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Abstract. Signature schemes with message recovery have been wildly
investigated a decade ago in the literature, but the first ID-based signa-
ture with message recovery goes out into the world until 2005. In this
paper, we first point out and revise one little but important problem
which occurs in the previous ID-based signature with message recov-
ery scheme. Then, by completely different setting, we propose a new
ID-based signature scheme with message recovery. Our scheme is much
more efficient than the previous scheme. In our scheme (as well as other
signature schemes with message recovery), the message itself is not re-
quired to be transmitted together with the signature, it turns out to
have the least data size of communication cost comparing with generic
(not short) signature schemes. Although the communication overhead is
still larger than Boneh et al. ’s short signature (which is not ID-based),
the computational cost of our scheme is more efficient than Boneh et
al. ’s scheme in the verification phase. We will also prove that the pro-
posed scheme is provably secure in the random oracle model under CDH
Assumption.

Key words: CDH problem, Identity-based signature, Message recov-
ery, Pairing, Short signature.

1 Introduction

A digital signature scheme with message recovery is a signature scheme
that the original message of the signature is not required to be trans-
mitted together with the signature since it has been appended to the
signature and can be recovered according to the verification/message-
recovery process. It is different to an authenticated encryption scheme or
signcryption scheme since in this scheme, the embed message can be re-
covered by anyone without a secret information. The purpose of this kind



of signatures are to minimize the total length of the original message and
the appended signature so are useful in an organization where bandwidth
is one of the main concern or useful for the applications in which small
messages should be signed.

It is obvious that an RSA signature [10] can be used with message
recovery since it is unique in the sense that the signature and encryp-
tion functions are inverse to each other. But, for small size messages, it
yields much larger signatures. For example, to sign a 100-bit message,
the signature will be the size of 1024-bit. In 1993, Nyberg and Ruep-
ple [7] proposed the first digital signature with message recovery based
on the discrete logarithm problem (DL problem). Schemes based on the
DL problem produce relatively small signatures if they are implemented
over a finite group over elliptic curve. For example, a 320-bit signature
is enough for a 100-bit message. Due to this reason, DL problem based
signature schemes with message recovery (as well as their variants) are
appropriate for signing small messages so have been extensively investi-
gated in the literature (e.g., [1, 6–8, 12]).

On the other hand, the concept of identity-based (ID-based) cryp-
tosystem was firstly introduced by Shamir [11] in 1984 which can simplify
key management procedures of traditional certificate-based cryptography.
Many ID-based cryptosystems have been proposed since that but no ID-
based signature scheme with message recovery goes out into the world
until the scheme proposed by Zhang et al. [13] in 2005. Zhang et al. pro-
posed two schemes in the paper: an ID-based message recovery signature
scheme for messages of fixed length, and an ID-based partial message re-
covery signature scheme for messages of arbitrary length. Zhang et al. ’s
idea gives a new concept to shorten ID-based signatures in contrast to
proposing a short signature scheme.

Our Contribution: Before the main contribution, we first point out
and give a revision to one little but important problem occurs in Zhang
et al.’s ID-based signature with message recovery scheme [13]. Our small
revision corrects their scheme. The main contribution of this paper is to
propose a new ID-based signature scheme with message recovery which
is much more efficient than Zhang et al. ’s scheme. Our scheme improves
the computational cost by one scalar multiplication in the signing phase
and almost one pairing computation in the verify/message-recovery phase
comparing to Zhang et al. ’s scheme. Our idea is inspired from Barreto
et al. ’s ID-based signature scheme [2] in the benefits that our scheme
inherits the efficiency of their scheme on one side and also reduce the
total length of the original message and the appended signature on the
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other side. In addition, Barreto et al. give the security proof of [2] on
a stronger assumption (i.e., the q-strong Diffie-Hellman problem) while
we will prove that our scheme is secure against existential forgery under
adaptively chosen message attack and ID attack in the random oracle
model and under only a weaker assumption: the hardness assumption of
computational Diffie-Hellman (CDH) problem. The essential idea of the
security proofs of our scheme can also be used to prove the security of [2]
so as to reduce their security assumption from a stronger one to a weaker
one. This is another contribution of this paper.

