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Abstra
t

Ellipti
 (ECC) and hyperellipti
 
urve 
ryptosystems (HECC) have emerged as 
ryptosystems of


hoi
e for small handheld and mobile devi
es. A lot of resear
h has been devoted to the se
ure and

eÆ
ient implementation on these devi
es. As su
h devi
es 
ome with a very low amount of resour
es,

eÆ
ient memory management is an important issue in all su
h implementations. HECC arithmeti


is now generally performed using so 
alled expli
it formulae. In literature, there is no result whi
h

fo
uses on the exa
t memory requirement for implementing these formulae. This is the �rst work to

report su
h minimal memory requirement. Also, in the work we have provided a general methodology

for realization of expli
it formulae with minimal number of registers. Applying su
h methodology

this work settles the issue for some important expli
it formulae available in the literature. This is

an attempt to experimentally solve a parti
ular instan
e based on HECC expli
it formulae of the so


alled \Register SuÆ
ien
y Problem", whi
h is an NP-
omplete problem.
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1 Introdu
tion

For about one and half a de
ade, ellipti
 and hyperellipti
 
urve 
ryptosystems have o

upied the


enterstage of publi
 key 
ryptographi
 resear
h. The main reason behind it is their versatility. These

are the most ideal 
ryptosystems to be implemented on small mobile devi
es with low 
omputing power.

There is no known subexponential algorithm to solve ellipti
 or hyperellipti
 
urve dis
rete logarithm

problem for 
arefully 
hosen 
urves. This ensures a high level of se
urity for smaller key length and

makes these 
ryptosystems suitable for su
h small devi
es.

In these 
ryptosystems, the most dominant operation is the 
omputation of so 
alled s
alar multi-

pli
ation. Unless otherwise stated, in the 
urrent work, by a point we will generally mean a point on an

ellipti
 
urve or a point on the Ja
obian of a hyperellipti
 
urve. Note that the points on the Ja
obian

are represented by divisor 
lasses of degree zero. Let P be a point and let m be a positive integer. The

operation of 
omputing mP is 
alled the s
alar multipli
ation. It is generally 
omputed by a series of

point doublings and additions. A lot of e�ort has been put by the resear
hers to 
ompute the s
alar

multipli
ation eÆ
iently and se
urely.
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The eÆ
ien
y of s
alar multipli
ation is intimately 
onne
ted to the eÆ
ien
y of point addition and

doubling algorithms. The eÆ
ien
y of these algorithms, on the other hand, depends upon the point

representation. In aÆne 
oordinates, both these operations involve inversion of �eld elements whi
h is


onsidered a very 
ostly operation. To avoid inversions, various other 
oordinate systems like proje
tive,

Ja
obian, modi�ed Ja
obian, Lopez-Dahab 
oordinate systems have been proposed for ellipti
 
urves.

For hyperellipti
 
urves, Koblitz in his pioneering work [11℄, had proposed Cantor's algorithm to be

used for divisor addition and doubling. Later, it was felt that the 
omputation 
an be speeded up by

�xing the genus of the 
urves and 
omputing the parameters of the resultant divisor expli
itly. Su
h an

algorithm is 
alled an expli
it formula. Many proposals of expli
it formula have 
ome up in literature

and the ones proposed by Lange in [13, 14, 15℄ are the 
urrently known most eÆ
ient ones for general


urves of genus 2.

ECC and HECC are 
onsidered to be the ideal 
ryptosystem for mobile devi
es. Mobile devi
es are

generally equipped with very little 
omputing power. Before trying to implement a 
ryptosystem on

these devi
es one has to be sure that the resour
es, parti
ularly memory, available on these devi
es are

suÆ
ient for the implementation. For ECC, the formulae are smaller involving 7 to 15 multipli
ations

and squarings in the underlying �eld in non-aÆne arithmeti
. So it is simple to 
al
ulate the numbers

of registers required to store the inputs, outputs and intermediate variables. In many works reported

in literature on ECC, the authors have provided the number of registers required for the 
omputation.

These �gures are obtained by 
he
king manually. However, to our knowledge, there is no result stating

that a parti
ular ECC algorithm 
annot be implemented in less than a 
ertain amount of memory.

There has been no study of exa
t memory requirement for an implementation of HECC. In [2℄ the

authors have brie
y tou
hed the topi
. Besides that there has been no mention of memory requirement

in any work on HECC so far. The point addition and doubling algorithm for ECC 
an be found in many

papers as a sequen
e of three address 
odes, like, R

i

= R

j

op R

k

, where R

i

; R

j

; R

k

are register names or


onstants and op is an arithmeti
 operation. In the 
urrent work we will refer to this format as Expli
it

Register Spe
i�ed Format (ERSF). Looking at a formula in ERSF, one 
an know exa
tly how many

registers will be required for its implementation. Unfortunately, no HECC expli
it formulae o

uring

in the literature has been des
ribed in ERSF. All are des
ribed as a set of mathemati
al equations. We

will refer to this format of representing a formula as raw format.

Probably, the reason behind all HECC formulae appearing in raw format only is the fa
t that HECC

formulae are relatively 
omplex ones 
ompared to those of ECC. An HECC (genus 2) formula involves

around 25 to 50 multipli
ation with or without an inversion. The �rst step for expressing su
h a formulae

in ERSF is to know how many registers will be required. For a long formula it is diÆ
ult to manually

�nd out how many registers will suÆ
e. It is nearly impossible to say what is the minimal requirement.

In fa
t, �nding the minimum number of intermediate variables required for the exe
ution of a formula

is an NP-
omplete problem. This is 
alled Register SuÆ
ien
y Problem and has been studied earlier in a

very general framework. However, the results obtained earlier do not apply straight away in the s
enario

we are in nowand, furthermore, we are dealing with 
learly des
ribrd algorithms.Hen
e a brute for
e

approa
h is possible but is too time 
onsuming. In the 
urrent work, we try to provide an experimental

solution to this parti
ular instan
e of the problem. We believe that our methodology 
an be applied to

many similar situations.

The question is: Given an expli
it formula what is the minimum number of registers required to


ompute it sequentially or in parallel? In the 
urrent work, we provide a methodology (in Se
tion 4) to

address this issue. We used this methodology to 
ompute the minimum memory requirement for some

of the well known and widely used formulae. For ellipti
 
urves, we 
he
ked for the general addition

formula in Ja
obian 
oordinates, whi
h is mostly used in implementations and found that it 
an not

be exe
uted with less than 7 registers. It is known that the ellipti
 
urve addition 
an be done in 7

registers. Our �nding ensures that it 
an not be done in less.

2



We have used our methodology to �nd the minimum register requirement for many formulae in

HECC. The formulae proposed by Pelzl et al [20℄ for a spe
ial 
lass of 
urves are very eÆ
ient ones.

Their doubling formulae uses 10 registers and the addition uses 15. Similar formulae are proposed by

Lange in [13℄. These set of formulae use 11 and 15 registers for doubling and addition respetively. The

doubling formula in [13℄ requires 6 
urve 
onstants to be stored. Thus, (baring the storage required

for 
urve 
onstants) for 
omputing the s
alar multipli
ation both set of formulae require 15 registers.

Thus, although the formulae proposed in [20℄ are 
heaper in number of operations, they use the same

amount of memory as the ones in [13℄. More re
ently Lange and Stevens [17℄ have 
ome out with more

eÆ
ient doubling formulae for all isomorphism 
lasses of 
urves over binary �elds. These formulae not

only require very few �eld operations per group operation but also are very memory eÆ
ient. All our

�ndings have been des
ribed in Se
tion 6.

The remainder of the paper is organised as follows. In Se
tion 2, we brie
y des
ribe the ba
kground

of the work. In Se
tion 3, we brie
y des
ribe the theoreti
al status of the register suÆ
ien
y problem.

In Se
tion 4, we des
ribe our methodology. In Se
tion 6, we provide the results we found. Se
tion 7


on
ludes the paper. The detailed des
ription of the formulae we 
onsider are stated in ERSF in the

appendi
es.

2 Ba
kground

Hyperellipti
 
urve 
ryptosystems were proposed by Koblitz [11℄ in 1987. In this se
tion we provide a

brief overview of hyperellipti
 
urves. For details, readers 
an refer to [18℄. Let K be a �eld and let

K be the algebrai
 
losure of K. A hyperellipti
 
urve C of genus g over K is an equation of the form

C : y

2

+ h(x)y = f(x) where h(x) in K[x℄ is a polynomial of degree at most g; f(x) in K[x℄ is a moni


polynomial of degree 2g + 1, and there are no singular points (x; y) in K �K.

Ellipti
 
urves are hyperellipti
 
urves of genus 1.

The ellipti
 
urve group law does not apply to hyperellipti
 
urves. The groups used in hyperellipti



urve 
ryptosystems are the divisor 
lass group, ea
h group element represented by a spe
ial kind of

divisor 
alled redu
ed divisor. The beauty of the hyperellipti
 
urves is that the group of divisor 
lasses

is isomorphi
 to the group of ideal 
lasses. That leads to a ni
e 
annoni
al representation for ea
h group

element. Ea
h group element 
an be represented by a pair of polynomials of small degree, (u(x); v(x)),

where deg(v) < deg(u) � g and u divides v

2

� hv + f . Koblitz in his pioneering work suggested to

perform the group operation using Cantor's algorithm [3℄.

Cantor's algorithm for divisor 
lass addition and doubling were quite 
omplex for an eÆ
ient imple-

mentation. Later it was realised that the eÆ
ien
y of group law algorithms 
an be enhan
ed by �xing

the genus of the 
urve and 
omputing the 
oeÆ
ients of the polynomials representing the resultant

divisor dire
tly from those of the input divisor(s). Thus the group law algrithms be
ome a sequen
e of

�eld operation. Su
h an algorithm is 
alled an expli
it formula. Spallek [22℄ made the �rst attempt to


ompute divisor addition by expli
it formula for genus 2 
urves over �elds of odd 
hara
teristi
. Gaudry

and Harley [7℄ observed that one 
an derive di�erent expli
it formula for divisor operations depending

upon the weight of the divisors. Harley [8℄ improved the running time of the algorithm in [22℄ by distin-

guishing between the di�erent weights of the input divisors and between addition and doubling. Later

many resear
hers 
ame out with various expli
it formula for various genera of hyperellipti
 
urves. An

overview of most proposals 
an be found e. g. in [19℄.

In the 
urrent work we 
on
entrate on 
urves of genus 2. For most general 
urves of genus 2, the

expli
it formulae proposed by Lange are the 
urrently known most eÆ
ient ones. In [13℄, Lange's

addition (HCADD) and doubling (HCDBL) involve inversion. Taking the lead from the di�erent pro-

je
tive 
oordinates in ECC, Lange in [14℄, [15℄ has proposed expli
it formulae in various 
oordinate
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Table 1: Complexity of Expli
it Formulae

Name/Proposed in Chara
teristi
 Cost(HCADD) Cost(HCDBL) Cost (mHCADD)

Lange [13℄ All 1[i℄ + 22[m℄ + 3[s℄ 1[i℄ + 22[m℄ + 5[s℄ -

Lange [15℄ Odd 47[m℄ + 7[s℄ 34[m℄ + 7[s℄ 36[m℄ + 5[s℄

Lange [15℄ Even h

2

6= 0 46[m℄ + 4[s℄ 35[m℄ + 6[s℄ 35[m℄ + 6[s℄

Lange [15℄ Even h

2

= 0 44[m℄ + 6[s℄ 29[m℄ + 6[s℄ 34[m℄ + 6[s℄

Pelzl et al [20℄ Even 1[i℄ + 9[m℄ + 6[s℄ 1[i℄ + 21[m℄ + 3[s℄ -

Lange et al [17℄ Even 1[i℄ + 5[m℄ + 6[s℄ - -

systems. In [14℄ she has proposed formulae in \proje
tive" 
oordinates. Introdu
ing a new variable, a

�eld element in the stru
ture of a divisor the inversion 
an be avoided in HCADD and HCDBL as in

ECC. Again taking the lead from Chudonovski Ja
obian 
oordinates in ECC, Lange has proposed her

\new 
oordinates" in [15℄, a representation using weighted 
oordinates. This lead to faster HCADD and

espe
ially HCDBL. The latest version all these formulae with an extensive 
omparison of 
oordinate

systems is available in [16℄. In the 
urrent work we use formulae presented in [13, 15℄.

More re
ently, Pelzl et al. [20℄ and Lange and Stevens [17℄ have proposed divisor addition and

doubling algorithms for spe
ial 
lasses of 
urves, in whi
h doublings are mu
h 
heaper. In Table 1, we

provide the 
omplexity of various formulae we investigated in the 
urrent work.

3 Theoreti
al Status of the Register SuÆ
ien
y Problem

The problem of minimizing the number of intermediate variables required for exe
uting a set of arith-

meti
 formulae has been studied earlier. The problem is 
alled the register suÆ
ien
y problem and the

de
ision version is known to be NP-
omplete [21℄. See [6, page 272℄ for further details.

The minimization version has also been studied in the literature. A

ording to the 
ompendium of

NP-optimization problems [4℄, there is an O(log

2

n) (where n is the number of operations) approximation

algorithm for this problem [10℄. This result is obtained in [10℄ using general results on 
ow problems

and does not lead to a pra
ti
al algorithm to solve the problem. Another issue is that one does not

obtain any idea about the 
onstant in the O(log

2

n) expression. Moreover, for the 
ases in whi
h we

are interested n is at most around 200. For su
h n, a performan
e guarantee of O(log

2

n) is not really

useful.

In fa
t, in our implementation, in many 
ases we are able to obtain the minimum number of registers

and in other 
ases we are able to show that the minimum is at most one or two less than the result we

obtain. Thus, on the one hand, the theoreti
al status of the problem is not really useful for obtaining

a pra
ti
al algorithm and on the other hand, for the 
on
rete situations in whi
h we are interested, we

obtain better performan
e guarantee than the known theoreti
al bound.

4 Our Methodology

Our primary aim in this work is to answer the question:

Problem: Given an expli
it formula F , what is the minimum number of intermediate variables required

to be stored to exe
ute F?

Let F be an expli
it formula. Let p

1

; : : : ; p

k

be the inputs to F . We 
an look at F as a sequen
e

of arithmeti
 operations, ea
h having a unique id, like; Id

i

: p

i

= q

i

op

i

r

i

; k � i � n, where op

i

is
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one of the binary operations f+;�; �; =g and q

i

; r

i

are among the p

j

's j < i. In fa
t, expli
it formula

in literature generally o

ur in raw format. We 
an 
onvert them into this form by a simple parser

program.

We will 
all a sequen
e S = fId

i

1

; Id

i

2

; : : : ; Id

i

n�k+1

g or simply S = fi

1

; i

2

; : : : ; i

n�k+1

g of operation

id's of F a valid sequen
e if F 
an be 
omputed by exe
uting its operations in the order as di
tated

by the sequen
e S. For example if F = fId

1

; Id

2

; Id

3

; Id

4

g, where Id

1

: p

4

= x � y, Id

2

: p

5

= p

4

� z,

Id

3

: p

6

= y � z and Id

4

: p

7

= p

5

� p

6

, then there are only three valid sequen
es, namely, f1; 2; 3; 4g,

f1; 3; 2; 4g and f3; 1; 2; 4g. F 
an not be exe
uted in any other order.

Further, one may be interested in knowing whi
h valid sequen
e needs the minimum number of

intermediate variables for exe
uting the expli
it formula F .

Let F be an expli
it formula and letA

0

be the set of inputs to it. In F , there are 
ertain 
omputations

whi
h 
an be 
omputed from the set A

0

of inputs to F . After one or more of them are exe
uted we

get some intermediate values whi
h 
an trigger some more operations of F . Let V

0

be the set of


omputations in F , whi
h 
an be 
omputed dire
tly from the set A

0

of inputs to F . Let jV

0

j = �

0

be

the size of the set V

0

. So one 
an begin the exe
ution of F starting from any one of these �

0

operations.

