
Generalization of the Sele
tive-ID Se
urity Model for HIBE

Proto
ols

Sanjit Chatterjee and Palash Sarkar

Applied Statisti
s Unit

Indian Statisti
al Institute

203, B.T. Road, Kolkata

India 700108.

e-mail:fsanjit t,palashg�isi
al.a
.in

Abstra
t. We generalize the sele
tive-ID se
urity model for HIBE by introdu
ing two new se
urity

models. Broadly speaking, both these models allow the adversary to 
ommit to a set of identities and in

the 
hallenge phase 
hoose any one of the previously 
ommitted identities. Two 
onstru
tions of HIBE

are presented whi
h are se
ure in the two models. Further, we show that the HIBEs 
an be modi�ed

to obtain a multiple re
eiver IBE whi
h is se
ure in the sele
tive-ID model without the random ora
le

assumption.

1 Introdu
tion

Identity based en
ryption (IBE) was introdu
ed by Shamir [17℄. This is a publi
 key en
ryption

proto
ol where the publi
 key 
an be any string. The 
orresponding private key is generated by a

private key generator (PKG) and provided to the user in an o�ine phase. The notion of IBE 
an

simplify many appli
ations of publi
 key en
ryption (PKE) and is 
urrently an a
tive resear
h area.

The notion of the IBE was later extended to hierar
hi
al IBE (HIBE) [15, 16℄. In an IBE, the

PKG has to generate the private key for any identity. The notion of the HIBE redu
es the workload

of the PKG by delegating the private key generation task to lower level entities, i.e., entities who

have already obtained their private keys. Though a HIBE by itself is an interesting 
ryptographi


primitive, it 
an also be used to 
onstru
t other primitives like forward se
ure en
ryption and

broad
ast en
ryption proto
ols.

The �rst eÆ
ient 
onstru
tion of an IBE was provided by Boneh and Franklin [7℄. This paper

also introdu
ed an appropriate se
urity model for IBE. The proof of se
urity in [7℄ used the so-


alled random ora
le assumption. This started a sear
h for 
onstru
tions whi
h 
an be proved to

be se
ure without the random ora
le assumption. The �rst su
h 
onstru
tion of an IBE was given

in [10℄. However, the IBE in [10℄ 
an only be proved to be se
ure in a weaker model (the sele
tive-ID

model) as opposed to the full model 
onsidered in [7℄. Later Boneh and Boyen [3℄ presented a more

eÆ
ient 
onstru
tion of HIBE whi
h is se
ure in the sele
tive-ID (sID) model without the random

ora
le assumption.

The full se
urity model in [7℄ allows an adversary to adaptively ask the PKG for private keys of

identities of its 
hoosing. (The se
urity model also allows de
ryption queries, whi
h we ignore for

the present.) Then it submits two messages M

0

;M

1

and an identity v

�

and is given an en
ryption

of M




under v

�

, where 
 is a randomly 
hosen bit. The identity v

�


an be any identity other than

those for whi
h the adversary has already obtained the private key or 
an easily obtain the private

key from the information it has re
eived. The main diÆ
ulty in obtaining an eÆ
ient 
onstru
tion

of a HIBE whi
h is se
ure in this model is the wide 
exibility of the adversary in 
hoosing v

�

.



The sID model attempts to 
urb the adversary's 
exibility in the following manner. In the game

between the adversary and the simulator, the adversary has to 
ommit to an identity even before

the HIBE proto
ol is set-up by the simulator. The simulator then sets up the HIBE. This allows

the simulator to set-up the HIBE based on the identity 
ommitted by the adversary. In the a
tual

game, the adversary 
annot ask for the private key of the 
ommitted identity (or of any of its

pre�xes, in the 
ase of HIBE). During the 
hallenge stage, the adversary submits two messages

M

0

;M

1

as usual and is given an en
ryption of M




under the previously �xed identity v

�

. Note that

this is signi�
antly more restri
tive than the full model sin
e the adversary has to 
ommit to an

identity even before it sees the publi
 parameters of the HIBE.

Our Contributions: In this paper, we generalize the sID model and introdu
e two new models

of se
urity for HIBE proto
ols. The basi
 idea is to modify the se
urity game so as to allow the

adversary to 
ommit to a set of identities (instead of one identity in the sID model) before set-

up. During the game, the adversary 
an exe
ute key extra
tion queries on any identity not in the


ommitted set. In the 
hallenge stage, the 
hallenge identity is 
hosen by the adversary from among

the set that it has previously 
ommitted to.

For IBE, this is a stri
t generalization of the sID model, sin
e we 
an get the sID model by

enfor
ing the size of the 
ommitted set of identities to be one. On the other hand, for HIBE, there

are two ways to view this generalization leading to two di�erent se
urity modelsM

1

andM

2

.

InM

1

, the adversary 
ommits to a set I

�

. It 
an then ask for the private key of any identity

v = (v

1

; : : : ; v

�

) as long as all the v

i

s are not in I

�

. Further, during the 
hallenge stage, it has

to submit an identity all of whose 
omponents are in I

�

. If we restri
t the adversary to only

single 
omponent identities (i.e., we are 
onsidering only the IBE proto
ols), then this is a 
lear

generalization of the sID model for IBE. On the other hand, in the 
ase of HIBE, we 
annot �x the

parameters of this model to obtain the sID model for HIBE.

The se
ond model,M

2

, is an obvious generalization of the sID model for HIBE. In this 
ase,

the adversary spe
i�es � sets I

�

1

; : : : ;I

�

�

. Then it 
an ask for private key of any identity v as long

as there is an i su
h that the ith 
omponent of v is not in I

�

i

. In the 
hallenge stage, the adversary

has to submit an identity su
h that for all i, the ith 
omponent of the identity is in I

�

i

.

Even though M

2

generalizes the sID model for HIBE, we thinkM

1

is also an appropriate

model for a HIBE proto
ol. The adversary would be spe
ifying a set of \sensitive" keywords to be

I

�

. It 
an then ask for the private key of any identity as long as one 
omponent of the identity

is not sensitive and in the 
hallenge stage has to submit an identity all of whose 
omponents are

sensitive. The added 
exibility inM

2

is that the adversary 
an spe
ify di�erent sets of sensitive

keywords for the di�erent levels of HIBE. In pra
ti
e, this 
exibility might not be required sin
e

keywords like root, admin, dba, et
etera will be sensitive for all levels.

We present two 
onstru
tions of HIBE denoted by H

1

and H

2

. H

1

is proved to be se
ure in

the modelM

1

under the DBDH assumption while H

2

is proved to be se
ure in the modelM

2

also under the DBDH assumption. Our 
onstru
tions and proofs of se
urity are very similar to

that of the Boneh-Boyen HIBE (BB-HIBE) [3℄. The a
tual te
hni
al novelty in the proofs is the

use of a polynomial, whi
h in the 
ase of the BB-HIBE is of degree one. The use of an appropriate

polynomial of degree greater than one allows us to prove se
urity in the more general modelsM

1

andM

2

. However, this 
exibility 
omes at a 
ost. In both H

1

and H

2

, the number of required

s
alar multipli
ations in
reases linearly with the size of the 
ommitted set of identities.

2



Multiple re
eiver IBE (MR-IBE) is an interesting 
on
ept whi
h was introdu
ed by Baek, Safavi-

Naini and Susilo [1℄. In an MR-IBE, an en
ryptor 
an en
rypt a message in su
h a way that any

one of a set of identities 
an de
rypt the message. A trivial way to a
hieve this is to separately

en
rypt the message several times. It turns out that the eÆ
ien
y 
an be improved. A more eÆ
ient


onstru
tion of MR-IBE was presented in [1℄. The proof of se
urity was in the sID model under the

random ora
le assumption.