The rest of this paper is organized as follows. in Section 2, we recall
some preliminary works which will be used throughout this paper. Section
3 reviews and revises the first ID-based signature scheme with message
recovery. In Section 4, we present our new scheme, its variation and the
efficiency comparisons with other schemes. In Section 6, we give a concrete
proof of our scheme in the random oracle model. Finally, we conclude this
paper in Section 7.

2 Preliminaries

2.1 Bilinear Pairings and the Related Computational
Assumption

Let (G1,+) and (G2, ·) be two cyclic groups of the same prime order q.
ê : G1 ×G1 → G2 be a map which satisfies the following properties.

1. Bilinear: ∀P,Q ∈ G1,∀α, β ∈ Zq, ê(αP,βQ) = ê(P,Q)αβ ;
2. Non-degenerate: If P is a generator of G1, then ê(P,P ) is a generator

of G2;
3. Computable: There is an efficient algorithm to compute ê(P,Q) for

any P,Q ∈ G1.

Such an bilinear map is called an admissible bilinear pairing [3]. The Weil
pairings and the Tate pairings of elliptic curves can be used to construct
efficient admissible bilinear pairings.

Definition 1 (CDH Assumption). Let (G1,+), (G2, ·) and ê be the
same as those defined at Section 2.1. Let also P be a generator of G1, the
challenger chooses a, b ∈ Zp at random and outputs (P,A = aP,B = bP ).
The adversary then attempts to output abP ∈ G1. An adversary, B, has
at least an ǫ advantage if

Pr[B(P, aP, bP ) = abP ] ≥ ǫ
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where the probability is over the randomly chosen a, b and the random
bits consumed by B.

Definition 2. We say the CDH assumption is (t, ǫ)-secure if there is no
t-time adversary with at least ǫ advantage in solving the above game.

2.2 Scheme Model

An ID-based message recovery signature scheme is defined by four algo-
rithms:

- Setup: A deterministic algorithm which takes as input a security
parameter λ, outputs the Key generation Center KGC’s private key,
SKGC , and public key, Ppub, together with the system parameters,
para.

- Extract: A deterministic algorithm which takes as input an identity,
IDi, of a user Ui, outputs the user’s private key, SIDi

.
- Sign: A probabilistic algorithm which takes as inputs a signer’s pri-

vate key SID and a message m, outputs a signature σ.
- Verify: A deterministic algorithm which takes as input the sender’s

identity, ID, and the signature, σ, outputs 1 if σ is a valid signa-
ture. In this case, the original message can be recovered successfully.
Otherwise, outputs 0.

2.3 Security Definition

For digital signatures, the widely accepted notion of security was defined
by Goldwasser et. al. in [5] as existential forgery against adaptive chosen-

message attack (EF-ACMA). It’s ID-based variation is described as the
following form.

Definition 3. An ID-based digital signature scheme is said to be secure
against EF-ACMA, if for any polynomial-time adversary F , the advantage
defined by

AdvEF−ACMA
F

△
= Pr





V erify((m,σ), ID) = 1,
(ID,m, σ) /∈ Slist,
(ID, .) /∈ Elist

∣

∣

∣

∣

para← Setup(1λ),

(ID,m, σ)← FS(.),E(.)(para)





is negligible, where Slist and Elist are the query/answer lists coming from
Sign oracle S(.) and Extract oracle E(.) respectively during the attack.
In the random oracle model, the attackers can also access to the random
oracle. The probability is taken over the coin tosses of the algorithms, of
the oracles, and of the forger.

4



2.4 Notations

The following notations will be used throughout this paper.

• a||b: a concatenation of two strings a and b.

• ⊕: X-OR computation in the binary system.

• [x]10 : the decimal notation of x ∈ {0, 1}∗.

• [y]2 : the binary notation of y ∈ Z.

• l2 |β| : the first l2 bits of β from the left side.

• |β|l1 : the first l1 bits of β from the right side.

3 Zhang et al.’s Scheme Revisit

In this section, we review Zhang et al.’s ID-based message recovery sig-
nature scheme [13] and show one problem of their scheme.

- Setup: PKG chooses a random number s ∈ Zq
∗ and sets Ppub = sP .

