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Abstract

A novel algorithm for solving the LPN problem is proposed and analyzed. The al-
gorithm originates from the recently proposed advanced fast correlation attacks, and
it employs the concepts of decimation, linear combining, hypothesizing and minimum
distance decoding. The proposed algorithm appears as more powerful than the best
one previously reported known as the BKW algorithm. In fact the BKW algorithm
is shown to be a special instance of the proposed algorithm, but without optimized
parameters. An improved security evaluation of the HB protocol for RFID authenti-
cation is then developed. Employing the proposed algorithm, the security of the HB
protocol is reevaluated, implying that the previously reported security margins appear
as overestimated.

keywords: cryptanalysis, LPN problem, fast correlation attacks, HB protocol, RFID
authentication.

1 Introduction

Motivation for the Work.

Despite certain differences, both the LPN problem and the underlying problem of fast corre-
lation attack can be viewed as the problem of solving an overdefined system of noisy linear
equations. However, it appears that the currently reported approaches for solving the LPN
problem do not take into account the approaches developed for fast correlation attacks. Ac-
cordingly, a goal of this work is to consider employment of fast correlation attack approaches
for solving the LPN problem. Another motivation of this work is the security re-evaluation of
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the HB protocol for RFID authentication as its security level appears as a direct consequence
of the LPN problem hardness.

Summary of the Contributions.

This paper proposes a novel generic algorithm for solving the LPN problem. The proposed
algorithm originates from the recently proposed advanced fast correlation attacks and it
employs the following concepts: decimation, linear combining, hypothesizing and decoding.
However, as opposed to fast correlation attacks, no preprocessing can be performed, which
introduces an additional constraint. The following main characteristics of the proposed
algorithm have been analytically established: (i) average time complexity; and (ii) average
space complexity. The proposed algorithm has been compared with the best previously
reported one, namely the BKW algorithm, and its advantages for solving the LPN problem
have been pointed out. The proposed algorithm has been applied for security reevaluation
of the HB protocol for RFID authentication implying that the previously reported security
margins obtained based on the BKW algorithm are overestimated, and more realistic security
margins have been derived.

Organization of the Paper.

Section 2 provides a brief review of the LPN problem and specifies it in a form relevant
for further analysis. The BKW algorithm is presented in Section 3. A novel algorithm for
solving the LPN problem is proposed and analyzed in Section 4. Comparisons between this
algorithm and the BKW algorithms are made in Section 5. Security reevaluation of the
HB protocol for RFID authentication via employment of the proposed algorithm is given in
Section 6.

2 The LPN Problem

Let k be a security parameter. If x, g1, ..., g, are binary vectors of length k, let y;, =< x-g; >
denote the dot product of x and g; (modulo 2). Given the values g1, y1; 82,Y2; -+, 8n, Yn, for
randomly-chosen {g;}!" and n = O(k), it is possible to efficiently solve for x using standard
linear-algebraic techniques.

However, in the presence of noise where each y; is flipped (independently) with probability
p, finding x becomes much more difficult. We refer to the problem of learning x in this latter
case as the LPN problem.

For a formal definition of this problem, let Ber,, be the Bernoulli distribution with parame-
ter p, p € (0,3) (so if a random variable E ~ Ber), then Pr[E = 1] = p and Pr[E = 0] = 1—p)
and let Ay, be the distribution defined by

{g€{0,1}*; e Ber, : (g,<xg>de)}.

Also let A, denote an oracle which outputs (independent) samples according to this
distribution. Algorithm M is said to (, ¢, d)-solve the LPN problem if

Prlx € {0,1}F : M*»(1") =x] >4,

and furthermore M runs in time at most ¢ and makes at most g queries to its oracle.
In asymptotic terms, in the standard way, the LPN problem is hard if every probabilistic
polynomial-time algorithm solves the LPN problem with only negligible probability (where
the algorithm’s running time and success probability are functions of k).
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Note that p is usually taken to be a fixed constant independent of &, as will be the case
in this work. The value of p to use depends on a number of tradeoffs and design decisions.
Indeed the LPN problem becomes harder as p increases. However in certain authentication
protocols where the security appears as a consequence of the LPN problem hardness, the
larger the value of p is, the more often the honest prover becomes rejected.