We show that the HIBE H

1

or H

2

when restri
ted to IBE 
an be easily modi�ed to obtain an

eÆ
ient MR-IBE. Our MR-IBE is proved to be se
ure in the sID model without the random ora
le

assumption and to the best of our knowledge this is the �rst of su
h kind.

2 Preliminaries

2.1 Cryptographi
 Bilinear Map

Let G

1

and G

2

be 
y
li
 groups of same prime order p and G

1

= hP i, where we write G

1

additively

and G

2

multipli
atively. A mapping e : G

1

�G

1

! G

2

is 
alled a 
ryptographi
 bilinear map if it

satis�es the following properties:

{ Bilinearity: e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 ZZ

p

.

{ Non-degenera
y: If G

1

= hP i, then G

2

= he(P; P )i.

{ Computability: There exists an eÆ
ient algorithm to 
ompute e(P;Q) for all P;Q 2 G

1

.

Sin
e e(aP; bP ) = e(P; P )

ab

= e(bP; aP ), e() also satis�es the symmetry property. Weil pairing [6℄

and Tate pairing [2, 14℄ are examples of 
ryptographi
 bilinear maps. General de�nitions of Weil

and Tate pairings do not satisfy the symmetry property but for 
ertain 
urves they 
an be modi�ed

to satisfy the symmetry property. In this paper, we will use symmetri
 bilinear maps.

The only known examples of e() have G

1

to be a group of Ellipti
 Curve (EC) points andG

2

to be

a subgroup of a multipli
ative group of a �nite �eld. Hen
e, in papers on pairing implementations [2,

14℄, it is 
ustomary to write G

1

additively and G

2

multipli
atively. On the other hand, some \pure"

proto
ol papers [3, 4, 18℄ write both G

1

and G

2

multipli
atively, though this is not true of the early

proto
ol papers [6, 15℄. Here we follow the �rst 
onvention as it is 
loser to the known examples.

2.2 Hardness Assumption

De
ision Bilinear DiÆe-Hellman (DBDH) Problem: The DBDH problem in hG

1

; G

2

; e()i [7℄

is as follows: Given a tuple hP; aP; bP; 
P; Zi, where Z 2 G

2

, de
ide whether Z = e(P; P )

ab


(whi
h

we denote as Z is real) or whether Z is a random element of G

2

(whi
h we denote as Z is random).

Let B be a probabilisti
 algorithm whi
h takes as input a tuple hP; aP; bP; 
P; Zi and outputs a bit.

The advantage of B in solving the DBDH problem is de�ned to be

Adv

DBDH

B

= jPr[B(P; aP; bP; 
P; Z) = 1jZ is real℄

�Pr[B(P; aP; bP; 
P; Z) = 1j Z is random℄j

where the probabilities are 
al
ulated over the random 
hoi
es of a; b; 
 2 ZZ

p

as well as the random

bits used by B. The quantity Adv

DBDH

(t) denotes the maximum of Adv

DBDH

B

where the maximum

is taken over all adversaries running in time at most t.
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2.3 HIBE Proto
ol

Following [16, 15℄ a hierar
hi
al identity based en
ryption (HIBE) s
heme is spe
i�ed by four prob-

abilisti
 algorithms: Setup, Key Generation, En
ryption and De
ryption.

Setup: It takes as input a se
urity parameter and returns the system parameters together with

the master key. The system parameters are publi
ly known while the master key is known only to

the private key generator (PKG).

The system parameters in
lude a des
ription of the message spa
e, the 
iphertext spa
e and

the identity spa
e. An identity of depth � is a tuple (v

1

; : : : ; v

�

), where ea
h v

j

is an element of a

set I. From an appli
ation point of view, we would like I to be the set of all binary strings. On

the other hand, for 
onstru
tion purposes, this is too general and one usually requires I to have

an algebrai
 stru
ture. The two requirements are met by assuming that a 
ollision resistant hash

fun
tion maps an arbitrary string to the set I having an algebrai
 stru
ture.

A spe
ial 
ase of a HIBE proto
ol arises when only single 
omponent identities are allowed. In

this 
ase, the proto
ol is said to be simply an identity based en
ryption (IBE) proto
ol.

Key Generation: The task of this algorithm is to assign a private key d

v

for an identity v of

depth � . To this end, it takes as input an identity v = (v

1

; : : : ; v

�

) of depth � and the private key

d

j��1


orresponding to the identity v

j��1

= (v

1

; : : : ; v

��1

) and returns d

v

. In the 
ase � = 1, the

private key d

j��1

is the master key of the PKG and the key generation is done by the PKG. In the


ase � > 1, the private key 
orresponding to v = (v

1

; : : : ; v

�

) 
an be generated by the entity whose

identity is v

j��1

= (v

1

; : : : ; v

��1

) and who has already obtained his/her private key d

j��1

.

En
ryption: The en
ryption algorithm takes as input the identity v, the publi
 parameters of the

PKG and a message from the message spa
e and produ
es a 
iphertext in the 
ipher spa
e.

De
ryption: The de
ryption algorithm takes as input the 
iphertext, the identity v under whi
h

en
ryption has been performed, the private key d

v

of the 
orresponding identity v and the publi


parameters. It returns the message or bad if the 
iphertext is not valid.

2.4 BB-HIBE

Set-Up: Let G

1

; G

2

and e() be as de�ned in Se
tion 2. Let h be a positive integer whi
h spe
i�es

the maximum depth of the HIBE. The identity spa
e 
onsists of all tuples (v

1

; : : : ; v

�

), � � h, where

ea
h v

i

2 ZZ

p

. The message spa
e is G

2

. The 
iphertext 
orresponding to an identity (v

1

; : : : ; v

�

) is

a tuple (A;B;C

1

; : : : ; C

�

), where A 2 G

2

and B;C

1

; : : : ; C

�

2 G

1

.

Randomly 
hoose � 2 ZZ

p

and set P

1

= �P . Choose P

2

, P

3;1

; : : : ; P

3;h

randomly from G

1

. The

publi
 parameters are

(P; P

1

; P

2

; P

3;1

; : : : ; P

3;h

)

and the master se
ret key is �P

2

. The parameters P

1

and P

2

are not dire
tly required in either

en
ryption or de
ryption. We may repla
e them in the publi
 parameters by e(P

1

; P

2

). This will

save the pairing 
omputation during en
ryption.

A Notation: For any y 2 Z

p

, de�ne V

i

(y) = P

3;i

+ yP

2

: We will simply write V

i

for V

i

(v

i

).

4



Key Generation: Let v = (v

1

; : : : ; v

�

), 1 � � � h be an identity. The private key d

v


orresponding

to v is de�ned to be

(�P

2

+ r

1

V

1

+ : : :+ r

�

V

�

; r

1

P; : : : ; r

�

P )

where r

1

; : : : ; r

�

are random elements of ZZ

p

. It 
an be shown [3℄ that the knowledge of a random

private key 
orresponding to the tuple (v

1

; : : : ; v

��1

) allows the generation of a random private key


orresponding to v.

En
ryption: Suppose a message M is to be en
rypted under the identity v = (v

1

; : : : ; v

�

). Choose

a random t 2 Z

p

. The 
iphertext is (A;B;C

1

; : : : ; C

�

), where

A =M � e(P

1

; P

2

)

t

; B = tP ; C

i

= tV

i

; for 1 � i � �:

De
ryption: Suppose (A;B;C

1

; : : : ; C

�

) is to be de
rypted using the private key (d

0

; d

1

; : : : ; d

�

)


orresponding to the identity v = (v

1

; : : : ; v

�

). Compute

A�

Q

�

i=1

e(d

i

; C

i

)

e(d

0

; B)

:

Again, it is standard to verify that the above 
omputation yields M .