Suppose we 
hoose the operation

Id

i

1

: p

i

1

= q

i

1

op

i

1

r

i

1

in V

0

to be exe
uted �rst. After this operation we have the value of p

i

1

available to us. So an operation

involving p

i

1

and some other known value in A

0

in its right hand side 
an also now be exe
uted. Let

A

i

1

= A

0

S

fp

i

1

g. Let V

i

1

1

be the set of operations in F

1

= F � fId

i

1

g, whi
h 
an be exe
uted from the

the values available in A

i

1

. Let jV

i

1

1

j = �

i

1

. Note that the set V

i

1

1

and the value of �

i

1

depend upon

the 
hoi
e of Id

i

1

. Thus, we have �

i

1

options for exe
uting the next operation of F . Suppose we 
hoose

Id

i

2

: p

i

2

= q

i

2

op

i

2

r

i

2

We update the set of available values as A

i

1

;i

2

= A

i

1

S

fp

i

2

g and look for the set of operations in

F

2

= F

1

� fId

i

2

g whi
h 
an be 
omputed from the set of values available in A

i

1

;i

2

and pro
eed like

this. In general, if k operations Id

i

1

; : : : ; Id

i

k

are already 
omputed and p

i

k

is the output of the last


omputation, then we update the set of available values as A

i

1

;i

2

;:::;i

k+1

= A

i

1

;i

2

;:::;i

k

S

fp

i

k+1

g and set

V

i

1

;:::;i

k+1

k+1

to be the set of 
omputations in F

k+1

= F

k

� fId

i

k

g, whi
h 
an be 
omputed from A

k+1

.

Note that Id

i�k

is the Id of the last operation. Let jV

i

0

;:::;i

k

k

j = �

i

0

;:::;i

k

. We 
hoose one of the operations

�

i

0

;:::;i

k

operations in V

i

0

;:::;i

k

k

to 
ontinue.

The sets A

j


ontain the set of live variables at ea
h step. To minimise the number of intermediate

variables we 
an not a�ord to keep redundant values in this set. At ea
h step before inserting a new

value into A

i

0

;:::;i

j

, we 
he
k if it 
ontains any value whi
h is not required in further 
omputations in

F

j

. All su
h redundant values are dis
arded from A

i

0

;:::;i

k

.

We stop the pro
edure when for some

�

k, V

i

0

;:::;i

�

k

�

k

be
omes empty. If k is n � k + 1, i.e. the total

number of operations in F , then the sequen
e of operations fId

i

1

; : : : ; Id

�

k

g, is a valid sequen
e for F .

After 
hoosing a valid sequen
e, we 
he
k the sets

A

i

1

;:::;i

j

�A

0

; 0 � j � n� k + 1

If max

0�i�n�k+1

jA

i

�A

0

j = �, then for exe
uting F by the obtained valid sequen
e the storage for �

intermediate variables is ne
essary and also suÆ
ient.

After obtaining one valid sequen
e, we ba
ktra
k to the last step where we had more 
hoi
es for the

next operation than the ones already undertaken. We 
hoose a di�erent operation from the 
orrespond-

ing set V

i

there and pro
eed in a new path of 
omputation. Following this method we obtain all valid

5



sequen
es for F and �nd the one whi
h requires the minimum number of intermediate variables. That

valid sequen
e gives us the exe
ution sequen
e of F , whi
h is the most memory eÆ
ient one.

Obviously, the method des
ribed above is an exhaustive sear
h type. It looks for all possible paths

from a possible starting point (whi
h may not be unique) for exe
ution of F to the end. To �nd the

minimum number of intermediate variables it looks for all possible paths from the beginning to end of

F . To bring down the running time we adopt the following four strategies:

1. Negle
ting the paths whi
h requires same number of intermediate variables as the

known one: We use early abort strategy for improving the running time of the algorithm. As we

get the �rst valid sequen
e we 
ount the number of intermediate variables required to be stored to

exe
ute F by that sequen
e and store it in a variable, say �. While looking for another path by

ba
ktra
king, we 
he
k the size of the set of intermediate variables after ea
h step. If the 
urrent

size is equal to the value stored in �, then we need not pro
eed along this path further. It is not

going to yield a more e
onomi
al path. So we abandon this path and look for another one. If a

parti
ular valid sequen
e needs less than � intermediate values, then we repla
e the value of � by

this new value.

2. Avoiding the 
ount of the number of intermediate variables at ea
h step: Counting the

number of variables at ea
h step of the algorithm is a time 
onsuming operation. Suppose the

value stored 
urrently in � is t. While looking for a new path, we save time by not 
ounting the

number of minimum variables till the path is t operations long. Be
ause, if less than t operations

have been exe
uted then the number of intermediate variables 
an not be more than t.

3. Ba
ktra
king several steps at a time: After �nding a valid sequen
e, instead of ba
ktra
king

one step (to the last step) at a time, we 
an go ba
k until a step b su
h that max

0�i�b

jA

i

�A

0

j =

� � 1. This will redu
e the task of going to ea
h level and hen
e will aid to eÆ
ien
y. Note that

this does not a�e
t the optimality of the �nal result. That is be
ause the paths whi
h we are

skipping need at least � intermediate variables.

4. Using ordered sets in pla
e of V

j

's: Before starting the �rst step, we s
an the expli
it formula

and make a frequen
y table of all the inputs and intermediate variables. Against name of ea
h

variable it 
ontains the number of times it has been used in the formula, i.e the number of times

it appears in the right hand side of some equation in F

j

. We treat the sets V

j

's as ordered sets

and ordered a

ording as priorities assignined to these equations. The highest priority (see below)

is assigned to those, in whi
h the inputs variables have lower frequen
y. Ea
h time we 
hoose

an equation for 
omputation, we update the frequen
y table by redu
ing the frequen
ies of the

involved input variables by 1.

Here we des
ribe how we assign priorities to the operations in V

j

. Observe that any equation

r = p op q takes two inputs and 
omputes an intermediate value. If the variables p and q are used

again later i.e. their frequen
ies are greater than 1 before this operation, then we have to store

all three variables. But if frequen
ies of p and q are one then we are required to store the result

only. Thus, we 
an redu
e the width of the set of live variables by 1. We assign highest priorities

to su
h 
omputations and put them at the beginning of the sets V

j

's. If the frequen
y of one of p

and q is 1, then we need not save that variable. We are required to store the other variable and

the 
omputed value and the thus the number of live variables does not in
rease. So we assign

se
ond highest priority to su
h equations and put them next in the set V

j

. So are the equations

whi
h have a 
onstant and a variable of frequen
y 1. Thirdly, squarings and doublings involve one

variable only and produ
e a new variable. So a squaring or a doubling of a variable of frequen
y 1

also does not in
rease the number of live variables. We keep su
h type of operations next. Other

6



equations of F

j

are kept in su
h an order that the ones involving a variable of minimum frequen
y

pre
eeds the others.

These optimisation te
hniques for running time of the algorithm have paid high dividends. It is

observed that an implementation using these te
hniques runs mu
h faster than one without them. These

te
hniques however, do not guarantee that an implementation of this sear
h strategy will terminate in

reasonable time for any large expli
it formula. An expli
it formula may 
ontain a huge number of

equations. In that 
ase the program may run for a 
onsiderable duration of time and the last value of

� may be a

epted as the good minimal value. The a
tual minimum may be lesser.

Let us put the above dis
ussion in the form of an algorithm. In fa
t, we present two algorithms

below, the �rst one only initialises and 
alls the se
ond one. The se
ond is a re
ursive one implementing

the te
hniques des
ribed above.

Algorithm MinVar.

Input : The number of inputs to F and all the operations in F .

Output : Minimum number of intermediate variables required to be stored if F is exe
uted sequentially.

1. (Initialisation) Read the number of inputs k to F ;

2. Read all 
omputations in F and store them in an array indexed by their Id's. Let their number be

N ;

3. Let k = 0, minvar = the number of equations in F ;

4. Call Algorithm Pro
Var(k, minvar);

5. Output minVar;

Algorithm Pro
Var(k, minvar).

Input : The number of 
omputations (k) of already 
arried out.

Output : Re
ursively 
omputes the number of intermediate variables and outputs their minimum.

1. Let Count = N � k;

2. If k > minVar

2.1 Count the number of intermediate variables in the 
urrent path;

2.2 If the number of variables in the 
urrent path = minVar then return; /* There is no need to


onsider this path */

3. If Count 6= 0

3.1 Find the 
orresponding ordered set V

k

and �

k

;

3.2 for i = 1 to �

k

;

3.2.1 Pro
ess the ith 
omputation in V

k

;

3.2.2 Update the data stru
tures for A

k+1

;

3.2.3 Call Algorithm Pro
Var(k + 1);

4. minvar = the number of variables in the 
urrent path;

5. end

Here is an important observation about running of the algorithm.

� Observation At any point of time during the exe
ution of the algorithm in the sear
h of a valid

sequen
e, suppose the operations S

1

= fi

1

; i

2

; : : : ; i

k

g have been 
hosen. Also suppose that at the

end of this last step the number of live variables is t. Let S

2

= fj

1

; j

2

; : : : ; j

k

g be any permutation

of fi

1

; i

2

; : : : ; i

k

g. If S

2

is a valid order in whi
h the operations in S

1


an also be performed, then

at the end of last step of S

2

one will have t number of intermediate variables as well. An important

appli
ation of this observation is that if we have two valid sequen
es of an expli
it formula, whi
h

have the same k operations at the beginning, maybe in a di�erent order and if we know that the

�rst requires t intermediate variables till the kth step, then we need not 
ount the number of

intermediate variables for �rst k steps of the se
ond. It is t at the end of kth step.

7



4.1 The Forward and Reverse Programs

As said earlier, ea
h expli
it formula in raw format was modi�ed to be a sequen
e of binary operations.

This is the prepro
essing done to ea
h of the raw formulae under 
onsideration. This prepro
essed

formula was given as input to a program embodying the methodlogy des
ribed in the last se
tion,

whi
h 
al
ulated the minimum number of intermediate variables required for sequential exe
ution of

the expli
it formula. When the program terminates it outputs exa
tly how many intermediate variables

are required for an exe
ution of the formula and the 
orresponding valid sequen
e. As our methodlogy

is a kind of exhaustive sear
h with some running time optimization measures, for a long input �le it may

take substantial amount of time to run. In order to get the results within a reasonable time, another

program was employed. We will refer to this later program as the reverse program and the former as

forward program. The reverse program initially takes k = 1 and using the same logi
 as forward 
he
ks

if the expli
it formula 
an be exe
uted with k temporary lo
ations. If not it reports this fa
t and tries

again with k repla
ed by k+1. When it gets an aÆrmative answer it outputs the 
orresponding value of

k and the 
orresponding valid sequen
e. After obtaining a path requiring l intermediate variables, the

forward program looks for path needing less than l intermediate lo
ations. If during the sear
h pro
ess

it 
omes a
ross a path whi
h also requires l lo
ations, then forward abandons this path and look for a

newer one. The reverse program uses the same logi
, taking k = 1; 2 : : :. We run both the programs

with the same input �le on two di�erent ma
hines. If either of forward or reverse terminates we get

the result. Otherwise, if at some point of time forward reports the formulae 
an be exe
uted with k

variables and at the same time reverse reports it 
an not be done with less than k � 1 intermediate

lo
ations, then also the 
on
lusion follows.

The employment of reverse helped us to get to the 
on
lusions quite early. Some of the expli
it

formula under 
onsideration have more that 100 lines of three address 
odes (i.e. total number of

arithmeti
 operations is more than 100). In spite of the speed-up measures des
ribed above, there is no

guarantee that forward will terminate. In fa
t, we ran forward program without any speed up measure on

some longer inputs and found that it did not terminate in a week. Even after the optimisation methods

des
ribed above are employed, for some of the formulae given in [15℄ it did not terminate for three

days, though it ran mu
h faster. Surprisingly (be
ause they have quite a small number of operations),

for the doubling formulae in new 
oordinates in even 
hara
teristi
, in both 
ases h

2

6= 0 and h

2

= 0,

forward did not terminate. So, we took help of the reverse program to derive our 
on
lusions. With the

help of reverse we 
ould get 
on
lusion on any formula in less than two days.

5 Pre and Post Pro
essing

We implemented the methodology des
ribed above and found out the minimum number of registers

required for a sele
t set of expli
it formula. Ea
h formula was prepro
essed in the manner des
ribed

below:

5.1 Prepro
essing

We 
all the di�erent expli
it formulae whi
h appear in resear
h papers to be in raw form. Our �rst

step is to prepro
ess su
h raw formulae and 
onvert into a form suitable for input to our register

minimization program. This 
onversion of expli
it formulae from one form to another is done using

a prepro
essing program. We verify the 
orre
tness of the two forms using Mathemati
a, a symboli



omputation software. We �rst des
ribe this veri�
ation method and then des
ribe the prepro
essing

algorithm.
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Ea
h expli
it formula 
onsists of a set of input and output variables and a sequen
e of arithmeti


operations involving temporary intermediate variables. The arithmeti
 operations are addition, sub-

tra
tion and multipli
ation. Thus ea
h output variable 
an be written as a multivariate polynomial

in the input variables. This polynomial 
an be 
omputed by su

essively eliminating the intermedi-

ate variables. We say that two expli
it formulae with the same set of input and output variables are

equivalent if the multivariate polynomials 
orresponding to the output variables are same for both the

formulae. We use Mathemati
a to perform this veri�
ation. Being a symboli
 
omputation software,

Mathemati
a 
an eÆ
iently 
onstru
t the multivariate polynomial 
orresponding to the output variable

of an expli
it formula. There is, however, a problem in this method. If an expli
it formula reuses a

variable, then Mathemati
a falls into an in�nite loop and fails to 
onstru
t the multivariate polynomial.

There is another pitfall when variables are reused. A

ording to Garey-Johnson [6, page 272℄, the de-


ision version of the problem when variables 
an be reused, is known to be NP-hard but not known to

be in NP. Thus our �rst step is to eliminate variable reuse from raw formulae.

We say that a variable is reused if it o

urs more than on
e on the left hand side.There are three

di�erent kinds of variable { input, output and temporary. If an input variable is reused, then we

want the �rst o

urren
e to have the identi�er of the input variable, while subsequent ones will have

new identi�ers. On the other hand, if an output variable is reused, the last o

urren
e must have

the identi�er of the output variable while the others will have new identi�ers. Reuse of intermediate

variables 
an be ta
kled either as an input or as an output variable { we ta
kle them as input variables.

While eliminating reuse of input variables, we have to s
an the formula from the start to the end and

while eliminating reuse of output variables, we have to s
an the formula from the end to the start. We

do not provide further details, as they are fairly routine and te
hni
al in nature.

The se
ond step after elimination of variable reuse is to 
onvert the raw formula into a sequen
e of

binary operations. For this we initially 
onvert the formula to post�x form and then use a sta
k to obtain

the sequen
e of binary operations. This step is also quite routine and is given in most data stru
ture

textbooks. However, we note that we attempt no optimisation at this step. Compiler 
onstru
tion

based te
hniques of using dire
ted a
y
li
 graphs (DAG's) to identify 
ommon minimal subexpressions


ould be applied at this point. Thus the minima we report are really minimum after 
onversion to three

address 
odes. The a
tual minimum 
ould be lesser, though we think this to be unlikely.

The third step is to perform a series of 
he
ks: no variable is reused, ea
h output variable o

urs

on
e on the left side, ea
h intermediate variable should o

ur exa
tly on
e on the left side and at least

on
e on the right side. Finally, we also 
he
k if ea
h input variable is used at least on
e. We do not


onsider the failure of this 
he
k to be a serious error, sin
e some of the 
urve parameters are sometimes

not used in some formulae. However, we do report this failure and if any of the other 
he
ks fail, we

do not pro
eed with further pro
essing of the formulae. The output of the third step is veri�ed to

be equivalent to the raw formula after eliminating variable reuse. On
e this veri�
ation su

eeds, we

provide this as input to our register minimization algorithm.

