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ABSTRACT. RSA type public key cryptosystems based on the Pell’s
equation are proposed in the honor of an Indian mathematician Brah-
mgupta who studied Pell’s equation long before European mathemati-
cians came to know about it. Three RSA type schemes are proposed,
first two are not semantically secure where as the other two schemes are
semantically secure. The decryption speed of the proposed schemes is
about two times as fast as RSA for a 2 log n-bit message. It is shown
that the proposed schemes are more secure than the RSA scheme when
purely common plaintexts are encrypted in the broadcast application
and are as secure as the RSA scheme against ciphertext attack. In
addition the proposed schemes are also secure against partially known
plaintext attack. First two are not semantically secure but the third one
is semantically secure.
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1. INTRODUCTION

The investigation related to the construction of safe and effective public
key cryptosystem (PKC) begun with the seminal paper of Diffie and Hell-
man [9] using hard mathematical problem. Today, discrete logarithm and
the integer factorization problem are the problems commonly used in the
construction of PKC [27]. The factorization problem was first time used
in 1978, by Rivest, Shamir and Adleman for the construction of public key
cryptosystem, known as RSA [26] PKC. The number theoretic problem used
in the standard RSA is based on the structure of the multiplicative group
Zy where n is the product of two large primes. In the 1980s, researchers
noticed another source, the nonsingular cubic curve (elliptic curve) [15, 21],
which can be used as hard problem for PKC construction. The elliptic
curves are found remarkably useful in a wide range of applications such as
primality testing and integer factorization [19, 20]. Another potential use
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of elliptic curve is designing the public-key cryptosystems analogue to the
existing schemes. Koyama et al [14] introduced first analogue of the RSA
scheme, called KMOYV scheme, based on elliptic curve. However, the decryp-
tion speed of the KMOV scheme is 5.8 times as slow as RSA scheme. Later,
Demytko [8] introduced more advanced analogue of RSA scheme based on
elliptic curve to overcome the shortcomings of KMOV scheme. The decryp-
tion speed of the Demytko scheme is but, slower than the KMOV scheme.
The problem of nonsingular cubic curve was than replaced by singular cubic
curve in the papers of Koyama [16] and Kuwadado et al [12, 13] for the
construction of an analogue to the RSA scheme. The decryption speed of
the scheme given by Koyama [16] is about two times faster then the RSA
scheme. But its encryption is slower than RSA scheme. Also the schemes
based on cubic curve such as [12, 14, 16, 13] are not secure against partially
known plaintext attack [24]. Now, we replace the singular cubic curve by
Pell’s equation to increase the encryption speed and propose three RSA type
public key cryptosystems.

It is not out of place to mention that the equation now known as Pell’s
equation was studied in depth for 1000 years before Pell was born by an In-
dian mathematician Brahmagupta in 628 AD [6, 28, 18]. He gave a method
called Samasa and made number of discoveries regarding Pell’s equation.
Eular, who named it Pell’s equation, was unaware of this fact at that time.
In 1150, another Indian mathematician Bhaskara II, gave an algorithm called
Chakravala to produce a solution to Pell’s equation [6]. During 14" cen-
tury, Narayana, also an Indian mathematician, gave an example of said
method of Bhaskara II [6]. Hence, the public key cryptosystems we present
here to honor the said work of Brahmgupta. Although, some efforts were
made to use Pell’s equation for PKC construction [22, 2] but either the tech-
niques were found less feasible mathematically or the technique was not so
efficient. In addition, the system [2] is not semantically secure.

The significance of the proposed cryptosystems is that those are two times
faster than the RSA scheme and also somewhat faster than the scheme
given by Koyama [16]. The proposed schemes are as secure as RSA scheme
against chosen ciphertext attack. The proposed schemes are also secure
against partially known plaintext attack [24]. We show that the proposed
schemes are more secure than RSA scheme when purely common plaintexts
are encrypted in the broadcast application. In addition, the addition op-
eration in the proposed schemes is computationally less expensive than the
schemes based on the cubic curve [12, 14, 16, 13].Thus the encryption pro-
cesses are more efficient than the other RSA type cryptosystems based on
the cubic curve. Our proposed first two schemes are not semantically se-
cure. Kouchi et al [17]proposed a variant of RSA cryptosystem with the
property of semantic security. Some other variants of RSA with semantic
security are [4, 25]. Finally, using the idea of Kouchi et al [17] we improve
our second scheme to semantically secure public key cryptosystem.



