
Towards Minimizing Memory Requirement for Implementation of

Hyperellipti
 Curve Crytosystems

Pradeep Kumar Mishra

1

, Pinakpani Pal

2

and Palash Sarkar

2

1

Centre for Information Se
urity and Cryptography

University of Calgary

Calgary (CANADA)

E-mail: pradeep�math.u
algary.
a

2

Cryptology Resear
h Group

Indian Statisti
al Institute

Kolkata (INDIA)

E-mail: fpinak, palashg�isi
al.a
.in

Abstra
t

Ellipti
 (ECC) and hyperellipti

urve
ryptosystems (HECC) have emerged as
ryptosystems of

hoi
e for small handheld and mobile devi
es. A lot of resear
h has been devoted to the se
ure and

eÆ
ient implementation on these devi
es. As su
h devi
es
ome with a very low amount of resour
es,

eÆ
ient memory management is an important issue in all su
h implementations. HECC arithmeti

is now generally performed using so
alled expli
it formulae. In literature, there is no result whi
h

fo
uses on the exa
t memory requirement for implementing these formulae. This is the �rst work to

report su
h minimal memory requirement. Also, in the work we have provided a general methodology

for realization of expli
it formulae with minimal number of registers. Applying su
h methodology

this work settles the issue for some important expli
it formulae available in the literature. This is

an attempt to experimentally solve a parti
ular instan
e based on HECC expli
it formulae of the so

alled \Register SuÆ
ien
y Problem", whi
h is an NP-
omplete problem.

Key Words: Ellipti
 and hyperellipti

urve
ryptosystems, memory, expli
it formula, divisor

addition, divisor doubling, s
alar multipli
ation.

1 Introdu
tion

For about one and half a de
ade, ellipti
 and hyperellipti

urve
ryptosystems have o

upied the

enterstage of publi
 key
ryptographi
 resear
h. The main reason behind it is their versatility. These

are the most ideal
ryptosystems to be implemented on small mobile devi
es with low
omputing power.

There is no known subexponential algorithm to solve ellipti
 or hyperellipti

urve dis
rete logarithm

problem for
arefully
hosen
urves. This ensures a high level of se
urity for smaller key length and

makes these
ryptosystems suitable for su
h small devi
es.

In these
ryptosystems, the most dominant operation is the
omputation of so
alled s
alar multi-

pli
ation. Unless otherwise stated, in the
urrent work, by a point we will generally mean a point on an

ellipti

urve or a point on the Ja
obian of a hyperellipti

urve. Note that the points on the Ja
obian

are represented by divisor
lasses of degree zero. Let P be a point and let m be a positive integer. The

operation of
omputing mP is
alled the s
alar multipli
ation. It is generally
omputed by a series of

point doublings and additions. A lot of e�ort has been put by the resear
hers to
ompute the s
alar

multipli
ation eÆ
iently and se
urely.

1

The eÆ
ien
y of s
alar multipli
ation is intimately
onne
ted to the eÆ
ien
y of point addition and

doubling algorithms. The eÆ
ien
y of these algorithms, on the other hand, depends upon the point

representation. In aÆne
oordinates, both these operations involve inversion of �eld elements whi
h is

onsidered a very
ostly operation. To avoid inversions, various other
oordinate systems like proje
tive,

Ja
obian, modi�ed Ja
obian, Lopez-Dahab
oordinate systems have been proposed for ellipti

urves.

For hyperellipti

urves, Koblitz in his pioneering work [11℄, had proposed Cantor's algorithm to be

used for divisor addition and doubling. Later, it was felt that the
omputation
an be speeded up by

�xing the genus of the
urves and
omputing the parameters of the resultant divisor expli
itly. Su
h an

algorithm is
alled an expli
it formula. Many proposals of expli
it formula have
ome up in literature

and the ones proposed by Lange in [13, 14, 15℄ are the
urrently known most eÆ
ient ones for general

urves of genus 2.

ECC and HECC are
onsidered to be the ideal
ryptosystem for mobile devi
es. Mobile devi
es are

generally equipped with very little
omputing power. Before trying to implement a
ryptosystem on

these devi
es one has to be sure that the resour
es, parti
ularly memory, available on these devi
es are

suÆ
ient for the implementation. For ECC, the formulae are smaller involving 7 to 15 multipli
ations

and squarings in the underlying �eld in non-aÆne arithmeti
. So it is simple to
al
ulate the numbers

of registers required to store the inputs, outputs and intermediate variables. In many works reported

in literature on ECC, the authors have provided the number of registers required for the
omputation.

These �gures are obtained by
he
king manually. However, to our knowledge, there is no result stating

that a parti
ular ECC algorithm
annot be implemented in less than a
ertain amount of memory.

There has been no study of exa
t memory requirement for an implementation of HECC. In [2℄ the

authors have brie
y tou
hed the topi
. Besides that there has been no mention of memory requirement

in any work on HECC so far. The point addition and doubling algorithm for ECC
an be found in many

papers as a sequen
e of three address
odes, like, R

i

= R

j

op R

k

, where R

i

; R

j

; R

k

are register names or

onstants and op is an arithmeti
 operation. In the
urrent work we will refer to this format as Expli
it

Register Spe
i�ed Format (ERSF). Looking at a formula in ERSF, one
an know exa
tly how many

registers will be required for its implementation. Unfortunately, no HECC expli
it formulae o

uring

in the literature has been des
ribed in ERSF. All are des
ribed as a set of mathemati
al equations. We

will refer to this format of representing a formula as raw format.

Probably, the reason behind all HECC formulae appearing in raw format only is the fa
t that HECC

formulae are relatively
omplex ones
ompared to those of ECC. An HECC (genus 2) formula involves

around 25 to 50 multipli
ation with or without an inversion. The �rst step for expressing su
h a formulae

in ERSF is to know how many registers will be required. For a long formula it is diÆ
ult to manually

�nd out how many registers will suÆ
e. It is nearly impossible to say what is the minimal requirement.

In fa
t, �nding the minimum number of intermediate variables required for the exe
ution of a formula

is an NP-
omplete problem. This is
alled Register SuÆ
ien
y Problem and has been studied earlier in a

very general framework. However, the results obtained earlier do not apply straight away in the s
enario

we are in nowand, furthermore, we are dealing with
learly des
ribrd algorithms.Hen
e a brute for
e

approa
h is possible but is too time
onsuming. In the
urrent work, we try to provide an experimental

solution to this parti
ular instan
e of the problem. We believe that our methodology
an be applied to

many similar situations.

The question is: Given an expli
it formula what is the minimum number of registers required to

ompute it sequentially or in parallel? In the
urrent work, we provide a methodology (in Se
tion 4) to

address this issue. We used this methodology to
ompute the minimum memory requirement for some

of the well known and widely used formulae. For ellipti

urves, we
he
ked for the general addition

formula in Ja
obian
oordinates, whi
h is mostly used in implementations and found that it
an not

be exe
uted with less than 7 registers. It is known that the ellipti

urve addition
an be done in 7

registers. Our �nding ensures that it
an not be done in less.

2

We have used our methodology to �nd the minimum register requirement for many formulae in

HECC. The formulae proposed by Pelzl et al [20℄ for a spe
ial
lass of
urves are very eÆ
ient ones.

Their doubling formulae uses 10 registers and the addition uses 15. Similar formulae are proposed by

Lange in [13℄. These set of formulae use 11 and 15 registers for doubling and addition respetively. The

doubling formula in [13℄ requires 6
urve
onstants to be stored. Thus, (baring the storage required

for
urve
onstants) for
omputing the s
alar multipli
ation both set of formulae require 15 registers.

Thus, although the formulae proposed in [20℄ are
heaper in number of operations, they use the same

amount of memory as the ones in [13℄. More re
ently Lange and Stevens [17℄ have
ome out with more

eÆ
ient doubling formulae for all isomorphism
lasses of
urves over binary �elds. These formulae not

only require very few �eld operations per group operation but also are very memory eÆ
ient. All our

�ndings have been des
ribed in Se
tion 6.

The remainder of the paper is organised as follows. In Se
tion 2, we brie
y des
ribe the ba
kground

of the work. In Se
tion 3, we brie
y des
ribe the theoreti
al status of the register suÆ
ien
y problem.

In Se
tion 4, we des
ribe our methodology. In Se
tion 6, we provide the results we found. Se
tion 7

on
ludes the paper. The detailed des
ription of the formulae we
onsider are stated in ERSF in the

appendi
es.

2 Ba
kground

Hyperellipti

urve
ryptosystems were proposed by Koblitz [11℄ in 1987. In this se
tion we provide a

brief overview of hyperellipti

urves. For details, readers
an refer to [18℄. Let K be a �eld and let

K be the algebrai

losure of K. A hyperellipti

urve C of genus g over K is an equation of the form

C : y

2

+ h(x)y = f(x) where h(x) in K[x℄ is a polynomial of degree at most g; f(x) in K[x℄ is a moni

polynomial of degree 2g + 1, and there are no singular points (x; y) in K �K.

Ellipti

urves are hyperellipti

urves of genus 1.

The ellipti

urve group law does not apply to hyperellipti

urves. The groups used in hyperellipti

urve
ryptosystems are the divisor
lass group, ea
h group element represented by a spe
ial kind of

divisor
alled redu
ed divisor. The beauty of the hyperellipti

urves is that the group of divisor
lasses

is isomorphi
 to the group of ideal
lasses. That leads to a ni
e
annoni
al representation for ea
h group

element. Ea
h group element
an be represented by a pair of polynomials of small degree, (u(x); v(x)),

where deg(v) < deg(u) � g and u divides v

2

� hv + f . Koblitz in his pioneering work suggested to

perform the group operation using Cantor's algorithm [3℄.

Cantor's algorithm for divisor
lass addition and doubling were quite
omplex for an eÆ
ient imple-

mentation. Later it was realised that the eÆ
ien
y of group law algorithms
an be enhan
ed by �xing

the genus of the
urve and
omputing the
oeÆ
ients of the polynomials representing the resultant

divisor dire
tly from those of the input divisor(s). Thus the group law algrithms be
ome a sequen
e of

�eld operation. Su
h an algorithm is
alled an expli
it formula. Spallek [22℄ made the �rst attempt to

ompute divisor addition by expli
it formula for genus 2
urves over �elds of odd
hara
teristi
. Gaudry

and Harley [7℄ observed that one
an derive di�erent expli
it formula for divisor operations depending

upon the weight of the divisors. Harley [8℄ improved the running time of the algorithm in [22℄ by distin-

guishing between the di�erent weights of the input divisors and between addition and doubling. Later

many resear
hers
ame out with various expli
it formula for various genera of hyperellipti

urves. An

overview of most proposals
an be found e. g. in [19℄.

In the
urrent work we
on
entrate on
urves of genus 2. For most general
urves of genus 2, the

expli
it formulae proposed by Lange are the
urrently known most eÆ
ient ones. In [13℄, Lange's

addition (HCADD) and doubling (HCDBL) involve inversion. Taking the lead from the di�erent pro-

je
tive
oordinates in ECC, Lange in [14℄, [15℄ has proposed expli
it formulae in various
oordinate

3

Table 1: Complexity of Expli
it Formulae

Name/Proposed in Chara
teristi
 Cost(HCADD) Cost(HCDBL) Cost (mHCADD)

Lange [13℄ All 1[i℄ + 22[m℄ + 3[s℄ 1[i℄ + 22[m℄ + 5[s℄ -

Lange [15℄ Odd 47[m℄ + 7[s℄ 34[m℄ + 7[s℄ 36[m℄ + 5[s℄

Lange [15℄ Even h

2

6= 0 46[m℄ + 4[s℄ 35[m℄ + 6[s℄ 35[m℄ + 6[s℄

Lange [15℄ Even h

2

= 0 44[m℄ + 6[s℄ 29[m℄ + 6[s℄ 34[m℄ + 6[s℄

Pelzl et al [20℄ Even 1[i℄ + 9[m℄ + 6[s℄ 1[i℄ + 21[m℄ + 3[s℄ -

Lange et al [17℄ Even 1[i℄ + 5[m℄ + 6[s℄ - -

systems. In [14℄ she has proposed formulae in \proje
tive"
oordinates. Introdu
ing a new variable, a

�eld element in the stru
ture of a divisor the inversion
an be avoided in HCADD and HCDBL as in

ECC. Again taking the lead from Chudonovski Ja
obian
oordinates in ECC, Lange has proposed her

\new
oordinates" in [15℄, a representation using weighted
oordinates. This lead to faster HCADD and

espe
ially HCDBL. The latest version all these formulae with an extensive
omparison of
oordinate

systems is available in [16℄. In the
urrent work we use formulae presented in [13, 15℄.

More re
ently, Pelzl et al. [20℄ and Lange and Stevens [17℄ have proposed divisor addition and

doubling algorithms for spe
ial
lasses of
urves, in whi
h doublings are mu
h
heaper. In Table 1, we

provide the
omplexity of various formulae we investigated in the
urrent work.