PKG also publishes system parameters {G1, G2, ê, q, λ, P,H0,H1, F1, F2, k1, k2},
and keeps s as the master-key, which is known only by itself. Here

• |q| = k1 + k2,

and H0,H1, F1, F2 are for cryptographic hash functions such that

• H0 : {0, 1}∗ → G1
∗,

• H1 : {0, 1}∗ → Zq
∗,

• F1 : {0, 1}k2 → {0, 1}k1

• F2 : {0, 1}k1 → {0, 1}k2 .

- Extract: A user submits his/her identity information ID to PKG.
PKG computes the user’s public key as QID = H0(ID), and returns
SID = sQID to the user as his /her private key.

- Sign: Let the message be m ∈ {0, 1}k2 .

S1: Compute v = e(P,P )k, where k ∈R Zq
∗.

S2: f = F1(m)||(F2(F1(m))⊕m).

S3: r = H1(v) + f mod q.

S4: U = kP − rSIDA

The signature is (r, U)

- Verification: Given IDA, a message m, and a signature (r, U), com-
pute

r −H1(ê(U,P )ê(QIDA
, Ppub)

r) = f, and m = k2
|f | ⊕ F2(|f |k1

).

Accept the signature if |f |k1
= F1(m). Otherwise, reject the signature.

5



3.1 Discussion

We found that in some undesirable cases, a correctly generated signature
may be misjudged and rejected. Accordingly, in such cases, the message
cannot be recovered correctly.

Since we have |q| = k1 + k2 and we know that any element a ∈ Zq
∗

of course has the size |a| ≤ |q|. On the contrary, any value b with size
|b| = |q| cannot be concluded that b ∈ Zq

∗. An toy example is that
elements 16, 17, 18 ∈ Z19

∗ all have the same size equal to |19| = 5, but
elements 20, 21, · · · , 31 /∈ Z19

∗ also have the same size 5. These cases come
more often when q is large.

In S2 of the signing phase, f = F1(m)||(F2(F1(m)) ⊕m). |f | = k1 +
k2 = |q|, but it is very likely that f > q even though they have the same
size. If f > q, say f = f ′ + q, then, in the verification phase,

r −H1(ê(U,P )ê(QIDA
, Ppub)

r) = f ′, and m = k2
|f ′| ⊕ F2(|f

′|k1
).

With a large probability |f ′|k1
6= F1(m), so the signature will be reject

although it is generated correctly.
Their second scheme for partial message recovery also suffers this

problem. To prevent this problem of misjudgement, we suggest r be
H1(v) + f instead of H1(v) + f mod q. This small revision is very im-
portant in order to make the verification correct.

4 New ID-based Message Recovery Scheme

In this section, we present our efficient ID-based message recovery signa-
ture scheme with the restriction (for any message recovery scheme) that
it can deal with only messages of some fixed length (ie., m ∈ {0, 1}l1 for
some fixed integer l1).

- Setup: Takes as input a security parameter λ ∈ N , outputs a random
number s ∈ Z∗

q as KGC’s private key and sets Ppub = sP . The system
parameters made public are

para = {G1, G2, ê, q, P, Ppub, µ,H, H1, F1, F2, l1, l2}, where

• G1, G2 are cyclic groups of the same order q, |q| = l1 + l2,
• ê : G1 ×G1 ← G2 is the admissible bilinear pairing,
• µ = ê(P,P ),

• H : {0, 1}∗ → Zq
∗, a collision resistent one-way function,

• H1 : G2 → {0, 1}|q|, a collision resistent one-way function,
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• F1 : {0, 1}l1 → {0, 1}l2 , a collision resistent one-way function,
• F2 : {0, 1}l2 → {0, 1}l1 a collision resistent one-way function,.

- Extract: Takes as input a user’s identity IDi ∈ {0, 1}∗, KGC com-
putes the user’s private key SIDi

← (H(IDi) + s)−1P . The user’s
ID-based public key PIDi

is (H(IDi) + s)P , which can be computed
as H(IDi)P + Ppub.

- Sign: For input a user A’s private key SIDA
and a message m ∈

{0, 1}l1 :
(1) Pick a random number r1 ∈ Zq

∗, compute µr1 and α← H1(µ
r1) ∈

{0, 1}|q|

(2) Compute β ← F1(m)||(F2(F1(m))⊕m) and r2 ← [α⊕ β]10.
(3) Compute U ← (r1 + r2)SIDA

.

The signature σ on m is (r2, U).