A PUBLIC KEY CRYPTOSYSTEM... 3

2. PRELIMINARY

A Diophantine equation of the form

22— Dy* =1 (1)
where D is a positive integer, is known as Pell’s equation.
Let p be an odd prime and D be a nonzero quadratic residue element in
F,. Let C, denotes the set of solutions (x,y) € F}, x F}, to the Pell’s equation
22 — Dy? = 1(mod n) (2)
We define the addition operation @ on C), as follows.
The sum (z3,ys3) of (z1,y1) and (22, y2) in F, is computed as,
(73,y3) = (T1,91) © (v2,92) = (v172 + Dy1y2, T1y2 + T2y1) (3)

If we define the identity by (1,0) and the inverse of (z,y) by (z, —y), then
it is easy to verify that the addition operation @ is closed, associative and
commutative. Thus, C, forms an abelian group under the operation &. For
any positive integer e, the multiplicative operation ® is defined as follows,

etimes
o

-~

e® (z,y) = (z,y) & (z,9) & (z,y) ® (z,y) & (z,9) ... & (v,y) (4

We can use the following recursion formulas for the addition operation in
(va EB)
If i x (z1,y1) = (x4, y1) then,

To; = x? + Dy? = Qx? -1

Yoi = 2Ty (5)
T4l = 2TTip1 — T1
Y2i+1 = 2%TYir1 — Y1

Case 1 : If the value of e is odd then ,
e—1
e® (z,y) = (ae12° + ac 2Dz 2y* + ac 3 D?x* Ayt + . +a_ 1 D 7 xye !,
L)

e—1

a, et1 7 Y +a 5;1D:c€*3y3+....+a672D%x2y6*2+a671D%y6) (6)
72 72

e
Where

Qe = Zf;l(%_g) S;and S; =1+ Z;f{;;% ajn—1 and S; = 1.
ae,1 = 1Ve,

Qe = 1+2+3+4+5+e— 1" terms.

ez =1+ (1+a3,2) + (1 +a3,2+ a4,2) + e — 3t terms.
Ges =1+ (1 + as3 + (1 + as3 + a6,3) +e— 5t terms.
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—1
g ezt =1+ (1+ae—2, %)

Case II :
If e is even integer then ,
e® (2, y) = (ac12®+ac2Da* %y + ac s D?a* Yyt + ...+ a,, PDS‘I 2y,
beglxefly_i_be’QDxe 3 3—|—b 3D2 e—>5 5+ +b D2 71) (7)
where ,
1. Formula for a.; is same as for odd value of eVe and i =1,2,3....5 +1
2. beyp =bes ifr+s=5+1and be, = Qe—1,6—r+1 T Ge—1,7-
Bber=2Xa,_jer2if 2xr=5+1
72
For Example :
2 x (z,y) = (22 + Dy?, 2xy)

3 x (z,y) = (2* + 3Dzy?, 32%y + Dy?)

4 x (z ,y) (x* 4+ 6Dx2y? + D%yt 43y + 4Dxy?)

5x (z,y) = (x +10Dz3y? + 5D2%2%y* 5ty + 10Dx2y3 + D?yP)

6 x (z,y) = (2® +15Dzy? + 15D?2%y* + D338, 62°y + 2023y3 + 6 D%xy°)
7 x (z,y) = (27 + 21D2%y? + 35D%x3y* + TD3xy8, 720y + 35Dty +

21D%x2y5 + D3y")
8 x (z,y) = (x® 4 28Dxby? + 7OD2x4y4 + 28D3a:2y6 + D8,
827y +56 Dxdy3+56 D%x3y> +8D3xy")
9x (z,y) = (2° + 36Dac7y2 + 126D23:5y4 + 84D3:):3y6 + 9D4xy )
928y 4+-84Dx5y3 +126 D22y + 36 D3x2y" + D*y?)

Remarks.
1 (axb)®(z,y) = a®(b®(z,y)) = b®(a®(z,y)) = (a®(z,y)) S (b&(2,y))
2a®{(z1,51) ® (z2,92)} = a @ {(z1,51)} & {a @ (22,92)}

Lemma 1. [20] (C,, ® )is a cyclic group of order p — 1.

