the output of the generator from the sequence of uniformly distributed
random bits, which demonstrates that the generator is in fact insecure.

The main conclusion of this paper is that when designing a provably secure cryptographic scheme
(e.g, a pseudorandom generator) one has to pay attention to the security proof (the reduction). An
informal argument like the one in Section 10.3.1 of [2] is certainly not good enough. The scheme
with a certain choice of parameters can be claimed to be provably secure only if it is shown that for
these parameters breaking the scheme is as hard as solving a difficult problem faster than the fastest
algorithm known so far.

References

[1] FIPS 186-2, Digital signature standard, Federal Information Processing Standards Publication 186-
2, U.S. Department of Commerce/N.I.S.T., National Technical Information Service, Springfield,
Virginia, 2000.

[2] E. Barker and J. Kelsey, Recommendation for random number generation using deterministic ran-
dom bit generators, December 2005, NIST Special Publication (SP) 800-90.

[3] D. Brown, Conjectured security of the ANSI-NIST Elliptic Curve RNG, Cryptology ePrint Archive,
Report 2006/117, 2006, http://eprint.iacr.org/.

[4] Kristian Gjøsteen, Comments on Dual-EC-DRBG/NIST SP 800-90, Draft December 2005, March
2006, http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf.

[5] V. Shoup, NTL: A library for doing number theory, http://www.shoup.net/ntl/.

[6] A. C. Yao, Theory and application of trapdoor functions, IEEE Symposium on Foundations of
Computer Science, 1982, pp. 80–91.

2DRBG stands for ”deterministic random bit generator”.

4



65000 65500 66000 66500

1000

2000

3000

4000

Figure 1: Number of blocks that correspond to a certain number of points on the elliptic curve (in
total 1320000 blocks were generated)

65000 65500 66000 66500

1000

2000

3000

4000

Figure 2: The outcome distribution fits the normal distribution with parameters µ = 65537.0 and
σ = 255.6

5