3 Se
urity Model for HIBE

3.1 Se
urity Model

The se
urity model for HIBE is de�ned as an intera
tive game between an adversary and a simulator.

Both the adversary and the simulator are modeled as probabilisti
 algorithms. Currently, there

are two se
urity models for HIBE { the sele
tive-ID (sID) model and the full model. We will be

interested in de�ning two new se
urity models. We present the des
ription of the intera
tive game

in a manner whi
h will help in obtaining a uni�ed view of the sID, full and the new se
urity models

that we de�ne.

In the game, the adversary is allowed to query two ora
les { a de
ryption ora
le O

d

and a

key-extra
tion ora
le O

k

. The game has several stages.

Adversary's Commitment: In this stage, the adversary 
ommits to two sets S

1

and S

2

of identities.

The 
ommitment has the following two 
onsequen
es.

1. The adversary is not allowed to query O

k

on any identity in S

1

or on a pre�x of any identity in

S

1

.

2. In the 
hallenge stage, the adversary has to 
hoose one of the identities from the set S

2

.

There is a te
hni
al diÆ
ulty here. Note that the adversary has to 
ommit to a set of identities even

before the HIBE proto
ol has been set-up. On the other hand, the identity spa
e is spe
i�ed by the

set-up algorithm of the HIBE proto
ol. In e�e
t, this means that the adversary has to 
ommit to

identities even before it knows the set of identities. Clearly, this is not possible.

One possible way out is to allow the adversary to 
ommit to binary strings and later when the

set-up program has been exe
uted, these binary strings are mapped to identities using a 
ollision

resistant hash fun
tions. Another solution is to run the set-up program in two phases. In the �rst

5



phase, the identity spa
e is spe
i�ed and is made available to the adversary; then the adversary


ommits to S

1

and S

2

; and after obtaining S

1

and S

2

the rest of the set-up program is exe
uted.

The above two approa
hes are not ne
essarily equivalent and may have di�erent se
urity 
on-

sequen
es. On the other hand, note that if S

1

= ; and S

2

is the set of all identities (as is true in

the full model), then this te
hni
al diÆ
ulty does not arise.

Set-Up: The simulator sets up the HIBE proto
ol and provides the publi
 parameters to the

adversary and keeps the master key to itself. Note that at this stage, the simulator knows S

1

;S

2

and


ould possibly set-up the HIBE based on this knowledge. However, while doing this, the simulator

must ensure that the probability distribution of the publi
 parameters remains the same as in the

spe
i�
ation of the a
tual HIBE proto
ol.

Phase 1: The adversary makes a �nite number of queries where ea
h query is addressed either to

O

d

or to O

k

. In a query to O

d

, it provides the 
iphertext as well as the identity under whi
h it wants

the de
ryption. The simulator returns either the 
orresponding message or bad if the 
iphertext is

malformed. Similarly, in a query to O

k

, it asks for the private key of the identity it provides. This

identity 
annot be an element of S

1

and neither 
an it be a pre�x of any element in S

1

. Further, the

adversary is allowed to make these queries adaptively, i.e., any query may depend on the previous

queries as well as their answers.

Certain queries are useless and we will assume that the adversary does not make su
h queries.

For example, if an adversary has queried O

k

on any identity, then it is not allowed to present the

same identity to O

d

as part of a de
ryption query. The rationale is that sin
e the adversary already

has the private key, it 
an itself de
rypt the required 
iphertext.

Challenge: The adversary provides the simulator with an identity v

�

2 S

2

and two messages M

0

and M

1

. There is a restri
tion that the simulator should not have queried O

k

for the private key of

v

�

or for the private key of any pre�x of v

�

in Phase 1. The simulator randomly 
hooses a 
 2 f0; 1g

and returns the en
ryption of M




under v

�

to the adversary.

Phase 2: The adversary issues additional queries just as in Phase 1 with the following restri
tions.

It 
annot ask O

d

for the de
ryption of C

�

under v

�

; 
annot ask O

k

for the private key of any pre�x

of an identity in S

1

; and 
annot make any useless query.

Guess: The adversary outputs a guess 


0

of 
.

Adversary's Su

ess: The adversary wins the game if it 
an su

essfully guess 
, i.e., if 
 = 


0

. The

advantage of an adversary A in atta
king the HIBE s
heme is de�ned as:

Adv

HIBE

A

= jPr[(
 = 


0

)℄� 1=2j:

The quantity Adv

HIBE

(t; q

ID

; q

C

) denotes the maximum of Adv

HIBE

A

where the maximum is taken

over all adversaries running in time at most t and making at most q

C

queries to O

d

and at most

q

ID

queries to O

k

.

A HIBE proto
ol is said to be (�; t; q

ID

; q

C

)-CCA se
ure if Adv

HIBE

(t; q

ID

; q

C

) � �. Any HIBE

proto
ol se
ure against su
h an adversary is said to be se
ure against 
hosen 
iphertext atta
k

(CCA). A weaker version of se
urity does not allow the adversary to make de
ryption queries, i.e.,

6



the adversary is not given a

ess to O

d

. A HIBE proto
ol se
ure against su
h a weaker adversary is

said to be se
ure against 
hosen plaintext atta
k (CPA). Adv

HIBE

(t; q) in this 
ontext denotes the

maximum advantage where the maximum is taken over all adversaries running in time at most t

and making at most q queries to the key-extra
tion ora
le. A HIBE proto
ol is said to be (�; t; q)-

CPA se
ure if Adv

HIBE

(t; q) � �. There are generi
 [10, 11℄ as well as non-generi
 methods [8℄ for


onverting a CPA-se
ure HIBE into a CCA-se
ure HIBE. Hen
e, in this paper, we will only 
onsider


onstru
tion of CPA-se
ure HIBE.

3.2 Full Model

Suppose S

1

= ; and S

2

is the set of all identities. By the rules of the game, the adversary is

not allowed to query O

k

on any identity in S

1

. Sin
e S

1

is empty, this means that the adversary

is a
tually allowed to query O

k

on any identity. Further, sin
e S

2

is the set of all identities, in

the 
hallenge stage, the adversary is allowed to 
hoose any identity. In e�e
t, this means that the

adversary does not really 
ommit to anything before set-up and hen
e, in this 
ase, the 
ommitment

stage 
an be done away with. This parti
ular 
hoi
e of S

1

and S

2

is 
alled the full model and is


urrently believed to be the most general notion of se
urity for HIBE.

Note that the 
hallenge stage restri
tions as well as the restri
tions in Phase 2 still apply.

3.3 Sele
tive-ID Model

Let S

1

= S

2

be a singleton set. This means that the adversary 
ommits to one parti
ular identity;

does not ask for a private key of any of its pre�xes; and in the 
hallenge phase is given the en
ryption

of M




under this parti
ular identity. This model is signi�
antly weaker than the full model and is


alled the sele
tive-ID model. The model was formally introdu
ed in [11℄.

3.4 New Se
urity Models

We introdu
e two new se
urity models by suitably de�ning the sets S

1

and S

2

. In our new models,

(as well as the sID model), we have S

1

= S

2

. (Note that in the full model, S

1

= S

2

.)

ModelM

1

: Let I

�

be a set. De�ne S

1

= S

2

to be the set of all tuples (v

1

; : : : ; v

�

), su
h that ea
h

v

i

2 I

�

. If the HIBE is of maximum depth h, then 1 � � � h. The value of � is not �xed by the

adversary in the 
ommit phase.