A group (Cp, @) is isomorphic to F},*. The isomorphism mapping ¢ from
(Cp, ®) to Fp* is given by the following theorem.

Theorem 1. [20] The mapping ¢ : C, — F,* defined by
¥ :(1,0) = 1 and ¢ : (x,y) — = — ay(mod p)

where (z,y) € Cp and a*> = D(mod p) is an isomorphism. The group

isomorphism mapping ' F,* — C) is defined by
Pp~ti1— (1,0) and ™' 1w — (“+72f1, “_;a_“)(mod D)

Since C), is a cyclic group of order p— 1, we have that if k = 1(mod p—1),
then (z,y) = k ® (z,y)(mod p).

Now let n be the product of two large primes p and ¢. Z; denotes a mul-
tiplicative group of Z,,. From Theorem 1 it is easy to develop the following
theorem .

Theorem 2. The mapping ¢ : C,, — Z,* defined by
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¥((1,0)) = 1(mod n) and ¢ ((z,y)) = = — ay(mod n),
where (x,y) € Cp, and a®> = D(mod n) is a group isomorphism from C,,
to Z,*.
And the inverse isomorphism ' : Z,* — C,, is defined by
$~1(1) = (1,0)(mod n) and =" (u) = (“F4—, “=%)(mod n)
where u € Zy*.
According to the definition of the mapping ¢ and the addition & and the
multiplication ® operation we have the following results over the ring Z,*.
Theorem 3. If (z;,y) = i ® (z,y) over Cy, we have (z;,y;) = (z —

ay)'(mod n).

The following theorem is a base of a pair of an encryption and a decryption
of public key cryptosystem over C,,.
Theorem 4. Let n be the product of primes p and q, and N = lem(p —
1,q—1). For any integer k satisfying k = 1(mod lem(p—1,q—1)), we have
(z,y) =k ® (x,y)(mod n) , for all (x,y) € C.

3. CONSTRUCTION OF PKC

In this section three RSA-type schemes based on Pell’s equation over
Z,, are presented. The security of the proposed scheme is based on the
difficulty of factoring n, which is the product of two large primes. In these
schemes, a plaintext pair (M, My) with M,, M, € Z}, is encrypted. The
main difference between first two schemes is the way of encryption. One uses
formula (3) and (6) while other uses exponentiation by using isomorphism.
Since, first two schemes are not semantically secure; we improve scheme-2
as the scheme-3 to get semantically secure public key cryptosystem. The
key generation of both the schemes is same as given below.

3.1. Key Generation. Recipient (R say) chooses two large primes p and
q. Let n = pg and N = lem(p — 1, — 1). R determines an integer e
satisfying ged(e, N) = 1. Decryption keys d is computed from encryption
key e as d = e 'modN by using the Euclidean algorithm. The pair (e, n) is
the public key and secrete key is (p, ¢, d).

3.2. Scheme I. Assume that a sender S wants to sends the messages M,
Z}, to the recipient R.

3.2.1. Encryption. To encrypt the messages the sender proceeds as follows:

(1) Compute Z; = M, M,(mod n) and Y = M,,.

(2) Solve the equations X —aY = Z; and X +aY = Z; ! over Z,.

(3) Get X = (Zl+7221_1)(m0d n)and a = (Zl_i;,_x)(mod n), D = a®(mod n).
Then (X,Y) is the solution of the Pell equation 22 — Dy? = 1 over
L,

(4) Using the recursion formula (5) or the equation (3) and (6) ,S com-
putes (C,Cy) =e® (X,Y).

(5) Send the complete ciphertext (Cy,Cy, a) to the receiver R.
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3.2.2. Decryption. After receiving the ciphertext (Cy, Cy, a) recipient R first
checks that (C,? — a®Cy?)(mod n) = 1. If yes, he/she then proceeds as
follows:

(1) Compute C = f(Cy, Cy) = Cyp — aCymod n.

(2) Compute the value M = C%(mod n).

1 —1
(3) Evaluate X = M(mod n)and Y = W(mod n). Clearly
Z1=M and Y = M,.
(4) Compute M, = %mod nand M, =Y.

3.3. Scheme II. Assume that a sender S wants to send the messages M,
and M, € Zy to the recipient R.

3.3.1. Encryption. To encrypt the messages M, and M, sender S proceeds
as follows:

(1) Compute Z; = (MyM,)mod n and Y = M,,.