The hardness of the LPN,, problem (for constant p € (0,%) has been studied in many
previous works. Particularly note that the LPN problem can be formulated also as the
problem of decoding a random linear block code [1, 14] and has been shown to be NP-
complete [1]. Beside the worst-case hardness results, there are numerous studies about the
average-case hardness of the problem (see for example [2, 3, 5, 7, 14]). The most relevant
result for this work is that the currently best-known algorithm for solving the LPN,, problem
requires t ~ g = 20 /1°9%) [3] " More exact estimates of the running time of this algorithm,
as well as suggested practical values for k are reported in [8, Appendix D].

In this work, we further investigate the formulation of the LPN, problem as that of
decoding a random linear block code by noticing that the rate k/n of this code is quite low
and that the noise level p of the underlying binary symmetric channel is quite high. Both
observations also hold for the fast correlation attack for which a similar parallelism with
decoding a random linear code has been exploited [15, 10].

For this work, we reformulate the LPN problem after introducing the following notations:

e x = [7;]¥_, is a k-dimensional binary vector;

e G =[g]i", is a k x n binary matrix and each g; = [g;(j)]¥_, is a k-dimensional binary
column vector;

e y = [yl and z = [z], are n-dimensional binary vectors;

e For each i = 1,2,...,n, ¢; is a realization of a binary random variable E; such that
Pr(E; =1) =pand Pr(E; =0) = 1—p, and all the random variables E; are mutually
independent.

For given G and x, the vectors y and z are specified as follows:

y=x-G, (1)
Zi = Y; D e, i:1,2,...,n. (2)

Accordingly we have the following formulation of the LPN problem relevant for this
paper.
LPN Problem. For given G, z and p, recover x.

3 The BKW Algorithm

3.1 Preliminaries

In [3], the BKW algorithm has been reported for solving the LPN problem. It is based on
the following paradigm:

1. draw s strings (columns of the matrix G);

2. partition the s strings into groups based on their last b bits;
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3. choose a string from each partition, add it to every other string within that partition,
and then discard it;

4. repeat on the procedure to the second-to-last b bits, third-to-last ... until all that remain
are partitions in which only the first b bits are non-zero.

Note that in every step of the algorithm we perform poly(k, 2°, s) operations, since for each
of the partitions (at most 2° partitions), we add together at most s k-bit strings.

Based on the explanations given in [3], the BKW algorithm is re-written in an explicit
algorithmic form in the next section.

3.2 Algorithm

e Input

- matrix G, vector z and the probability of error p.

o Initialization

— Set the algorithm parameters: integers @ and b such that! ab > k.

— Select the parameter ¢ according to:

¢=f((1-2p)™*,b)

where f(-) is a polynomial function.

— Consider each g; from G as consisting of a concatenated segments, labeled as
1,2, ...,a, each composed of b bits.

— Set the algorithm parameter o = 1.

e Processing

1. Repeat the following steps (a) - (g) ¢ times :

(a)
(b)

()

Randomly select a subset Q of a2® previously not considered columns of G.

Classify the elements of 2 into at most 2° categories €2, such that all the
vectors g; € €); have the identical segment of b bits labeled as a.

In each category §2;, randomly select a vector and do the following:

- modify the vectors within the category by performing bit-by-bit XOR-ing
of the selected vector with all other vectors in the category, yielding that all
the modified vectors have all zeros in the last, a-th segment;

- remove the selected vector from €2;;

- form the updated / modified €2 as the union of all €;; the expected number
of elements in the updated Q is (a — 1)2°,

Classify the elements of the current set  into at most 2° categories €, such
that all the vectors g; € €2; have the identical segment labeled as a — 1,
recalling that all the vectors contain the all zero b-tuple in the segment labeled
as a.

'The method for selecting the values a and b is not relevant for the algorithm description itself.



(e) In each category €);, randomly select a vector and do the following:
- modify the vectors within the category by performing bit-by-bit XOR~ing
of the selected vector with all other vectors in the category, yielding that all
the modified vectors have all zeros in the segment a — 1 (as well as in the
segment, with label a) ;
- remove the selected vector from €2;;
- form the updated / modified €2 as the union of all €;; the expected number
of elements in the updated Q is (a — 2)2°,

(f) Repeat a — 3 times the procedure performed in the previous two steps, so
that the last modification of {2 contains on average 2 vectors with only zeros
in all the segments with labels from 2 to a.