Let us now see what this means. In the 
ommit phase, the adversary 
ommits to a set I

�

; never

asks for a private key of an identity all of whose 
omponents are in I

�

; and during the 
hallenge

phase presents an identity all of whose 
omponents are in I

�

.

Consider the 
ase of IBE, i.e., h = 1, whi
h means that only single 
omponent identities are

allowed. Then, we have S

1

= S

2

= I

�

. Let jI

�

j = n. If we put n = 1, then we obtain the sID model

for IBE as dis
ussed in Se
tion 3.3. In other words, for IBE proto
ol,M

1

is a stri
t generalization

of sID model.

If h > 1, then we have proper HIBE. In this 
ase,M

1

di�ers fundamentally from the sID model.

1. In the sID model, the adversary is allowed to query O

k

on a permutation of the 
hallenge

identity. This is not allowed inM

1

.
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2. In the sID model, the length of the 
hallenge identity is �xed by the adversary in the 
ommit

phase. On the other hand, inM

1

, the adversary is free to 
hoose this length (to be between 1

and h) in the 
hallenge stage itself.

In the 
ase of HIBE, model M

1

is no longer a stri
t generalization of the usual sID model for

HIBE. We 
annot restri
t the parameters of the modelM

1

in any manner and obtain the sID

model for HIBE. Thus, in this 
ase,M

1

must be 
onsidered to be a new model.

ModelM

2

: Let I

�

1

; : : : ;I

�

�

be sets and jI

�

j

j = n

j

for 1 � j � � . We set

S

1

= S

2

= I

�

1

� � � � � I

�

�

.

If the maximum depth of the HIBE is h, then 1 � � � h.

In this model, for 1 � j � � , the adversary is not allowed to obtain a private key for an identity

v = (v

1

; : : : ; v

j

) su
h that v

i

2 I

�

i

for all 1 � i � j. Further, the 
hallenge identity is a tuple

(v

�

1

; : : : ; v

�

�

), with v

i

2 I

�

i

for all 1 � i � � . Like the sID model, the length of the 
hallenge identity

is �xed by the adversary in the 
ommit phase.

This model is a stri
t generalization of the sID model for HIBE. This 
an be seen by setting

n

1

= � � � = n

h

= 1, i.e., setting I

�

1

; : : : ;I

�

h

to be singleton sets. On the other hand,M

2

andM

1

are not 
omparable due to at least two reasons.

1. InM

1

, the length of the 
hallenge identity 
an vary, while inM

2

, the length is �xed in the


ommit phase.

2. InM

2

, it may be possible for the adversary to obtain the private key for a permutation of the


hallenge identity, whi
h is not allowed inM

1

.

These two reasons are similar to the reasons for the di�eren
e between sID andM

1

.

Parametrizing the models: A HIBE may have a bound on the maximum number of levels that


an be supported. The 
orresponding se
urity model also has the same restri
tion. For example, a

HIBE of at most h levels will be 
alled h-sID se
ure if it is se
ure in the sID model. The models

M

1

andM

2

have additional parameters.

For the 
ase ofM

1

, there is a single parameter n, whi
h spe
i�es the size of I

�

, the set whi
h

the adversary spe
i�es in the 
ommit phase. In this 
ase, we will talk of (h; n)-M

1

se
urity for an

HIBE. Similarly, forM

2

, we will talk of (h; n

1

; : : : ; n

h

)-M

2

se
urity. Note that (h; 1 : : : ; 1)-M

2

model is same as the h-sID model.

4 Interpreting Se
urity Models

The full se
urity model is 
urrently believed to provide the most general se
urity model for HIBE.

In other words, it provides any entity (having any parti
ular identity) in the HIBE with the most

satisfa
tory se
urity assuran
e that the entity 
an hope for. The notion of se
urity based on an

appropriate adversarial game is adapted from the 
orresponding notion for publi
 key en
ryption

and the se
urity assuran
e provided in that setting also applies to the HIBE setting. The additional


onsideration is that of identity and the key extra
tion queries to O

k

. We may 
onsider the identity

present during the 
hallenge stage to be a target identity. In other words, the adversary wishes to

break the se
urity of the 
orresponding entity. In the full model, the target identity 
an be any

8



identity, with the usual restri
tion that the adversary does not know the private key 
orresponding

to this identity or one of its pre�xes.

From the viewpoint of an individual entity e in the HIBE stru
ture, the adversary's behavior

appears to be the following. The adversary 
an possibly 
orrupt any entity in the stru
ture, but as

long as it is not able to 
orrupt that parti
ular entity e or one of its an
estors, then it will not be

able to su

eed in an atta
k where the target identity is that of e. In other words, obtaining the

private keys 
orresponding to the other identities does not help the adversary. Intuitively, that is

the maximum prote
tion that any entity e 
an expe
t from the system.

Let's re
e
t on the sID model. In this model, the adversary 
ommits to an identity even before

the set-up of the HIBE is done. The a
tual set-up 
an depend on the identity in question. Now


onsider the se
urity assuran
e obtained by an individual entity e. Entity e 
an be 
onvin
ed that

if the adversary had targeted its identity and then the HIBE stru
ture was set-up, in that 
ase

the adversary will not be su

essful in atta
king it. Alternatively, e 
an be 
onvin
ed that the

HIBE stru
ture 
an be set-up so as to prote
t it. Inherently, the sID model assures that the HIBE

stru
ture 
an be set-up to prote
t any identity, but only one.

Suppose that a HIBE stru
ture whi
h is se
ure in the sID model has already been set-up. It

has possibly been set-up to prote
t one parti
ular identity. The question now is what prote
tion

does it o�er to entities with other identities? The model does not assure that other identities will

be prote
ted. Of 
ourse, this does not mean that other identities are vulnerable. The model simply

does not say anything about these identities.

The system designer's point of view also needs to be 
onsidered. While setting up the HIBE

stru
ture, the designer needs to ensure se
urity. The HIBE is known to be se
ure in the sID model

and hen
e has a proof of se
urity. The designer will play the role of the simulator in the se
urity

game. In the game, the adversary 
ommits to an identity and then the HIBE is set-up so as to

prote
t this identity. However, sin
e the a
tual set-up has not been done, there is no real adversary

and hen
e no real target identity. Thus, the designer has to assume that the adversary will probably

be targeting some sensitive identity like root. The designer 
an then set-up the HIBE so as to prote
t

this identity. However, on
e the HIBE has been set-up, the designer 
annot say anything about the

se
urity of other possible sensitive identities like sysadmin. This is a limitation of the sID model.

It has been observed in [3℄ that a generi
 
onversion from an IBE proto
ol se
ure in the sele
tive-

ID model to a proto
ol se
ure in the full model su�ers from a se
urity degradation by a fa
tor of

2

`

, where identities are `-bit strings. This also indi
ates the inadequa
y of the sele
tive-ID model.

This brings us to the generalization of the sID model that we have introdu
ed. First 
onsider

the modelM

1

as it applies to IBE. In this model, the designer 
an assume that the adversary will

possibly atta
k one out of a set of sensitive identities like froot; admin; dba; sysadming. It 
an then

set-up the IBE so as to prote
t this set of identities. This o�ers better se
urity than the sID model.