3 Theoreti
al Status of the Register SuÆ
ien
y Problem

The problem of minimizing the number of intermediate variables required for exe
uting a set of arith-

meti
 formulae has been studied earlier. The problem is
alled the register suÆ
ien
y problem and the

de
ision version is known to be NP-
omplete [21℄. See [6, page 272℄ for further details.

The minimization version has also been studied in the literature. A

ording to the
ompendium of

NP-optimization problems [4℄, there is an O(log

2

n) (where n is the number of operations) approximation

algorithm for this problem [10℄. This result is obtained in [10℄ using general results on
ow problems

and does not lead to a pra
ti
al algorithm to solve the problem. Another issue is that one does not

obtain any idea about the
onstant in the O(log

2

n) expression. Moreover, for the
ases in whi
h we

are interested n is at most around 200. For su
h n, a performan
e guarantee of O(log

2

n) is not really

useful.

In fa
t, in our implementation, in many
ases we are able to obtain the minimum number of registers

and in other
ases we are able to show that the minimum is at most one or two less than the result we

obtain. Thus, on the one hand, the theoreti
al status of the problem is not really useful for obtaining

a pra
ti
al algorithm and on the other hand, for the
on
rete situations in whi
h we are interested, we

obtain better performan
e guarantee than the known theoreti
al bound.

4 Our Methodology

Our primary aim in this work is to answer the question:

Problem: Given an expli
it formula F , what is the minimum number of intermediate variables required

to be stored to exe
ute F?

Let F be an expli
it formula. Let p

1

; : : : ; p

k

be the inputs to F . We
an look at F as a sequen
e

of arithmeti
 operations, ea
h having a unique id, like; Id

i

: p

i

= q

i

op

i

r

i

; k � i � n, where op

i

is

4

one of the binary operations f+;�; �; =g and q

i

; r

i

are among the p

j

's j < i. In fa
t, expli
it formula

in literature generally o

ur in raw format. We
an
onvert them into this form by a simple parser

program.

We will
all a sequen
e S = fId

i

1

; Id

i

2

; : : : ; Id

i

n�k+1

g or simply S = fi

1

; i

2

; : : : ; i

n�k+1

g of operation

id's of F a valid sequen
e if F
an be
omputed by exe
uting its operations in the order as di
tated

by the sequen
e S. For example if F = fId

1

; Id

2

; Id

3

; Id

4

g, where Id

1

: p

4

= x � y, Id

2

: p

5

= p

4

� z,

Id

3

: p

6

= y � z and Id

4

: p

7

= p

5

� p

6

, then there are only three valid sequen
es, namely, f1; 2; 3; 4g,

f1; 3; 2; 4g and f3; 1; 2; 4g. F
an not be exe
uted in any other order.

Further, one may be interested in knowing whi
h valid sequen
e needs the minimum number of

intermediate variables for exe
uting the expli
it formula F .

Let F be an expli
it formula and letA

0

be the set of inputs to it. In F , there are
ertain
omputations

whi
h
an be
omputed from the set A

0

of inputs to F . After one or more of them are exe
uted we

get some intermediate values whi
h
an trigger some more operations of F . Let V

0

be the set of

omputations in F , whi
h
an be
omputed dire
tly from the set A

0

of inputs to F . Let jV

0

j = �

0

be

the size of the set V

0

. So one
an begin the exe
ution of F starting from any one of these �

0

operations.

Suppose we
hoose the operation

Id

i

1

: p

i

1

= q

i

1

op

i

1

r

i

1

in V

0

to be exe
uted �rst. After this operation we have the value of p

i

1

available to us. So an operation

involving p

i

1

and some other known value in A

0

in its right hand side
an also now be exe
uted. Let

A

i

1

= A

0

S

fp

i

1

g. Let V

i

1

1

be the set of operations in F

1

= F � fId

i

1

g, whi
h
an be exe
uted from the

the values available in A

i

1

. Let jV

i

1

1

j = �

i

1

. Note that the set V

i

1

1

and the value of �

i

1

depend upon

the
hoi
e of Id

i

1

. Thus, we have �

i

1

options for exe
uting the next operation of F . Suppose we
hoose

Id

i

2

: p

i

2

= q

i

2

op

i

2

r

i

2

We update the set of available values as A

i

1

;i

2

= A

i

1

S

fp

i

2

g and look for the set of operations in

F

2

= F

1

� fId

i

2

g whi
h
an be
omputed from the set of values available in A

i

1

;i

2

and pro
eed like

this. In general, if k operations Id

i

1

; : : : ; Id

i

k

are already
omputed and p

i

k

is the output of the last

omputation, then we update the set of available values as A

i

1

;i

2

;:::;i

k+1

= A

i

1

;i

2

;:::;i

k

S

fp

i

k+1

g and set

V

i

1

;:::;i

k+1

k+1

to be the set of
omputations in F

k+1

= F

k

� fId

i

k

g, whi
h
an be
omputed from A

k+1

.

Note that Id

i�k

is the Id of the last operation. Let jV

i

0

;:::;i

k

k

j = �

i

0

;:::;i

k

. We
hoose one of the operations

�

i

0

;:::;i

k

operations in V

i

0

;:::;i

k

k

to
ontinue.

The sets A

j

ontain the set of live variables at ea
h step. To minimise the number of intermediate

variables we
an not a�ord to keep redundant values in this set. At ea
h step before inserting a new

value into A

i

0

;:::;i

j

, we
he
k if it
ontains any value whi
h is not required in further
omputations in

F

j

. All su
h redundant values are dis
arded from A

i

0

;:::;i

k

.

We stop the pro
edure when for some

�

k, V

i

0

;:::;i

�

k

�

k

be
omes empty. If k is n � k + 1, i.e. the total

number of operations in F , then the sequen
e of operations fId

i

1

; : : : ; Id

�

k

g, is a valid sequen
e for F .

After
hoosing a valid sequen
e, we
he
k the sets

A

i

1

;:::;i

j

�A

0

; 0 � j � n� k + 1

If max

0�i�n�k+1

jA

i

�A

0

j = �, then for exe
uting F by the obtained valid sequen
e the storage for �

intermediate variables is ne
essary and also suÆ
ient.

After obtaining one valid sequen
e, we ba
ktra
k to the last step where we had more
hoi
es for the

next operation than the ones already undertaken. We
hoose a di�erent operation from the
orrespond-

ing set V

i

there and pro
eed in a new path of
omputation. Following this method we obtain all valid

5

sequen
es for F and �nd the one whi
h requires the minimum number of intermediate variables. That

valid sequen
e gives us the exe
ution sequen
e of F , whi
h is the most memory eÆ
ient one.

Obviously, the method des
ribed above is an exhaustive sear
h type. It looks for all possible paths

from a possible starting point (whi
h may not be unique) for exe
ution of F to the end. To �nd the

minimum number of intermediate variables it looks for all possible paths from the beginning to end of

F . To bring down the running time we adopt the following four strategies:

1. Negle
ting the paths whi
h requires same number of intermediate variables as the

known one: We use early abort strategy for improving the running time of the algorithm. As we

get the �rst valid sequen
e we
ount the number of intermediate variables required to be stored to

exe
ute F by that sequen
e and store it in a variable, say �. While looking for another path by

ba
ktra
king, we
he
k the size of the set of intermediate variables after ea
h step. If the
urrent

size is equal to the value stored in �, then we need not pro
eed along this path further. It is not

going to yield a more e
onomi
al path. So we abandon this path and look for another one. If a

parti
ular valid sequen
e needs less than � intermediate values, then we repla
e the value of � by

this new value.

2. Avoiding the
ount of the number of intermediate variables at ea
h step: Counting the

number of variables at ea
h step of the algorithm is a time
onsuming operation. Suppose the

value stored
urrently in � is t. While looking for a new path, we save time by not
ounting the

number of minimum variables till the path is t operations long. Be
ause, if less than t operations

have been exe
uted then the number of intermediate variables
an not be more than t.

3. Ba
ktra
king several steps at a time: After �nding a valid sequen
e, instead of ba
ktra
king

one step (to the last step) at a time, we
an go ba
k until a step b su
h that max

0�i�b

jA

i

�A

0

j =

� � 1. This will redu
e the task of going to ea
h level and hen
e will aid to eÆ
ien
y. Note that

this does not a�e
t the optimality of the �nal result. That is be
ause the paths whi
h we are

skipping need at least � intermediate variables.

4. Using ordered sets in pla
e of V

j

's: Before starting the �rst step, we s
an the expli
it formula

and make a frequen
y table of all the inputs and intermediate variables. Against name of ea
h

variable it
ontains the number of times it has been used in the formula, i.e the number of times

it appears in the right hand side of some equation in F

j

. We treat the sets V

j

's as ordered sets

and ordered a

ording as priorities assignined to these equations. The highest priority (see below)

is assigned to those, in whi
h the inputs variables have lower frequen
y. Ea
h time we
hoose

an equation for
omputation, we update the frequen
y table by redu
ing the frequen
ies of the

involved input variables by 1.

Here we des
ribe how we assign priorities to the operations in V

j

. Observe that any equation

r = p op q takes two inputs and
omputes an intermediate value. If the variables p and q are used

again later i.e. their frequen
ies are greater than 1 before this operation, then we have to store

all three variables. But if frequen
ies of p and q are one then we are required to store the result

only. Thus, we
an redu
e the width of the set of live variables by 1. We assign highest priorities

to su
h
omputations and put them at the beginning of the sets V

j

's. If the frequen
y of one of p

and q is 1, then we need not save that variable. We are required to store the other variable and

the
omputed value and the thus the number of live variables does not in
rease. So we assign

se
ond highest priority to su
h equations and put them next in the set V

j

. So are the equations

whi
h have a
onstant and a variable of frequen
y 1. Thirdly, squarings and doublings involve one

variable only and produ
e a new variable. So a squaring or a doubling of a variable of frequen
y 1

also does not in
rease the number of live variables. We keep su
h type of operations next. Other

6

equations of F

j

are kept in su
h an order that the ones involving a variable of minimum frequen
y

pre
eeds the others.

These optimisation te
hniques for running time of the algorithm have paid high dividends. It is

observed that an implementation using these te
hniques runs mu
h faster than one without them. These

te
hniques however, do not guarantee that an implementation of this sear
h strategy will terminate in

reasonable time for any large expli
it formula. An expli
it formula may
ontain a huge number of

equations. In that
ase the program may run for a
onsiderable duration of time and the last value of

� may be a

epted as the good minimal value. The a
tual minimum may be lesser.

Let us put the above dis
ussion in the form of an algorithm. In fa
t, we present two algorithms

below, the �rst one only initialises and
alls the se
ond one. The se
ond is a re
ursive one implementing

the te
hniques des
ribed above.

Algorithm MinVar.

Input : The number of inputs to F and all the operations in F .

Output : Minimum number of intermediate variables required to be stored if F is exe
uted sequentially.

1. (Initialisation) Read the number of inputs k to F ;

2. Read all
omputations in F and store them in an array indexed by their Id's. Let their number be

N ;

3. Let k = 0, minvar = the number of equations in F ;

4. Call Algorithm Pro
Var(k, minvar);

5. Output minVar;

Algorithm Pro
Var(k, minvar).

Input : The number of
omputations (k) of already
arried out.

Output : Re
ursively
omputes the number of intermediate variables and outputs their minimum.

1. Let Count = N � k;

2. If k > minVar

2.1 Count the number of intermediate variables in the
urrent path;

2.2 If the number of variables in the
urrent path = minVar then return; /* There is no need to

onsider this path */

3. If Count 6= 0

3.1 Find the
orresponding ordered set V

k

and �

k

;

3.2 for i = 1 to �

k

;

3.2.1 Pro
ess the ith
omputation in V

k

;

3.2.2 Update the data stru
tures for A

k+1

;

3.2.3 Call Algorithm Pro
Var(k + 1);

4. minvar = the number of variables in the
urrent path;

5. end

Here is an important observation about running of the algorithm.

� Observation At any point of time during the exe
ution of the algorithm in the sear
h of a valid

sequen
e, suppose the operations S

1

= fi

1

; i

2

; : : : ; i

k

g have been
hosen. Also suppose that at the

end of this last step the number of live variables is t. Let S

2

= fj

1

; j

2

; : : : ; j

k

g be any permutation

of fi

1

; i

2

; : : : ; i

k

g. If S

2

is a valid order in whi
h the operations in S

1

an also be performed, then

at the end of last step of S

2

one will have t number of intermediate variables as well. An important

appli
ation of this observation is that if we have two valid sequen
es of an expli
it formula, whi
h

have the same k operations at the beginning, maybe in a di�erent order and if we know that the

�rst requires t intermediate variables till the kth step, then we need not
ount the number of

intermediate variables for �rst k steps of the se
ond. It is t at the end of kth step.