(g) For each ¢ =1,2,...,b, do the following:

i. Based on the vector, if it exists, from the current {2 with all zeros at the
positions 1,2,....,¢/ — 1 and £ + 1,¢ + 2, ..., k, generate an estimate about

20-1,

xy which is correct with probability equal to 0.5+ 0.5(1 — 2p)* ;

ii. If the targeting vector does not exist in the currently considered collection
repeat the steps (a) - (f).

2. For each ¢ =1,2,...,b, do the following;:
Employing majority logic based decoding on ¢ individual estimates of z,, generate
the final estimate on x, which is assumed correct with a probability close to 1 for
q large enough.

3. Set a — a+ 1 and do the following:

— if @ > a go to Output step;

— if @ < a perform the following re-labeling and go to Processing Step 1:
-1—aq;
- for each i = 2,3, ..., a, re-label i — ¢ — 1.

o Qutput
Estimation of x.

3.3 Complexity Analysis

According to the structure of the BKW algorithm, and the results reported in [3, 8] we have
the following statements.

Proposition 1, [3]. The required sample size and the time complexity of the BKW algorithm
can be estimated as f((1 — 2p)~2",2%) where f(-) is a polynomial function.

Proposition 2, [8]. The BKW algorithm requires a sample of dimension proportional to
a?m?2® where m = max{(1 — 2p)~",b}.

Proposition 3, [8]. The time complexity of the BKW algorithm is proportional to Ca®*m2°
where m = max{(1 — 2p)~%",b}, and C' is a constant.

These estimates can be further refined. In particular, Proposition 3 can be put into a more
precise form, and the space complexity of the BKW algorithm can be estimated via analysis



of the re-written BKW algorithm as follows.

Required Sample.
The required sample, i.e. the dimension n of the matrix G for the BKW algorithm execution
depends on the following:
e Each execution of Step 1.(a) requires random drawing of a2’ previously not considered
columns of the matrix G;
e The structure of the BKW algorithm implies that the expected number of executions of
Step 1.(a) executions is proportional to a’q = a*(1 — 2p)~2".

These considerations imply that the required sample of the BKW algorithm is propor-
tional to a3(1 — 2p)~2"2" which is in accordance with Proposition 2.
Time Complezity.
The time complexity of the BKW algorithm depends on the following;:
e Each repetition of Steps 1.(a) to 1.(f) has time complexity proportional to a2’;
e The expected number of repetitions of Steps 1.(a) to 1.(f) implied by Step 1.(g).(ii) is a
(according to [3, 8]);
e Steps 1.(a) to 1.(g) should be repeated ¢ times, with ¢ = (1 — 2p)~2";
e Step 3 requires that Steps 1 and 2 should be repeated a times;
e Fach bit-by-bit mod2 addition of two k-dimensional vectors with all zeros in the last ab
positions has cost proportional to & — ab;
e The decoding of a bit of the vector x involves (1 — 2p)~%" parity-checks, implying a com-
plexity proportional to (1 — 2p)~2" with a direct approach.

Based on these remarks, Proposition 2 can be reformulated in the following more precise
form.

Proposition 4. The average time complexity of the BKW algorithm is proportional to
a®(k/2)(1 —2p)~2"2° + k(1 — 2p)~2" .

According to Proposition 4, the decoding time complexity per bit of the BKW algorithm is
proportional to a®(1 — 2p)=2"2071 + (1 — 2p)~2" .

Space Complexity.
The space complexity of the BKW algorithm is dominated by the dimension of the matrix
G noting that its parameter n should be greater than the required sample.

Proposition 5. The space complexity of the BKW algorithm is proportional to ka®(1 —
2p) 220,

4 A Novel Algorithm for Solving the LPN Problem

The novel algorithm for solving the LPN problem originates from the algorithms developed
for the fast correlation attack against certain stream ciphers. However, there are also a few
differences. The most substantial difference is that the developed algorithm does not contain
any pre-processing phase. As a result, the pre-processing phase employed in fast correlation
attacks has to be performed so that its computational cost becomes close to that of the
processing phase itself.



4.1 Advanced Fast Correlation Attack Approach

The LPN problem is equivalent to the model of the underlying problem regarding cryptanal-
ysis of certain stream ciphers. For this model of cryptanalysis, a number of powerful fast
correlation attacks have been developed including these reported in [13, 4, 6, 12, 11].

In its general presentation, the advanced fast correlation attack (see [11]) is a certain
decoding technique based on a pre-processing phase and a processing phase which employs:

e sample decimation;

e mapping based on linear combining;
e hypothesis testing;

e final decoding.