Now 
onsider the modelM

1

as it applies to HIBE. In this 
ase, the set I

�


an be taken to

be a set of sensitive keywords su
h as froot; admin; dba; sysadming. The adversary is not allowed to

obtain private keys 
orresponding to identities all of whose 
omponents lie in I

�

. For the above

example, the adversary 
annot obtain the private key of (root, root), or (admin, root, dba). On the

other hand, it is allowed to obtain keys 
orresponding to identities like (root, abra
adabra). Thus,

some of the 
omponents of the identities (on whi
h key extra
tion query is made) may be in I

�

; as

long as all of them are not in I

�

, the adversary 
an obtain the private key. On the other hand, all

the 
omponents of the target identity have to be sensitive keywords, i.e., elements of I

�

. Clearly,

modelM

1

provides an a

eptable se
urity notion for HIBE.
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As mentioned earlier, a major di�eren
e ofM

1

with sID is that in sID the adversary is allowed

to obtain a private key for a permutation of the 
hallenge identity, whereas this is not allowed in

M

1

. We point out that it is possible for a parti
ular HIBE to be se
ure in both sID andM

1

. An

example will be provided later. Thus, one may 
hoose to obtain the good features of both sID and

M

1

.

The modelM

2

is a 
lear generalization of the usual sID model for HIBE. The adversary �xes

the sensitive keywords for ea
h level of the HIBE up to the level it wishes to atta
k. It 
annot make

a key extra
tion query on an identity of depth � , su
h that for 1 � i � � , the ith 
omponent of the

identity is among the pre-spe
i�ed sensitive keywords for the ith level of the HIBE. Further, the

target identity must be su
h that ea
h of its 
omponent is a sensitive keyword for the 
orresponding

HIBE level. As mentioned earlier, by �xing exa
tly one keyword for ea
h level of the HIBE, we

obtain the sID model.

The known proto
ols [4, 18, 12℄ whi
h o�er full model se
urity su�er from se
urity degradation.

On the other hand, proto
ols su
h as [3, 5℄ whi
h are se
ure in the sele
tive-ID model have no

se
urity degradation. Thus, one 
an work with signi�
antly smaller size groups while implementing

the proto
ols in [3, 5℄ 
ompared to the proto
ols in [4, 18, 12℄. The proto
ols that are des
ribed in

this paper have no se
urity degradation. Hen
e, the group sizes used for implementing sele
tive-ID

proto
ols 
an be used for implementing the proto
ols se
ure inM

1

andM

2

.

5 Constru
tions

We present several HIBE proto
ols whi
h are proved to be se
ure in di�erent models. In this se
tion,

we provide only the 
onstru
tions. The se
urity proofs are provided later.

The underlying groups G

1

, G

2

and the pairing map e(; ) will be required by all the HIBE

proto
ols. The set-up pro
edure of ea
h HIBE will generate these groups based on the se
urity

parameter. The maximum depth of a HIBE will be denoted by h. In ea
h of the HIBEs below, we

will have P

1

and P

2

as publi
 parameters whi
h are not dire
tly required. Instead, one may keep

e(P

1

; P

2

) in the publi
 parameter whi
h will save the pairing 
omputation during en
ryption.

The 
omponents of identities are elements of ZZ

p

. Alternatively, if these are bit strings, then

(as is standard) they will be hashed using a 
ollision resistant hash fun
tion into ZZ

p

.

5.1 HIBE H

1

Set-Up: The identity spa
e 
onsists of all tuples (v

1

; : : : ; v

�

), � � h, where ea
h v

i

2 ZZ

p

. The mes-

sage spa
e is G

2

. (In pra
ti
al appli
ations, the proto
ol will be 
onverted into a hybrid en
ryption

s
heme where the message 
an be any binary string.) The 
iphertext 
orresponding to an identity

(v

1

; : : : ; v

�

) is a tuple (A;B;C

1

; : : : ; C

�

), where A 2 G

2

and B;C

1

; : : : ; C

�

2 G

1

.

Randomly 
hoose � 2 ZZ

p

and set P

1

= �P . Randomly 
hoose P

2

, P

3;1

; : : : ; P

3;h

, Q

1

; : : : ; Q

n

from G

1

where n is a parameter. The publi
 parameters are

(P; P

1

; P

2

; P

3;1

; : : : ; P

3;h

; Q

1

; : : : ; Q

n

)

and the master se
ret key is �P

2

.

Notation: For any y 2 ZZ

p

de�ne

V

i

(y) = y

n

Q

n

+ � � �+ yQ

1

+ P

3;i

:

Let (v

1

; : : : ; v

�

) be an identity. We write V

i

for V

i

(v

i

).
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Key Generation: The private key d

v

= (d

0

; d

1

; : : : ; d

�

) 
orresponding to an identity v = (v

1

; : : : ; v

�

)

is de�ned to be

(d

0

; d

1

; : : : ; d

�

) = (�P

2

+ r

1

V

1

+ : : :+ r

�

V

�

; r

1

P; : : : ; r

�

P )

where r

1

; : : : ; r

�

are random elements of ZZ

p

. Key delegation 
an be done in the following man-

ner. Let (d

0

0

; d

0

1

; : : : ; d

0

��1

) be the private key 
orresponding to the identity (v

1

; : : : ; v

��1

). Then

(d

0

; d

1

; : : : ; d

�

) is obtained as follows. Choose a random r

�

from ZZ

p

and de�ne

d

0

= d

0

0

+ r

�

V

�

;

d

i

= d

0

i

for 1 � i � � � 1;

d

�

= r

�

P:

This provides a proper private key 
orresponding to the identity (v

1

; : : : ; v

�

).

En
ryption: Suppose a message M is to be en
rypted under the identity v = (v

1

; : : : ; v

�

). Choose

a random t 2 Z

p

. The 
iphertext is (A;B;C

1

; : : : ; C

�

), where

A =M � e(P

1

; P

2

)

t

; B = tP ; C

i

= tV

i

; for 1 � i � �:

De
ryption: Suppose (A;B;C

1

; : : : ; C

�

) is to be de
rypted using the private key (d

0

; d

1

; : : : ; d

�

)


orresponding to the identity v = (v

1

; : : : ; v

�

). Compute

A�

Q

�

i=1

e(d

i

; C

i

)

e(d

0

; B)

=M � e(P

1

; P

2

)

t

Q

�

i=1

e(r

i

P; tV

i

)

e(�P

2

+

P

�

i=1

r

i

V

i

; tP )

=M � e(P

1

; P

2

)

t

�

1

e(P

1

; P

2

)

t

�

Q

�

i=1

e(r

i

P; tV

i

)

e(

P

�

i=1

r

i

V

i

; tP )

=M:

Unbounded Depth HIBE: It is possible to modifyH

1

to obtain a HIBE whi
h is se
ure in model

M

1

and whi
h supports key delegation over any number of levels. The required modi�
ations are

as follows.

{ The publi
 parameters are (P; P

1

; P

2

; P

3

; Q

1

; : : : ; Q

n

).

{ V (y) = y

n

Q

n

+ � � �+ yQ

1

+ P

3

and V

i

= V (v

i

) as in the 
ase of H

1

.

With the above two 
hanges, the rest of key generation, en
ryption and de
ryption are as in H

1

.

More spe
i�
ally, let us look at key generation. The private key d

v


orresponding to v =

(v

1

; : : : ; v

�

) is de�ned to be

(xP

2

+ r

1

V

1

+ : : :+ r

�

V

�

; r

1

P; : : : ; r

�

P ) = (d

0

; d

1

; : : : ; d

�

)

where r

1

; : : : ; r

�

are random elements of Z

p

.