5.2 Post-pro
essing

As mentioned in the last se
tion, the register minimization programs both determine the minimum

number of intermediate variables required in the implementation of the expli
it formulae and also

output the 
orresponding valid sequen
e. If the number of inputs to a formula is �, minimum number

of intermediate variables required is � and 
 is the number of outputs of the formula, then it 
an surely

be implemented with �+�+
 lo
ations in memory. For optimal usage of memory, the registers o

upied

by input variables 
an be reused after last usage of the input. Also, in some situations one may not

like reusing the lo
ations storing the input variables as they may be required later. For example in

s
alar multipli
ation algorithms, whenever a HCADD is 
alled one argument is the base point. So, if
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the lo
ations storing the parameters of the base point are reused, one has to load them again into these

registers when HCADD is invoked again by the s
alar multipli
ation algorithm. Thus there may be

some inputs su
h that the register 
ontaining them 
an not be reused. This leads to two 
ases,

1. All registers are reused.

2. Some sele
ted registers 
ontaining some vital inputs are not reallo
ated.

In our investigation, we allowed reuse of all registers for HCDBL. For HCADD, the inputs are the

parameters of two points (divisors) to be added. In our implementation we allowed reuse of the registers


ontaining the parameters of the �rst divisor. We assumed that the se
ond divisor is the base divisor

and its 
ontents should not be destroyed by reusing these registers. For mixed addition algorithm, the

divisor whi
h is in aÆne 
oordinates is the base point. We did not allow the reuse of the registers


ontaining the point in aÆne 
oordinates. Also, the registers 
ontaining the 
urve parameters are never

reused nor 
ounted. These are the registers 
ontaining the `vital' inputs.

For sake of generality, we also ran our programs allowing reuse of all the registers (ex
ept the ones


ontaining the 
urve parameters) for all addition formulae. We found that the register usage level 
an

be brought down by reusing all the registers. If in a devi
e, the base point is stored in some permanent

memory like some kind of ROM and transfering data from ROM to registers is fast enough, then reuse

of all registers is preferable. However, if su
h data transfer takes signi�
ant time, then the time for

an addition may go up signi�
antly relative to doubling and the implementation risks being prone to

timing atta
ks.

A register allo
ation program was implemented whi
h 
onverted the binary instru
tions of the valid

sequen
es obtained from the minimum intermediate variables programs into the expli
it register spe
i�ed

format (ERSF). A register 
ontaining a non-vital input is reallo
ated as soon as the variable it is


ontaining is not required any more (is not a `live' register).

The output of this program for an expli
it formula is in the ready-to-implement form. We applied

this methodology to several important formuale in ECC and HECC. For HECC, these outputs are the

�rst expli
it formula in ERSF. Hopefully, these formulae will be of importan
e for an implementation

in software or in hardware.

6 Results

The addition (ECADD) and doubling (ECDBL) formulae in ECC have re
eived mu
h attention from

the resear
h 
ommunity and the formulae are quite simpler in 
omparison to those in HECC. It has

been reported by many resear
hers that the ECADD in mixed Ja
obian 
oordinates for most general


urves over �elds of odd 
hara
teresti
 needs 7 registers for implementation. To our knowledge, there is

no result stating that it 
an not be exe
uted in less than seven registers. This aroused our 
uriosity for

testing these formulae in our methodology. We experimented with ECADD and ECDBL in Ja
obian


oordinates and found that ECADD and ECDBL 
an be implemented with no less than 7 and 6 registers

respe
tively. Both forward and reverse program reported this fa
t. As we intended this work to fo
us

on HECC, we did not pay attention to other ECC algorithms.

We applied our methodology to many formula in HECC. First of all, we applied our methodology

to Lange's formulae in new 
oordinates [15℄. These formulae are the most eÆ
ient ones for general

hyperellipti
 
urves of genus 2. All these formulae are inversion-free. However, the 
ost of avoiding the

inversions is more than an inversion in binary �elds. Hen
e for an implementation over binary �elds,

aÆne arithmeti
 still looks quite attra
tive. So we used our methodology to 
al
ulate the minimum

number of registers required for implementing HCDBL and HCADD in aÆne 
oordinates also. We used
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the formulae presented in [13℄ whi
h are the most eÆ
ient ones in aÆne 
oordinates for general 
urves

of genus 2. Pelzl et al. [20℄, have proposed a very eÆ
ient HCDBL formula for a spe
ial 
lass of 
urves.

We investigated the memory requirement of the HCADD and HCDBL formulae presented in [20℄ also.

Re
ently, many eÆ
ient doubling formulae have been presented in [17℄. Many situations, (like

deg(h) = 1 or 2, h

0

= 0 or 6= 0, h

1

is small et
.) have been 
onsidered. If a parti
ular variable is

small then multipli
ation by that variable 
an be e�e
ted by some additions. The number of additions

will depend upon the value of the small value. Hen
e we have not inquired these situations. When

deg(h) = 1 and h

2

1

and h

�1

1

are pre
omputed, the doubling formula proposed in [17℄ is very eÆ
eint.

To 
ompute a doubling (1[i℄ + 9[m℄ + 5[s℄) one needs only 7 registers. However to 
ompute the s
alar

multipli
ation one has to 
ouple it with an addition formula whi
h requires 15 registers.

Note that HCADD and HCDBL for genus 2 
urves have many spe
ial 
ases. The most general and

also the most frequent 
ase is the one in whi
h the divisor(s) are of full weight, i.e. if D = (u; v) is the

divisor, then deg(u) = 2; deg(v) = 1. In the 
urrent work we 
on
entrate on the most general and the

frequent 
ase only. The same methodology 
an be applied to other spe
ial 
ases as well. Also, the 
ost

of various operations we have given in the Table 2 below does not 
orroborate with the 
osts provided

in the 
orresponding papers. That is be
ause authors generally avoid 
ounting the multipli
ation and

squaring of/with 
urve 
onstants. In some formulae su
h operations o

ur in signi�
ant numbers. For

example in even 
hara
teristi
 doubling formula (h

2

6= 0), there are 21 su
h multipli
ations/squarings.

Many of the 
urve 
onstants 
an be made 0 or 1. For sake of generality, we have a

ounted for these

multipli
ations and squarings as well.

We use the following naming 
onvention for the name of various algorithms. The formulae pre-

sented in [13℄ and in [20℄ are in aÆne 
oordinates. We use a supers
ript A for them, e.g. HCADD

A

and HCDBL

A

. The formulae in [15℄ are in Lange's new 
oordinates. For the formulae in these new


oordinates over �elds of even 
hara
teristi
 we will use the supers
ript N e and for those over �elds of

odd 
hara
teristi
 we will use supers
ript No. Divisor addition algorithms in mixed 
oordinates will be

denoted by a suÆx `m' e.g mHCADD

No

.

We summarise our �ndings in Table 2. In the appendix we present all these formulae in Expli
it

Register Spe
i�ed Format.

Observing Table 2, one 
an 
on
lude that the formulae presented in [17℄ are best for an implemen-

tation over binary �elds. However, these are based on a 
lassi�
ation of 
urves into isomorphism 
lasses

and if one wants to use 
urve randomization not all 
urve parameters 
an be 
hosen in this optimal

way. An implementation of the formulae in [13℄, whi
h are more general in nature, needs only one more

register in doubling. In the s
alar multipli
ation algorithm, sets of expli
it formulae will require 15

registers ea
h. The former has no 
urve parameter whi
h is not zero or 1. The later requires storing

of atmost 6 
urve parameters. The 
omputation 
an be made se
ure against simple power atta
ks

by using Coron's dummy addition method without any extra registers. Two popular 
ountermeasures

against DPA are Coron's point randomisation [5℄ and Joye-Tymen's Curve randomisation [9℄. Both

have been extended to hyperellipti
 
urves by Avanzi [1℄. In aÆne representation point randomisation


ountermeasure 
an not be implemented. As there is no 
urve 
onstant involved in the expli
it formulae

in [20℄, 
urve randomisation 
an not be applied. Hen
e for a se
ure implementation the formulae of [13℄

are suitable. It will require at most 21 registers (at most 6 registers for 
urve parameters).

For an implementation over �elds of odd 
hara
teristi
, 
learly the formulae in [15℄ are the most

suitable. In this representation mixed addition requires 20 registers and doubling requires 16. Besides 2


urve parameters are to be stored. So the s
alar multipli
ation 
an be 
omputed in 22 registers. For a

se
ure implementation, Coron's dummy addition method and point randomisation 
an be used without

in
reasing the number of registers.

For addition formulae we do not reuse the registers 
ontaining the parameters of the base point. As

stated above we also experimented reusing all registers. We provide our results in Table 3. It 
an be
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Table 2: Register Requirement for Various Expli
it Formulae

Algorithm Proposed in Chara
teristi
 Cost Registers Required

HCADD

A

[13℄ All 1[i℄ + 22[m℄ + 3[s℄ + 44[a℄ 15

HCDBL

A

[13℄ All 1[i℄ + 22[m℄ + 5[s℄ + 56[a℄ 11

HCADD

No

[15℄ Odd 49[m℄ + 7[s℄ + 34[a℄ 23

mHCADD

No

[15℄ Odd 36[m℄ + 5[s℄ + 35[a℄ 16

HCDBL

No

[15℄ Odd 36[m℄ + 7[s℄ + 41[a℄ 20

HCADD

N e

h

2

6=0

[15℄ Even 52[m℄ + 4[s℄ + 35[a℄ 27

mHCADD

N e

h

2

6=0

[15℄ Even 42[m℄ + 5[s℄ + 34[a℄ 17

HCDBL

N e

h

2

6=0

[15℄ Even 54[m℄ + 8[s℄ + 29[a℄ 20

HCADD

N e

h

2

=0

[15℄ Even 47[m℄ + 6[s℄ + 37[a℄ 27

mHCADD

N e

h

2

=0

[15℄ Even 37[m℄ + 6[s℄ + 30[a℄ 22

HCDBL

N e

h

2

=0

[15℄ Even 40[m℄ + 6[s℄ + 27[a℄ 16

HCADD

A

[20℄ Even 1[i℄ + 21[m℄ + 3[s℄ + 30[a℄ 15

HCDBL

A

[20℄ Even 1[i℄ + 9[m℄ + 6[s℄ + 24[a℄ 10

HCDBL

A

deg(h)=1

[17℄ Even 1[i℄ + 5[m℄ + 9[s℄ + 10[a℄ 7

HCDBL

A

deg(h)=1;h

1

=1

[17℄ Even 1[i℄ + 5[m℄ + 9[s℄ + 7[a℄ 6

HCDBL

A

deg(h)=2;h

0

=0

[17℄ Even 1[i℄ + 17[m℄ + 5[s℄ + 31[a℄ 10

seen that number of registers goes down sini�
antly if all registers are reused.

7 Possible Improvements and Con
lusion

Although our register minimisation te
hnique produ
es minimum number of registers required for any

expli
it formula, its output depends upon the nature of the input �le. The input �le is generally a

sequen
e of three address 
odes. There is a vast literature in 
ompiler 
onstru
tion studies on eÆ
ient

methods for 
onverting an arithmeti
 formula into three address 
odes. Our parsing program whi
h


onverted the expli
it formulae into three address 
odes may not be the optimal one. Therefore there is

still some s
ope for improvement. Besides, the expli
it formulae used for �nding the minimum register

Table 3: Register Requirement: Register Reuse vs No Reuse

Algorithm Proposed in #Registers (all reused) #Registers (sele
tive reuse)

HCADD

A

[13℄ 13 15

HCADD

No

[15℄ 19 23

mHCADD

No

[15℄ 19 20

HCADD

N e

h

2

6=0

[15℄ 23 27

mHCADD

N e

h

2

6=0

[15℄ 18 20

HCADD

N e

h

2

=0

[15℄ 23 27

mHCADD

N e

h

2

=0

[15℄ 19 22

HCADD

A

[20℄ 14 15
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requirements are best known algorithms. In future, resear
hers may 
ome out with more eÆ
ient

formulae. Thus the minimum register requirements reported in the 
urrent work may not be the best

for hyperellipti
 
urve 
ryptosystems.

In a memory 
onstrained small devi
e, we may sa
ri�
e a small amount eÆ
ien
y for eÆ
ient memory

usage. That is, instead of keeping a memory lo
ation o

upied with a 
omputed value whi
h will be

required mu
h later, we 
an free the 
orresponding lo
ation to store other intermediate values and

re
ompute the earlier value on
e again exa
tly when it is required. For example, suppose in an algorithm

at step k a value x = y op z is 
omputed and used at Steps k + 1 and k + k

1

, where k

1

is not small.

Also, suppose that at Step k + k

1

, both y and z are alive. Then if memory is a 
on
ern, instead of

storing the value of x for k

1

steps, one may prefer to free that memory at Step k + 2 and re
ompute

x just before the Step k + k

1

. Thus one saves a memory lo
ation for some steps by re
omputing one

operation. This may be worthwhile if it is a 
heap operation like �eld addition or negation. In this way

one 
an trade-o� memory for some extra operations. In the 
urrent work, we have not gone for su
h

optimizations. In an implementation on a small devi
e, this kind of optimization 
an lead to better

utilization of memory.
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A HECC Formulae in ERSF with Sele
tive Register Reuse