7

4.1 The Forward and Reverse Programs

As said earlier, ea
h expli
it formula in raw format was modi�ed to be a sequen
e of binary operations.

This is the prepro
essing done to ea
h of the raw formulae under
onsideration. This prepro
essed

formula was given as input to a program embodying the methodlogy des
ribed in the last se
tion,

whi
h
al
ulated the minimum number of intermediate variables required for sequential exe
ution of

the expli
it formula. When the program terminates it outputs exa
tly how many intermediate variables

are required for an exe
ution of the formula and the
orresponding valid sequen
e. As our methodlogy

is a kind of exhaustive sear
h with some running time optimization measures, for a long input �le it may

take substantial amount of time to run. In order to get the results within a reasonable time, another

program was employed. We will refer to this later program as the reverse program and the former as

forward program. The reverse program initially takes k = 1 and using the same logi
 as forward
he
ks

if the expli
it formula
an be exe
uted with k temporary lo
ations. If not it reports this fa
t and tries

again with k repla
ed by k+1. When it gets an aÆrmative answer it outputs the
orresponding value of

k and the
orresponding valid sequen
e. After obtaining a path requiring l intermediate variables, the

forward program looks for path needing less than l intermediate lo
ations. If during the sear
h pro
ess

it
omes a
ross a path whi
h also requires l lo
ations, then forward abandons this path and look for a

newer one. The reverse program uses the same logi
, taking k = 1; 2 : : :. We run both the programs

with the same input �le on two di�erent ma
hines. If either of forward or reverse terminates we get

the result. Otherwise, if at some point of time forward reports the formulae
an be exe
uted with k

variables and at the same time reverse reports it
an not be done with less than k � 1 intermediate

lo
ations, then also the
on
lusion follows.

The employment of reverse helped us to get to the
on
lusions quite early. Some of the expli
it

formula under
onsideration have more that 100 lines of three address
odes (i.e. total number of

arithmeti
 operations is more than 100). In spite of the speed-up measures des
ribed above, there is no

guarantee that forward will terminate. In fa
t, we ran forward program without any speed up measure on

some longer inputs and found that it did not terminate in a week. Even after the optimisation methods

des
ribed above are employed, for some of the formulae given in [15℄ it did not terminate for three

days, though it ran mu
h faster. Surprisingly (be
ause they have quite a small number of operations),

for the doubling formulae in new
oordinates in even
hara
teristi
, in both
ases h

2

6= 0 and h

2

= 0,

forward did not terminate. So, we took help of the reverse program to derive our
on
lusions. With the

help of reverse we
ould get
on
lusion on any formula in less than two days.

5 Pre and Post Pro
essing

We implemented the methodology des
ribed above and found out the minimum number of registers

required for a sele
t set of expli
it formula. Ea
h formula was prepro
essed in the manner des
ribed

below:

5.1 Prepro
essing

We
all the di�erent expli
it formulae whi
h appear in resear
h papers to be in raw form. Our �rst

step is to prepro
ess su
h raw formulae and
onvert into a form suitable for input to our register

minimization program. This
onversion of expli
it formulae from one form to another is done using

a prepro
essing program. We verify the
orre
tness of the two forms using Mathemati
a, a symboli

omputation software. We �rst des
ribe this veri�
ation method and then des
ribe the prepro
essing

algorithm.

8

Ea
h expli
it formula
onsists of a set of input and output variables and a sequen
e of arithmeti

operations involving temporary intermediate variables. The arithmeti
 operations are addition, sub-

tra
tion and multipli
ation. Thus ea
h output variable
an be written as a multivariate polynomial

in the input variables. This polynomial
an be
omputed by su

essively eliminating the intermedi-

ate variables. We say that two expli
it formulae with the same set of input and output variables are

equivalent if the multivariate polynomials
orresponding to the output variables are same for both the

formulae. We use Mathemati
a to perform this veri�
ation. Being a symboli

omputation software,

Mathemati
a
an eÆ
iently
onstru
t the multivariate polynomial
orresponding to the output variable

of an expli
it formula. There is, however, a problem in this method. If an expli
it formula reuses a

variable, then Mathemati
a falls into an in�nite loop and fails to
onstru
t the multivariate polynomial.

There is another pitfall when variables are reused. A

ording to Garey-Johnson [6, page 272℄, the de-

ision version of the problem when variables
an be reused, is known to be NP-hard but not known to

be in NP. Thus our �rst step is to eliminate variable reuse from raw formulae.

We say that a variable is reused if it o

urs more than on
e on the left hand side.There are three

di�erent kinds of variable { input, output and temporary. If an input variable is reused, then we

want the �rst o

urren
e to have the identi�er of the input variable, while subsequent ones will have

new identi�ers. On the other hand, if an output variable is reused, the last o

urren
e must have

the identi�er of the output variable while the others will have new identi�ers. Reuse of intermediate

variables
an be ta
kled either as an input or as an output variable { we ta
kle them as input variables.

While eliminating reuse of input variables, we have to s
an the formula from the start to the end and

while eliminating reuse of output variables, we have to s
an the formula from the end to the start. We

do not provide further details, as they are fairly routine and te
hni
al in nature.

The se
ond step after elimination of variable reuse is to
onvert the raw formula into a sequen
e of

binary operations. For this we initially
onvert the formula to post�x form and then use a sta
k to obtain

the sequen
e of binary operations. This step is also quite routine and is given in most data stru
ture

textbooks. However, we note that we attempt no optimisation at this step. Compiler
onstru
tion

based te
hniques of using dire
ted a
y
li
 graphs (DAG's) to identify
ommon minimal subexpressions

ould be applied at this point. Thus the minima we report are really minimum after
onversion to three

address
odes. The a
tual minimum
ould be lesser, though we think this to be unlikely.

The third step is to perform a series of
he
ks: no variable is reused, ea
h output variable o

urs

on
e on the left side, ea
h intermediate variable should o

ur exa
tly on
e on the left side and at least

on
e on the right side. Finally, we also
he
k if ea
h input variable is used at least on
e. We do not

onsider the failure of this
he
k to be a serious error, sin
e some of the
urve parameters are sometimes

not used in some formulae. However, we do report this failure and if any of the other
he
ks fail, we

do not pro
eed with further pro
essing of the formulae. The output of the third step is veri�ed to

be equivalent to the raw formula after eliminating variable reuse. On
e this veri�
ation su

eeds, we

provide this as input to our register minimization algorithm.

5.2 Post-pro
essing

As mentioned in the last se
tion, the register minimization programs both determine the minimum

number of intermediate variables required in the implementation of the expli
it formulae and also

output the
orresponding valid sequen
e. If the number of inputs to a formula is �, minimum number

of intermediate variables required is � and
 is the number of outputs of the formula, then it
an surely

be implemented with �+�+
 lo
ations in memory. For optimal usage of memory, the registers o

upied

by input variables
an be reused after last usage of the input. Also, in some situations one may not

like reusing the lo
ations storing the input variables as they may be required later. For example in

s
alar multipli
ation algorithms, whenever a HCADD is
alled one argument is the base point. So, if

9

the lo
ations storing the parameters of the base point are reused, one has to load them again into these

registers when HCADD is invoked again by the s
alar multipli
ation algorithm. Thus there may be

some inputs su
h that the register
ontaining them
an not be reused. This leads to two
ases,

1. All registers are reused.

2. Some sele
ted registers
ontaining some vital inputs are not reallo
ated.

In our investigation, we allowed reuse of all registers for HCDBL. For HCADD, the inputs are the

parameters of two points (divisors) to be added. In our implementation we allowed reuse of the registers

ontaining the parameters of the �rst divisor. We assumed that the se
ond divisor is the base divisor

and its
ontents should not be destroyed by reusing these registers. For mixed addition algorithm, the

divisor whi
h is in aÆne
oordinates is the base point. We did not allow the reuse of the registers

ontaining the point in aÆne
oordinates. Also, the registers
ontaining the
urve parameters are never

reused nor
ounted. These are the registers
ontaining the `vital' inputs.

For sake of generality, we also ran our programs allowing reuse of all the registers (ex
ept the ones

ontaining the
urve parameters) for all addition formulae. We found that the register usage level
an

be brought down by reusing all the registers. If in a devi
e, the base point is stored in some permanent

memory like some kind of ROM and transfering data from ROM to registers is fast enough, then reuse

of all registers is preferable. However, if su
h data transfer takes signi�
ant time, then the time for

an addition may go up signi�
antly relative to doubling and the implementation risks being prone to

timing atta
ks.

A register allo
ation program was implemented whi
h
onverted the binary instru
tions of the valid

sequen
es obtained from the minimum intermediate variables programs into the expli
it register spe
i�ed

format (ERSF). A register
ontaining a non-vital input is reallo
ated as soon as the variable it is

ontaining is not required any more (is not a `live' register).

The output of this program for an expli
it formula is in the ready-to-implement form. We applied

this methodology to several important formuale in ECC and HECC. For HECC, these outputs are the

�rst expli
it formula in ERSF. Hopefully, these formulae will be of importan
e for an implementation

in software or in hardware.

6 Results

The addition (ECADD) and doubling (ECDBL) formulae in ECC have re
eived mu
h attention from

the resear
h
ommunity and the formulae are quite simpler in
omparison to those in HECC. It has

been reported by many resear
hers that the ECADD in mixed Ja
obian
oordinates for most general

urves over �elds of odd
hara
teresti
 needs 7 registers for implementation. To our knowledge, there is

no result stating that it
an not be exe
uted in less than seven registers. This aroused our
uriosity for

testing these formulae in our methodology. We experimented with ECADD and ECDBL in Ja
obian

oordinates and found that ECADD and ECDBL
an be implemented with no less than 7 and 6 registers

respe
tively. Both forward and reverse program reported this fa
t. As we intended this work to fo
us

on HECC, we did not pay attention to other ECC algorithms.

We applied our methodology to many formula in HECC. First of all, we applied our methodology

to Lange's formulae in new
oordinates [15℄. These formulae are the most eÆ
ient ones for general

hyperellipti

urves of genus 2. All these formulae are inversion-free. However, the
ost of avoiding the

inversions is more than an inversion in binary �elds. Hen
e for an implementation over binary �elds,

aÆne arithmeti
 still looks quite attra
tive. So we used our methodology to
al
ulate the minimum

number of registers required for implementing HCDBL and HCADD in aÆne
oordinates also. We used

10

the formulae presented in [13℄ whi
h are the most eÆ
ient ones in aÆne
oordinates for general
urves

of genus 2. Pelzl et al. [20℄, have proposed a very eÆ
ient HCDBL formula for a spe
ial
lass of
urves.

We investigated the memory requirement of the HCADD and HCDBL formulae presented in [20℄ also.

Re
ently, many eÆ
ient doubling formulae have been presented in [17℄. Many situations, (like

deg(h) = 1 or 2, h

0

= 0 or 6= 0, h

1

is small et
.) have been
onsidered. If a parti
ular variable is

small then multipli
ation by that variable
an be e�e
ted by some additions. The number of additions

will depend upon the value of the small value. Hen
e we have not inquired these situations. When

deg(h) = 1 and h

2

1

and h

�1

1

are pre
omputed, the doubling formula proposed in [17℄ is very eÆ
eint.

To
ompute a doubling (1[i℄ + 9[m℄ + 5[s℄) one needs only 7 registers. However to
ompute the s
alar

multipli
ation one has to
ouple it with an addition formula whi
h requires 15 registers.

Note that HCADD and HCDBL for genus 2
urves have many spe
ial
ases. The most general and

also the most frequent
ase is the one in whi
h the divisor(s) are of full weight, i.e. if D = (u; v) is the

divisor, then deg(u) = 2; deg(v) = 1. In the
urrent work we
on
entrate on the most general and the

frequent
ase only. The same methodology
an be applied to other spe
ial
ases as well. Also, the
ost

of various operations we have given in the Table 2 below does not
orroborate with the
osts provided

in the
orresponding papers. That is be
ause authors generally avoid
ounting the multipli
ation and

squaring of/with
urve
onstants. In some formulae su
h operations o

ur in signi�
ant numbers. For

example in even
hara
teristi
 doubling formula (h

2

6= 0), there are 21 su
h multipli
ations/squarings.

Many of the
urve
onstants
an be made 0 or 1. For sake of generality, we have a

ounted for these

multipli
ations and squarings as well.

We use the following naming
onvention for the name of various algorithms. The formulae pre-

sented in [13℄ and in [20℄ are in aÆne
oordinates. We use a supers
ript A for them, e.g. HCADD

A

and HCDBL

A

. The formulae in [15℄ are in Lange's new
oordinates. For the formulae in these new

oordinates over �elds of even
hara
teristi
 we will use the supers
ript N e and for those over �elds of

odd
hara
teristi
 we will use supers
ript No. Divisor addition algorithms in mixed
oordinates will be

denoted by a suÆx `m' e.g mHCADD

No

.