Sin
e the maximum number of levels is not �xed in the set-up phase, the HIBE supports

unbounded key delegation. This HIBE 
an be proved to be se
ure in modelM

1

. However, it is not

se
ure in the sID-model, the reason being the following. Note that the �rst 
omponent d

0

of the

se
ret key does not depend upon the ordering of the 
omponents of v. Hen
e, for any permutation of

the 
omponents of v, the �rst 
omponent remains the same and thus, one 
an obtain a valid private

key for any permutation of the 
omponents of v. In the sID model, the adversary 
an 
ommit to
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an ID v

�

and then ask the key extra
tion ora
le for a private key of v

0

whi
h is a permutation of

v

�

. Using the obtained private key of v

0

, the adversary 
an easily obtain a private key for v

�

and

hen
e de
rypt the 
hallenge 
iphertext. This shows inse
urity in the sID model. Sin
e, sID model

is an a

epted notion of se
urity, inse
urity in this model makes the unbouded depth HIBE less

interesting and hen
e we will not 
onsider this HIBE any further in this paper.

5.2 HIBE H

2

The des
ription of H

2

is similar to that of H

1

. The di�eren
es are in the spe
i�
ation of the publi


parameters and the de�nition of the V

i

's.

1. Let (n

1

; : : : ; n

h

) be a tuple of positive integers.

2. The new publi
 parameters are (P; P

1

; P

2

;

�!

P

3

;

�!

Q

1

; : : : ;

�!

Q

h

) where

�!

P

3

= (P

3;1

; : : : ; P

3;h

) and

�!

Q

i

= (Q

i;1

; : : : ; Q

i;n

i

). The master se
ret is �P

2

.

3. De�ne

V

i

(y) = y

n

i

Q

i;n

i

+ y

n

i

�1

Q

i;n

i

�1

+ : : : + yQ

i;1

+ P

3;i

:

As before V

i

is used to denote V

i

(v

i

).

With these di�eren
es, the rest of set-up, key generation, en
ryption and de
ryption algorithms

remain the same.

Note: The HIBE H

1

has the parameters h and n and we will write (h; n)-H

1

to denote this

expli
it parametrization. The HIBE H

2

is parametrized by the tuple (n

1

; : : : ; n

h

) and we will write

(h; n

1

; : : : ; n

h

)-H

2

to denote this parametrization.

6 Se
urity Redu
tion

In this se
tion, we show se
urity redu
tions for the HIBE proto
ols.

Re
all that the se
urity modelsM

1

andM

2

are parametrized as (h; n)-M

1

and (h; n

1

; : : : ; n

h

)-

M

2

. The advantage of an adversary in the se
urity game is denoted by Adv. A subs
ript to this

will denote the model and a supers
ript will denote the HIBE for whi
h the result is being stated.

For example, Adv

(h;n)-H

1

(h;n)-M

1

(t; q) denotes the maximum advantage of any adversary running in time

t and making q queries to O

k

in winning the se
urity game de�ned by (h; n)-M

1

for the HIBE

(h; n)-H

1

. We will assume that one s
alar multipli
ation in G

1


an be done in time O(�).

6.1 Se
urity Redu
tion for H

1

Theorem 1. Let h; n; q be positive integers and n

0

be another positive integer with n

0

� n. Then

Adv

(h;n)-H

1

(h;n

0

)-M

1

(t; q) � Adv

DBDH

(t+O(�nq)):

Proof: The se
urity redu
tion is to show that if there is an adversary whi
h 
an break H

1

then

one obtains an algorithm to solve DBDH. The heart of su
h an algorithm is a simulator whi
h is


onstru
ted as follows. Given an instan
e of DBDH as input, the simulator plays the se
urity game

(h; n

0

)-M

1

with an adversary for (h; n)-H

1

. The adversary exe
utes the 
ommitment stage; then the

simulator sets up the HIBE based on the adversary's 
ommitment as well as the DBDH instan
e.
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The simulator gives the publi
 parameters to the adversary and 
ontinues the game by answering all

queries made by the adversary. In the pro
ess, it randomly 
hooses a bit 
 and en
rypts M




using

the DBDH instan
e provided as input. Finally, the adversary outputs 


0

. Based on the value of 


and 


0

, the simulator de
ides whether the instan
e it re
eived is real or random. Intuitively, if the

adversary has an advantage in breaking the HIBE proto
ol, the simulator also has an advantage in

distinguishing between real and random instan
es. This leads to an upper bound on the advantage

of the adversary in terms of the advantage of the simulator in solving DBDH.

We want to prove (h; n)-H

1

se
ure in model (h; n

0

)-M

1

, where 1 � n

0

� n. This means that

the publi
 parameters of the HIBE depend on n, while the adversary 
ommits to a set I

�

of size

n

0

in the 
ommit phase.

DBDH Instan
e: The simulator re
eives an instan
e (P; P

1

= aP; P

2

= bP;Q = 
P; Z) of DBDH.

The simulator now starts the se
urity game for model M

1

. This 
onsists of several stages

whi
h we des
ribe below. We will 
onsider se
urity against 
hosen plaintext atta
ks and hen
e the

adversary will only have a

ess to the key extra
tion ora
le O

k

.

Adversary's Commitment: The adversary 
ommits to a set I

�

of size n

0

. The elements of I

�

are

from ZZ

p

. We write I

�

= fv

�

1

; : : : ; v

�

n

0

g:

Set-Up: De�ne a polynomial F (x) in ZZ

p

[x℄ as follows.

F (x) = (x� v

�

1

) � � � (x� v

�

n

0

) (1)

= x

n

0

+ a

n

0

�1

x

n

0

�1

+ � � �+ a

1

x+ a

0

(2)

where the 
oeÆ
ients a

i

's are in ZZ

p

and are obtained from the values fv

�

1

; : : : ; v

�

n

0

g. Sin
e F (x) is

a polynomial of degree n

0

over ZZ

p

and v

�

1

; : : : ; v

�

n

0

are its n distin
t roots, we have F (y) 6= 0 for any

y 2 ZZ

p

n fv

�

1

; : : : ; v

�

n

0

g. The 
oeÆ
ients of F (x) depend on the adversary's input and one 
annot

assume any distribution on these values. De�ne a

n

0

= 1 and a

n

= a

n�1

= � � � = a

n

0

+1

= 0.

For 1 � i � h, de�ne another set of polynomials J

i

(x) ea
h of degree n in the following manner.

Randomly 
hoose b

0;1

; : : : ; b

0;h

; b

1

; : : : ; b

n

from ZZ

p

. De�ne

J

i

(x) = b

n

x

n

+ b

n�1

x

n�1

+ � � �+ b

1

x+ b

0;i

(3)

The publi
 parameters P

3;i

s and Q

j

s are de�ned in the following manner.

{ For 1 � i � h, de�ne P

3;i

= a

0

P

2

+ b

0;i

P .

{ For 1 � j � n, de�ne Q

j

= a

j

P

2

+ b

j

P .

Sin
e b

0;1

; : : : ; b

0;h

; b

1

; : : : ; b

n

are 
hosen randomly from ZZ

p

, the P

3;i

s and the Q

j

s are random

elements of G

1

. The publi
 parameters are given to the adversary. The master se
ret is aP

2

, whi
h

is not known to the simulator.

Now 
omes the most 
ru
ial part of the proof. For y 2 ZZ

p

,

V

i

(y) = P

3;i

+ yQ

1

+ y

2

Q

2

+ � � �+ y

n

Q

n

= a

0

P

2

+ b

0;i

P + y(a

1

P

2

+ b

1

P ) + y

2

(a

2

P

2

+ b

2

P ) + � � �+ y

n

(a

n

P

2

+ b

n

P )

= (a

0

+ a

1

y + a

2

y

2

+ � � � + a

n

y

n

)P

2

+ (b

0;i

+ b

1

y + b

2

y

2

+ � � � + b

n

y

n

)P

= F (y)P

2

+ J

i

(y)P:

9

>

>

>

=

>

>

>

;

(4)
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This de
omposes V

i

(y) into two parts { one depends on P

2

and the other depends on P . The part

whi
h depends on P

2

vanishes if and only if y is equal to some element of I

�

. The ability of the

simulator to properly answer key extra
tion queries and generate a proper 
hallenge 
iphertext

depends 
ru
ially on this fa
t.