In the following section, a novel algorithm for solving the LPN problem is presented
based on these steps [13, 4, 6, 11].

4.2 New Algorithm

The following algorithm uses three parameters by, by and w which need to be optimized.
The optimization of these values follows the presentation of the algorithm.

o [nput
- the matrix G, the vector z and the probability of error p .

o Initialization

— Select the algorithm parameters: by, by and w.

— Select the integer parameter ¢ such that [6]:
> (1-2p)™".

— Form the (k + 1) x n matrix G, obtained by adding the vector z to the top row
of G (z; becomes the 0-th element of the i-th column of Ge).

e Processing

1. Phase I: Decimation of the matrix G,

(a) Search over the columns of the matrix G, and select all the columns g; such
that gl(j) =0 fOI'j = k—b0+ 1,]€—bo+2,...,/€.

(b) Form the decimated version G* of the matrix G based on the columns
selected in the previous step; G* is a (k 4+ 1) X n* matrix with on average,
n* = 27%n,

2. Phase II: Linear Combining of the Decimated Columns

(a) Search for mod2 sums of up to w columns of G* such that the resultant
vector has any weight in positions j = 0 to j = by and weight 1 in positions



(b) For each j = by + 1 to k — by, record at least ¢ such columns to form the
matrix €2;.
3. Phase III: Hypothesizing and Partial Decoding
Consider all 2°# possible hypotheses for bits xg, - - -, x,,_1 of x which correspond
to rows j =1 to j = by in G* and perform the following:
(a) Select a previously not considered hypothesis on the first by bits of the vector
x; if no one new hypothesis is possible go to the Phase IV.

(b) For the given hypothesis on the first by bits of the vector x, employing the
matrix €2;, estimate x; based on

(1x)-Q,=0 (3)

for each j = by + 1,---k — bg. To this end, a majority rule on the all the
decisions z; needed to satisfy (3) is used.

(¢) Compute the Hamming weight of (1 x) - G* to check the validity of the given
hypothesis.

(d) - Memorize the first k — by positions of the L most likely vectors x found so
far (list decoding of size L, with L << 2°#);
- Go to the step (a) of Phase III.

4. Phase IV: Final Decoding

(a) For the L vectors x recorded in Phase-III, repeat Phase-II based on G
(or a punctured version Gp) and Phase-III to estimate the decimated bits
Th—by, """ Th—1-

(b) Select the most likely vector x based on the Hamming weight of (1 x) - Gyp.

o Qutput
Estimation of x.

4.3 Complexity Analysis of the Proposed Algorithm
For given parameters by, by and w, we obtain the following results.

Theorem 1. The average time complexity C' of the proposed algorithm is dominated by:

C ~ (k —by) ((@;;) + 2% log,(1 — 2p)_2> (4)

Proof. Denote by Cy, Cyy, Crrr and Cy the average time complexities of the algorithm phases
I to IV, respectively. According to the algorithm structure, the overall time complexity C' is
given as

C=Cr+C+Crr+Crv . (5)

The identification of the columns of the matrix G to construct G* can be done during the
sample collection phase and therefore has high level of parallelism. It follows that C; = O(n)
but this complexity (which may become dominant compared to C') is discarded as it can be
assumed that G* is given along with G at the beginning of the algorithm.
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Phase-IV can be viewed as repeating the LPN problem to retrieve by bits instead of k—by.
As a result, for by < k/2, Cjy can also be discarded as corresponding to solving the same
problem, but for a smaller size. It follows C' ~ C; + Cryr.

Phase-II can be viewed as constructing parity check equations of weight? w-+1. Using the
square-root algorithm proposed in [4] in conjunction with the hashing approach described
in [16], the time complexity of this part is O ((ﬁu//;]» for each position j = by +1,---,k—by.

Phase-III can be viewed as evaluating the parity check equations found in Phase-II for
each position j = by +1,- -, k—bg. Again using the results of [4] based on Walsh transform,
the resulting complexity for g parity check equations is O <2bH log, q), where it is implicitly
assumed by > log, ¢ (which corresponds to most cases of interest). Based on [6], we need ¢ >
(1—2p)~2¥, so that for each j, the complexity of Phase-IIT becomes O (Qwa log, (1 — 2p)*2).

Joining together the established partial dominating complexities, we obtain the theorem
statement.