We summarise our �ndings in Table 2. In the appendix we present all these formulae in Expli
it

Register Spe
i�ed Format.

Observing Table 2, one
an
on
lude that the formulae presented in [17℄ are best for an implemen-

tation over binary �elds. However, these are based on a
lassi�
ation of
urves into isomorphism
lasses

and if one wants to use
urve randomization not all
urve parameters
an be
hosen in this optimal

way. An implementation of the formulae in [13℄, whi
h are more general in nature, needs only one more

register in doubling. In the s
alar multipli
ation algorithm, sets of expli
it formulae will require 15

registers ea
h. The former has no
urve parameter whi
h is not zero or 1. The later requires storing

of atmost 6
urve parameters. The
omputation
an be made se
ure against simple power atta
ks

by using Coron's dummy addition method without any extra registers. Two popular
ountermeasures

against DPA are Coron's point randomisation [5℄ and Joye-Tymen's Curve randomisation [9℄. Both

have been extended to hyperellipti

urves by Avanzi [1℄. In aÆne representation point randomisation

ountermeasure
an not be implemented. As there is no
urve
onstant involved in the expli
it formulae

in [20℄,
urve randomisation
an not be applied. Hen
e for a se
ure implementation the formulae of [13℄

are suitable. It will require at most 21 registers (at most 6 registers for
urve parameters).

For an implementation over �elds of odd
hara
teristi
,
learly the formulae in [15℄ are the most

suitable. In this representation mixed addition requires 20 registers and doubling requires 16. Besides 2

urve parameters are to be stored. So the s
alar multipli
ation
an be
omputed in 22 registers. For a

se
ure implementation, Coron's dummy addition method and point randomisation
an be used without

in
reasing the number of registers.

For addition formulae we do not reuse the registers
ontaining the parameters of the base point. As

stated above we also experimented reusing all registers. We provide our results in Table 3. It
an be

11

Table 2: Register Requirement for Various Expli
it Formulae

Algorithm Proposed in Chara
teristi
 Cost Registers Required

HCADD

A

[13℄ All 1[i℄ + 22[m℄ + 3[s℄ + 44[a℄ 15

HCDBL

A

[13℄ All 1[i℄ + 22[m℄ + 5[s℄ + 56[a℄ 11

HCADD

No

[15℄ Odd 49[m℄ + 7[s℄ + 34[a℄ 23

mHCADD

No

[15℄ Odd 36[m℄ + 5[s℄ + 35[a℄ 16

HCDBL

No

[15℄ Odd 36[m℄ + 7[s℄ + 41[a℄ 20

HCADD

N e

h

2

6=0

[15℄ Even 52[m℄ + 4[s℄ + 35[a℄ 27

mHCADD

N e

h

2

6=0

[15℄ Even 42[m℄ + 5[s℄ + 34[a℄ 17

HCDBL

N e

h

2

6=0

[15℄ Even 54[m℄ + 8[s℄ + 29[a℄ 20

HCADD

N e

h

2

=0

[15℄ Even 47[m℄ + 6[s℄ + 37[a℄ 27

mHCADD

N e

h

2

=0

[15℄ Even 37[m℄ + 6[s℄ + 30[a℄ 22

HCDBL

N e

h

2

=0

[15℄ Even 40[m℄ + 6[s℄ + 27[a℄ 16

HCADD

A

[20℄ Even 1[i℄ + 21[m℄ + 3[s℄ + 30[a℄ 15

HCDBL

A

[20℄ Even 1[i℄ + 9[m℄ + 6[s℄ + 24[a℄ 10

HCDBL

A

deg(h)=1

[17℄ Even 1[i℄ + 5[m℄ + 9[s℄ + 10[a℄ 7

HCDBL

A

deg(h)=1;h

1

=1

[17℄ Even 1[i℄ + 5[m℄ + 9[s℄ + 7[a℄ 6

HCDBL

A

deg(h)=2;h

0

=0

[17℄ Even 1[i℄ + 17[m℄ + 5[s℄ + 31[a℄ 10

seen that number of registers goes down sini�
antly if all registers are reused.

7 Possible Improvements and Con
lusion

Although our register minimisation te
hnique produ
es minimum number of registers required for any

expli
it formula, its output depends upon the nature of the input �le. The input �le is generally a

sequen
e of three address
odes. There is a vast literature in
ompiler
onstru
tion studies on eÆ
ient

methods for
onverting an arithmeti
 formula into three address
odes. Our parsing program whi
h

onverted the expli
it formulae into three address
odes may not be the optimal one. Therefore there is

still some s
ope for improvement. Besides, the expli
it formulae used for �nding the minimum register

Table 3: Register Requirement: Register Reuse vs No Reuse

Algorithm Proposed in #Registers (all reused) #Registers (sele
tive reuse)

HCADD

A

[13℄ 13 15

HCADD

No

[15℄ 19 23

mHCADD

No

[15℄ 19 20

HCADD

N e

h

2

6=0

[15℄ 23 27

mHCADD

N e

h

2

6=0

[15℄ 18 20

HCADD

N e

h

2

=0

[15℄ 23 27

mHCADD

N e

h

2

=0

[15℄ 19 22

HCADD

A

[20℄ 14 15

12

requirements are best known algorithms. In future, resear
hers may
ome out with more eÆ
ient

formulae. Thus the minimum register requirements reported in the
urrent work may not be the best

for hyperellipti

urve
ryptosystems.

In a memory
onstrained small devi
e, we may sa
ri�
e a small amount eÆ
ien
y for eÆ
ient memory

usage. That is, instead of keeping a memory lo
ation o

upied with a
omputed value whi
h will be

required mu
h later, we
an free the
orresponding lo
ation to store other intermediate values and

re
ompute the earlier value on
e again exa
tly when it is required. For example, suppose in an algorithm

at step k a value x = y op z is
omputed and used at Steps k + 1 and k + k

1

, where k

1

is not small.

Also, suppose that at Step k + k

1

, both y and z are alive. Then if memory is a
on
ern, instead of

storing the value of x for k

1

steps, one may prefer to free that memory at Step k + 2 and re
ompute

x just before the Step k + k

1

. Thus one saves a memory lo
ation for some steps by re
omputing one

operation. This may be worthwhile if it is a
heap operation like �eld addition or negation. In this way

one
an trade-o� memory for some extra operations. In the
urrent work, we have not gone for su
h

optimizations. In an implementation on a small devi
e, this kind of optimization
an lead to better

utilization of memory.

Referen
es

[1℄ R. M. Avanzi. Countermeasures Against Di�erential Power Analysis for Hyperellipti
 Curve

Cryptosystems. In Pro
eedings of CHES 2003, LNCS 2779, pages 366- 381, Springer-Verlag, 2003.

[2℄ G. Bertoni, L. Breveglieri, T. Wollinger and C. Paar. Finding Optimum Parallel Copro
essor Design

for Genus 2 Hyperellipti
 Curve Cryptosystems. Cryptology ePrint Ar
hive, Report 2004/29, 2004.

[3℄ D. G. Cantor. Computing in the Ja
obian of a Hyperellipti

urve. InMathemati
s of Computation,

volume 48, pages 95-101, 1987.

[4℄ A
ompendium of NP-optimization problems.

http://www.nada.kth.se/~viggo/problemlist/
ompendium.html

[5℄ J.-S. Coron. Resistan
e against Di�erential Power Analysis for Ellipti
 Curve Cryptosystems.

Pro
eedings of CHES 1999, pp 292-302, 1999.

[6℄ M. R. Garey and D.S. Johnson. Computers and Intra
tibility: A Guide to the Theory of NP-

ompleteness. W.H. Freeman, San Fran
is
o, 1979.

[7℄ P. Gaudry and R. Harley Counting Points on Hyperellipti
 Curves over Finite Fields. In ANTS

IV, volume 1838 of LNCS; pp 297-312, Berlin, 2000, Springer-Verlag.

[8℄ R. Harley. Fast Arithmeti
 on Genus 2 Curves. Avaiable at

http://
ristal.inria.fr/

~

harley/hyper,2000.

[9℄ M. Joye and C. Tymen Prote
tion against di�erential atta
ks for ellipti

urve
ryptography. CHES

2001, LNCS 2162, pp 377-390, Springer-Verlag.

[10℄ P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multi
ommodity
ow. Pro
eed-

ings of the 31st Annual IEEE Symposium on Foundations of Computer S
ien
e, IEEE Computer

So
iety, 726{737, 1990.

[11℄ N. Koblitz. Hyperellipti
 Cryptosystems. In Journal of Cryptology, 1: pages 139{150, 1989.

13

[12℄ T. Lange. EÆ
ient Arithmeti
 on Hyperellipti
 Curves. PhD thesis, Universit�at Gesamtho
hss
hule

Essen, 2001.

[13℄ T. Lange. EÆ
ient Arithmeti
 on Genus 2 Curves over Finite Fields via Expli
it Formulae. Cryp-

tology ePrint Ar
hive, Report 2002/121, 2002. http://eprint.ia
r.org/.

[14℄ T. Lange. Inversion-free Arithmeti
 on Genus 2 Hyperellipti
 Curves. Cryptology ePrint Ar
hive,

Report 2002/147, 2002. http://eprint.ia
r.org/.

[15℄ T. Lange. Weighted
oordinates on Genus 2 Hyperellipti
 Curves. Cryptology ePrint Ar
hive,

Report 2002/153, 2002. http://eprint.ia
r.org/.

[16℄ T. Lange. Formulae for Arithmeti
 on Genus 2 Hyperellipti
 Curves

http://www.its
.ruhr-uni-bo
hum.de/tanja/preprints.html, 2003(To appear in J. AAECC).

[17℄ T. Lange and M. Stevens. EÆ
eint Doubling on Genus 2 Curves over Binary Fields. In Sele
ted

Areas in Cryptography, 2004, LNCS 3061, Springer Verlag 2004.

[18℄ A. Menezes, Y. Wu, R. Zu

herato. An Elementary Introdu
tion to Hyperellipti
 Curves.

Te
hni
al Report CORR 96-19, University of Waterloo(1996), Canada. Available at

http://www.
a
r.math.uwaterloo.
a.

[19℄ P. K. Mishra and P. Sarkar Parallelizing Expli
it Formula for Arithmeti
 in the Ja
obian of

Hyperellipti
 Curves (Extended Abstra
t) In Asia
rypt 2003, LNCS , pp, Springer-Verlag, 2003. Full

version available at Cryptology ePrint Ar
hive, Report 2003/180, 2003. http://eprint.ia
r.org/

[20℄ J. Pelzl and T. Wollinger and C. Paar. High Performan
e Arithmeti
 for Hyperellipti

Curve Cryptosystems of Genus Two Cryptology ePrint Ar
hive, Report 2003/097, 2003.

http://eprint.ia
r.org/.

[21℄ R. Sethi. Complete register allo
ation problems. SIAM Journal of Computing, 4, 226{248, 1975.

[22℄ A. M. Spallek. Kurven vom Ges
hlet
h 2 und ihre Anwendung in Publi
-Key-Kryptosystemen.

PhD Thesis, Universit�at Gesamtho
hs
hule, Essen, 1994.