Phase 1: In this stage, the adversary 
an make queries to O

k

, all of whi
h have to be answered by

the simulator. Suppose the adversary queries O

k

on an identity v = (v

1

; : : : ; v

�

), with 1 � � � h.

By the 
onstraint of modelM

1

all the v

i

's 
annot be in I

�

. Suppose { is su
h that v

{

is not in I

�

.

Then F (v

{

) 6� 0 mod p.

As in the proto
ol, de�ne V

i

to be V

i

(v

i

). Choose r

1

; : : :, r

{�1

, r

0

{

, r

{+1

; : : :, r

�

randomly from

ZZ

p

. De�ne W =

P

�

i=1;i 6={

r

i

V

i

. The �rst 
omponent d

0

of the se
ret key for v = (v

1

; : : : ; v

�

) is


omputed in the following manner.

d

0

= �

J

{

(v

{

)

F (v

{

)

P

1

+ r

0

{

(F (v

{

)P

2

+ J

{

(v

{

)P ) +W:

The following 
omputation shows that d

0

is properly formed.

d

0

= �aP

2

�

J

{

(v

{

)

F (v

{

)

P

1

+ r

0

{

(F (v

{

)P

2

+ J

{

(v

{

)P ) +W

= aP

2

+

�

r

0

{

�

a

F (v

{

)

�

(F (v

{

)P

2

+ J

{

(v

{

)P ) +W

= aP

2

+

�

X

i=1

r

i

V

i

where r

{

= r

0

{

� a=F (v

{

). Sin
e r

0

{

is random, so is r

{

. The quantities d

1

; : : : ; d

�

are 
omputed in the

following manner.

d

i

= r

i

P 1 � i � �; i 6= {;

= r

0

{

P �

1

F (v

{

)

P

1

= r

{

P for i = {:

This te
hnique is based on the algebrai
 te
hniques introdu
ed by Boneh and Boyen [3℄. The

generalization is in the de�nition of F () and J

i

()s. Here we take these to be polynomials, whi
h

allows us to ta
kle the 
ase of adversary 
ommitting to more than one identity.

Challenge Generation: The adversary submits messages M

0

;M

1

and an identity v = (v

1

; : : : ; v

�

)

with 1 � � � h. By the rules of modelM

1

, ea
h v

i

2 I

�

and so F (v

i

) � 0 mod p for 1 � i � � .

Consequently,

V

i

= V

i

(v

i

) = F (v

i

)P

2

+ J

i

(v

i

)P = J

i

(v

i

)P

and hen
e


V

i

= 
J

i

(v

i

)P = J

i

(v

i

)(
P ) = J

i

(v

i

)Q

where Q = 
P was supplied as part of the DBDH instan
e. Note that it is possible to 
ompute

W

i

= 
V

i

even without knowing 
. The simulator now randomly 
hooses a bit 
 and returns

(M




� Z;Q;W

1

; : : : ;W

�

)

to the adversary. If Z is real, then this is a proper en
ryption of M




under the identity v.
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Phase 2: The key extra
tion queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess 


0

. The simulator outputs 1 if 
 = 


0

, else it outputs 0.

If Z = e(P; P )

ab


, then the simulator provides a perfe
t simulation of the (h; n

0

)-M

1

game. On

the other hand, if Z is random, the adversary re
eives no information about the message M




from

the 
hallenge 
iphertext.

The above shows that an adversary's ability to atta
k (h; n)-H

1

HIBE in model (h; n

0

)-M

1


an

be 
onverted into an algorithm for solving DBDH. The bound on the advantage follows from this

fa
t. ut

Theorem 1 shows that an (h; n)-H

1

HIBE is CPA-se
ure in model (h; n

0

)-M

1

for n

0

� n. The

next result shows that (h; n)-H

1

is also se
ure in the h-sID model.

Theorem 2. Let h; n; q be positive integers. Then

Adv

(h;n)-H

1

h-sID

(t; q) �

q

p

+ Adv

DBDH

(t+O(�nq)):

Proof: The proof is similar to the proof of Theorem 1. In the h-sID model, the adversary 
ommits

to an identity (v

�

1

; : : : ; v

�

�

) where 1 � � � h and v

i

2 ZZ

p

. Randomly 
hoose v

�

�+1

; : : : ; v

�

h

from ZZ

p

.

Randomly 
hoose b

1

; : : : ; b

n

; b

0;1

; : : : ; b

0;h

from ZZ

p

. For 1 � i � h, de�ne

F

i

(x) = x� v

�

i

;

J

i

(x) = b

n

x

n

+ b

n�1

x

n�1

+ � � � + b

1

x+ b

0;i

:

The proto
ol is set-up in the following manner. For 2 � j � n, de�ne Q

j

= b

j

P , Q

1

= P

2

+ b

1

P

and for 1 � i � h, de�ne P

3;i

= �v

�

i

P

2

+ b

0;i

P . This de�nes all the publi
 parameters.

For 1 � i � h, we have

V

i

(y) = P

3;i

+ yQ

1

+ y

2

Q

2

+ � � �+ y

n

Q

n

= (�v

�

i

P

2

+ b

0;i

P ) + y(P

2

+ b

1

P ) + y

2

b

2

P + � � �+ y

n

b

n

P

= (y � v

�

i

)P

2

+ (b

0;i

+ b

1

y + � � �+ b

n

y

n

)P

= F

i

(y)P

2

+ J

i

(y)P

The rest of the simulation is similar to the proof of Theorem 1 with one di�eren
e. If the adversary

ever submits a key extra
tion query of the form (v

1

; : : : ; v

j

), with j > � and v

i

= v

�

i

for 1 � i � j,

then the simulator aborts and outputs a random bit. Note that sin
e the length of the identity is

longer than the 
ommitted identity, the adversary is allowed to make su
h queries. The probability

that v

i

= v

�

i

for � < i � j is 1=p

j��

� 1=p. Sin
e this 
an be repeated for ea
h of the q key

extra
tion queries, we have the additive degradation by the fa
tor q=p. ut

6.2 Se
urity Redu
tion for H

2

Theorem 3. Let h; n

1

; : : : ; n

h

; q be positive integers and n

0

1

; : : : ; n

0

h

be another set of positive inte-

gers with n

0

i

� n

i

for 1 � i � h. Then

Adv

(h;n

1

;:::;n

h

)-H

2

(h;n

0

1

;:::;n

0

h

)-M

2

(t; q) � Adv

DBDH

(t+O(�nq))

where n =

P

h

i=1

n

i

.
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Proof: The proof is similar to the proof of Theorem 1. The di�eren
e is in the de�nition of F (x)

and J

i

(x). In this 
ase, for 1 � i � h, we require F

i

(x). After the appropriate de�nition of F

i

(x) and

J

i

(x), we show that V

i

(y) 
an be written as V

i

(y) = F

i

(y)P

2

+ J

i

(y)P . As mentioned in the proof

of Theorem 1, the simulator's ability for answering key extra
tion queries and 
hallenge generation

depends upon this de
omposition. The a
tual pro
edure for key extra
tion and 
hallenge generation

is very similar to that in the proof of Theorem 1 and these details are not provided. Thus, we provide

the details of only two stages of the game { adversary's 
ommitment and set-up.

The simulator is given an instan
e (P; P

1

= aP; P

2

= bP;Q = 
P; Z) of DBDH.