Theorem 2. The average space complexity M of the proposed algorithm is dominated by:

o (25)

Proof. The space complexity to store the matrix G* is simply (k — by)n27%. The memory
requirement needed to construct each matrix €2; based on the method of [4] is O ((ﬁu //22J>)
Finally assuming again that by < k/2, the memory requirement for Phase-IV can be discarded
as in the worst case, it is of the same order as that considered in Phases I to I1I. The previous
discussion directly imply the theorem statement.

Based on [6], we readily verify that the size of the sample given by Proposition 2 is larger

than that required for the proposed algorithm with w < 2271,

4.4 Optimization of the Parameters b, and by

Based on Theorem 1, we have C' ~ Cj; 4 Cy;. With respect to the fast correlation attack, it
can be observed that C; corresponds to the pre-processing cost (searching for a sufficiently
large number of parity check equations of a given form) and Cp;; corresponds to the pro-
cessing cost (solving the system of parity check equations for a given sample). As a result,
for the LPN problem, we have the additional constraint C; ~ Cpyy.

For given values w and by, the value by which minimizes Cy;; is given by [6]

biropt = 2wlogy(1 —2p) ™' + k — by — log, (?u) (7)

For this value, we have
Z) +logy, (k—bo) +1og, w+1og, log,(1—2p) 2.
(8)

2Recall that columns of G summing to zero form codewords of the dual code, or equivalently parity check
equations.

1085 Cr11.0pt ~ 2w 10y (1—2p) ™ +k—by —log, (




Table 1: Time complexities C7; and Cyy; for the LPN problem with p = 0.25.

Ln [k [ wl boop | ba,opt [ logy Cir | logy Cry |
2T 32 [ 2] 16 |5(>loga=4) ] 11 11
41 18 |3 (<logy,q=28)
280 19224 | 4 47 58 70.5 67.9
6 o8 26 67.8 66.6
8 63 Y 66.7 67.7

Equating Crr1ope With Cpy given by

C[] ~ 1Og2(k3 — bo) + 1Og2 (I,ZL;//;_I) (9)

and solving for by, we obtain

3 /3
bo,opt 7~ (;U — 1) <2w (logy n* — logy w) — 2w logy(1 — 2p)~*
—k + % —log, w — log, log,y(1 — 2p)_2> (10)

Based on (7) and (10), Table 1 summarizes the complexities Cry and Cyy for p = 0.25 and
values of n and k relevant to the LPN approach to attack the HB protocol [8]. For the (224, 32)
code, we observe that while for w = 2, C;; and Cp; are efficiently balanced, the optimum
value by opr for w = 4 no longer verifies by o, > wlogy(1 — 2p)~2 so that the approach of [4]
has reached its minimum cost. For the (2%°,224) code, we observe that different selections
of w provide complexities C7; and Cprr very close after proper optimization of both by and
by. In that case, selecting the smallest value w minimizes memory requirements.

5 Comparison of the Proposed Algorithm and the BKW
Algorithm

It can be observed that the (a — 1) repetitions of the procedure to obtain vectors of weight
1 in the BKW algorithm is equivalent to constructing parity-check equations (or codewords
in the dual codes) of weight w = 27! + 1. Interestingly, both approaches require exactly
the same number (1 — 2p)** of check sums per bit. The results of Table 1 indicate that
the choice of w is not critical in minimizing the time complexity of the proposed algorithm.
However the techniques used to generate these check sums are very different as well as that
to estimate the bits.

Table 2 compares the time and space complexities per information bit obtained from the
results of Sections 3 and 4.

In order to establish a clearer comparison, we consider the special case w = 2%~! so that
the same number of check sums is required by both approaches and b = by = by (again
this case corresponds to a meaningful comparison when applying these algorithms to the HB
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Table 2: Time and space complexities per information bit of the BKW algorithm and the
proposed algorithm.

] I time complexity [ space complexity |
BKW algorithm ~ (k/b)3(1 — 2p)~2"""20 ~ (k/b)3(1 — 2p)=2""2b
Proposed algorithm || ~ ([”;/22]) + 24 Jog, (1 — 2p)~2w ~n* 4+ ([5//21)

Table 3: Time and space complexities per information bit of the BKW algorithm and the
proposed algorithm with w = 2%"! and b = by = by.