- Verify: Given the signature σ and IDA:

(1) Compute α̃← H1(ê(U,PIDA
)µ−r2).

(2) Compute β̃ ← [r2]2 ⊕ α̃.
(3) Recover the message m̃← |β̃|l1 ⊕ F2(l2 |β̃|).
(4) Output 1 and accept σ as a valid signature of the message m← m̃

if and only if |l2 β̃| = F1(m̃).

Correctness The correctness of this scheme can be proved as follows:

ê(U,PIDA
)µ−r2 = ê((r1 + r2)SIDA

, PIDA
)ê(P,P )−r2

= ê((H(IDA) + s)−1P, (H(IDA) + s)P )r1+r2 ê(P,P )−r2

= ê(P,P )r1+r2 ê(P,P )−r2

= ê(P,P )r1 = µr1

If σ is a valid signature, then H1(µ
r1) = α and

F1(m)||(F2(F1(m))⊕m) = β = [r2]2 ⊕ α.

Hence, we obtain

|β|l1 ⊕ F2(l2 |β|)

= (F2(F1(m))⊕m)⊕ F2(F1(m))

= m.

Finally, the integrity of m is justified if l2 |β| = F1(m). �
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4.1 Variation (A Partial Message Recovery Scheme for Long
Messages)

In this section, we simply modify the previous scheme so that the modified
scheme can be used for messages of arbitrarily length (i.e., m ∈ {0, 1}∗).

- Setup: The system setting is the same as the previous scheme with
the only modification of F1. In this scheme, F1 : {0, 1}∗ → {0, 1}l2 .

- Extract: The same as the previous scheme.
- Sign: For input a user A′s private key SIDA

and a message m ∈
{0, 1}∗:
(1) Pick a random number r1 ∈ Zq

∗, compute µr1 and α← H1(µ
r1)

(2) Divide m into m2||m1 with m1 ∈ {0, 1}l1

(3) Compute β ← F1(m)||(F2(F1(m))⊕m1) and r2 ← [α⊕ β]10.
(4) Compute U ← (r1 + r2)SIDA

.

The signature σ on m is (m2, r2, U).

- Verify: Given the signature σ and IDA:
(1) Compute α̃← H1(ê(U,PIDA

)µ−r2)

(2) Compute β̃ ← [r2]2 ⊕ α̃ where [x]2 is the binary representation of
x

(3) Recover m̃1 ← |β̃|l1 ⊕ F2(l2 |β̃|).
(4) Output 1 and accept σ if and only if l2 |β̃| = F1(m2||m̃1). Other-

wise, output 0 and abort the next step.
(5) Recover m← m2||m̃1.

Correctness: The correctness of the scheme is straightforward according
to that of the previous scheme.

5 Efficiency Comparison

Denote our scheme and the modified scheme as Scheme 1 and Scheme 2,
respectively. In this section, we compare our schemes with Boneh et al. ’s
short signature scheme [4], Barreto et al. ’s efficient ID-based signature
scheme [2] , and Zhang et al. ’s ID-based message recovery signature
schemes [13] in total length and computation cost. In Table 1, we denote
by ê a computation of the pairing, EC an ordinary scalar multiplication
in G1, and Exp. an exponential operation in G2. In addition, the hash
functions used by our schemes and the scheme of BLMQ[2] are generic
and efficient so the computation cost can be neglected. On the contrary,
Boneh et al. [4] and Zhang et al. [13] ’s schemes depend on a special hash
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function called ”MaptoPoint”, which is still probabilistic and usually not
efficient enough to be neglected. The computation of a ”MaptoPoint”
hash is denoted by H in Table 1.

To compare at approximately the same security as a standard 1024-bit
RSA signature, q should be a 170-bit prime and G1 be a group where each
element of G1 is 171-bit if we use any of the families of curves described
in [4]. In addition, l1 = k2 = 91 according to [13] in order to obtain a 2−80

probability of the verification condition holding for an attempted forgery
generated by an adversary.

Except Boneh et al. ’s short signature scheme [4], we see from these
results that our schemes surpass other schemes in at least one aspect and
be second to none in every aspect. Our schemes are faster than all known
pairing-based IBS methods according to [2] since our schemes inherit
the efficiency of [2] but surpass [2] in the aspect of total-length (i.e.,
|message|+|signature|). Also note that our schemes happens to be faster
than [4] at verification and exceed [4] in the aspect of ID-based propoerty.