Adversary's Commitment: Following model (h; n

0

1

; : : : ; n

0

h

)-M

2

, the adversary 
ommits to sets

I

�

1

; : : : ;I

�

�

, where jI

�

i

j = n

0

i

and 1 � � � h.

Set-Up: The simulator de�nes polynomials F

1

(x); : : : ; F

h

(x), and J

1

(x); : : :, J

h

(x) in the following

manner. For 1 � i � � , de�ne

F

i

(x) =

Y

v2I

i

(x� v)

= x

n

0

i

+ a

i;n

0

i

�1

x

n

0

i

�1

+ � � �+ a

i;1

x+ a

i;0

;

For �+1 � i � h 
hoose a random non-zero element a

i;0

from ZZ

p

and de�ne F

i

(x) = a

i;0

. Note that

F

i

(x) is a non-zero 
onstant polynomial. For 1 � i � � , de�ne a

i;n

0

i

= 1 and a

i;n

i

= � � � = a

i;n

0

i

+1

= 0;

for � + 1 � i � h, set n

0

i

= 0 and a

i;1

= � � � = a

i;n

i

= 0.

For 1 � i � h and 1 � j � n

i


hoose random elements b

i;j

from ZZ

p

. De�ne

J

i

(x) = b

i;n

i

x

n

i

+ b

i;n

i

�1

x

n

i

�1

+ � � �+ b

i;1

x+ b

i;0

:

Note that F

i

(x) is of degree n

0

i

while J

i

(x) is of degree n

i

.

The publi
 parameters are de�ned as follows.

{ For 1 � i � h, de�ne P

3;i

= a

i;0

P

2

+ b

i;0

P .

{ For 1 � i � h and 1 � j � n

i

de�ne Q

i;j

= a

i;j

P

2

+ b

i;j

P .

Sin
e the b

i;j

s are 
hosen randomly, the distribution of the publi
 parameters is random. We now

show the de
omposition of V

i

(y).

V

i

(y) = P

3;i

+ yQ

i;1

+ y

2

Q

i;2

+ � � �+ y

n

i

Q

i;n

i

= (a

i;0

P

2

+ b

i;0

P ) + y(a

i;1

P

2

+ b

i;1

P ) + y

2

(a

i;2

P

2

+ b

i;2

P ) + � � � + y

n

i

(a

i;n

i

P

2

+ b

i;n

i

P )

= (a

i;0

+ a

i;1

y + a

i;2

y

2

+ � � �+ a

i;n

i

y

n

i

)P

2

+ (b

i;0

+ b

i;1

y + b

i;2

y

2

+ � � �+ b

i;n

i

y

n

i

)P

= F

i

(y)P

2

+ J

i

(y)P:

9

>

>

>

=

>

>

>

;

(5)

The rest of the simulation is very similar to that in the proof of Theorem 1. Also, the bound on

the advantage follows as in the above mentioned proof. ut

The proof shows that (h; n

1

; : : : ; n

h

)-H

2

is se
ure in model (h; n

0

1

; : : : ; n

0

h

)-M

2

with n

0

i

� n

i

.

Re
all that (h; 1; : : : ; 1)-M

2

is same as the h-sID model and hen
e (h; n

1

; : : : ; n

h

)-H

2

is se
ure in

the h-sID model.
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7 Multi-Re
eiver IBE

A multi-re
eiver IBE (MR-IBE) is an extension of the IBE, whi
h allows a sender to en
rypt a

message in su
h a way that it 
an be de
rypted by any one of a parti
ular set of identities. In

other words, there is one en
ryptor but more than one valid re
eivers. In IBE, the number of valid

re
eivers is one. One trivial way to realize an MR-IBE from an IBE is to en
rypt the same message

several times. A non-trivial 
onstru
tion attempts to redu
e the 
ost of en
ryption.

This notion was introdu
ed in [1℄ and a non-trivial 
onstru
tion based on the Boneh-Franklin

IBE (BF-IBE) was provided. The 
onstru
tion was proved to be se
ure in the sele
tive-ID model

under the random ora
le assumption. Note that the BF-IBE is se
ure in the full model under the

random ora
le assumption.

We show that H

1

restri
ted to IBE 
an be modi�ed to obtain an MR-IBE. The situation for

H

1

is almost identi
al. The required modi�
ations to the proto
ol are as follows.

1. The en
ryption is 
onverted into a hybrid s
heme. Instead of multiplying the message with the

\mask" Z = e(P

1

; P

2

)

t

, the value Z is provided as input to a pseudorandom generator and the

message (
onsidered to be a bit string) is XORed with the resulting keystream.

2. The private key 
orresponding to an identity v is d

v

= (xP

2

+ rV

v

; rP ), where V

v

= P

3;1

+ V (v)

as de�ned in in Se
tion 5.1.

3. Suppose the intended set of re
eivers is fv

1

; : : : ; v

�

g. Then the 
iphertext 
onsists of the en
ryp-

tion of the message as mentioned above plus a header of the form (tP; tV

1

; : : : ; tV

�

), where V

i

is

as de�ned in the 
onstru
tion of H

1

in Se
tion 5.1 and t is a random element of Z

p

.

4. The re
eiver possessing the se
ret key d

v

i

(1 � i � �) 
an 
ompute e(P

1

; P

2

)

t

in the standard

manner and hen
e obtain the input to the pseudorandom generator. Thus it 
an de
rypt the

message.

The MR-IBE des
ribed above 
an be proved to be se
ure in the sele
tive-ID model without the

random ora
le assumption. The se
urity model for MR-IBE is the following. In the 
ommitment

stage, the adversary 
ommits to a set of identities; does not ask for the private key of these identities

in the key extra
tion queries and �nally asks for the en
ryption under this set of identities. Note

that this is very similar to the modelM

1

restri
ted to IBE. The only di�eren
e is that during the

generation of the 
hallenge 
iphertext, inM

1

, the adversary supplies only one identity out of the

set of identities it had previously 
ommitted to, whereas in the model for MR-IBE, the adversary

asks for the en
ryption under the whole set of these identities.

This di�eren
e is easily ta
kled in our proof in Se
tion 6.1 whi
h shows that H

1

is se
ure in

modelM

1

. Re
all that the 
onstru
tion of the polynomial F (x) is su
h that F (v) = 0 for all v 2 I

�

,

where I

�

is the set of 
ommitted identities. In the 
hallenge stage of the se
urity proof for H

1

as

an IBE, we use this fa
t for only one identity (the identity given by the adversary). In the proof

for MR-IBE, we will need to generate 
V

i

for all v 2 I

�

. Sin
e F (v) = 0 for any su
h v, this 
an be

done in the standard fashion.

The above argument does not provide any se
urity degradation. Hen
e, we obtain an MR-IBE

whi
h 
an be proved to be se
ure in the sele
tive-ID model without the random ora
le assumption.

8 Con
lusion

In this paper, we have generalized the notion of sele
tive-ID se
ure HIBE. Two new se
urity models

M

1

andM

2

have been introdu
ed. In the se
urity game, both these models allow an adversary to
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ommit to a set of identities (as opposed to a single identity in the sID model) before the set-up.

During the 
hallenge stage, the adversary 
an 
hoose any one of the previously 
ommitted identities

as a 
hallenge identity. We provide two HIBE 
onstru
tions H

1

and H

2

whi
h are se
ure in the

modelsM

1

andM

2

respe
tively. The publi
 parameter size is smaller in 
ase of H

1

. Further, we

also show that H

1

and H

2


an be modi�ed to obtain an MR-IBE proto
ol whi
h is se
ure in the

sID model without random ora
les. The only previous 
onstru
tion of MR-IBE is se
ure in the sID

model under the random ora
le assumption.
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