Algorithm HCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U11 2: R

2

:= U10 3: R

3

:= V 11 4: R

4

:= V 10

5: R

5

:= Z11 6: R

6

:= Z12 7: R

7

:= z11 8: R

8

:= U21

9: R

9

:= U20 10: R

10

:= V 21 11: R

11

:= V 20 12: R

12

:= Z21

13: R

13

:= Z22 14: R

14

:= z21

15: R

15

:= R

1

�R

14

16: R

16

:= R

2

� R

14

17: R

17

:= R

5

� R

6

18: R

17

:= R

7

� R

17

19: R

18

:= R

12

� R

13

20: R

14

:= R

14

� R

18

21: R

18

:= R

3

� R

14

22: R

14

:= R

4

� R

14

23: R

19

:= R

7

+R

1

24: R

10

:= R

10

� R

17

25: R

11

:= R

11

�R

17

26: R

17

:= R

18

�R

10

27: R

14

:= R

14

�R

11

28: R

18

:= R

14

+R

17

29: R

9

:= R

9

� R

7

30: R

16

:= R

9

�R

16

31: R

20

:= R

16

� R

7

32: R

8

:= R

8

�R

7

33: R

15

:= R

15

�R

8

34: R

17

:= R

15

� R

17

35: R

19

:= R

17

� R

19

36: R

17

:= R

2

� R

17

37: R

21

:= R

1

� R

15

38: R

20

:= R

21

+R

20

39: R

14

:= R

20

� R

14

40: R

17

:= R

14

�R

17

41: R

21

:= R

7

� R

15

42: R

21

:= R

20

+R

21

43: R

18

:= R

21

� R

18

44: R

14

:= R

18

�R

14

45: R

14

:= R

14

�R

19

46: R

18

:= R

16

� R

20

47: R

13

:= R

6

�R

13

48: R

19

:= R

15

� R

15

49: R

19

:= R

19

�R

2

50: R

18

:= R

18

+R

19

51: R

12

:= R

5

�R

12

52: R

19

:= R

12

� R

12

53: R

13

:= R

13

�R

19

54: R

13

:= R

13

� R

18

55: R

20

:= R

14

� R

19

56: R

19

:= R

17

� R

19

57: R

18

:= R

18

�R

20

58: R

17

:= R

17

� R

20

59: R

10

:= R

18

� R

10

60: R

11

:= R

18

� R

11

61: R

18

:= R

14

�R

14

62: R

14

:= R

14

� R

20

63: R

16

:= R

16

� R

14

64: R

21

:= R

12

� R

13

65: R

12

:= R

12

�R

12

66: R

13

:= R

13

� R

13

67: R

22

:= R

15

+R

8

68: R

18

:= R

18

� R

22

69: R

22

:= R

17

+R

17

70: R

18

:= R

18

�R

22

71: R

18

:= R

15

� R

18

72: R

22

:= R

17

+R

14

73: R

17

:= R

17

�R

9

74: R

9

:= R

9

+R

8

75: R

9

:= R

22

�R

9

76: R

9

:= R

9

�R

17

77: R

11

:= R

17

+R

11

78: R

17

:= R

20

� R

19

79: R

22

:= R

20

� R

20

80: R

11

:= R

22

� R

11

81: R

23

:= R

17

+R

17

82: R

19

:= R

19

� R

19

83: R

18

:= R

19

+R

18

84: R

16

:= R

18

+R

16

85: R

18

:= R

14

�R

8

86: R

8

:= R

8

+R

8

87: R

9

:= R

9

�R

18

88: R

17

:= R

18

+R

17

89: R

8

:= R

8

+R

15

90: R

8

:= R

8

� R

13

91: R

13

:= R

15

� R

14

92: R

13

:= R

23

�R

13

93: R

13

:= R

13

�R

12

94: R

14

:= R

17

�R

13

95: R

15

:= R

14

� R

13

96: R

9

:= R

9

+R

10

97: R

10

:= R

10

+R

10

98: R

10

:= R

16

+R

10

99: R

8

:= R

10

+R

8

100: R

10

:= R

14

� R

8

101: R

10

:= R

10

�R

11

102: R

9

:= R

9

�R

8

103: R

9

:= R

22

� R

9

104: R

9

:= R

15

�R

9

Up

1

:= R

13

Up

0

:= R

8

V p

1

:= R

9

V p

0

:= R

10

Zp

1

:= R

20

Zp

2

:= R

21

zp

1

:= R

22

zp

2

:= R

12

Number of registers used = 23

15



Algorithm mHCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

10

; U

11

; V

10

; V

11

; U

20

; U

21

; V

20

; V

21

; Z

21

; Z

22

; z

21

; z

22

Output Variables: Up

0

; Up

1

; V p

0

; V p

1

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

10

:= R

9

�R

10

14: R

13

:= R

11

� R

10

15: R

14

:= R

1

� R

11

16: R

14

:= R

14

�R

5

17: R

15

:= R

2

�R

11

18: R

15

:= R

6

�R

15

19: R

16

:= R

1

� R

14

20: R

16

:= R

16

+R

15

21: R

15

:= R

15

� R

16

22: R

17

:= R

14

� R

14

23: R

17

:= R

17

� R

2

24: R

15

:= R

15

+R

17

25: R

10

:= R

15

� R

10

26: R

17

:= R

10

� R

9

27: R

10

:= R

10

� R

10

28: R

18

:= R

17

� R

17

29: R

4

:= R

4

�R

13

30: R

4

:= R

4

�R

8

31: R

3

:= R

3

� R

13

32: R

3

:= R

3

�R

7

33: R

13

:= R

16

+R

14

34: R

16

:= R

16

� R

4

35: R

4

:= R

4

+R

3

36: R

4

:= R

13

� R

4

37: R

3

:= R

14

�R

3

38: R

4

:= R

4

�R

16

39: R

13

:= 1 +R

1

40: R

13

:= R

3

� R

13

41: R

3

:= R

2

�R

3

42: R

3

:= R

16

�R

3

43: R

4

:= R

4

�R

13

44: R

13

:= R

15

� R

4

45: R

15

:= R

3

�R

11

46: R

9

:= R

4

�R

9

47: R

16

:= R

9

� R

9

48: R

19

:= R

3

� R

4

49: R

8

:= R

13

�R

8

50: R

7

:= R

13

� R

7

51: R

11

:= R

19

� R

11

52: R

13

:= R

4

� R

4

53: R

20

:= R

13

+R

19

54: R

19

:= R

19

� R

6

55: R

8

:= R

19

+R

8

56: R

8

:= R

16

� R

8

57: R

1

:= R

1

�R

4

58: R

1

:= R

3

�R

1

59: R

3

:= R

14

� R

4

60: R

3

:= R

15

�R

3

61: R

1

:= R

1

�R

3

62: R

3

:= R

11

+R

11

63: R

4

:= R

13

� R

5

64: R

11

:= R

4

+R

11

65: R

13

:= R

14

� R

13

66: R

3

:= R

3

�R

13

67: R

3

:= R

3

�R

18

68: R

11

:= R

11

�R

3

69: R

13

:= R

11

� R

3

70: R

6

:= R

5

+R

6

71: R

6

:= R

20

� R

6

72: R

6

:= R

6

�R

19

73: R

4

:= R

6

�R

4

74: R

1

:= R

1

+R

4

75: R

4

:= R

4

+R

7

76: R

6

:= R

7

+R

7

77: R

2

:= R

2

�R

16

78: R

1

:= R

1

�R

2

79: R

1

:= R

1

+R

6

80: R

2

:= R

5

+R

5

81: R

2

:= R

2

+R

14

82: R

2

:= R

2

�R

10

83: R

1

:= R

1

+R

2

84: R

2

:= R

11

� R

1

85: R

2

:= R

2

�R

8

86: R

4

:= R

4

�R

1

87: R

4

:= R

16

� R

4

88: R

4

:= R

13

�R

4

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

4

V p

0

:= R

2

Zp

1

:= R

9

Zp

2

:= R

17

zp

1

:= R

16

zp

2

:= R

18

Number of registers used = 20

16



Algorithm HCDBL

No

of [15℄

Curve Constants Used: f

3

; f

2

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U1 2: R

2

:= U0 3: R

3

:= V 1 4: R

4

:= V 0

5: R

5

:= Z1 6: R

6

:= Z2 7: R

7

:= z1 8: R

8

:= z2

9: R

9

:= R

4

�R

7

10: R

10

:= R

3

� R

3

11: R

11

:= R

2

� R

7

12: R

12

:= R

1

� R

1

13: R

13

:= R

12

�R

11

14: R

14

:= R

1

� R

3

15: R

9

:= R

9

�R

14

16: R

9

:= R

4

� R

9

17: R

14

:= R

10

�R

2

18: R

9

:= R

14

+R

9

19: R

6

:= R

6

� R

9

20: R

6

:= R

6

� R

7

21: R

5

:= R

6

� R

5

22: R

5

:= R

5

+R

5

23: R

14

:= R

5

� R

5

24: R

6

:= R

6

� R

6

25: R

6

:= R

6

+R

6

26: R

6

:= R

6

�R

1

27: R

15

:= R

7

� R

7

28: R

16

:= f

3

� R

15

29: R

16

:= R

16

+R

12

30: R

12

:= R

12

�R

11

31: R

12

:= R

13

+R

12

32: R

12

:= R

12

+R

16

33: R

12

:= R

8

�R

12

34: R

13

:= R

15

� R

7

35: R

13

:= R

13

� f

2

36: R

15

:= R

11

+R

11

37: R

15

:= R

15

+R

11

38: R

15

:= R

15

+R

11

39: R

15

:= R

15

�R

16

40: R

15

:= R

1

� R

15

41: R

13

:= R

15

+R

13

42: R

8

:= R

8

�R

13

43: R

8

:= R

8

�R

10

44: R

10

:= R

16

+R

3

45: R

13

:= R

8

�R

16

46: R

3

:= R

12

� R

3

47: R

8

:= R

8

+R

12

48: R

8

:= R

10

� R

8

49: R

8

:= R

8

�R

13

50: R

10

:= R

3

� R

11

51: R

10

:= R

13

�R

10

52: R

11

:= 1 +R

1

53: R

3

:= R

3

� R

11

54: R

3

:= R

8

�R

3

55: R

7

:= R

3

� R

7

56: R

8

:= R

9

� R

7

57: R

3

:= R

8

� R

3

58: R

4

:= R

8

�R

4

59: R

4

:= R

4

+R

4

60: R

6

:= R

3

+R

6

61: R

3

:= R

3

+R

3

62: R

8

:= R

10

� R

10

63: R

8

:= R

8

+R

6

64: R

8

:= R

8

+R

6

65: R

8

:= R

8

+R

6

66: R

6

:= R

8

+R

6

67: R

8

:= R

10

� R

7

68: R

9

:= R

10

� R

3

69: R

3

:= R

7

� R

3

70: R

10

:= R

7

� R

7

71: R

11

:= R

9

+R

3

72: R

3

:= R

3

� R

1

73: R

9

:= R

9

� R

2

74: R

1

:= R

2

+R

1

75: R

1

:= R

11

� R

1

76: R

1

:= R

1

�R

9

77: R

2

:= R

9

+R

4

78: R

1

:= R

1

�R

3

79: R

1

:= R

1

+R

3

80: R

3

:= R

3

+R

8

81: R

1

:= R

1

�R

6

82: R

1

:= R

10

� R

1

83: R

2

:= R

10

� R

2

84: R

4

:= R

8

+R

8

85: R

4

:= R

4

�R

14

86: R

3

:= R

3

�R

4

87: R

8

:= R

3

� R

6

88: R

2

:= R

8

�R

2

89: R

3

:= R

3

� R

4

90: R

1

:= R

3

�R

1

Up1 := R

4

Up0 := R

6

V p1 := R

1

V p0 := R

2

Zp1 := R

7

Zp2 := R

5

zp1 := R

10

zp2 := R

14

Number of registers used = 16

17



Algorithm HCADD

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

21

:= R

3

�R

20

22: R

20

:= R

4

� R

20

23: R

22

:= R

2

� R

17

24: R

23

:= R

1

� R

17

25: R

24

:= R

7

+R

1

26: R

13

:= R

13

�R

10

27: R

21

:= R

21

+R

13

28: R

14

:= R

14

� R

10

29: R

20

:= R

20

+R

14

30: R

25

:= R

20

+R

21

31: R

12

:= R

12

� R

7

32: R

22

:= R

22

+R

12

33: R

26

:= R

22

� R

7

34: R

11

:= R

11

�R

7

35: R

23

:= R

23

+R

11

36: R

21

:= R

23

� R

21

37: R

24

:= R

21

� R

24

38: R

21

:= R

21

�R

2

39: R

27

:= R

1

� R

23

40: R

26

:= R

27

+R

26

41: R

20

:= R

26

� R

20

42: R

21

:= R

20

+R

21

43: R

27

:= R

23

� R

7

44: R

27

:= R

26

+R

27

45: R

25

:= R

27

� R

25

46: R

20

:= R

25

+R

20

47: R

20

:= R

20

+R

24

48: R

24

:= R

22

� R

26

49: R

25

:= R

12

+R

11

50: R

19

:= R

9

� R

19

51: R

26

:= R

23

� R

23

52: R

26

:= R

26

� R

2

53: R

24

:= R

24

+R

26

54: R

19

:= R

24

�R

19

55: R

17

:= R

7

� R

17

56: R

26

:= R

20

� R

17

57: R

24

:= R

24

� R

26

58: R

13

:= R

24

�R

13

59: R

14

:= R

24

� R

14

60: R

24

:= R

21

� R

17

61: R

21

:= R

21

� R

26

62: R

12

:= R

21

�R

12

63: R

14

:= R

12

+R

14

64: R

17

:= R

19

� R

17

65: R

19

:= R

23

� R

19

66: R

27

:= R

23

+R

11

67: R

27

:= R

23

� R

27

68: R

23

:= R

23

� R

20

69: R

20

:= R

20

� R

26

70: R

11

:= R

20

�R

11

71: R

21

:= R

21

+R

20

72: R

21

:= R

21

� R

25

73: R

12

:= R

21

+R

12

74: R

20

:= R

22

�R

20

75: R

12

:= R

12

+R

11

76: R

12

:= R

12

+R

13

77: R

13

:= R

24

� R

24

78: R

21

:= R

27

�R

23

79: R

13

:= R

13

+R

21

80: R

13

:= R

13

+R

20

81: R

20

:= R

24

+R

27

82: R

20

:= h

2

�R

20

83: R

21

:= R

26

� R

24

84: R

11

:= R

11

+R

21

85: R

21

:= h

1

� R

26

86: R

20

:= R

20

+R

21

87: R

19

:= R

20

+R

19

88: R

19

:= R

17

� R

19

89: R

13

:= R

13

+R

19

90: R

12

:= R

12

+R

13

91: R

19

:= R

23

� R

26

92: R

20

:= R

26

� R

26

93: R

12

:= R

20

� R

12

94: R

14

:= R

20

�R

14

95: R

21

:= R

26

� R

17

96: R

22

:= R

17

� R

17

97: R

24

:= R

20

� R

21

98: R

25

:= h

2

�R

21

99: R

27

:= h

2

�R

21

100: R

11

:= R

11

+R

27

101: R

19

:= R

19

+R

25

102: R

19

:= R

19

+R

22

103: R

11

:= R

11

+R

23

104: R

25

:= R

11

�R

13

105: R

14

:= R

25

+R

14

106: R

11

:= R

11

� R

23

107: R

11

:= R

11

+R

12

108: R

12

:= h

1

�R

24

109: R

11

:= R

11

+R

12

110: R

12

:= h

0

� R

24

111: R

12

:= R

14

+R

12

U

p

1 := R

19

Up

0

:= R

13

V p

1

:= R

11

V p0 := R

12

Zp1 := R

26

Zp2 := R

17

zp1 := R

20

zp2 := R

22

zp3 := R

21

zp4 := R

24

Number of registers used = 27

18



Algorithm mHCADD

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

:

Input Variables: U

11

; U

10

; V

11

; V

10

; U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

1

�R

11

16: R

15

:= R

15

+R

5

17: R

11

:= R

2

� R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

1

�R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

� R

16

22: R

18

:= R

15

�R

15

23: R

18

:= R

18

�R

2

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

� R

13

26: R

18

:= R

4

� R

14

27: R

18

:= R

18

+R

8

28: R

14

:= R

3

� R

14

29: R

14

:= R

14

+R

7

30: R

19

:= R

16

+R

15

31: R

16

:= R

16

�R

18

32: R

18

:= R

18

+R

14

33: R

18

:= R

19

� R

18

34: R

14

:= R

15

�R

14

35: R

18

:= R

18

�R

16

36: R

19

:= 1 +R

1

37: R

19

:= R

14

� R

19

38: R

14

:= R

2

� R

14

39: R

14

:= R

16

+R

14

40: R

16

:= R

18

�R

19

41: R

17

:= R

17

� R

16

42: R

18

:= R

14

�R

9

43: R

14

:= R

14

�R

16

44: R

8

:= R

17

� R

8

45: R

7

:= R

17

� R

7

46: R

17

:= R

16

�R

16

47: R

16

:= R

16

�R

9

48: R

11

:= R

17

� R

11

49: R

19

:= R

17

+R

14

50: R

14

:= R

14

�R

6

51: R

8

:= R

14

+R

8

52: R

20

:= R

17

� R

5

53: R

17

:= R

15

� R

17

54: R

9

:= R

13

� R

9

55: R

13

:= R

13

�R

13

56: R

13

:= R

15

� R

13

57: R

5

:= R

5

+R

6

58: R

5

:= R

19

� R

5

59: R

5

:= R

5

�R

14

60: R

5

:= R

5

�R

20

61: R

5

:= R

5

+R

7

62: R

6

:= h

2

�R

9

63: R

6

:= R

18

+R

6

64: R

6

:= R

18

� R

6

65: R

7

:= R

16

� R

18

66: R

7

:= R

20

+R

7

67: R

14

:= R

16

�R

16

68: R

8

:= R

14

� R

8

69: R

15

:= R

16

� R

9

70: R

18

:= R

9

� R

9

71: R

19

:= R

17

+R

18

72: R

20

:= h

2

� R

15

73: R

20

:= R

20

+R

17

74: R

20

:= R

1

� R

20

75: R

6

:= R

6

+R

20

76: R

6

:= R

6

+R

11

77: R

11

:= h

1

�R

15

78: R

6

:= R

6

+R

11

79: R

6

:= R

6

+R

13

80: R

5

:= R

5

+R

6

81: R

5

:= R

14

� R

5

82: R

11

:= R

14

�R

15

83: R

13

:= h

2

� R

15

84: R

13

:= R

19

+R

13

85: R

19

:= h

2

�R

15

86: R

7

:= R

7

+R

19

87: R

7

:= R

7

+R

17

88: R

19

:= R

7

� R

6

89: R

8

:= R

19

+R

8

90: R

7

:= R

7

� R

17

91: R

5

:= R

7

+R

5

92: R

7

:= h

1

� R

11

93: R

5

:= R

5

+R

7

94: R

7

:= h

0

�R

11

95: R

7

:= R

8

+R

7

Up

1

:= R

13

Up

0

:= R

6

V p

1

:= R

5

V p

0

:= R

7

Zp

1

:= R

16

Zp

2

:= R

9

zp

1

:= R

14

zp

2

:= R

18

zp

3

:= R

15

zp

4

:= R

11

Number of registers used = 20

19



Algorithm HCDBL

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

; f

3

; f

2

:

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

; z

3

; z

4

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

1

2: R

2

:= U

0

3: R

3

:= V

1

4: R

4

:= V

0

5: R

5

:= Z

1

6: R

6

:= Z

2

7: R

7

:= z

1

8: R

8

:= z

2

9: R

9

:= z

3

10: R

10

:= z

4

11: R

11

:= h

1

� R

7

12: R

12

:= h

1

� h

1

13: R

13

:= h

2

� h

2

14: R

14

:= h

1

�R

1

15: R

15

:= R

3

� h

1

16: R

16

:= R

7

� R

7

17: R

12

:= R

12

� R

16

18: R

16

:= f

3

�R

16

19: R

17

:= h

2

� R

2

20: R

14

:= R

14

+R

17

21: R

17

:= h

0

� R

7

22: R

14

:= R

14

+R

17

23: R

14

:= R

7

�R

14

24: R

17

:= R

4

� h

2

25: R

15

:= R

15

+R

17

26: R

17

:= f

2

�R

10

27: R

15

:= R

15

+R

17

28: R

15

:= R

10

�R

15

29: R

17

:= h

2

� R

1

30: R

11

:= R

11

+R

17

31: R

17

:= R

1

�R

1

32: R

13

:= R

13

�R

17

33: R

12

:= R

12

+R

13

34: R

12

:= R

12

�R

2

35: R

13

:= R

16

+R

17

36: R

16

:= h

2

�R

17

37: R

14

:= R

14

+R

16

38: R

8

:= R

13

� R

8

39: R

16

:= R

3

� h

2

40: R

16

:= R

16

�R

9

41: R

8

:= R

8

+R

16

42: R

16

:= h

0

�R

2

43: R

14

:= R

16

� R

14

44: R

12

:= R

12

+R

14

45: R

9

:= R

9

�R

12

46: R

10

:= R

9

� R

10

47: R

12

:= R

3

�R

3

48: R

14

:= R

1

� R

8

49: R

12

:= R

14

+R

12

50: R

12

:= R

12

+R

15

51: R

14

:= R

13

+R

11

52: R

13

:= R

12

�R

13

53: R

11

:= R

8

� R

11

54: R

8

:= R

12

+R

8

55: R

8

:= R

14

�R

8

56: R

8

:= R

8

+R

13

57: R

12

:= h

2

� R

1

58: R

14

:= 1 +R

1

59: R

14

:= R

11

� R

14

60: R

11

:= R

2

� R

11

61: R

8

:= R

8

+R

14

62: R

11

:= R

11

�R

7

63: R

11

:= R

13

+R

11

64: R

13

:= h

2

�R

11

65: R

14

:= h

1

� R

7

66: R

12

:= R

12

+R

14

67: R

12

:= R

8

�R

12

68: R

12

:= R

13

+R

12

69: R

12

:= R

10

� R

12

70: R

7

:= R

8

� R

7

71: R

9

:= R

9

� R

7

72: R

3

:= R

9

� R

3

73: R

4

:= R

9

�R

4

74: R

9

:= R

11

� R

11

75: R

9

:= R

9

+R

12

76: R

12

:= R

11

�R

7

77: R

11

:= R

11

� R

8

78: R

8

:= R

7

� R

8

79: R

13

:= R

8

+R

11

80: R

8

:= R

8

� R

1

81: R

11

:= R

11

� R

2

82: R

12

:= R

8

+R

12

83: R

4

:= R

11

+R

4

84: R

1

:= R

1

+R

2

85: R

1

:= R

13

� R

1

86: R

1

:= R

1

�R

11

87: R

1

:= R

1

�R

8

88: R

1

:= R

1

+R

3

89: R

1

:= R

1

+R

9

90: R

2

:= R

7

� R

7

91: R

1

:= R

2

� R

1

92: R

3

:= R

2

� R

4

93: R

4

:= R

7

�R

10

94: R

8

:= R

10

� R

10

95: R

11

:= R

2

�R

4

96: R

13

:= h

2

�R

4

97: R

14

:= h

2

� R

4

98: R

14

:= R

8

+R

14

99: R

12

:= R

12

+R

13

100: R

12

:= R

12

+R

14

101: R

13

:= R

12

�R

9

102: R

3

:= R

13

�R

3

103: R

12

:= R

12

� R

14

104: R

1

:= R

12

�R

1

105: R

12

:= R

11

� h

1

106: R

1

:= R

1

+R

12

107: R

12

:= R

11

� h

0

108: R

3

:= R

3

+R

12

Up

1

:= R

14

Up

0

:= R

9

V p

1

:= R

1

V p

0

:= R

3

Zp

1

:= R

7

Zp

2

:= R

10

zp

1

:= R

2

zp

2

:= R

8

zp

3

:= R

4

zp

4

:= R

11

Number of registers used = 17

20



Algorithm HCADD

N e

h

2

=0

Curve Constants Used: h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

11

3: R

3

:= U

10

4: R

4

:= V

11

5: R

5

:= V

10

6: R

6

:= Z

11

7: R

7

:= Z

12

8: R

8

:= z

11

9: R

9

:= z

12

10: R

10

:= z

13

11: R

11

:= z

14

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

21

:= R

4

� R

20

22: R

20

:= R

5

� R

20

23: R

22

:= R

3

� R

17

24: R

23

:= R

2

� R

17

25: R

24

:= R

8

+R

2

26: R

13

:= R

13

�R

11

27: R

21

:= R

21

+R

13

28: R

11

:= R

14

�R

11

29: R

14

:= R

20

+R

11

30: R

20

:= R

14

+R

21

31: R

12

:= R

12

� R

8

32: R

22

:= R

22

+R

12

33: R

25

:= R

22

� R

8

34: R

26

:= R

1

� R

8

35: R

23

:= R

23

+R

26

36: R

21

:= R

23

�R

21

37: R

24

:= R

21

� R

24

38: R

21

:= R

21

�R

3

39: R

27

:= R

2

� R

23

40: R

25

:= R

27

+R

25

41: R

14

:= R

25

� R

14

42: R

21

:= R

14

+R

21

43: R

27

:= R

23

� R

8

44: R

27

:= R

25

+R

27

45: R

20

:= R

27

� R

20

46: R

14

:= R

20

+R

14

47: R

14

:= R

14

+R

24

48: R

20

:= R

22

�R

25

49: R

24

:= R

23

+R

26

50: R

19

:= R

10

�R

19

51: R

25

:= R

23

� R

23

52: R

25

:= R

25

�R

3

53: R

20

:= R

20

+R

25

54: R

19

:= R

20

�R

19

55: R

25

:= R

14

� R

14

56: R

24

:= R

25

�R

24

57: R

17

:= R

8

� R

17

58: R

25

:= R

14

�R

17

59: R

20

:= R

20

� R

25

60: R

14

:= R

14

�R

25

61: R

22

:= R

22

� R

14

62: R

13

:= R

20

�R

13

63: R

11

:= R

20

� R

11

64: R

20

:= R

19

�R

19

65: R

20

:= R

20

� R

17

66: R

20

:= R

24

+R

20

67: R

20

:= R

23

� R

20

68: R

23

:= R

23

�R

14

69: R

19

:= R

19

� R

17

70: R

17

:= R

21

�R

17

71: R

21

:= R

21

� R

25

72: R

24

:= R

17

�R

25

73: R

27

:= R

21

+R

14

74: R

14

:= R

14

�R

26

75: R

21

:= R

21

� R

12

76: R

12

:= R

12

+R

26

77: R

12

:= R

27

� R

12

78: R

12

:= R

12

+R

14

79: R

14

:= R

14

+R

24

80: R

12

:= R

12

+R

21

81: R

12

:= R

12

+R

13

82: R

11

:= R

21

+R

11

83: R

13

:= R

17

� R

17

84: R

13

:= R

13

+R

20

85: R

13

:= R

13

+R

22

86: R

17

:= R

25

�R

25

87: R

11

:= R

17

� R

11

88: R

20

:= R

25

�R

19

89: R

21

:= R

19

� R

19

90: R

22

:= R

23

+R

21

91: R

14

:= R

14

+R

22

92: R

23

:= R

14

�R

22

93: R

24

:= 1 � R

20

94: R

13

:= R

13

+R

24

95: R

14

:= R

14

� R

13

96: R

11

:= R

14

+R

11

97: R

12

:= R

12

+R

13

98: R

12

:= R

17

�R

12

99: R

14

:= R

17

� R

20

100: R

12

:= R

23

+R

12

101: R

23

:= R

14

� 1 102: R

12

:= R

12

+R

23

103: R

23

:= R

14

� h

0

104: R

11

:= R

11

+R

23

Up

1

:= R

22

Up

0

:= R

13

V p

1

:= R

12

V p

0

:= R

11

Zp

1

:= R

25

Zp

2

:= R

19

zp

1

:= R

17

zp

2

:= R

21

zp

3

:= R

20

zp

4

:= R

14

Number of registers used = 27

21



Algorithm mHCADD

N e

h

2

=0

Curve Constants Used: h

1

; h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

11

3: R

3

:= U

10

4: R

4

:= V

11

5: R

5

:= V

10

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

2

� R

11

16: R

15

:= R

15

+R

1

17: R

11

:= R

3

�R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

2

� R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

�R

16

22: R

18

:= R

15

� R

15

23: R

18

:= R

18

� R

3

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

�R

13

26: R

18

:= R

13

� R

13

27: R

13

:= R

13

� R

9

28: R

5

:= R

5

� R

14

29: R

5

:= R

5

+R

8

30: R

14

:= R

4

�R

14

31: R

14

:= R

14

+R

7

32: R

19

:= R

16

+R

15

33: R

16

:= R

16

�R

5

34: R

5

:= R

5

+R

14

35: R

5

:= R

19

� R

5

36: R

14

:= R

15

�R

14

37: R

5

:= R

5

�R

16

38: R

19

:= 1 +R

2

39: R

19

:= R

14

� R

19

40: R

14

:= R

3

� R

14

41: R

14

:= R

16

+R

14

42: R

5

:= R

5

�R

19

43: R

16

:= R

17

� R

5

44: R

17

:= R

14

�R

9

45: R

14

:= R

14

�R

5

46: R

8

:= R

16

�R

8

47: R

7

:= R

16

� R

7

48: R

16

:= R

17

�R

17

49: R

19

:= R

5

�R

5

50: R

5

:= R

5

�R

9

51: R

9

:= R

17

� R

5

52: R

11

:= R

11

�R

19

53: R

17

:= R

19

+R

14

54: R

14

:= R

14

� R

6

55: R

8

:= R

14

+R

8

56: R

20

:= R

13

�R

13

57: R

21

:= R

5

�R

13

58: R

22

:= R

5

�R

5

59: R

6

:= R

1

+R

6

60: R

6

:= R

17

� R

6

61: R

6

:= R

6

�R

14

62: R

14

:= R

19

� R

1

63: R

6

:= R

6

�R

14

64: R

6

:= R

6

+R

7

65: R

7

:= R

14

+R

9

66: R

9

:= R

19

�R

2

67: R

9

:= R

9

+R

18

68: R

9

:= R

15

� R

9

69: R

14

:= R

15

�R

19

70: R

14

:= R

14

+R

20

71: R

9

:= R

16

+R

9

72: R

9

:= R

9

+R

11

73: R

7

:= R

7

+R

14

74: R

11

:= R

7

�R

14

75: R

15

:= h

1

�R

21

76: R

9

:= R

9

+R

15

77: R

7

:= R

7

� R

9

78: R

15

:= h

1

� R

21

79: R

6

:= R

6

+R

15

80: R

6

:= R

6

+R

9

81: R

6

:= R

22

�R

6

82: R

6

:= R

11

+R

6

83: R

11

:= h

0

�R

21

84: R

8

:= R

8

+R

11

85: R

8

:= R

22

�R

8

86: R

11

:= R

22

� R

21

87: R

7

:= R

7

+R

8

Up

1

:= R

14

Up

0

:= R

9

V p

1

:= R

6

V p

0

:= R

7

Zp

1

:= R

5

Zp

2

:= R

13

zp

1

:= R

22

zp

2

:= R

20

zp

3

:= R

21

zp

4

:= R

11

Number of registers used = 22

22



Algorithm HCDBL

N e

h

2

=0

in [15℄

Curve Constants: h

1

; h

0

; f

3

; f

2

:

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

; z

3

; z

4

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

1

2: R

2

:= U

0

3: R

3

:= V

1

4: R

4

:= V

0

5: R

5

:= Z

1

6: R

6

:= Z

2

7: R

7

:= z

1

8: R

8

:= z

2

9: R

9

:= z

3

10: R

10

:= z

4

11: R

11

:= h

1

�R

2

12: R

12

:= h

1

�R

1

13: R

13

:= f

2

� R

10

14: R

14

:= R

1

� h

0

15: R

11

:= R

11

+R

14

16: R

11

:= h

1

�R

11

17: R

14

:= h

0

� h

0

18: R

14

:= R

14

� R

7

19: R

11

:= R

11

+R

14

20: R

11

:= R

11

�R

10

21: R

14

:= h

0

� R

7

22: R

12

:= R

12

+R

14

23: R

14

:= R

3

� R

3

24: R

15

:= R

1

� R

1

25: R

16

:= R

7

�R

7

26: R

16

:= f

3

� R

16

27: R

15

:= R

16

+R

15

28: R

8

:= R

8

� R

15

29: R

15

:= 1 +R

1

30: R

16

:= R

1

�R

8

31: R

14

:= R

16

+R

14

32: R

16

:= R

3

� h

1

33: R

13

:= R

13

+R

16

34: R

13

:= R

10

� R

13

35: R

13

:= R

14

+R

13

36: R

14

:= R

12

+ h

1

37: R

12

:= R

13

�R

12

38: R

13

:= R

13

+R

8

39: R

13

:= R

14

� R

13

40: R

8

:= R

8

� h

1

41: R

13

:= R

13

+R

12

42: R

14

:= R

15

� R

8

43: R

8

:= R

2

� R

8

44: R

8

:= R

8

� R

7

45: R

8

:= R

12

+R

8

46: R

12

:= R

13

+R

14

47: R

13

:= R

8

� R

8

48: R

14

:= R

8

� R

12

49: R

15

:= R

14

�R

2

50: R

2

:= R

1

+R

2

51: R

7

:= R

12

� R

7

52: R

8

:= R

8

� R

7

53: R

12

:= R

7

�R

12

54: R

14

:= R

12

+R

14

55: R

2

:= R

14

� R

2

56: R

1

:= R

12

� R

1

57: R

2

:= R

2

�R

15

58: R

2

:= R

2

�R

1

59: R

1

:= R

1

+R

8

60: R

8

:= R

11

� R

7

61: R

10

:= R

11

�R

10

62: R

3

:= R

8

�R

3

63: R

4

:= R

8

� R

4

64: R

4

:= R

15

+R

4

65: R

2

:= R

2

+R

3

66: R

3

:= R

7

�R

4

67: R

4

:= R

7

� R

7

68: R

8

:= R

7

� R

10

69: R

11

:= R

10

�R

10

70: R

1

:= R

1

�R

11

71: R

12

:= R

1

� R

11

72: R

14

:= h

1

�R

8

73: R

13

:= R

13

+R

14

74: R

1

:= R

1

�R

13

75: R

1

:= R

1

+R

3

76: R

2

:= R

2

+R

13

77: R

2

:= R

4

� R

2

78: R

2

:= R

12

+R

2

79: R

3

:= R

4

� R

8

80: R

12

:= R

8

� h

1

81: R

2

:= R

2

+R

12

82: R

12

:= R

8

� h

0

83: R

1

:= R

1

+R

12

Up

1

:= R

11

Up

0

:= R

13

V p

1

:= R

2

V p

0

:= R

1

Zp

1

:= R

7

Zp

2

:= R

10

zp1 := R

4

zp

2

:= R

11

zp

3

:= R

8

zp

4

:= R

3

Number of registers used = 16

23



Algorithm HCADD

A

of [13℄

Curve Constants Used: h

2

; h

1

; h

0

; f

4

:

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

5

�R

1

10: R

10

:= R

3

�R

7

11: R

11

:= R

4

�R

8

12: R

12

:= R

10

+R

11

13: R

13

:= R

2

�R

6

14: R

14

:= R

2

� R

13

15: R

14

:= R

14

+R

9

16: R

9

:= R

9

� R

14

17: R

10

:= R

14

�R

10

18: R

15

:= R

13

� R

13

19: R

15

:= R

15

� R

1

20: R

9

:= R

9

+R

15

21: R

11

:= R

13

�R

11

22: R

13

:= R

14

+R

13

23: R

12

:= R

13

� R

12

24: R

12

:= R

12

�R

10

25: R

13

:= 1 +R

2

26: R

13

:= R

11

� R

13

27: R

11

:= R

1

� R

11

28: R

10

:= R

10

�R

11

29: R

11

:= R

12

�R

13

30: R

12

:= R

9

� R

11

31: R

11

:= R

11

� R

11

32: R

12

:= 1=R

12

33: R

11

:= R

11

�R

12

34: R

12

:= R

9

� R

12

35: R

9

:= R

9

� R

12

36: R

10

:= R

10

�R

12

37: R

12

:= R

10

�R

13

38: R

13

:= R

10

�R

2

39: R

14

:= h2 �R

9

40: R

12

:= R

12

+R

14

41: R

12

:= R

13

�R

12

42: R

12

:= R

12

�R

1

43: R

13

:= R

6

+R

6

44: R

13

:= R

13

+R

13

45: R

13

:= R

13

� f4 46: R

14

:= R

10

+R

10

47: R

13

:= R

14

�R

13

48: R

14

:= h2 �R

9

49: R

13

:= R

13

+R

14

50: R

14

:= R

9

� R

9

51: R

13

:= R

13

� R

14

52: R

13

:= R

13

�R

14

53: R

14

:= R

5

�R

10

54: R

15

:= R

8

+R

8

55: R

15

:= h1 +R

15

56: R

9

:= R

15

� R

9

57: R

15

:= R

6

+R

10

58: R

6

:= R

6

�R

10

59: R

5

:= R

6

+R

5

60: R

6

:= R

12

+R

5

61: R

6

:= R

6

+R

9

62: R

6

:= R

6

+R

13

63: R

9

:= R

15

�R

13

64: R

10

:= R

13

�R

9

65: R

12

:= h2 � R

13

66: R

10

:= R

10

+R

6

67: R

5

:= R

10

�R

5

68: R

5

:= R

5

� R

11

69: R

5

:= R

5

�R

8

70: R

5

:= R

5

� h1 71: R

5

:= R

5

+R

12

72: R

8

:= R

6

� R

9

73: R

9

:= h2 �R

6

74: R

8

:= R

8

�R

14

75: R

8

:= R

8

� R

11

76: R

7

:= R

8

�R

7

77: R

7

:= R

7

� h0 78: R

7

:= R

7

+R

9

up

0

:= R

6

up

1

:= R

13

vp

0

:= R

7

vp

1

:= R

5

Number of registers used = 15

24



Algorithm HCDBL

A

of [13℄

Curve Constants: h

2

; h

1

; h

0

; f4; f

3

; f

2

Input Variables: u

1

; u

0

; v

1

; v

0

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

1

2: R

2

:= u

0

3: R

3

:= v

1

4: R

4

:= v

0

5: R

5

:= f4 �R

1

6: R

6

:= 2 �R

3

7: R

6

:= h

1

+R

6

8: R

7

:= h

2

� R

1

9: R

6

:= R

6

�R

7

10: R

7

:= 2 � R

4

11: R

7

:= h

0

+R

7

12: R

8

:= h

2

�R

2

13: R

7

:= R

7

�R

8

14: R

8

:= R

3

� R

3

15: R

9

:= R

1

� R

1

16: R

5

:= R

9

�R

5

17: R

9

:= f

3

+R

9

18: R

5

:= 2 � R

5

19: R

5

:= R

5

+R

9

20: R

10

:= 2 � R

2

21: R

5

:= R

5

�R

10

22: R

10

:= 2 � R

10

23: R

9

:= R

10

�R

9

24: R

10

:= R

3

� h

2

25: R

5

:= R

5

�R

10

26: R

10

:= f4 �R

1

27: R

9

:= R

9

+R

10

28: R

10

:= R

3

� h

2

29: R

9

:= R

9

+R

10

30: R

9

:= R

1

� R

9

31: R

9

:= R

9

+ f

2

32: R

8

:= R

9

�R

8

33: R

9

:= R

1

�R

6

34: R

10

:= R

7

�R

9

35: R

10

:= R

7

�R

10

36: R

7

:= R

7

�R

9

37: R

9

:= R

6

�R

6

38: R

9

:= R

2

� R

9

39: R

9

:= R

9

+R

10

40: R

10

:= 2 � f4

41: R

10

:= R

10

� R

2

42: R

8

:= R

8

�R

10

43: R

10

:= R

3

� h

1

44: R

8

:= R

8

�R

10

45: R

10

:= R

4

� h

2

46: R

8

:= R

8

�R

10

47: R

10

:= R

7

+R

6

48: R

7

:= R

8

� R

7

49: R

6

:= R

5

�R

6

50: R

5

:= R

8

+R

5

51: R

5

:= R

10

�R

5

52: R

5

:= R

5

�R

7

53: R

8

:= 1 +R

1

54: R

8

:= R

6

� R

8

55: R

5

:= R

5

�R

8

56: R

6

:= R

2

� R

6

57: R

6

:= R

7

�R

6

58: R

7

:= R

9

� R

5

59: R

5

:= R

5

� R

5

60: R

7

:= 1=R

7

61: R

5

:= R

5

�R

7

62: R

7

:= R

9

� R

7

63: R

8

:= R

9

� R

7

64: R

6

:= R

6

� R

7

65: R

7

:= 2 �R

6

66: R

9

:= R

8

� R

8

67: R

10

:= R

8

� h

2

68: R

7

:= R

7

+R

10

69: R

7

:= R

7

�R

9

70: R

10

:= R

6

�R

1

71: R

10

:= h

2

� R

10

72: R

11

:= 2 � R

3

73: R

10

:= R

10

+R

11

74: R

10

:= R

10

+ h

1

75: R

8

:= R

8

� R

10

76: R

10

:= R

1

+R

6

77: R

10

:= R

10

�R

7

78: R

11

:= R

6

� R

6

79: R

8

:= R

11

+R

8

80: R

11

:= 2 � R

1

81: R

11

:= R

11

� f4 82: R

9

:= R

9

� R

11

83: R

8

:= R

8

+R

9

84: R

1

:= R

1

� R

6

85: R

1

:= R

1

+R

2

86: R

2

:= R

2

� R

6

87: R

6

:= R

7

� R

10

88: R

9

:= R

7

� h

2

89: R

6

:= R

6

+R

8

90: R

1

:= R

6

�R

1

91: R

1

:= R

1

� R

5

92: R

1

:= R

1

�R

3

93: R

1

:= R

1

� h

1

94: R

1

:= R

1

+R

9

95: R

3

:= R

8

� R

10

96: R

6

:= h

2

�R

8

97: R

2

:= R

3

�R

2

98: R

2

:= R

2

� R

5

99: R

2

:= R

2

�R

4

100: R

2

:= R

2

� h

0

101: R

2

:= R

2

+R

6

up

0

:= R

8

up

1

:= R

7

vp

0

:= R

2

vp

1

:= R

1

Number of registers used = 11

25



Algorithm HCADD

A

of [20℄

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u10 2: R

2

:= u11 3: R

3

:= v10 4: R

4

:= v11

5: R

5

:= u20 6: R

6

:= u21 7: R

7

:= v20 8: R

8

:= v21

9: R

9

:= R

2

+R

6

10: R

10

:= R

5

�R

1

11: R

11

:= R

3

�R

7

12: R

12

:= R

4

�R

8

13: R

13

:= R

11

+R

12

14: R

14

:= R

2

�R

6

15: R

12

:= R

14

� R

12

16: R

15

:= R

2

� R

14

17: R

15

:= R

15

+R

10

18: R

10

:= R

10

� R

15

19: R

11

:= R

15

� R

11

20: R

15

:= R

15

+R

14

21: R

13

:= R

15

�R

13

22: R

13

:= R

13

�R

11

23: R

14

:= R

14

� R

14

24: R

14

:= R

14

�R

1

25: R

10

:= R

10

+R

14

26: R

14

:= 1 +R

2

27: R

14

:= R

12

� R

14

28: R

12

:= R

1

� R

12

29: R

11

:= R

11

�R

12

30: R

12

:= R

13

�R

14

31: R

13

:= R

10

� R

12

32: R

12

:= R

12

�R

12

33: R

13

:= 1=R

13

34: R

12

:= R

12

� R

13

35: R

13

:= R

10

� R

13

36: R

10

:= R

10

�R

13

37: R

11

:= R

11

�R

13

38: R

13

:= R

6

+R

11

39: R

14

:= R

11

�R

2

40: R

15

:= R

13

�R

2

41: R

14

:= R

14

�R

15

42: R

14

:= R

14

�R

1

43: R

6

:= R

6

� R

11

44: R

6

:= R

6

+R

5

45: R

14

:= R

14

+R

6

46: R

14

:= R

14

+R

10

47: R

10

:= R

10

� R

10

48: R

9

:= R

10

� R

9

49: R

9

:= R

14

+R

9

50: R

5

:= R

5

�R

11

51: R

11

:= R

11

+R

13

52: R

11

:= R

11

�R

2

53: R

10

:= R

11

�R

10

54: R

11

:= R

13

�R

10

55: R

13

:= R

10

� R

11

56: R

13

:= R

13

+R

9

57: R

11

:= R

9

�R

11

58: R

5

:= R

11

�R

5

59: R

6

:= R

13

�R

6

60: R

6

:= R

6

� R

12

61: R

5

:= R

5

� R

12

62: R

6

:= R

6

�R

8

63: R

5

:= R

5

�R

7

64: R

6

:= R

6

� 1

up

0

:= R

9

up

1

:= R

10

vp

0

:= R

5

vp

1

:= R

6

Number of registers used = 15

26



Algorithm HCDBL

A

of [20℄

Input Variables: u

0

; u

1

; v

0

; v

1

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

5

:= R

4

� R

4

6: R

6

:= R

1

�R

1

7: R

7

:= R

1

+R

2

8: R

8

:= R

2

� R

2

9: R

2

:= R

2

� R

8

10: R

5

:= R

2

+R

5

11: R

5

:= R

5

+R

4

12: R

1

:= R

1

� R

5

13: R

9

:= R

5

+R

8

14: R

7

:= R

7

� R

9

15: R

7

:= R

7

+R

2

16: R

7

:= R

7

+R

1

17: R

1

:= 1=R

1

18: R

6

:= R

6

� R

1

19: R

1

:= R

5

�R

1

20: R

9

:= R

8

� R

1

21: R

2

:= R

2

+R

9

22: R

2

:= R

2

+R

5

23: R

5

:= R

6

+R

8

24: R

1

:= R

1

+R

5

25: R

9

:= R

6

�R

6

26: R

10

:= R

9

� R

8

27: R

10

:= R

10

� R

8

28: R

8

:= R

10

+R

8

29: R

8

:= R

8

+R

6

30: R

5

:= R

5

� R

8

31: R

10

:= R

8

+R

9

32: R

1

:= R

1

� R

10

33: R

1

:= R

1

+R

6

34: R

1

:= R

1

+R

5

35: R

5

:= R

5

+R

7

36: R

1

:= R

1

+ 1

37: R

3

:= R

5

+R

3

38: R

1

:= R

1

+R

2

39: R

1

:= R

1

+R

4

up

0

:= R

8

up

1

:= R

9

vp

0

:= R

3

vp

1

:= R

1

Number of registers used = 10

27



Algorithm HCDBL

A

deg(h)=1

of [17℄

Curve Constants: h0; h1; h1i; h12; f0; f1; f2; f3

Input Variables: u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

1

:= R

1

�R

1

6: R

5

:= R

2

� R

2

7: R

5

:= R

5

+ f3 8: R

3

:= R

3

�R

3

9: R

3

:= f0 +R

3

10: R

3

:= 1=R

3

11: R

3

:= R

3

� R

1

12: R

6

:= R

5

� R

3

13: R

2

:= R

6

+R

2

14: R

2

:= R

2

�R

2

15: R

7

:= h12 � R

3

16: R

5

:= R

7

+R

5

17: R

6

:= R

5

� R

6

18: R

2

:= R

2

+R

7

19: R

5

:= R

5

� R

2

20: R

5

:= R

5

+ f1

21: R

1

:= R

5

+R

1

22: R

1

:= h1i � R

1

23: R

3

:= R

7

� R

3

24: R

5

:= R

7

� R

3

25: R

5

:= R

6

+R

5

26: R

5

:= R

5

+ f2 27: R

4

:= R

4

� R

4

28: R

4

:= R

5

+R

4

29: R

4

:= h1i � R

4

30: u0p := R

2

31: u1p := R

3

32: v0p := R

1

33: v1p := R

4

Number of registers used = 7

28



Algorithm HCDBL

A

deg(h)=1;h

1

=1

of [17℄

Curve Constants: f0; f1; f2; f3

Input Variables: u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

1

:= R

1

� R

1

6: R

5

:= R

2

� R

2

7: R

5

:= R

5

+ f3 8: R

3

:= R

3

� R

3

9: R

3

:= f0 +R

3

10: R

3

:= 1=R

3

11: R

3

:= R

3

� R

1

12: R

6

:= R

5

� R

3

13: R

5

:= R

3

+R

5

14: R

2

:= R

6

+R

2

15: R

6

:= R

5

� R

6

16: R

2

:= R

2

� R

2

17: R

2

:= R

2

+R

3

18: R

5

:= R

5

�R

2

19: R

5

:= R

5

+ f1 20: R

1

:= R

5

+R

1

21: R

4

:= R

4

� R

4

22: R

5

:= R

3

�R

3

23: R

3

:= R

3

� R

5

24: R

3

:= R

6

+R

3

25: R

3

:= R

3

+ f2 26: R

3

:= R

3

+R

4

27: u0p := R

2

28: u1p := R

5

29: v0p := R

1

30: v1p := R

3

Number of registers used = 6

29



Algorithm HCDBL

A

deg(h)=2

of [17℄

Curve Constants: h1; h12; f1

Input Variables: f4; u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= f4 2: R