(2) Solve the equations X —aY = Z; and X +aY = Z; ! over Z,,.

—1 —1

(3) Get X = %(mod n) and a = (ZliY_X)(mod n), D = a’?mod n.
Then (X,Y) is the solution to the Pell’s equation 2 — Dy? = 1 over
L.

(4) Using Theorem 2, compute M = (X —aY )mod n and C = M®mod n.
(5) Send the complete ciphertext (C,a) to the recipient R.

3.3.2. Decryption. After receiving the ciphertext (C,a) the recipient R pro-
ceeds as follows:

(1) Compute M = C%(mod n).
-1 -1
(2) Using Theorem 2, compute X = (M+M) and Y = w This
implies that 27 = M.
(3) Compute M, =Y and M, = L.
Above two schemes are not semantically secure. To get semantically se-
cure public key cryptosystem we generalize the scheme-II as below.

3.4. Scheme III. Assume that the sender S wants to send the messages
M, and M, € Zy to the recipient R. In this scheme, a one-way function
fZ; — 7} is used as a system parameter. For example, we take the one
way function defined by Kouichi et al [17] i.e. most significant bits zeroes
(MSBZ) function defined below.

Let r be a k-bit random integer in Z). The binary representation of
ris r = 1920 + 128 + 922 + .+ 2 + Tl+12l+1 + oo 4+ 1512571 The
one-way function introduced by Kouichi et al [17] was fy/sp,(r) = (r —
MSBZ(r))*mod n where [ is large enough. Here, r — M SBZ;(r) denotes
the [ most significant bits of r equal to zero i.e. r — MSBZ(r) = rg2° +
12 +7922 4. 472!, This one-way function was named after most significant
bits zeroes function (M SBZ).
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3.4.1. Encryption. To encrypt the messages M, and M, the sender S pro-
ceeds as follows
(1) Compute Z; = (MyMy)mod n and Y = M,,.
(2) Solve the equations X —aY = Z; and X +aY = Z; ! over Z,, .
(3) Get X = ((Z1 + Z7Y)/2)(mod n) and a = ((Z7' — X)/Y)(mod n),
D = a?mod n. Then (X,Y) is the solution of the Pell’s equation
22 — Dy? = 1 over Z,.
(4) Using Theorem 2, compute M = (X — aY)mod n.
(5) Chose a random element r € Z* and compute Cy = r°mod n.
(6) Compute Cy = (f(r) + MCo)mod n and b = (a + r?)mod n.
(7) Send the complete ciphertext (Cy, Cy,b) to the recipient R.
3.4.2. Decryption. After receiving the ciphertext (Cp, C1,b) the recipient R
proceeds as follows:

(1) First compute 7 = clmod n and a = b — r>mod n.

(2) Compute M = Cy ' (Cy — f(r))(mod n).

(3) Using Theorem 2, obtain X = (M ~'4+M)/2andY = (M~'—M)/2a.

(4) This implies that Z; = M. Hence the original message is obtained
by M, =Y and M, = (M/Y).

4. EFFICIENCY AND SECURITY

4.1. Efficiency.

4.1.1. Comparison with RSA. We first compare our schemes with the stan-
dard RSA [26] scheme. Here, we focus on the decryption procedure to
evaluate the average number of modular multiplications. In general, M =
C?(mod n) requires 1.5log d multiplications modulo n on average. Besides,
the cost of isomorphism mapping requires two modular inverses and one
modular multiplication. In addition, to compute M,, one modulo multipli-
cation and one inverse is required during the decryption process. Since, one
modulo inverse requires six modulo multiplications [7, 8], the decryption of
first two schemes requires 1.5log d + 20 modular multiplication on average
whereas the scheme-III requires 1.5log d+28 modular multiplication on aver-
age. Neglecting the cost of isomorphic mapping, the proposed schemes have
almost the same decryption time as RSA scheme. In our schemes 2 — log n
bit message is encrypted at a time, so block size is two times larger than
the standard RSA cryptosystem. In the standard RSA scheme, to decrypt
for 2 — log n-bit message requires 3log d multiplication modulo n on aver-
age. Thus, the decryption efficiency of our proposed cryptosystems would
be about two times faster than that of the RSA scheme for a k bit long
message if [k/log n] is even.