Table 1. Efficiency comparison

ID-based Total Length Sign Verify

Scheme 1∗ Y |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC

Scheme 2 Y |m| − l1 + |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC

BLMQ[2] Y |m| + |q| + |G1| 1Exp. + 1EC 1ê + 1Exp. + 1EC

BLS[4] No |m| + |G1| 1EC + 1H 2ê + 1EC + 1H
ZSM[13] 1∗ Y |q| + |G1| 1Exp. + 2EC 2ê + 1Exp + 1H.

ZSM[13] 2 Y |m| − k2 + |q| + |G1| 1Exp. + 2EC 2ê + 1Exp. + 1H

∗ Available for messages of fixed length only.

6 Security Proof

Since the two schemes are essentially the same and can be proved in a
similar way, we give a concrete security proof of the basic scheme in this
section only. We will show that the proposed scheme is secure against EF-
ACMA and ID-attack in the random oracle model assuming the hardness
of CDH problem (see Definition 1). In addition, although we will not
discuss in detail, we emphasize that the proofs we used here are also
useful to prove the security of Barreto et al.’s ID-based signature scheme
[2]. The advantage of using our security proofs is that we need only a
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weaker hardness assumption while the scheme in [2] is proved under a
stronger hardness assumption (i.e., the q-strong Diffie-Hellman problem).

The following definition will be used as a core of the proof.

Definition 4 (Forking Lemma [9]). Let (G, Σ, V ) be a generic digital
signature scheme with security parameter k. Let A be a probabilistic
polynomial time Turing machine whose input only consists of public data.
Assume that, within a time bound T , A can produce a valid signature
(m,σ1, h, σ2) with probability ǫ ≥ 10(qs + 1)(qs + qh)/2k by making qs

signing queries and qh random oracle queries. If the triple (σ1, h, σ2) can
be simulated without knowing the private key, with an indistinguishable
distribution probability, then there exists another Turing machine A′ that
uses A to produce two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ2
′)

such that h 6= h′ in expected time T ′ ≤ 120686qhT/ǫ.

For short, denote our scheme of Section 4 by IDMR, we first de-
fine a related (non-ID-based) public key signature scheme with message
recovery PKMR = (KGen,Sign′, V erify′) as following:

- KGen: Takes as input a security parameter λ ∈ N ,

• runs Setup(1λ) of IDMR to generate a master key s and system
parameters para = {G1, G2, ê, q, P, Ppub, µ,H, H1, F1, F2, l1, l2},

• selects randomly ID ∈ {0, 1}∗, computes PID = H1(ID)P +Ppub,
SID = (H1(ID) + s)−1P ,

• returns SID as private key and (para, PID) as public key.

- Sign’: Given a secret key SID and a message m ∈ {0, 1}l1 , do the
same as that of IDMR.

- Verify’: Given the signature σ and the public key (para, PID), do the
same as that of IDMR

It is obviously that the PKMR is a generic signature scheme. Also, if
we assume H : {0, 1}∗ → Z∗

q to be a random function, then the function
H ′ defined by

H ′ : {0, 1}∗ → G1

IDi → H(IDi)P + Ppub

is a random function. In the following proof, we take H ′(.) instead of H(.)
as a random oracle.
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Lemma 1. In the random oracle mode, if there is an adversary A whose
input only consists of public data, and can succeed in existential forgery on
IDMR within a time bound T by un-negligible probability ε, then there
is another adversary A′ who can succeed in existential forgery on PKMR,
within expected time T with un-negligible probability ε/qh, where qh is
the number of queries that A can ask to the random oracle H ′(.).

Proof : We show how to build an A′ to forge a signature on PKMR if
there is an adversary A who can forge a valid signature on IDMR via
EF-ACMA.

Without loss of generality, we may assume that for any ID, A queries
H ′(.) with ID before ID is used as (part of) an input of any query to
Extract(.) and Sign(.).

From A, we can construct adversary A′ against PKMR as follows:

1. A challenger C runs (SID, (para, PID = Q)) ← KGen(1λ), where
para = {G1, G2, ê, q, P, Ppub, µ,H, H1, F1, F2, l1, l2}, and gives (para,Q)
to A′.