’ H time complexity H space complexity ‘
BKW algorithm ~ (logyw + 1)3(1 — 2p)~2w2b ~ (logyw + 1)3(1 — 2p)~2w2b
Proposed algorithm || ~ (1 — 2p)~%*2(=20)/2 4 9bog, (1 — 2p) 2 ~ (1 —2p)~wak=20)/2

protocol). The corresponding complexities are given in Table 3. We observe that even in
this non optimized case, the proposed algorithm is more efficient in most cases. In particular
for a = 4, (k —2b)/2 = b so that a factor (logy w + 1)3(1 — 2p)~* is gained both in time and
space complexity. The gain (1 — 2p)~" is mostly due to the application of the square-root
algorithm to determine the check sums based on [4, 16]. However, gains even larger than
(logo w + 1)3(1 — 2p)~* are available by proper selection of the parameters by and by due to
both decimation and hypothesis testing.

6 Security Re-Evaluation of the HB Protocol for RFID
Authentication

Following the framework of a protocol for a person authentication to a computer reported
in [7], the HB protocol has been proposed for RFID authentication in [8].

6.1 Security of the HB Protocol and LPN Problem

It is well known that the security of the HB protocol depends on the complexity of solving
the LPN problem (see for example [8, 9])

The two main issues regarding the security evaluation of the HB protocol can be sum-
marized as follows:

1. Collecting the sample for cryptanalysis via recording the challenges and responses
exchanged during the protocol executions and forming the matrix G and the vector
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z which define the underlying LPN problem; each challenge is recorded as a certain
column g; of the matrix G, and its corresponding response is recorded as the element
z; of the vector z.

2. Solving the obtained LPN problem.

Regarding the sample collection for cryptanalysis note the following issues:

e Fach authentication session involves the same secret key, and consequently all the
available challenge-response pairs can be jointly employed for recovering the secret
key:;

e Fach authentication session involves r mutually independent challenges and responses,
providing r columns of the matrix G and the corresponding r elements of the vector
z, so that via collecting the pairs from s authentication sessions, we obtain the matrix
G and the vector z of dimensions k£ X n and n, respectively, where n = s - r.

Accordingly, by collecting the information from different authentication sessions which in-
volve the same secret key, we can obtain a huge sample for cryptanalysis, which is suitable
for sophisticated processing in order to recover the secret key.

6.2 Security Evaluation of the HB Protocol Based on the BKW
and Proposed Algorithms

The security evaluation considered in this section assumes the passive attacking scenario
only. Following the approach for security evaluation employed in [8], we consider the security
margin which measures the complexity of recovering a bit of the secret key.

As a simple illustrative example, we first consider the security evaluation of the HB pro-
tocol with k = 32, p = 0.25, assuming we can collect a sample of size n = 224, Accordingly,
we consider the security margin of the protocol employing the BKW algorithm with parame-
ters a = 2 and b = 16, as suggested in [8]. Based on Propositions 3 and 4, the expected time
complexity of of the BKW algorithm is proportional to ka®(1 — 2p)=2"20 = 32.23.2%. 216,
so that the security margin (expected complexity per recovered secret key bit) is 22%. For
the proposed algorithm, we select w = 2, by = 16 and by = 5 based on Table 1, so that the
expected complexity per recovered secret key bit becomes 2 - 21 /16 = 28. As a result, the
proposed algorithm reduces the time complexity of the BKW algorithm almost to its cubic
root for this simple example.

For security evaluation of the HB protocol with k& = 224, n = 2% and p = 0.25, we have
considered the BKW algorithm with a = 4 and b = 56, (see [8]) , while based on Table 1,
we selected w = 6, by = 58 and by = 56 for the proposed algorithm. The corresponding
security margins are 280 and 2%, respectively. Again a significant gain has been achieved by
the proposed algorithm. These results of security evaluation are summarized in Table 4

With respect to the special case considered Table 3, we observe that by proper optimiza-
tion of all parameters, gains beyond the factor (log,w + 1)3(1 — 2p)~ have been achieved
by the proposed algorithm over the BKW algorithm as this factor takes values 2% and 2
for k = 32 and k = 224, respectively, while the corresponding gains are 2'5 and 2.
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Table 4: Security margins of the HB protocol against a passive attack, when the employed
key consists of k£ bits and the employed noise corresponds to p = 0.25, based on the BKW
and proposed algorithms.

number of secret ||| security margin for the | security margin for the
key bits: k BKW algorithm [§] proposed algorithm
k=32 ~ 2% ~ 28
k=224 ~ 280 ~ 261
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