4.1.2. Comparison with Koyama scheme. Now we compare our scheme-1
with the Koyama scheme-1 [16], for decryption process by including the
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cost of isomorphic mapping. In the Koyama scheme-I, the cost of isomor-
phic mapping requires seven modular multiplications and three modular
inverses. Where as our proposed scheme require one modular multiplication
and two modular inverses to perform isomorphic mapping. As result the de-
cryption speed becomes somewhat faster than that of the Koyama scheme if
we consider the cost of isomorphism. When we compare encryption speed of
our scheme-1 with the scheme-1 given by Koyama [16] then as it is (5+d)/2
times slower than the RSA scheme, where d is the ratio of the computation
amount of division to that of multiplication, we conclude that our scheme-1
is faster than the Koyama scheme-I.

4.1.3. Comparison between the schemes I, II and III. We first compare the
scheme-I with the scheme-II. It can be seen from the above paras that the de-
cryption speed of both the schemes I and II is same. Next, if we consider the
encryption process without isomorphic mapping, then although, proposed
scheme-I requires 4.5log e multiplication modulo n on average as compu-
tational time but it is significantly less in proposed scheme-II i.e.1.5l0g e
multiplication modulo n on average. Next, the block size of the plaintext
in both the schemes proposed by us is 2 times than the RSA scheme. To
encrypt 2 — log n bit message using standard RSA scheme required 3log e
multiplication modulo n on average. Thus scheme-I is 1.5 times slower
than the RSA scheme but the scheme-II is 2 times faster then the RSA
scheme. Additionally, in the proposed scheme-1, the size of ciphertext is
3tuples whereas in the proposed scheme-II it is 2tuples. So, the block size
of ciphertext of scheme-I is 1.5 times larger than the scheme-II. This means
that proposed scheme-I requires additional space, which can help to check
ciphertext against accidental corruption.

In scheme-II1I proposed by us the triples like (r¢, f(r),7?) can be computed
well in advanced, so the encryption process required only two multiplication
and one inversion modulo n. Due to the observation made by Kouchi et
al [17]small encryption exponent can be used in the scheme -III. Hence,
encryption process of scheme-III is faster than the scheme-I and scheme-II.

Our proposed scheme-III is an analogue of Kouchi et al [17]scheme over
Pell equation. To decrypt 2—1log n bit message using Kouchi et al scheme, it
requires around 3log d+ 14 multiplication modulo n on average. Whereas in
our proposed scheme-IITI to decrypt, 2log n bit message required 1.5log d+28
modulo multiplication on average. Therefore, we conclude that the proposed
scheme is somewhat faster than the scheme proposed by Kouchi et al [17]
for a k bit long message if [k/log n] is even. If the sender sends hash value
of (r,m) i.e H(r,m) using the hash function H, then receiver can verify the
originality of the message obtained. Thus the scheme-III can be made secure
against adaptive chosen message attack by using a one-way hash function
H.

To encrypt any plaintext in the scheme-I, one has to compute the equation
(6), which is to be done in polynomial time. Since, the values of a.; and
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be; do not depend upon the plaintext , therefore it could be computed well
in advance. Such precomputation increases the efficiency of the encryption
process. In the RSA type cryptosystem based on elliptic curve such as
KMOV [14], Demytko [8] and Koyama [16] scheme, the addition operation
is computationally more expansive in comparison to our proposed schemes.
With this point of view, we can say that the encryption process is more
efficient than the KMOV, Demytko and Koyama scheme respectively.

4.2. Security Analysis.

4.2.1. Security under ciphertext attacks. Under the ciphertext attack, we
claim that our proposed schemes are as secure as the RSA scheme.

Theorem 6. Breaking each one of proposed schemes is computationally
equivalent to breaking the RSA scheme under ciphertext attack.

Proof: Let (Cy,Cy,a) be the ciphertext of our proposed scheme. Assume
that there exist algorithm A which can output the solution (M, M,) given
the input (Cy,Cy,a) . Now given he ciphertext C' in the RSA scheme,
one can computes the corresponding plaintext M by using algorithm A as
follows.

Firstly, let us randomly select a pair (Cy,Cy) in C,. Then computes

a = % Now according to the assumption of algorithm A, the so-
Y

lution pair (M, M,) will be output. Then the original message M =
(M, — aM,)(mod n) is discovered. Similarly it can be easily shown that
the ciphertext attack in the RSA scheme is polynomial time seduceable to
our proposed shceme. This complete the proof.