2. A′ sets z = 1, picks randomly t, 1 ≤ t ≤ qh and xi ∈ Zq
∗, i = 1, 2, ...qh.

3. A′ runs A with input para. During the execution, A′ simulates the
following oracles which can be accessed by A:

• H ′(.): For input ID, A′ checks if H ′(ID) is defined. If not, he
defines

H ′(ID) =

{

Q z = t
xiP z 6= t

, and set IDz ← ID, z ← z + 1. A′ returns

H ′(ID) to A. A′ records and keeps the tuples (ID,H ′(ID)) in the
H ′ − list.

• H1(.): If A makes a query µr to random oracle H1(.), A
′ checks

if H1(µ
r) is defined. If not, it picks a random α ∈ {0, 1}|q|, and

sets H1(µ
r) ← α. A′ returns α to A and records (µr, α) to the

H1 − list.

• F1(.) and F2(.) queries: A can also query the random oracle F1(.)
and F2(.) at any time. A′ simulates the oracles F1(.) and F2(.) in
the same way as the H1(.) oracle, keeping an F1− list and F2− list
of tuples, respectively.

• Extract(.): For input IDi, if i = t, then abort. Otherwise, A′

computes SIDi
= x−1

i · P and lets SIDi
be the reply to A.

• Sign(.): For input IDi and message m, if i 6= t, A′ uses SIDi
=

x−1
i P as the private key to sign on m. Otherwise, A′ simulates

IDt’s signing oracle with his own signing oracle Sign′(.).
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4. If A outputs (IDi,m, r2, U) which satisfies V erify(IDi,m, (r2, U)) =
1, in addition, if i = t, then A′ can get a forgery (m, (r2, U)) on
PKMR corresponding to (para,Q).

If A succeed in his attack, then A has not query to Extract(.) with input
IDt. Hence the responses of A′’s emulations are indistinguishable from
A’s real oracles. Because t is chosen randomly, A′ can output a forgery
corresponding to (para,Q) of PKMS within expected time T and with
probability ε/qh.

Let δ = µr1 , in the following lemma, we prove that the signature
triples (δ, r2, U) on PKMR can be simulated without the knowledge of
the signer’s secret key, with an indistinguishable distribution probability.

Lemma 2. Give para = {G1, G2, ê, q, P, Ppub, µ,H, H1, F1, F2, l1, l2} and
an identity ID, Q = PID = H(ID)P + Ppub, SID = (H(ID) + s)−1P ,
the following distributions are the same.

σ =















(δ, r2, U)

∣

∣

∣

∣

∣

∣

∣

∣

r1 ∈R Z∗
q

r2 ∈R Z, |r2| ≤ |q|
δ = µr1

U = (r1 + r2) · SID















, σ′ =















(δ, r2, U)

∣

∣

∣

∣

∣

∣

∣

∣

U ∈R G1

r2 ∈R Z, |r2| ≤ |q|
δ = µ−r2 · ê(U,Q)

δ 6= 1















Proof: First we choose a triple (a, b, c) from the set of the signatures:
a ∈ G∗

2, b ∈ Z with |b| ≤ |q|, c ∈ G1 such that a = µ−b · ê(c,Q) 6= 1. We
then compute the probability of appearance of this triple following each
distribution of probabilities:

Prσ

[

(δ, r2, U) = (a, b, c)
]

= Prr 6=0





µr
1 = a

r2 = b
(r1 + r2) · SID = c



 =
1

(q − 1)2|q|
.

Prσ′

[

(δ, r2, U) = (a, b, c)
]

= Prα 6=1





a = α = µ−r2 · ê(U,Q)
r2 = b
U = c



 =
1

(q − 1)2|q|
.

That is, we can construct a simulator M, which produces triples
(δ, r2, U) with an identical distribution from those produced by the signer,
as follows.

• Simulator M: For input {G1, G2, ê, q, P, Ppub, µ,H, H1, F1, F2, l1, l2}
and Q = H(ID)P + Ppub and a message m ∈ {0, 1}l1 ,
1. randomly chooses U ∈ G1, r2 ∈ Z with |r2| ≤ |q| , and computes
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δ = µ−r2 · ê(U,Q). In the (unlikely) situation where δ = 1, we discard
the results and restart the simulation.
2. returns the triple (δ, r2, U).