2

:= u0 3: R

3

:= u1 4: R

4

:= v0

5: R

5

:= v1

6: R

6

:= R

2

+ h12 7: R

7

:= R

2

�R

2

8: R

7

:= f1 +R

7

9: R

8

:= R

3

� R

3

10: R

9

:= h1 +R

5

11: R

9

:= R

5

� R

9

12: R

10

:= R

8

+R

5

13: R

11

:= h1 �R

5

14: R

6

:= R

6

+R

11

15: R

11

:= R

4

+R

11

16: R

8

:= R

11

+R

8

17: R

11

:= R

1

� R

3

18: R

12

:= R

10

+R

11

19: R

12

:= R

3

� R

12

20: R

9

:= R

12

+R

9

21: R

12

:= h1 �R

10

22: R

4

:= R

4

+R

12

23: R

4

:= R

9

+R

4

24: R

9

:= h1 �R

9

25: R

7

:= R

7

+R

9

26: R

9

:= 1=R

7

27: R

2

:= R

2

� R

9

28: R

6

:= R

6

� R

2

29: R

2

:= R

4

� R

2

30: R

2

:= R

3

+R

2

31: R

12

:= R

4

� R

4

32: R

4

:= h1 �R

4

33: R

4

:= R

7

+R

4

34: R

4

:= R

10

� R

4

35: R

4

:= R

12

+R

4

36: R

4

:= R

9

� R

4

37: R

7

:= R

2

+ h1

38: R

9

:= R

6

�R

6

39: R

9

:= R

6

+R

9

40: R

10

:= R

9

+R

2

41: R

10

:= R

10

+R

1

42: R

10

:= R

10

+R

3

43: R

10

:= R

6

� R

10

44: R

5

:= R

5

+R

10

45: R

5

:= R

5

+R

4

46: R

1

:= R

1

�R

6

47: R

7

:= R

7

+R

1

48: R

4

:= R

7

+R

4

49: R

4

:= R

2

� R

4

50: R

7

:= R

2

�R

2

51: R

2

:= R

2

+ h1 52: R

2

:= R

2

+R

3

53: R

1

:= R

2

+R

1

54: R

1

:= R

6

�R

1

55: R

1

:= R

7

+R

1

56: R

2

:= R

1

+R

11

57: R

2

:= R

6

� R

2

58: R

2

:= R

8

+R

2

59: R

2

:= R

2

+R

4

60: u0p := R

1

61: u1p := R

9

62: v0p := R

2

63: v1p := R

5

Number of registers used = 12

30



B HECC Addition Formulae in ERSF with Full Register Reuse

Algorithm HCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U11; U10; V 11; V 10; Z11; Z12; z11; U21; U20; V 21; V 20; Z21; Z22; z21

Output Variables: Up1; Up0; V p1; V p0; Zp1; Zp2; zp1; zp2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= U

21

9: R

9

:= U

20

10: R

10

:= V

21

11: R

11

:= V

20

12: R

12

:= Z

21

13: R

13

:= Z

22

14: R

14

:= z

21

15: R

15

:= R

1

� R

14

16: R

16

:= R

2

� R

14

17: R

17

:= R

5

�R

6

18: R

17

:= R

7

�R

17

19: R

18

:= R

12

� R

13

20: R

14

:= R

14

� R

18

21: R

3

:= R

3

� R

14

22: R

4

:= R

4

� R

14

23: R

14

:= R

7

+R

1

24: R

6

:= R

6

�R

13

25: R

5

:= R

5

� R

12

26: R

12

:= R

5

�R

5

27: R

13

:= R

5

� R

5

28: R

6

:= R

6

�R

13

29: R

11

:= R

11

� R

17

30: R

10

:= R

10

�R

17

31: R

3

:= R

3

�R

10

32: R

4

:= R

4

�R

11

33: R

17

:= R

4

+R

3

34: R

9

:= R

9

� R

7

35: R

16

:= R

9

�R

16

36: R

18

:= R

16

� R

7

37: R

8

:= R

8

� R

7

38: R

15

:= R

15

�R

8

39: R

1

:= R

1

�R

15

40: R

1

:= R

1

+R

18

41: R

18

:= R

16

� R

1

42: R

4

:= R

1

� R

4

43: R

19

:= R

15

� R

15

44: R

19

:= R

19

� R

2

45: R

18

:= R

18

+R

19

46: R

6

:= R

6

� R

18

47: R

5

:= R

5

�R

6

48: R

6

:= R

6

�R

6

49: R

3

:= R

15

�R

3

50: R

7

:= R

7

� R

15

51: R

1

:= R

1

+R

7

52: R

1

:= R

1

�R

17

53: R

1

:= R

1

�R

4

54: R

7

:= R

3

� R

14

55: R

2

:= R

2

�R

3

56: R

2

:= R

4

�R

2

57: R

1

:= R

1

�R

7

58: R

3

:= R

1

� R

1

59: R

4

:= R

2

�R

13

60: R

7

:= R

1

�R

13

61: R

13

:= R

18

� R

7

62: R

2

:= R

2

� R

7

63: R

1

:= R

1

�R

7

64: R

10

:= R

13

� R

10

65: R

11

:= R

13

� R

11

66: R

13

:= R

16

�R

1

67: R

14

:= R

2

+R

1

68: R

15

:= R

7

� R

4

69: R

16

:= R

7

�R

7

70: R

17

:= R

15

+R

15

71: R

4

:= R

4

�R

4

72: R

18

:= R

1

� R

8

73: R

15

:= R

18

+R

15

74: R

1

:= R

15

�R

1

75: R

1

:= R

17

�R

1

76: R

1

:= R

1

�R

12

77: R

15

:= R

15

�R

1

78: R

17

:= R

15

�R

1

79: R

19

:= R

2

� R

9

80: R

2

:= R

2

+R

2

81: R

9

:= R

9

+R

8

82: R

9

:= R

14

�R

9

83: R

9

:= R

9

�R

19

84: R

11

:= R

19

+R

11

85: R

9

:= R

9

�R

18

86: R

9

:= R

9

+R

10

87: R

10

:= R

10

+R

10

88: R

11

:= R

16

� R

11

89: R

14

:= R

15

+R

8

90: R

8

:= R

8

+R

8

91: R

3

:= R

3

�R

14

92: R

2

:= R

3

�R

2

93: R

2

:= R

15

�R

2

94: R

3

:= R

8

+R

15

95: R

3

:= R

3

�R

6

96: R

2

:= R

4

+R

2

97: R

2

:= R

2

+R

13

98: R

2

:= R

2

+R

10

99: R

2

:= R

2

+R

3

100: R

3

:= R

15

� R

2

101: R

3

:= R

3

�R

11

102: R

4

:= R

9

�R

2

103: R

4

:= R

16

� R

4

104: R

4

:= R

17

�R

4

Up

1

:= R

1

Up

0

:= R

2

V p

1

:= R

4

V p

0

:= R

3

Zp

1

:= R

7

Zp

2

:= R

5

zp

1

:= R

16

zp

2

:= R

12

Number of registers used = 19

31



Algorithm mHCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

10

; U

11

; V

10

; V

11

; U

20

; U

21

; V

20

; V

21

; Z

21

; Z

22

; z

21

; z

22

Output Variables: Up

0

; Up

1

; V p

0

; V p

1

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

10

:= R

9

� R

10

14: R

13

:= R

11

�R

10

15: R

14

:= R

1

�R

11

16: R

14

:= R

14

�R

5

17: R

15

:= R

2

� R

11

18: R

15

:= R

6

�R

15

19: R

16

:= R

1

�R

14

20: R

16

:= R

16

+R

15

21: R

15

:= R

15

� R

16

22: R

17

:= R

14

�R

14

23: R

17

:= R

17

� R

2

24: R

15

:= R

15

+R

17

25: R

10

:= R

15

� R

10

26: R

17

:= R

10

�R

9

27: R

10

:= R

10

� R

10

28: R

18

:= R

17

� R

17

29: R

4

:= R

4

� R

13

30: R

4

:= R

4

�R

8

31: R

3

:= R

3

� R

13

32: R

3

:= R

3

�R

7

33: R

13

:= R

16

+R

14

34: R

16

:= R

16

�R

4

35: R

14

:= R

14

� R

3

36: R

3

:= R

4

+R

3

37: R

3

:= R

13

� R

3

38: R

3

:= R

3

�R

16

39: R

4

:= 1 +R

1

40: R

4

:= R

14

�R

4

41: R

13

:= R

2

� R

14

42: R

13

:= R

16

�R

13

43: R

3

:= R

3

�R

4

44: R

4

:= R

15

�R

3

45: R

14

:= R

13

� R

11

46: R

9

:= R

3

� R

9

47: R

15

:= R

9

�R

9

48: R

16

:= R

13

� R

3

49: R

8

:= R

4

� R

8

50: R

4

:= R

4

� R

7

51: R

7

:= R

16

�R

11

52: R

11

:= R

3

�R

3

53: R

19

:= R

11

+R

16

54: R

16

:= R

16

�R

6

55: R

8

:= R

16

+R

8

56: R

8

:= R

15

�R

8

57: R

1

:= R

1

� R

3

58: R

1

:= R

13

�R

1

59: R

3

:= R

14

�R

3

60: R

3

:= R

14

�R

3

61: R

1

:= R

1

� R

3

62: R

3

:= R

7

+R

7

63: R

13

:= R

11

� R

5

64: R

7

:= R

13

+R

7

65: R

11

:= R

14

� R

11

66: R

3

:= R

3

�R

11

67: R

3

:= R

3

�R

18

68: R

7

:= R

7

�R

3

69: R

11

:= R

7

� R

3

70: R

6

:= R

5

+R

6

71: R

6

:= R

19

�R

6

72: R

6

:= R

6

�R

16

73: R

6

:= R

6

�R

13

74: R

1

:= R

1

+R

6

75: R

6

:= R

6

+R

4

76: R

4

:= R

4

+R

4

77: R

2

:= R

2

� R

15

78: R

1

:= R

1

�R

2

79: R

1

:= R

1

+R

4

80: R

2

:= R

5

+R

5

81: R

2

:= R

2

+R

14

82: R

2

:= R

2

� R

10

83: R

1

:= R

1

+R

2

84: R

2

:= R

7

�R

1

85: R

2

:= R

2

�R

8

86: R

4

:= R

6

�R

1

87: R

4

:= R

15

�R

4

88: R

4

:= R

11

�R

4

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

4

V p

0

:= R

2

Zp

1

:= R

9

Zp

2

:= R

17

zp

1

:= R

15

zp

2

:= R

18

Number of registers used = 19

32



Algorithm HCADD

N e

h

2

6=0

of [15℄

Curve Constants Used: h

2

; h

1

; h

0

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

3

:= R

3

�R

20

22: R

4

:= R

4

� R

20

23: R

20

:= R

2

� R

17

24: R

21

:= R

1

� R

17

25: R

9

:= R

9

�R

19

26: R

13

:= R

13

� R

10

27: R

3

:= R

3

+R

13

28: R

10

:= R

14

� R

10

29: R

4

:= R

4

+R

10

30: R

14

:= R

4

+R

3

31: R

12

:= R

12

� R

7

32: R

19

:= R

20

+R

12

33: R

20

:= R

19

� R

7

34: R

11

:= R

11

� R

7

35: R

21

:= R

21

+R

11

36: R

22

:= R

1

� R

21

37: R

20

:= R

22

+R

20

38: R

22

:= R

19

� R

20

39: R

4

:= R

20

� R

4

40: R

23

:= R

21

� R

21

41: R

23

:= R

23

� R

2

42: R

22

:= R

22

+R

23

43: R

9

:= R

22

� R

9

44: R

3

:= R

21

� R

3

45: R

21

:= R

21

� R

7

46: R

20

:= R

20

+R

21

47: R

14

:= R

20

� R

14

48: R

14

:= R

14

+R

4

49: R

20

:= R

21

� R

9

50: R

1

:= R

7

+R

1

51: R

1

:= R

3

�R

1

52: R

1

:= R

14

+R

1

53: R

2

:= R

3

�R

2

54: R

2

:= R

4

+R

2

55: R

3

:= R

12

+R

11

56: R

4

:= R

7

� R

17

57: R

7

:= R

9

�R

4

58: R

9

:= R

2

� R

4

59: R

4

:= R

1

�R

4

60: R

14

:= R

22

� R

4

61: R

2

:= R

2

�R

4

62: R

12

:= R

2

�R

12

63: R

13

:= R

14

� R

13

64: R

10

:= R

14

� R

10

65: R

10

:= R

12

+R

10

66: R

14

:= R

9

�R

9

67: R

17

:= R

21

+R

11

68: R

17

:= R

21

� R

17

69: R

21

:= R

21

� R

1

70: R

1

:= R

1

� R

4

71: R

11

:= R

1

� R

11

72: R

2

:= R

2

+R

1

73: R

1

:= R

19

�R

1

74: R

2

:= R

2

� R

3

75: R

2

:= R

2

+R

12

76: R

2

:= R

2

+R

11

77: R

2

:= R

2

+R

13

78: R

3

:= R

17

�R

21

79: R

3

:= R

14

+R

3

80: R

1

:= R

3

+R

1

81: R

3

:= R

9

+R

17

82: R

3

:= h

2

�R

3

83: R

9

:= R

4

�R

9

84: R

9

:= R

11

+R

9

85: R

11

:= h

1

� R

4

86: R

3

:= R

3

+R

11

87: R

3

:= R

3

+R

20

88: R

3

:= R

7

� R

3

89: R

1

:= R

1

+R

3

90: R

2

:= R

2

+R

1

91: R

3

:= R

21

� R

4

92: R

11

:= R

4

� R

4

93: R

2

:= R

11

�R

2

94: R

10

:= R

11

� R

10

95: R

12

:= R

4

� R

7

96: R

13

:= R

7

� R

7

97: R

14

:= R

11

� R

12

98: R

17

:= h

2

� R

12

99: R

19

:= h

2

� R

12

100: R

9

:= R

9

+R

19

101: R

3

:= R

3

+R

17

102: R

3

:= R

3

+R

13

103: R

9

:= R

9

+R

21

104: R

17

:= R

9

�R

1

105: R

10

:= R

17

+R

10

106: R

9

:= R

9

�R

21

107: R

2

:= R

9

+R

2

108: R

9

:= h

1

�R

14

109: R

2

:= R

2

+R

9

110: R

9

:= h

0

� R

14

111: R

9

:= R

10

+R

9

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

2

V p

0

:= R

9

Zp

1

:= R

4

Zp

2

:= R

7

zp

1

:= R

11

zp

2

:= R

13

zp

3

:= R

12

zp

4

:= R

14

Number of registers used = 23

33



Algorithm mHCADD

N e

h

2

6=0

of [15℄

Curve Constants Used: h

2

; h

1

; h

0

:

Input Variables: U

11

; U

10

; V

11

; V

10

; U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

1

�R

11

16: R

15

:= R

15

+R

5

17: R

11

:= R

2

� R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

1

�R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

� R

16

22: R

18

:= R

15

�R

15

23: R

18

:= R

18

�R

2

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

� R

13

26: R

4

:= R

4

� R

14

27: R

4

:= R

4

+R

8

28: R

3

:= R

3

�R

14

29: R

3

:= R

3

+R

7

30: R

14

:= R

16

+R

15

31: R

16

:= R

16

�R

4

32: R

15

:= R

15

� R

3

33: R

3

:= R

4

+R

3

34: R

3

:= R

14

� R

3

35: R

3

:= R

3

�R

16

36: R

4

:= 1 +R

1

37: R

4

:= R

15

� R

4

38: R

2

:= R

2

� R

15

39: R

2

:= R

16

+R

2

40: R

3

:= R

3

�R

4

41: R

4

:= R

17

� R

3

42: R

14

:= R

2

� R

9

43: R

2

:= R

2

� R

3

44: R

8

:= R

4

�R

8

45: R

4

:= R

4

� R

7

46: R

7

:= R

3

� R

3

47: R

3

:= R

3

� R

9

48: R

11

:= R

7

� R

11

49: R

15

:= R

7

+R

2

50: R

2

:= R

2

� R

6

51: R

8

:= R

2

+R

8

52: R

16

:= R

3

� R

14

53: R

17

:= R

13

� R

13

54: R

9

:= R

13

� R

9

55: R

13

:= R

15

�R

17

56: R

15

:= R

15

� R

7

57: R

7

:= R

7

� R

5

58: R

16

:= R

7

+R

16

59: R

5

:= R

5

+R

6

60: R

5

:= R

15

� R

5

61: R

2

:= R

5

�R

2

62: R

2

:= R

2

�R

7

63: R

2

:= R

2

+R

4

64: R

4

:= h

2

� R

9

65: R

4

:= R

14

+R

4

66: R

4

:= R

14

� R

4

67: R

5

:= R

3

� R

3

68: R

6

:= R

5

�R

8

69: R

7

:= R

3

� R

9

70: R

8

:= R

9

� R

9

71: R

14

:= R

15

+R

8

72: R

15

:= h

2

� R

7

73: R

15

:= R

15

+R

15

74: R

1

:= R

1

� R

15

75: R

1

:= R

4

+R

1

76: R

1

:= R

1

+R

11

77: R

4

:= h

1

� R

7

78: R

1

:= R

1

+R

4

79: R

1

:= R

1

+R

13

80: R

2

:= R

2

+R

1

81: R

2

:= R

5

� R

2

82: R

4

:= R

5

� R

7

83: R

11

:= h

2

� R

7

84: R

11

:= R

14

+R

11

85: R

13

:= h

2

�R

7

86: R

13

:= R

16

+R

13

87: R

13

:= R

13

+R

15

88: R

14

:= R

13

� R

1

89: R

6

:= R

14

+R

6

90: R

13

:= R

13

�R

15

91: R

2

:= R

13

+R

2

92: R

13

:= h

1

� R

4

93: R

2

:= R

2

+R

13

94: R

13

:= h

0

�R

4

95: R

6

:= R

6

+R

13

Up

1

:= R

11

Up

0

:= R

1

V p

1

:= R

2

V p

0

:= R

6

Zp

1

:= R

3

Zp

2

:= R

9

zp

1

:= R

5

zp

2

:= R

8

zp

3

:= R

7

zp

4

:= R

4

Number of registers used = 18

34



Algorithm HCADD

N e

h

2

=0

of [15℄

Curve Constants Used: h

0

; h

1

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

3

:= R

3

� R

20

22: R

4

:= R

4

�R

20

23: R

20

:= R

2

� R

17

24: R

21

:= R

1

� R

17

25: R

9

:= R

9

� R

19

26: R

13

:= R

13

� R

10

27: R

3

:= R

3

+R

13

28: R

10

:= R

14

�R

10

29: R

4

:= R

4

+R

10

30: R

14

:= R

4

+R

3

31: R

12

:= R

12

� R

7

32: R

19

:= R

20

+R

12

33: R

20

:= R

19

�R

7

34: R

11

:= R

11

� R

7

35: R

21

:= R

21

+R

11

36: R

22

:= R

1

� R

21

37: R

20

:= R

22

+R

20

38: R

22

:= R

19

� R

20

39: R

4

:= R

20

� R

4

40: R

23

:= R

21

�R

21

41: R

23

:= R

23

�R

2

42: R

22

:= R

22

+R

23

43: R

9

:= R

22

� R

9

44: R

3

:= R

21

� R

3

45: R

21

:= R

21

�R

7

46: R

20

:= R

20

+R

21

47: R

14

:= R

20

� R

14

48: R

14

:= R

14

+R

4

49: R

20

:= R

9

�R

9

50: R

1

:= R

7

+R

1

51: R

1

:= R

3

� R

1

52: R

1

:= R

14

+R

1

53: R

2

:= R

3

� R

2

54: R

2

:= R

4

+R

2

55: R

3

:= R

21

+R

11

56: R

4

:= R

1

� R

1

57: R

3

:= R

4

� R

3

58: R

4

:= R

7

�R

17

59: R

7

:= R

20

� R

4

60: R

3

:= R

3

+R

7

61: R

3

:= R

21

�R

3

62: R

7

:= R

9

�R

4

63: R

9

:= R

2

� R

4

64: R

4

:= R

1

� R

4

65: R

14

:= R

22

�R

4

66: R

1

:= R

1

�R

4

67: R

2

:= R

2

� R

4

68: R

17

:= R

19

�R

1

69: R

19

:= R

21

�R

1

70: R

13

:= R

14

� R

13

71: R

10

:= R

14

� R

10

72: R

14

:= R

9

� R

4

73: R

20

:= R

2

+R

1

74: R

1

:= R

1

�R

11

75: R

2

:= R

2

� R

12

76: R

11

:= R

12

+R

11

77: R

11

:= R

20

�R

11

78: R

11

:= R

11

+R

1

79: R

1

:= R

1

+R

14

80: R

11

:= R

11

+R

2

81: R

11

:= R

11

+R

13

82: R

2

:= R

2

+R

10

83: R

9

:= R

9

� R

9

84: R

3

:= R

9

+R

3

85: R

3

:= R

3

+R

17

86: R

9

:= R

4

�R

4

87: R

2

:= R

9

� R

2

88: R

10

:= R

4

� R

7

89: R

12

:= R

7

�R

7

90: R

13

:= R

19

+R

12

91: R

1

:= R

1

+R

13

92: R

14

:= R

1

� R

13

93: R

17

:= h

1

� R

10

94: R

3

:= R

3

+R

17

95: R

1

:= R

1

� R

3

96: R

1

:= R

1

+R

2

97: R

2

:= R

11

+R

3

98: R

2

:= R

9

�R

2

99: R

11

:= R

9

� R

10

100: R

2

:= R

14

+R

2

101: R

14

:= R

11

� h

1

102: R

2

:= R

2

+R

14

103: R

14

:= R

11

� h

0

104: R

1

:= R

1

+R

14

Up

1

:= R

13

Up

0

:= R

3

V p

1

:= R

2

V p

0

:= R

1

Zp

1

:= R

4

Zp

2

:= R

7

zp

1

:= R

9

zp

2

:= R

12

zp

3

:= R

10

zp

4

:= R

11

Number of registers used = 23

35



Algorithm mHCADD

N e

h

2

=0

of [15℄

Curve Constants Used: h

1

; h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

20

3: R

3

:= V

21

4: R

4

:= V

20

5: R

5

:= Z

21

6: R

6

:= Z

22

7: R

7

:= z

21

8: R

8

:= z

22

9: R

9

:= z

23

10: R

10

:= z

24

11: R

11

:= U11 � R

7

12: R

11

:= R

11

+R

1

13: R

7

:= U10 � R

7

14: R

7

:= R

2

+R

7

15: R

12

:= U11 � R

11

16: R

12

:= R

12

+R

7

17: R

13

:= R

7

� R

12

18: R

14

:= V 10 � R

10

19: R

14

:= R

14

+R

4

20: R

10

:= V 11 �R

10

21: R

10

:= R

10

+R

3

22: R

15

:= R

12

+R

11

23: R

12

:= R

12

�R

14

24: R

11

:= R

11

� R

10

25: R

10

:= R

14

+R

10

26: R

10

:= R

15

�R

10

27: R

10

:= R

10

�R

12

28: R

14

:= R

11

� R

11

29: R

14

:= R

14

� U10 30: R

13

:= R

13

+R

14

31: R

9

:= R

13

�R

9

32: R

14

:= R

9

� R

9

33: R

9

:= R

9

� R

5

34: R

15

:= 1 + U11

35: R

15

:= R

11

�R

15

36: R

11

:= U10 � R

11

37: R

11

:= R

12

+R

11

38: R

10

:= R

10

�R

15

39: R

12

:= R

13

�R

10

40: R

13

:= R

11

� R

5

41: R

11

:= R

11

� R

10

42: R

15

:= R

10

�R

10

43: R

5

:= R

10

�R

5

44: R

7

:= R

7

�R

15

45: R

10

:= R

11

� R

15

46: R

16

:= R

9

� R

9

47: R

10

:= R

10

+R

16

48: R

17

:= R

5

� R

9

49: R

18

:= R

15

� U11 50: R

14

:= R

18

+R

14

51: R

11

:= R

11

�R

14

52: R

14

:= R

13

� R

5

53: R

18

:= R

5

� R

5

54: R

19

:= R

1

+R

2

55: R

13

:= R

13

�R

13

56: R

11

:= R

13

+R

11

57: R

7

:= R

11

+R

7

58: R

4

:= R

12

� R

4

59: R

3

:= R

12

�R

3

60: R

1

:= R

15

� R

1

61: R

11

:= R

15

+R

11

62: R

11

:= R

11

�R

19

63: R

2

:= R

11

�R

2

64: R

11

:= R

11

�R

2

65: R

2

:= R

2

+R

4

66: R

4

:= R

11

�R

1

67: R

3

:= R

4

+R

3

68: R

1

:= R

1

+R

14

69: R

1

:= R

1

+R

10

70: R

4

:= R

1

� R

10

71: R

11

:= h

1

� R

17

72: R

7

:= R

7

+R

11

73: R

1

:= R

1

� R

7

74: R

11

:= h

1

�R

17

75: R

3

:= R

3

+R

11

76: R

3

:= R

3

+R

7

77: R

3

:= R

18

� R

3

78: R

3

:= R

4

+R

3

79: R

4

:= h

0

�R

17

80: R

2

:= R

2

+R

4

81: R

2

:= R

18

� R

2

82: R

4

:= R

18

� R

17

83: R

1

:= R

1

+R

2

Up

1

:= R

10

Up

0

:= R

7

V p

1

:= R

3

V p

0

:= R

1

Zp

1

:= R

5

Zp

2

:= R

9

zp

1

:= R

18

zp

2

:= R

16

zp

3

:= R

17

zp

4

:= R

4

Number of registers used = 19

36



Algorithm HCADD

A

of [13℄

Curve Constants Used: h

2

; h

1

; h

0

; f

4

:

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

5

�R

1

10: R

3

:= R

3

�R

7

11: R

4

:= R

4

�R

8

12: R

10

:= R

3

+R

4

13: R

11

:= R

2

�R

6

14: R

12

:= R

2

� R

11

15: R

12

:= R

12

+R

9

16: R

9

:= R

9

� R

12

17: R

3

:= R

12

�R

3

18: R

13

:= R

11

� R

11

19: R

13

:= R

13

� R

1

20: R

9

:= R

9

+R

13

21: R

4

:= R

11

�R

4

22: R

11

:= R

12

+R

11

23: R

10

:= R

11

� R

10

24: R

10

:= R

10

�R

3

25: R

11

:= 1 +R

2

26: R

11

:= R

4

� R

11

27: R

4

:= R

1

� R

4

28: R

3

:= R

3

�R

4

29: R

4

:= R

10

�R

11

30: R

10

:= R

9

� R

4

31: R

4

:= R

4

� R

4

32: R

10

:= 1=R

10

33: R

4

:= R

4

� R

10

34: R

10

:= R

9

� R

10

35: R

9

:= R

9

� R

10

36: R

3

:= R

3

� R

10

37: R

10

:= R

3

�R

11

38: R

2

:= R

3

�R

2

39: R

11

:= h

2

�R

9

40: R

10

:= R

10

+R

11

41: R

2

:= R

2

� R

10

42: R

1

:= R

2

�R

1

43: R

2

:= 2 � R

6

44: R

2

:= R

2

+R

11

45: R

2

:= R

2

� f

4

46: R

10

:= 2 �R

3

47: R

10

:= R

10

�R

11

48: R

11

:= h

2

�R

9

49: R

10

:= R

10

+R

11

50: R

11

:= R

9

� R

9

51: R

2

:= R

2

� R

11

52: R

10

:= R

10

�R

11

53: R

11

:= R

5

�R

3

54: R

12

:= 2 �R

8

55: R

12

:= h

1

+R

12

56: R

9

:= R

12

� R

9

57: R

12

:= R

6

+R

3

58: R

3

:= R

6

�R

3

59: R

3

:= R

3

+R

5

60: R

1

:= R

1

+R

3

61: R

1

:= R

1

+R

9

62: R

1

:= R

1

+R

2

63: R

2

:= R

12

�R

10

64: R

5

:= R

10

� R

2

65: R

6

:= h

2

�R

10

66: R

5

:= R

5

+R

1

67: R

3

:= R

5

�R

3

68: R

3

:= R

3

� R

4

69: R

3

:= R

3

�R

8

70: R

3

:= R

3

� h

1

71: R

3

:= R

3

+R

6

72: R

2

:= R

1

� R

2

73: R

5

:= h

2

�R

1

74: R

2

:= R

2

�R

11

75: R

2

:= R

2

� R

4

76: R

2

:= R

2

�R

7

77: R

2

:= R

2

� h

0

78: R

2

:= R

2

+R

5

up

0

:= R

1

up

1

:= R

10

vp

0

:= R

2

vp

1

:= R

3

Number of registers used = 13
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Algorithm HCADD

A

of [20℄

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

2

+R

6

10: R

10

:= 1 +R

2

11: R

4

:= R

4

�R

8

12: R

3

:= R

3

�R

7

13: R

11

:= R

3

+R

4

14: R

12

:= R

5

�R

1

15: R

13

:= R

2

�R

6

16: R

4

:= R

13

�R

4

17: R

10

:= R

4

� R

10

18: R

4

:= R

1

� R

4

19: R

14

:= R

2

�R

13

20: R

14

:= R

14

+R

12

21: R

12

:= R

12

� R

14

22: R

3

:= R

14

� R

3

23: R

14

:= R

14

+R

13

24: R

11

:= R

14

� R

11

25: R

11

:= R

11

�R

3

26: R

10

:= R

11

�R

10

27: R

3

:= R

3

�R

4

28: R

4

:= R

13

�R

13

29: R

4

:= R

4

� R

1

30: R

4

:= R

12

+R

4

31: R

11

:= R

4

�R

10

32: R

10

:= R

10

� R

10

33: R

11

:= 1=R

11

34: R

10

:= R

10

�R

11

35: R

11

:= R

4

�R

11

36: R

4

:= R

4

�R

11

37: R

3

:= R

3

� R

11

38: R

11

:= R

4

� R

4

39: R

9

:= R

11

�R

9

40: R

12

:= R

6

+R

3

41: R

13

:= R

3

�R

2

42: R

6

:= R

6

� R

3

43: R

6

:= R

6

+R

5

44: R

5

:= R

5

�R

3

45: R

3

:= R

3

+R

12

46: R

3

:= R

3

�R

2

47: R

3

:= R

3

�R

11

48: R

2

:= R

12

�R

2

49: R

2

:= R

13

� R

2

50: R

1

:= R

2

�R

1

51: R

1

:= R

1

+R

6

52: R

1

:= R

1

+R

4

53: R

1

:= R

1

+R

9

54: R

2

:= R

12

�R

3

55: R

4

:= R

3

� R

2

56: R

4

:= R

4

+R

1

57: R

2

:= R

1

� R

2

58: R

2

:= R

2

�R

5

59: R

4

:= R

4

�R

6

60: R

4

:= R

4

�R

10

61: R

2

:= R

2

� R

10

62: R

4

:= R

4

�R

8

63: R

2

:= R

2

�R

7

64: R

4

:= R

4

� 1

up

0

:= R

1

up

1

:= R

3

vp

0

:= R

2

vp1 := R

4

Number of registers used = 14

38