So our proposed scheme is as secure as RSA scheme under the cuphertext
attack.

Remark. Above theorem proves security of scheme-I and scheme-II for
chosen ciphertext attack for the passive adversary. It is not a proof against
active attack ”"adaptive chosen ciphertext attack”. The scheme-III is seman-
tically secure and can be made secure against adaptive chosen ciphertext
attack by using one-way hash function. So the scheme-III is secure against
adaptive chosen ciphertext attack using he observation made by Kouchi et
al [17].

4.2.2. Security in the broadcast application. In the broadcast application,
as we know that the standard RSA scheme is not secure if encryption key
e is small. Let (n;,e) be the public key for the receiver R; (1 < i < k).
The common plaintext m is encrypted as ¢; = m®mod n; (1 < i < k) for
k receivers . If | k > e, then the system of congruences ¢; = m®mod n;
(1 < i < e) can be transformed into the equation ¢ = m® , where c is the
combined ciphertext from ¢; via Chinese Remainder Theorem. Hence, the
plaintext m can be computed as m = ce over the real field, even if, the known
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terms like userID are included in the plaintext such that m; = a;m + 3; ,
where «; and 3; are publicly known. For obtaining m, Hasted has shown that
similar attacks are successful by solving a set of k congrunces of polynomials
PR ti;m’ =0 mod n; [10] . The inequality condition for a successful
attack is given by :

2

5 e > N5 (eput 1) 557 2555 ()t (8)
whereN = min(n;).

Now we evaluate the security of our proposed cryptosystem in broadcast
application, in which plaintext is purely common or linearly related. For this
purpose, there is a recursive formula for computing z; such that (z;,y;) =
i ® (x1,y1) over C where (z1,y1) € C is the initial point :

1

Tip1 = o2+ (23 — 1)(2? — 1)2, To; = 217 —1 9)

Using (9) ciphertext C, can be expressed as Cp = 271 M¢ + f.(z) where
fe(x) is a polynomial with degree e — 1. Thus the system of congruences in
M, with degree e can be obtained as 21 M¢ + f.(z) — C, = 0 mod n;.
Hence, we have shown that the schemes have the same security as the RSA
scheme when linearly related plaintexts are encrypted in broadcast applica-
tions.

Next, we show that our schemes are more secured than RSA scheme when
purely common plaintext is encrypted in the broadcast application. If we
use the RSA scheme with purely common plaintext in broadcast application
than the set of congruence generates simple monomial M¢. As consequence,
by using Chinese reminder theorem attack is possible in the scheme if the
number of receiver £ > e. But in our scheme if the purely common plaintext
is encrypted in broadcast application, than Chinese reminder theorem can-
not be used for attack. For the reason, the set of congruence are polynomial
in M, in degree e, which is not a simple monomial M*¢. Using appropriate
choice of §; [17] one can prevent from Coppersmith attack [5] also. Conse-
quently the Hasted attack [10] is possible here but for the greater value of
k. Thus the proposed schemes are more secure than the RSA scheme when
purely common plaintexts are encrypted in broadcast applications.

In order to prevent from Hasted attack to the proposed scheme, it is
suggested to always keep the number of receivers less than 7 when e = 3,
less than 16 when e = 5, and less than 282 when e = 19. Because, the
inequality (8) given by Hasted does not hold for said three values of e and k.
However, such attack is not possible, what so ever number of receivers we
keep when e > 21. These conditions are true for the RSA scheme only when
linearly related plaintexts are encrypted in the broadcast application. Next,
due to the observation made by Kouchi et al [17]the scheme-III is secure
against low exponent attack [5, 10] for the appropriate choice of parameter
1 (I > 114 for e = 3 and | > 21 for e = 7) for a 1024-bits RSA modulus n.
To prevent from other low exponent attack with known related message [3],
one recommend to chose [ = 160 for a 1024-bits RSA modulus n.
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Finally, we discuss security of our proposed scheme against the known
plaintext attack. Assume that the attacker knows one of the plaintext pair
mg, my and the corresponding ciphertext (cg,cy,a). To get another part
of the plaintext he(she) has to solve the quadratic equation my(m, +a) =

-1 .
(mamy+0memy) "1 o od e m?cmf/ + Qamxmz — 1= 0 mod n for m, or my,

which seems as hard as factoring. So, the proposed scheme is secure against
partially known plaintext attack.
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