Theorem 1. In the random oracle model, if there is an adversary A
who performs, within a time bound T , an existential forgery on IDMR
with probability ε ≥ 10qh(qs + 1)(qh1

+ qs)/q, where qh, qh1
and qs are

the number of queries that A can ask to the oracles H(.), H1(.) and
Sign(.) respectively. Then there is a Turing machineM1 that can output
a−1P on input of any given P, aP ∈ G∗

1 within expected time less than
120686 · qh · qh2

· T/ε.

Proof : With the Lemma 1, using adversary A, we can construct an-
other adversary A′, given (para,Q), who can produce a valid signature
of PKMR, within expected time T and with un-negligible probability
ε′ = ε/qh. PKMR is a generic signature scheme and the signature triples
(δ, r2, U) can be simulated without the knowledge of the signer’s secret key
and with an indistinguishable distribution probability (proved in Lemma
2). ε′ = ε/qh ≥ 10(qs + 1)(qh2

+ qs)/q. Hence, with the Forking Lemma,
there is another machine B which has control over the machine obtained
from A′ replacing the signing oracle by simulation and produces two valid
signatures (m, δ, r2, U) and (m, δ, r2

′, U ′) such that r2 6= r2
′ in expected

time less than 120686 · qh2
· T/ε′ = 120686 · qh · qh2

· T/ε.
From the adversary B, we can construct a Turing machine M1 such

thatM1 can output a−1P on input of any given P, aP ∈ G∗
1 as follows:

1. A challenger C generates (G1, G2, q, ê) and selects randomly P, aP ∈
G1. C gives (G1, G2, q, ê, P, aP ) toM1 as inputs.

2. M1 selects randomly a s ∈ Zq
∗, sets Ppub = sP and selects four hash

functions H, H1, F1, F2.
3. M1 runs F2 with input (para = (G1, G2, q, ê, P, Ppub, µ,H, H1, F1, F2, l1, l2), aP )

until F2 outputs two valid signatures (m, δ, r2, U) and (m, δ, r2
′, U ′)

such that r2 6= r2
′.

4. M1 can computes and outputs a−1P as follows:

a−1P = (r2 − r2
′)−1(U − U ′)

Theorem 2. Suppose there is a Turing machine M1 that can output
a−1P on input of any given P, aP ∈ G∗

1 with probability ε, in expected
time bound T . Then there is a Turing machine M2 which outputs abP
on input of any given P, aP, bP ∈ G∗

1 with probability ε3 in expected time
3T .

13



Proof. From M1, we can construct a Turing machine M∗
2 as follows:

1. M2’s input is P, aP, bP ∈ G∗
1.

2. M2 runs M1 with input aP,P (P can be used as a−1aP ). If M1

outputs Y1 = aaP = a2P , then goto the next step.
3. M2 runs M1 with input bP, P = b−1bP . If M1 outputs Y2 = bbP =

b2P , then goto the next step.
4. M2 runs M1 with input (a + b)P,P = (a + b)−1(a + b)P . If M1

outputs Y3 = (a + b)2P , then goto the next step.
5. M2 computes and outputs Y = 2−1(Y3 − Y1 − Y2).

Obviously, Y = 2−1(Y3−Y1−Y2) = 2−1(2abP ) = abP . Hence, in expected
time 3T , M2 can output abP with success probability ε3.

With Theorem 1 and Theorem 2, we can get the conclusion that the
new ID-based signature scheme with message recovery is secure against
EF-ACMA and ID-attack under the hardness assumption of CDH Prob-
lem in the random oracle model.

7 conclusion

This paper first shows a little revision to Zhang et al.’s scheme [13] in or-
der to make their scheme correct and then presents an efficient ID-based
signature scheme with message recovery. Our scheme is much more ef-
ficient than the previous scheme proposed by Zhang et al.. Our scheme
can be regarded as an improvement of Barreto el al. ’s signature scheme
[2] since our scheme not only inherits the efficiency of their scheme but
also reduce the total length of a message and the corresponding signa-
ture comparing to [2]. In addition, we prove that our scheme is secure
against EF-ACMA and ID-attack in the random oracle under the CDH
Assumption while [2] is proved secure under a stronger assumption.
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