14

A HECC Formulae in ERSF with Sele
tive Register Reuse

Algorithm HCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U11 2: R

2

:= U10 3: R

3

:= V 11 4: R

4

:= V 10

5: R

5

:= Z11 6: R

6

:= Z12 7: R

7

:= z11 8: R

8

:= U21

9: R

9

:= U20 10: R

10

:= V 21 11: R

11

:= V 20 12: R

12

:= Z21

13: R

13

:= Z22 14: R

14

:= z21

15: R

15

:= R

1

�R

14

16: R

16

:= R

2

� R

14

17: R

17

:= R

5

� R

6

18: R

17

:= R

7

� R

17

19: R

18

:= R

12

� R

13

20: R

14

:= R

14

� R

18

21: R

18

:= R

3

� R

14

22: R

14

:= R

4

� R

14

23: R

19

:= R

7

+R

1

24: R

10

:= R

10

� R

17

25: R

11

:= R

11

�R

17

26: R

17

:= R

18

�R

10

27: R

14

:= R

14

�R

11

28: R

18

:= R

14

+R

17

29: R

9

:= R

9

� R

7

30: R

16

:= R

9

�R

16

31: R

20

:= R

16

� R

7

32: R

8

:= R

8

�R

7

33: R

15

:= R

15

�R

8

34: R

17

:= R

15

� R

17

35: R

19

:= R

17

� R

19

36: R

17

:= R

2

� R

17

37: R

21

:= R

1

� R

15

38: R

20

:= R

21

+R

20

39: R

14

:= R

20

� R

14

40: R

17

:= R

14

�R

17

41: R

21

:= R

7

� R

15

42: R

21

:= R

20

+R

21

43: R

18

:= R

21

� R

18

44: R

14

:= R

18

�R

14

45: R

14

:= R

14

�R

19

46: R

18

:= R

16

� R

20

47: R

13

:= R

6

�R

13

48: R

19

:= R

15

� R

15

49: R

19

:= R

19

�R

2

50: R

18

:= R

18

+R

19

51: R

12

:= R

5

�R

12

52: R

19

:= R

12

� R

12

53: R

13

:= R

13

�R

19

54: R

13

:= R

13

� R

18

55: R

20

:= R

14

� R

19

56: R

19

:= R

17

� R

19

57: R

18

:= R

18

�R

20

58: R

17

:= R

17

� R

20

59: R

10

:= R

18

� R

10

60: R

11

:= R

18

� R

11

61: R

18

:= R

14

�R

14

62: R

14

:= R

14

� R

20

63: R

16

:= R

16

� R

14

64: R

21

:= R

12

� R

13

65: R

12

:= R

12

�R

12

66: R

13

:= R

13

� R

13

67: R

22

:= R

15

+R

8

68: R

18

:= R

18

� R

22

69: R

22

:= R

17

+R

17

70: R

18

:= R

18

�R

22

71: R

18

:= R

15

� R

18

72: R

22

:= R

17

+R

14

73: R

17

:= R

17

�R

9

74: R

9

:= R

9

+R

8

75: R

9

:= R

22

�R

9

76: R

9

:= R

9

�R

17

77: R

11

:= R

17

+R

11

78: R

17

:= R

20

� R

19

79: R

22

:= R

20

� R

20

80: R

11

:= R

22

� R

11

81: R

23

:= R

17

+R

17

82: R

19

:= R

19

� R

19

83: R

18

:= R

19

+R

18

84: R

16

:= R

18

+R

16

85: R

18

:= R

14

�R

8

86: R

8

:= R

8

+R

8

87: R

9

:= R

9

�R

18

88: R

17

:= R

18

+R

17

89: R

8

:= R

8

+R

15

90: R

8

:= R

8

� R

13

91: R

13

:= R

15

� R

14

92: R

13

:= R

23

�R

13

93: R

13

:= R

13

�R

12

94: R

14

:= R

17

�R

13

95: R

15

:= R

14

� R

13

96: R

9

:= R

9

+R

10

97: R

10

:= R

10

+R

10

98: R

10

:= R

16

+R

10

99: R

8

:= R

10

+R

8

100: R

10

:= R

14

� R

8

101: R

10

:= R

10

�R

11

102: R

9

:= R

9

�R

8

103: R

9

:= R

22

� R

9

104: R

9

:= R

15

�R

9

Up

1

:= R

13

Up

0

:= R

8

V p

1

:= R

9

V p

0

:= R

10

Zp

1

:= R

20

Zp

2

:= R

21

zp

1

:= R

22

zp

2

:= R

12

Number of registers used = 23

15

Algorithm mHCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

10

; U

11

; V

10

; V

11

; U

20

; U

21

; V

20

; V

21

; Z

21

; Z

22

; z

21

; z

22

Output Variables: Up

0

; Up

1

; V p

0

; V p

1

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

10

:= R

9

�R

10

14: R

13

:= R

11

� R

10

15: R

14

:= R

1

� R

11

16: R

14

:= R

14

�R

5

17: R

15

:= R

2

�R

11

18: R

15

:= R

6

�R

15

19: R

16

:= R

1

� R

14

20: R

16

:= R

16

+R

15

21: R

15

:= R

15

� R

16

22: R

17

:= R

14

� R

14

23: R

17

:= R

17

� R

2

24: R

15

:= R

15

+R

17

25: R

10

:= R

15

� R

10

26: R

17

:= R

10

� R

9

27: R

10

:= R

10

� R

10

28: R

18

:= R

17

� R

17

29: R

4

:= R

4

�R

13

30: R

4

:= R

4

�R

8

31: R

3

:= R

3

� R

13

32: R

3

:= R

3

�R

7

33: R

13

:= R

16

+R

14

34: R

16

:= R

16

� R

4

35: R

4

:= R

4

+R

3

36: R

4

:= R

13

� R

4

37: R

3

:= R

14

�R

3

38: R

4

:= R

4

�R

16

39: R

13

:= 1 +R

1

40: R

13

:= R

3

� R

13

41: R

3

:= R

2

�R

3

42: R

3

:= R

16

�R

3

43: R

4

:= R

4

�R

13

44: R

13

:= R

15

� R

4

45: R

15

:= R

3

�R

11

46: R

9

:= R

4

�R

9

47: R

16

:= R

9

� R

9

48: R

19

:= R

3

� R

4

49: R

8

:= R

13

�R

8

50: R

7

:= R

13

� R

7

51: R

11

:= R

19

� R

11

52: R

13

:= R

4

� R

4

53: R

20

:= R

13

+R

19

54: R

19

:= R

19

� R

6

55: R

8

:= R

19

+R

8

56: R

8

:= R

16

� R

8

57: R

1

:= R

1

�R

4

58: R

1

:= R

3

�R

1

59: R

3

:= R

14

� R

4

60: R

3

:= R

15

�R

3

61: R

1

:= R

1

�R

3

62: R

3

:= R

11

+R

11

63: R

4

:= R

13

� R

5

64: R

11

:= R

4

+R

11

65: R

13

:= R

14

� R

13

66: R

3

:= R

3

�R

13

67: R

3

:= R

3

�R

18

68: R

11

:= R

11

�R

3

69: R

13

:= R

11

� R

3

70: R

6

:= R

5

+R

6

71: R

6

:= R

20

� R

6

72: R

6

:= R

6

�R

19

73: R

4

:= R

6

�R

4

74: R

1

:= R

1

+R

4

75: R

4

:= R

4

+R

7

76: R

6

:= R

7

+R

7

77: R

2

:= R

2

�R

16

78: R

1

:= R

1

�R

2

79: R

1

:= R

1

+R

6

80: R

2

:= R

5

+R

5

81: R

2

:= R

2

+R

14

82: R

2

:= R

2

�R

10

83: R

1

:= R

1

+R

2

84: R

2

:= R

11

� R

1

85: R

2

:= R

2

�R

8

86: R

4

:= R

4

�R

1

87: R

4

:= R

16

� R

4

88: R

4

:= R

13

�R

4

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

4

V p

0

:= R

2

Zp

1

:= R

9

Zp

2

:= R

17

zp

1

:= R

16

zp

2

:= R

18

Number of registers used = 20

16

Algorithm HCDBL

No

of [15℄

Curve Constants Used: f

3

; f

2

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U1 2: R

2

:= U0 3: R

3

:= V 1 4: R

4

:= V 0

5: R

5

:= Z1 6: R

6

:= Z2 7: R

7

:= z1 8: R

8

:= z2

9: R

9

:= R

4

�R

7

10: R

10

:= R

3

� R

3

11: R

11

:= R

2

� R

7

12: R

12

:= R

1

� R

1

13: R

13

:= R

12

�R

11

14: R

14

:= R

1

� R

3

15: R

9

:= R

9

�R

14

16: R

9

:= R

4

� R

9

17: R

14

:= R

10

�R

2

18: R

9

:= R

14

+R

9

19: R

6

:= R

6

� R

9

20: R

6

:= R

6

� R

7

21: R

5

:= R

6

� R

5

22: R

5

:= R

5

+R

5

23: R

14

:= R

5

� R

5

24: R

6

:= R

6

� R

6

25: R

6

:= R

6

+R

6

26: R

6

:= R

6

�R

1

27: R

15

:= R

7

� R

7

28: R

16

:= f

3

� R

15

29: R

16

:= R

16

+R

12

30: R

12

:= R

12

�R

11

31: R

12

:= R

13

+R

12

32: R

12

:= R

12

+R

16

33: R

12

:= R

8

�R

12

34: R

13

:= R

15

� R

7

35: R

13

:= R

13

� f

2

36: R

15

:= R

11

+R

11

37: R

15

:= R

15

+R

11

38: R

15

:= R

15

+R

11

39: R

15

:= R

15

�R

16

40: R

15

:= R

1

� R

15

41: R

13

:= R

15

+R

13

42: R

8

:= R

8

�R

13

43: R

8

:= R

8

�R

10

44: R

10

:= R

16

+R

3

45: R

13

:= R

8

�R

16

46: R

3

:= R

12

� R

3

47: R

8

:= R

8

+R

12

48: R

8

:= R

10

� R

8

49: R

8

:= R

8

�R

13

50: R

10

:= R

3

� R

11

51: R

10

:= R

13

�R

10

52: R

11

:= 1 +R

1

53: R

3

:= R

3

� R

11

54: R

3

:= R

8

�R

3

55: R

7

:= R

3

� R

7

56: R

8

:= R

9

� R

7

57: R

3

:= R

8

� R

3

58: R

4

:= R

8

�R

4

59: R

4

:= R

4

+R

4

60: R

6

:= R

3

+R

6

61: R

3

:= R

3

+R

3

62: R

8

:= R

10

� R

10

63: R

8

:= R

8

+R

6

64: R

8

:= R

8

+R

6

65: R

8

:= R

8

+R

6

66: R

6

:= R

8

+R

6

67: R

8

:= R

10

� R

7

68: R

9

:= R

10

� R

3

69: R

3

:= R

7

� R

3

70: R

10

:= R

7

� R

7

71: R

11

:= R

9

+R

3

72: R

3

:= R

3

� R

1

73: R

9

:= R

9

� R

2

74: R

1

:= R

2

+R

1

75: R

1

:= R

11

� R

1

76: R

1

:= R

1

�R

9

77: R

2

:= R

9

+R

4

78: R

1

:= R

1

�R

3

79: R

1

:= R

1

+R

3

80: R

3

:= R

3

+R

8

81: R

1

:= R

1

�R

6

82: R

1

:= R

10

� R

1

83: R

2

:= R

10

� R

2

84: R

4

:= R

8

+R

8

85: R

4

:= R

4

�R

14

86: R

3

:= R

3

�R

4

87: R

8

:= R

3

� R

6

88: R

2

:= R

8

�R

2

89: R

3

:= R

3

� R

4

90: R

1

:= R

3

�R

1

Up1 := R

4

Up0 := R

6

V p1 := R

1

V p0 := R

2

Zp1 := R

7

Zp2 := R

5

zp1 := R

10

zp2 := R

14

Number of registers used = 16

17

Algorithm HCADD

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

21

:= R

3

�R

20

22: R

20

:= R

4

� R

20

23: R

22

:= R

2

� R

17

24: R

23

:= R

1

� R

17

25: R

24

:= R

7

+R

1

26: R

13

:= R

13

�R

10

27: R

21

:= R

21

+R

13

28: R

14

:= R

14

� R

10

29: R

20

:= R

20

+R

14

30: R

25

:= R

20

+R

21

31: R

12

:= R

12

� R

7

32: R

22

:= R

22

+R

12

33: R

26

:= R

22

� R

7

34: R

11

:= R

11

�R

7

35: R

23

:= R

23

+R

11

36: R

21

:= R

23

� R

21

37: R

24

:= R

21

� R

24

38: R

21

:= R

21

�R

2

39: R

27

:= R

1

� R

23

40: R

26

:= R

27

+R

26

41: R

20

:= R

26

� R

20

42: R

21

:= R

20

+R

21

43: R

27

:= R

23

� R

7

44: R

27

:= R

26

+R

27

45: R

25

:= R

27

� R

25

46: R

20

:= R

25

+R

20

47: R

20

:= R

20

+R

24

48: R

24

:= R

22

� R

26

49: R

25

:= R

12

+R

11

50: R

19

:= R

9

� R

19

51: R

26

:= R

23

� R

23

52: R

26

:= R

26

� R

2

53: R

24

:= R

24

+R

26

54: R

19

:= R

24

�R

19

55: R

17

:= R

7

� R

17

56: R

26

:= R

20

� R

17

57: R

24

:= R

24

� R

26

58: R

13

:= R

24

�R

13

59: R

14

:= R

24

� R

14

60: R

24

:= R

21

� R

17

61: R

21

:= R

21

� R

26

62: R

12

:= R

21

�R

12

63: R

14

:= R

12

+R

14

64: R

17

:= R

19

� R

17

65: R

19

:= R

23

� R

19

66: R

27

:= R

23

+R

11

67: R

27

:= R

23

� R

27

68: R

23

:= R

23

� R

20

69: R

20

:= R

20

� R

26

70: R

11

:= R

20

�R

11

71: R

21

:= R

21

+R

20

72: R

21

:= R

21

� R

25

73: R

12

:= R

21

+R

12

74: R

20

:= R

22

�R

20

75: R

12

:= R

12

+R

11

76: R

12

:= R

12

+R

13

77: R

13

:= R

24

� R

24

78: R

21

:= R

27

�R

23

79: R

13

:= R

13

+R

21

80: R

13

:= R

13

+R

20

81: R

20

:= R

24

+R

27

82: R

20

:= h

2

�R

20

83: R

21

:= R

26

� R

24

84: R

11

:= R

11

+R

21

85: R

21

:= h

1

� R

26

86: R

20

:= R

20

+R

21

87: R

19

:= R

20

+R

19

88: R

19

:= R

17

� R

19

89: R

13

:= R

13

+R

19

90: R

12

:= R

12

+R

13

91: R

19

:= R

23

� R

26

92: R

20

:= R

26

� R

26

93: R

12

:= R

20

� R

12

94: R

14

:= R

20

�R

14

95: R

21

:= R

26

� R

17

96: R

22

:= R

17

� R

17

97: R

24

:= R

20

� R

21

98: R

25

:= h

2

�R

21

99: R

27

:= h

2

�R

21

100: R

11

:= R

11

+R

27

101: R

19

:= R

19

+R

25

102: R

19

:= R

19

+R

22

103: R

11

:= R

11

+R

23

104: R

25

:= R

11

�R

13

105: R

14

:= R

25

+R

14

106: R

11

:= R

11

� R

23

107: R

11

:= R

11

+R

12

108: R

12

:= h

1

�R

24

109: R

11

:= R

11

+R

12

110: R

12

:= h

0

� R

24

111: R

12

:= R

14

+R

12

U

p

1 := R

19

Up

0

:= R

13

V p

1

:= R

11

V p0 := R

12

Zp1 := R

26

Zp2 := R

17

zp1 := R

20

zp2 := R

22

zp3 := R

21

zp4 := R

24

Number of registers used = 27

18

Algorithm mHCADD

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

:

Input Variables: U

11

; U

10

; V

11

; V

10

; U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

1

�R

11

16: R

15

:= R

15

+R

5

17: R

11

:= R

2

� R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

1

�R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

� R

16

22: R

18

:= R

15

�R

15

23: R

18

:= R

18

�R

2

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

� R

13

26: R

18

:= R

4

� R

14

27: R

18

:= R

18

+R

8

28: R

14

:= R

3

� R

14

29: R

14

:= R

14

+R

7

30: R

19

:= R

16

+R

15

31: R

16

:= R

16

�R

18

32: R

18

:= R

18

+R

14

33: R

18

:= R

19

� R

18

34: R

14

:= R

15

�R

14

35: R

18

:= R

18

�R

16

36: R

19

:= 1 +R

1

37: R

19

:= R

14

� R

19

38: R

14

:= R

2

� R

14

39: R

14

:= R

16

+R

14

40: R

16

:= R

18

�R

19

41: R

17

:= R

17

� R

16

42: R

18

:= R

14

�R

9

43: R

14

:= R

14

�R

16

44: R

8

:= R

17

� R

8

45: R

7

:= R

17

� R

7

46: R

17

:= R

16

�R

16

47: R

16

:= R

16

�R

9

48: R

11

:= R

17

� R

11

49: R

19

:= R

17

+R

14

50: R

14

:= R

14

�R

6

51: R

8

:= R

14

+R

8

52: R

20

:= R

17

� R

5

53: R

17

:= R

15

� R

17

54: R

9

:= R

13

� R

9

55: R

13

:= R

13

�R

13

56: R

13

:= R

15

� R

13

57: R

5

:= R

5

+R

6

58: R

5

:= R

19

� R

5

59: R

5

:= R

5

�R

14

60: R

5

:= R

5

�R

20

61: R

5

:= R

5

+R

7

62: R

6

:= h

2

�R

9

63: R

6

:= R

18

+R

6

64: R

6

:= R

18

� R

6

65: R

7

:= R

16

� R

18

66: R

7

:= R

20

+R

7

67: R

14

:= R

16

�R

16

68: R

8

:= R

14

� R

8

69: R

15

:= R

16

� R

9

70: R

18

:= R

9

� R

9

71: R

19

:= R

17

+R

18

72: R

20

:= h

2

� R

15

73: R

20

:= R

20

+R

17

74: R

20

:= R

1

� R

20

75: R

6

:= R

6

+R

20

76: R

6

:= R

6

+R

11

77: R

11

:= h

1

�R

15

78: R

6

:= R

6

+R

11

79: R

6

:= R

6

+R

13

80: R

5

:= R

5

+R

6

81: R

5

:= R

14

� R

5

82: R

11

:= R

14

�R

15

83: R

13

:= h

2

� R

15

84: R

13

:= R

19

+R

13

85: R

19

:= h

2

�R

15

86: R

7

:= R

7

+R

19

87: R

7

:= R

7

+R

17

88: R

19

:= R

7

� R

6

89: R

8

:= R

19

+R

8

90: R

7

:= R

7

� R

17

91: R

5

:= R

7

+R

5

92: R

7

:= h

1

� R

11

93: R

5

:= R

5

+R

7

94: R

7

:= h

0

�R

11

95: R

7

:= R

8

+R

7

Up

1

:= R

13

Up

0

:= R

6

V p

1

:= R

5

V p

0

:= R

7

Zp

1

:= R

16

Zp

2

:= R

9

zp

1

:= R

14

zp

2

:= R

18

zp

3

:= R

15

zp

4

:= R

11

Number of registers used = 20

19

Algorithm HCDBL

N e

h

2

6=0

Curve Constants Used: h

2

; h

1

; h

0

; f

3

; f

2

:

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

; z

3

; z

4

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

1

2: R

2

:= U

0

3: R

3

:= V

1

4: R

4

:= V

0

5: R

5

:= Z

1

6: R

6

:= Z

2

7: R

7

:= z

1

8: R

8

:= z

2

9: R

9

:= z

3

10: R

10

:= z

4

11: R

11

:= h

1

� R

7

12: R

12

:= h

1

� h

1

13: R

13

:= h

2

� h

2

14: R

14

:= h

1

�R

1

15: R

15

:= R

3

� h

1

16: R

16

:= R

7

� R

7

17: R

12

:= R

12

� R

16

18: R

16

:= f

3

�R

16

19: R

17

:= h

2

� R

2

20: R

14

:= R

14

+R

17

21: R

17

:= h

0

� R

7

22: R

14

:= R

14

+R

17

23: R

14

:= R

7

�R

14

24: R

17

:= R

4

� h

2

25: R

15

:= R

15

+R

17

26: R

17

:= f

2

�R

10

27: R

15

:= R

15

+R

17

28: R

15

:= R

10

�R

15

29: R

17

:= h

2

� R

1

30: R

11

:= R

11

+R

17

31: R

17

:= R

1

�R

1

32: R

13

:= R

13

�R

17

33: R

12

:= R

12

+R

13

34: R

12

:= R

12

�R

2

35: R

13

:= R

16

+R

17

36: R

16

:= h

2

�R

17

37: R

14

:= R

14

+R

16

38: R

8

:= R

13

� R

8

39: R

16

:= R

3

� h

2

40: R

16

:= R

16

�R

9

41: R

8

:= R

8

+R

16

42: R

16

:= h

0

�R

2

43: R

14

:= R

16

� R

14

44: R

12

:= R

12

+R

14

45: R

9

:= R

9

�R

12

46: R

10

:= R

9

� R

10

47: R

12

:= R

3

�R

3

48: R

14

:= R

1

� R

8

49: R

12

:= R

14

+R

12

50: R

12

:= R

12

+R

15

51: R

14

:= R

13

+R

11

52: R

13

:= R

12

�R

13

53: R

11

:= R

8

� R

11

54: R

8

:= R

12

+R

8

55: R

8

:= R

14

�R

8

56: R

8

:= R

8

+R

13

57: R

12

:= h

2

� R

1

58: R

14

:= 1 +R

1

59: R

14

:= R

11

� R

14

60: R

11

:= R

2

� R

11

61: R

8

:= R

8

+R

14

62: R

11

:= R

11

�R

7

63: R

11

:= R

13

+R

11

64: R

13

:= h

2

�R

11

65: R

14

:= h

1

� R

7

66: R

12

:= R

12

+R

14

67: R

12

:= R

8

�R

12

68: R

12

:= R

13

+R

12

69: R

12

:= R

10

� R

12

70: R

7

:= R

8

� R

7

71: R

9

:= R

9

� R

7

72: R

3

:= R

9

� R

3

73: R

4

:= R

9

�R

4

74: R

9

:= R

11

� R

11

75: R

9

:= R

9

+R

12

76: R

12

:= R

11

�R

7

77: R

11

:= R

11

� R

8

78: R

8

:= R

7

� R

8

79: R

13

:= R

8

+R

11

80: R

8

:= R

8

� R

1

81: R

11

:= R

11

� R

2

82: R

12

:= R

8

+R

12

83: R

4

:= R

11

+R

4

84: R

1

:= R

1

+R

2

85: R

1

:= R

13

� R

1

86: R

1

:= R

1

�R

11

87: R

1

:= R

1

�R

8

88: R

1

:= R

1

+R

3

89: R

1

:= R

1

+R

9

90: R

2

:= R

7

� R

7

91: R

1

:= R

2

� R

1

92: R

3

:= R

2

� R

4

93: R

4

:= R

7

�R

10

94: R

8

:= R

10

� R

10

95: R

11

:= R

2

�R

4

96: R

13

:= h

2

�R

4

97: R

14

:= h

2

� R

4

98: R

14

:= R

8

+R

14

99: R

12

:= R

12

+R

13

100: R

12

:= R

12

+R

14

101: R

13

:= R

12

�R

9

102: R

3

:= R

13

�R

3

103: R

12

:= R

12

� R

14

104: R

1

:= R

12

�R

1

105: R

12

:= R

11

� h

1

106: R

1

:= R

1

+R

12

107: R

12

:= R

11

� h

0

108: R

3

:= R

3

+R

12

Up

1

:= R

14

Up

0

:= R

9

V p

1

:= R

1

V p

0

:= R

3

Zp

1

:= R

7

Zp

2

:= R

10

zp

1

:= R

2

zp

2

:= R

8

zp

3

:= R

4

zp

4

:= R

11

Number of registers used = 17

20

Algorithm HCADD

N e

h

2

=0

Curve Constants Used: h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

11

3: R

3

:= U

10

4: R

4

:= V

11

5: R

5

:= V

10

6: R

6

:= Z

11

7: R

7

:= Z

12

8: R

8

:= z

11

9: R

9

:= z

12

10: R

10

:= z

13

11: R

11

:= z

14

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

21

:= R

4

� R

20

22: R

20

:= R

5

� R

20

23: R

22

:= R

3

� R

17

24: R

23

:= R

2

� R

17

25: R

24

:= R

8

+R

2

26: R

13

:= R

13

�R

11

27: R

21

:= R

21

+R

13

28: R

11

:= R

14

�R

11

29: R

14

:= R

20

+R

11

30: R

20

:= R

14

+R

21

31: R

12

:= R

12

� R

8

32: R

22

:= R

22

+R

12

33: R

25

:= R

22

� R

8

34: R

26

:= R

1

� R

8

35: R

23

:= R

23

+R

26

36: R

21

:= R

23

�R

21

37: R

24

:= R

21

� R

24

38: R

21

:= R

21

�R

3

39: R

27

:= R

2

� R

23

40: R

25

:= R

27

+R

25

41: R

14

:= R

25

� R

14

42: R

21

:= R

14

+R

21

43: R

27

:= R

23

� R

8

44: R

27

:= R

25

+R

27

45: R

20

:= R

27

� R

20

46: R

14

:= R

20

+R

14

47: R

14

:= R

14

+R

24

48: R

20

:= R

22

�R

25

49: R

24

:= R

23

+R

26

50: R

19

:= R

10

�R

19

51: R

25

:= R

23

� R

23

52: R

25

:= R

25

�R

3

53: R

20

:= R

20

+R

25

54: R

19

:= R

20

�R

19

55: R

25

:= R

14

� R

14

56: R

24

:= R

25

�R

24

57: R

17

:= R

8

� R

17

58: R

25

:= R

14

�R

17

59: R

20

:= R

20

� R

25

60: R

14

:= R

14

�R

25

61: R

22

:= R

22

� R

14

62: R

13

:= R

20

�R

13

63: R

11

:= R

20

� R

11

64: R

20

:= R

19

�R

19

65: R

20

:= R

20

� R

17

66: R

20

:= R

24

+R

20

67: R

20

:= R

23

� R

20

68: R

23

:= R

23

�R

14

69: R

19

:= R

19

� R

17

70: R

17

:= R

21

�R

17

71: R

21

:= R

21

� R

25

72: R

24

:= R

17

�R

25

73: R

27

:= R

21

+R

14

74: R

14

:= R

14

�R

26

75: R

21

:= R

21

� R

12

76: R

12

:= R

12

+R

26

77: R

12

:= R

27

� R

12

78: R

12

:= R

12

+R

14

79: R

14

:= R

14

+R

24

80: R

12

:= R

12

+R

21

81: R

12

:= R

12

+R

13

82: R

11

:= R

21

+R

11

83: R

13

:= R

17

� R

17

84: R

13

:= R

13

+R

20

85: R

13

:= R

13

+R

22

86: R

17

:= R

25

�R

25

87: R

11

:= R

17

� R

11

88: R

20

:= R

25

�R

19

89: R

21

:= R

19

� R

19

90: R

22

:= R

23

+R

21

91: R

14

:= R

14

+R

22

92: R

23

:= R

14

�R

22

93: R

24

:= 1 � R

20

94: R

13

:= R

13

+R

24

95: R

14

:= R

14

� R

13

96: R

11

:= R

14

+R

11

97: R

12

:= R

12

+R

13

98: R

12

:= R

17

�R

12

99: R

14

:= R

17

� R

20

100: R

12

:= R

23

+R

12

101: R

23

:= R

14

� 1 102: R

12

:= R

12

+R

23

103: R

23

:= R

14

� h

0

104: R

11

:= R

11

+R

23

Up

1

:= R

22

Up

0

:= R

13

V p

1

:= R

12

V p

0

:= R

11

Zp

1

:= R

25

Zp

2

:= R

19

zp

1

:= R

17

zp

2

:= R

21

zp

3

:= R

20

zp

4

:= R

14

Number of registers used = 27

21

Algorithm mHCADD

N e

h

2

=0

Curve Constants Used: h

1

; h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

11

3: R

3

:= U

10

4: R

4

:= V

11

5: R

5

:= V

10

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

2

� R

11

16: R

15

:= R

15

+R

1

17: R

11

:= R

3

�R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

2

� R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

�R

16

22: R

18

:= R

15

� R

15

23: R

18

:= R

18

� R

3

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

�R

13

26: R

18

:= R

13

� R

13

27: R

13

:= R

13

� R

9

28: R

5

:= R

5

� R

14

29: R

5

:= R

5

+R

8

30: R

14

:= R

4

�R

14

31: R

14

:= R

14

+R

7

32: R

19

:= R

16

+R

15

33: R

16

:= R

16

�R

5

34: R

5

:= R

5

+R

14

35: R

5

:= R

19

� R

5

36: R

14

:= R

15

�R

14

37: R

5

:= R

5

�R

16

38: R

19

:= 1 +R

2

39: R

19

:= R

14

� R

19

40: R

14

:= R

3

� R

14

41: R

14

:= R

16

+R

14

42: R

5

:= R

5

�R

19

43: R

16

:= R

17

� R

5

44: R

17

:= R

14

�R

9

45: R

14

:= R

14

�R

5

46: R

8

:= R

16

�R

8

47: R

7

:= R

16

� R

7

48: R

16

:= R

17

�R

17

49: R

19

:= R

5

�R

5

50: R

5

:= R

5

�R

9

51: R

9

:= R

17

� R

5

52: R

11

:= R

11

�R

19

53: R

17

:= R

19

+R

14

54: R

14

:= R

14

� R

6

55: R

8

:= R

14

+R

8

56: R

20

:= R

13

�R

13

57: R

21

:= R

5

�R

13

58: R

22

:= R

5

�R

5

59: R

6

:= R

1

+R

6

60: R

6

:= R

17

� R

6

61: R

6

:= R

6

�R

14

62: R

14

:= R

19

� R

1

63: R

6

:= R

6

�R

14

64: R

6

:= R

6

+R

7

65: R

7

:= R

14

+R

9

66: R

9

:= R

19

�R

2

67: R

9

:= R

9

+R

18

68: R

9

:= R

15

� R

9

69: R

14

:= R

15

�R

19

70: R

14

:= R

14

+R

20

71: R

9

:= R

16

+R

9

72: R

9

:= R

9

+R

11

73: R

7

:= R

7

+R

14

74: R

11

:= R

7

�R

14

75: R

15

:= h

1

�R

21

76: R

9

:= R

9

+R

15

77: R

7

:= R

7

� R

9

78: R

15

:= h

1

� R

21

79: R

6

:= R

6

+R

15

80: R

6

:= R

6

+R

9

81: R

6

:= R

22

�R

6

82: R

6

:= R

11

+R

6

83: R

11

:= h

0

�R

21

84: R

8

:= R

8

+R

11

85: R

8

:= R

22

�R

8

86: R

11

:= R

22

� R

21

87: R

7

:= R

7

+R

8

Up

1

:= R

14

Up

0

:= R

9

V p

1

:= R

6

V p

0

:= R

7

Zp

1

:= R

5

Zp

2

:= R

13

zp

1

:= R

22

zp

2

:= R

20

zp

3

:= R

21

zp

4

:= R

11

Number of registers used = 22

22

Algorithm HCDBL

N e

h

2

=0

in [15℄

Curve Constants: h

1

; h

0

; f

3

; f

2

:

Input Variables: U

1

; U

0

; V

1

; V

0

; Z

1

; Z

2

; z

1

; z

2

; z

3

; z

4

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

1

2: R

2

:= U

0

3: R

3

:= V

1

4: R

4

:= V

0

5: R

5

:= Z

1

6: R

6

:= Z

2

7: R

7

:= z

1

8: R

8

:= z

2

9: R

9

:= z

3

10: R

10

:= z

4

11: R

11

:= h

1

�R

2

12: R

12

:= h

1

�R

1

13: R

13

:= f

2

� R

10

14: R

14

:= R

1

� h

0

15: R

11

:= R

11

+R

14

16: R

11

:= h

1

�R

11

17: R

14

:= h

0

� h

0

18: R

14

:= R

14

� R

7

19: R

11

:= R

11

+R

14

20: R

11

:= R

11

�R

10

21: R

14

:= h

0

� R

7

22: R

12

:= R

12

+R

14

23: R

14

:= R

3

� R

3

24: R

15

:= R

1

� R

1

25: R

16

:= R

7

�R

7

26: R

16

:= f

3

� R

16

27: R

15

:= R

16

+R

15

28: R

8

:= R

8

� R

15

29: R

15

:= 1 +R

1

30: R

16

:= R

1

�R

8

31: R

14

:= R

16

+R

14

32: R

16

:= R

3

� h

1

33: R

13

:= R

13

+R

16

34: R

13

:= R

10

� R

13

35: R

13

:= R

14

+R

13

36: R

14

:= R

12

+ h

1

37: R

12

:= R

13

�R

12

38: R

13

:= R

13

+R

8

39: R

13

:= R

14

� R

13

40: R

8

:= R

8

� h

1

41: R

13

:= R

13

+R

12

42: R

14

:= R

15

� R

8

43: R

8

:= R

2

� R

8

44: R

8

:= R

8

� R

7

45: R

8

:= R

12

+R

8

46: R

12

:= R

13

+R

14

47: R

13

:= R

8

� R

8

48: R

14

:= R

8

� R

12

49: R

15

:= R

14

�R

2

50: R

2

:= R

1

+R

2

51: R

7

:= R

12

� R

7

52: R

8

:= R

8

� R

7

53: R

12

:= R

7

�R

12

54: R

14

:= R

12

+R

14

55: R

2

:= R

14

� R

2

56: R

1

:= R

12

� R

1

57: R

2

:= R

2

�R

15

58: R

2

:= R

2

�R

1

59: R

1

:= R

1

+R

8

60: R

8

:= R

11

� R

7

61: R

10

:= R

11

�R

10

62: R

3

:= R

8

�R

3

63: R

4

:= R

8

� R

4

64: R

4

:= R

15

+R

4

65: R

2

:= R

2

+R

3

66: R

3

:= R

7

�R

4

67: R

4

:= R

7

� R

7

68: R

8

:= R

7

� R

10

69: R

11

:= R

10

�R

10

70: R

1

:= R

1

�R

11

71: R

12

:= R

1

� R

11

72: R

14

:= h

1

�R

8

73: R

13

:= R

13

+R

14

74: R

1

:= R

1

�R

13

75: R

1

:= R

1

+R

3

76: R

2

:= R

2

+R

13

77: R

2

:= R

4

� R

2

78: R

2

:= R

12

+R

2

79: R

3

:= R

4

� R

8

80: R

12

:= R

8

� h

1

81: R

2

:= R

2

+R

12

82: R

12

:= R

8

� h

0

83: R

1

:= R

1

+R

12

Up

1

:= R

11

Up

0

:= R

13

V p

1

:= R

2

V p

0

:= R

1

Zp

1

:= R

7

Zp

2

:= R

10

zp1 := R

4

zp

2

:= R

11

zp

3

:= R

8

zp

4

:= R

3

Number of registers used = 16

23

Algorithm HCADD

A

of [13℄

Curve Constants Used: h

2

; h

1

; h

0

; f

4

:

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

5

�R

1

10: R

10

:= R

3

�R

7

11: R

11

:= R

4

�R

8

12: R

12

:= R

10

+R

11

13: R

13

:= R

2

�R

6

14: R

14

:= R

2

� R

13

15: R

14

:= R

14

+R

9

16: R

9

:= R

9

� R

14

17: R

10

:= R

14

�R

10

18: R

15

:= R

13

� R

13

19: R

15

:= R

15

� R

1

20: R

9

:= R

9

+R

15

21: R

11

:= R

13

�R

11

22: R

13

:= R

14

+R

13

23: R

12

:= R

13

� R

12

24: R

12

:= R

12

�R

10

25: R

13

:= 1 +R

2

26: R

13

:= R

11

� R

13

27: R

11

:= R

1

� R

11

28: R

10

:= R

10

�R

11

29: R

11

:= R

12

�R

13

30: R

12

:= R

9

� R

11

31: R

11

:= R

11

� R

11

32: R

12

:= 1=R

12

33: R

11

:= R

11

�R

12

34: R

12

:= R

9

� R

12

35: R

9

:= R

9

� R

12

36: R

10

:= R

10

�R

12

37: R

12

:= R

10

�R

13

38: R

13

:= R

10

�R

2

39: R

14

:= h2 �R

9

40: R

12

:= R

12

+R

14

41: R

12

:= R

13

�R

12

42: R

12

:= R

12

�R

1

43: R

13

:= R

6

+R

6

44: R

13

:= R

13

+R

13

45: R

13

:= R

13

� f4 46: R

14

:= R

10

+R

10

47: R

13

:= R

14

�R

13

48: R

14

:= h2 �R

9

49: R

13

:= R

13

+R

14

50: R

14

:= R

9

� R

9

51: R

13

:= R

13

� R

14

52: R

13

:= R

13

�R

14

53: R

14

:= R

5

�R

10

54: R

15

:= R

8

+R

8

55: R

15

:= h1 +R

15

56: R

9

:= R

15

� R

9

57: R

15

:= R

6

+R

10

58: R

6

:= R

6

�R

10

59: R

5

:= R

6

+R

5

60: R

6

:= R

12

+R

5

61: R

6

:= R

6

+R

9

62: R

6

:= R

6

+R

13

63: R

9

:= R

15

�R

13

64: R

10

:= R

13

�R

9

65: R

12

:= h2 � R

13

66: R

10

:= R

10

+R

6

67: R

5

:= R

10

�R

5

68: R

5

:= R

5

� R

11

69: R

5

:= R

5

�R

8

70: R

5

:= R

5

� h1 71: R

5

:= R

5

+R

12

72: R

8

:= R

6

� R

9

73: R

9

:= h2 �R

6

74: R

8

:= R

8

�R

14

75: R

8

:= R

8

� R

11

76: R

7

:= R

8

�R

7

77: R

7

:= R

7

� h0 78: R

7

:= R

7

+R

9

up

0

:= R

6

up

1

:= R

13

vp

0

:= R

7

vp

1

:= R

5

Number of registers used = 15

24

Algorithm HCDBL

A

of [13℄

Curve Constants: h

2

; h

1

; h

0

; f4; f

3

; f

2

Input Variables: u

1

; u

0

; v

1

; v

0

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

1

2: R

2

:= u

0

3: R

3

:= v

1

4: R

4

:= v

0

5: R

5

:= f4 �R

1

6: R

6

:= 2 �R

3

7: R

6

:= h

1

+R

6

8: R

7

:= h

2

� R

1

9: R

6

:= R

6

�R

7

10: R

7

:= 2 � R

4

11: R

7

:= h

0

+R

7

12: R

8

:= h

2

�R

2

13: R

7

:= R

7

�R

8

14: R

8

:= R

3

� R

3

15: R

9

:= R

1

� R

1

16: R

5

:= R

9

�R

5

17: R

9

:= f

3

+R

9

18: R

5

:= 2 � R

5

19: R

5

:= R

5

+R

9

20: R

10

:= 2 � R

2

21: R

5

:= R

5

�R

10

22: R

10

:= 2 � R

10

23: R

9

:= R

10

�R

9

24: R

10

:= R

3

� h

2

25: R

5

:= R

5

�R

10

26: R

10

:= f4 �R

1

27: R

9

:= R

9

+R

10

28: R

10

:= R

3

� h

2

29: R

9

:= R

9

+R

10

30: R

9

:= R

1

� R

9

31: R

9

:= R

9

+ f

2

32: R

8

:= R

9

�R

8

33: R

9

:= R

1

�R

6

34: R

10

:= R

7

�R

9

35: R

10

:= R

7

�R

10

36: R

7

:= R

7

�R

9

37: R

9

:= R

6

�R

6

38: R

9

:= R

2

� R

9

39: R

9

:= R

9

+R

10

40: R

10

:= 2 � f4

41: R

10

:= R

10

� R

2

42: R

8

:= R

8

�R

10

43: R

10

:= R

3

� h

1

44: R

8

:= R

8

�R

10

45: R

10

:= R

4

� h

2

46: R

8

:= R

8

�R

10

47: R

10

:= R

7

+R

6

48: R

7

:= R

8

� R

7

49: R

6

:= R

5

�R

6

50: R

5

:= R

8

+R

5

51: R

5

:= R

10

�R

5

52: R

5

:= R

5

�R

7

53: R

8

:= 1 +R

1

54: R

8

:= R

6

� R

8

55: R

5

:= R

5

�R

8

56: R

6

:= R

2

� R

6

57: R

6

:= R

7

�R

6

58: R

7

:= R

9

� R

5

59: R

5

:= R

5

� R

5

60: R

7

:= 1=R

7

61: R

5

:= R

5

�R

7

62: R

7

:= R

9

� R

7

63: R

8

:= R

9

� R

7

64: R

6

:= R

6

� R

7

65: R

7

:= 2 �R

6

66: R

9

:= R

8

� R

8

67: R

10

:= R

8

� h

2

68: R

7

:= R

7

+R

10

69: R

7

:= R

7

�R

9

70: R

10

:= R

6

�R

1

71: R

10

:= h

2

� R

10

72: R

11

:= 2 � R

3

73: R

10

:= R

10

+R

11

74: R

10

:= R

10

+ h

1

75: R

8

:= R

8

� R

10

76: R

10

:= R

1

+R

6

77: R

10

:= R

10

�R

7

78: R

11

:= R

6

� R

6

79: R

8

:= R

11

+R

8

80: R

11

:= 2 � R

1

81: R

11

:= R

11

� f4 82: R

9

:= R

9

� R

11

83: R

8

:= R

8

+R

9

84: R

1

:= R

1

� R

6

85: R

1

:= R

1

+R

2

86: R

2

:= R

2

� R

6

87: R

6

:= R

7

� R

10

88: R

9

:= R

7

� h

2

89: R

6

:= R

6

+R

8

90: R

1

:= R

6

�R

1

91: R

1

:= R

1

� R

5

92: R

1

:= R

1

�R

3

93: R

1

:= R

1

� h

1

94: R

1

:= R

1

+R

9

95: R

3

:= R

8

� R

10

96: R

6

:= h

2

�R

8

97: R

2

:= R

3

�R

2

98: R

2

:= R

2

� R

5

99: R

2

:= R

2

�R

4

100: R

2

:= R

2

� h

0

101: R

2

:= R

2

+R

6

up

0

:= R

8

up

1

:= R

7

vp

0

:= R

2

vp

1

:= R

1

Number of registers used = 11

25

Algorithm HCADD

A

of [20℄

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u10 2: R

2

:= u11 3: R

3

:= v10 4: R

4

:= v11

5: R

5

:= u20 6: R

6

:= u21 7: R

7

:= v20 8: R

8

:= v21

9: R

9

:= R

2

+R

6

10: R

10

:= R

5

�R

1

11: R

11

:= R

3

�R

7

12: R

12

:= R

4

�R

8

13: R

13

:= R

11

+R

12

14: R

14

:= R

2

�R

6

15: R

12

:= R

14

� R

12

16: R

15

:= R

2

� R

14

17: R

15

:= R

15

+R

10

18: R

10

:= R

10

� R

15

19: R

11

:= R

15

� R

11

20: R

15

:= R

15

+R

14

21: R

13

:= R

15

�R

13

22: R

13

:= R

13

�R

11

23: R

14

:= R

14

� R

14

24: R

14

:= R

14

�R

1

25: R

10

:= R

10

+R

14

26: R

14

:= 1 +R

2

27: R

14

:= R

12

� R

14

28: R

12

:= R

1

� R

12

29: R

11

:= R

11

�R

12

30: R

12

:= R

13

�R

14

31: R

13

:= R

10

� R

12

32: R

12

:= R

12

�R

12

33: R

13

:= 1=R

13

34: R

12

:= R

12

� R

13

35: R

13

:= R

10

� R

13

36: R

10

:= R

10

�R

13

37: R

11

:= R

11

�R

13

38: R

13

:= R

6

+R

11

39: R

14

:= R

11

�R

2

40: R

15

:= R

13

�R

2

41: R

14

:= R

14

�R

15

42: R

14

:= R

14

�R

1

43: R

6

:= R

6

� R

11

44: R

6

:= R

6

+R

5

45: R

14

:= R

14

+R

6

46: R

14

:= R

14

+R

10

47: R

10

:= R

10

� R

10

48: R

9

:= R

10

� R

9

49: R

9

:= R

14

+R

9

50: R

5

:= R

5

�R

11

51: R

11

:= R

11

+R

13

52: R

11

:= R

11

�R

2

53: R

10

:= R

11

�R

10

54: R

11

:= R

13

�R

10

55: R

13

:= R

10

� R

11

56: R

13

:= R

13

+R

9

57: R

11

:= R

9

�R

11

58: R

5

:= R

11

�R

5

59: R

6

:= R

13

�R

6

60: R

6

:= R

6

� R

12

61: R

5

:= R

5

� R

12

62: R

6

:= R

6

�R

8

63: R

5

:= R

5

�R

7

64: R

6

:= R

6

� 1

up

0

:= R

9

up

1

:= R

10

vp

0

:= R

5

vp

1

:= R

6

Number of registers used = 15

26

Algorithm HCDBL

A

of [20℄

Input Variables: u

0

; u

1

; v

0

; v

1

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

5

:= R

4

� R

4

6: R

6

:= R

1

�R

1

7: R

7

:= R

1

+R

2

8: R

8

:= R

2

� R

2

9: R

2

:= R

2

� R

8

10: R

5

:= R

2

+R

5

11: R

5

:= R

5

+R

4

12: R

1

:= R

1

� R

5

13: R

9

:= R

5

+R

8

14: R

7

:= R

7

� R

9

15: R

7

:= R

7

+R

2

16: R

7

:= R

7

+R

1

17: R

1

:= 1=R

1

18: R

6

:= R

6

� R

1

19: R

1

:= R

5

�R

1

20: R

9

:= R

8

� R

1

21: R

2

:= R

2

+R

9

22: R

2

:= R

2

+R

5

23: R

5

:= R

6

+R

8

24: R

1

:= R

1

+R

5

25: R

9

:= R

6

�R

6

26: R

10

:= R

9

� R

8

27: R

10

:= R

10

� R

8

28: R

8

:= R

10

+R

8

29: R

8

:= R

8

+R

6

30: R

5

:= R

5

� R

8

31: R

10

:= R

8

+R

9

32: R

1

:= R

1

� R

10

33: R

1

:= R

1

+R

6

34: R

1

:= R

1

+R

5

35: R

5

:= R

5

+R

7

36: R

1

:= R

1

+ 1

37: R

3

:= R

5

+R

3

38: R

1

:= R

1

+R

2

39: R

1

:= R

1

+R

4

up

0

:= R

8

up

1

:= R

9

vp

0

:= R

3

vp

1

:= R

1

Number of registers used = 10

27

Algorithm HCDBL

A

deg(h)=1

of [17℄

Curve Constants: h0; h1; h1i; h12; f0; f1; f2; f3

Input Variables: u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

1

:= R

1

�R

1

6: R

5

:= R

2

� R

2

7: R

5

:= R

5

+ f3 8: R

3

:= R

3

�R

3

9: R

3

:= f0 +R

3

10: R

3

:= 1=R

3

11: R

3

:= R

3

� R

1

12: R

6

:= R

5

� R

3

13: R

2

:= R

6

+R

2

14: R

2

:= R

2

�R

2

15: R

7

:= h12 � R

3

16: R

5

:= R

7

+R

5

17: R

6

:= R

5

� R

6

18: R

2

:= R

2

+R

7

19: R

5

:= R

5

� R

2

20: R

5

:= R

5

+ f1

21: R

1

:= R

5

+R

1

22: R

1

:= h1i � R

1

23: R

3

:= R

7

� R

3

24: R

5

:= R

7

� R

3

25: R

5

:= R

6

+R

5

26: R

5

:= R

5

+ f2 27: R

4

:= R

4

� R

4

28: R

4

:= R

5

+R

4

29: R

4

:= h1i � R

4

30: u0p := R

2

31: u1p := R

3

32: v0p := R

1

33: v1p := R

4

Number of registers used = 7

28

Algorithm HCDBL

A

deg(h)=1;h

1

=1

of [17℄

Curve Constants: f0; f1; f2; f3

Input Variables: u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= u0 2: R

2

:= u1 3: R

3

:= v0 4: R

4

:= v1

5: R

1

:= R

1

� R

1

6: R

5

:= R

2

� R

2

7: R

5

:= R

5

+ f3 8: R

3

:= R

3

� R

3

9: R

3

:= f0 +R

3

10: R

3

:= 1=R

3

11: R

3

:= R

3

� R

1

12: R

6

:= R

5

� R

3

13: R

5

:= R

3

+R

5

14: R

2

:= R

6

+R

2

15: R

6

:= R

5

� R

6

16: R

2

:= R

2

� R

2

17: R

2

:= R

2

+R

3

18: R

5

:= R

5

�R

2

19: R

5

:= R

5

+ f1 20: R

1

:= R

5

+R

1

21: R

4

:= R

4

� R

4

22: R

5

:= R

3

�R

3

23: R

3

:= R

3

� R

5

24: R

3

:= R

6

+R

3

25: R

3

:= R

3

+ f2 26: R

3

:= R

3

+R

4

27: u0p := R

2

28: u1p := R

5

29: v0p := R

1

30: v1p := R

3

Number of registers used = 6

29

Algorithm HCDBL

A

deg(h)=2

of [17℄

Curve Constants: h1; h12; f1

Input Variables: f4; u0; u1; v0; v1

Output Variables: u0p; u1p; v0p; v1p

1: R

1

:= f4 2: R

2

:= u0 3: R

3

:= u1 4: R

4

:= v0

5: R

5

:= v1

6: R

6

:= R

2

+ h12 7: R

7

:= R

2

�R

2

8: R

7

:= f1 +R

7

9: R

8

:= R

3

� R

3

10: R

9

:= h1 +R

5

11: R

9

:= R

5

� R

9

12: R

10

:= R

8

+R

5

13: R

11

:= h1 �R

5

14: R

6

:= R

6

+R

11

15: R

11

:= R

4

+R

11

16: R

8

:= R

11

+R

8

17: R

11

:= R

1

� R

3

18: R

12

:= R

10

+R

11

19: R

12

:= R

3

� R

12

20: R

9

:= R

12

+R

9

21: R

12

:= h1 �R

10

22: R

4

:= R

4

+R

12

23: R

4

:= R

9

+R

4

24: R

9

:= h1 �R

9

25: R

7

:= R

7

+R

9

26: R

9

:= 1=R

7

27: R

2

:= R

2

� R

9

28: R

6

:= R

6

� R

2

29: R

2

:= R

4

� R

2

30: R

2

:= R

3

+R

2

31: R

12

:= R

4

� R

4

32: R

4

:= h1 �R

4

33: R

4

:= R

7

+R

4

34: R

4

:= R

10

� R

4

35: R

4

:= R

12

+R

4

36: R

4

:= R

9

� R

4

37: R

7

:= R

2

+ h1

38: R

9

:= R

6

�R

6

39: R

9

:= R

6

+R

9

40: R

10

:= R

9

+R

2

41: R

10

:= R

10

+R

1

42: R

10

:= R

10

+R

3

43: R

10

:= R

6

� R

10

44: R

5

:= R

5

+R

10

45: R

5

:= R

5

+R

4

46: R

1

:= R

1

�R

6

47: R

7

:= R

7

+R

1

48: R

4

:= R

7

+R

4

49: R

4

:= R

2

� R

4

50: R

7

:= R

2

�R

2

51: R

2

:= R

2

+ h1 52: R

2

:= R

2

+R

3

53: R

1

:= R

2

+R

1

54: R

1

:= R

6

�R

1

55: R

1

:= R

7

+R

1

56: R

2

:= R

1

+R

11

57: R

2

:= R

6

� R

2

58: R

2

:= R

8

+R

2

59: R

2

:= R

2

+R

4

60: u0p := R

1

61: u1p := R

9

62: v0p := R

2

63: v1p := R

5

Number of registers used = 12

30

B HECC Addition Formulae in ERSF with Full Register Reuse

Algorithm HCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U11; U10; V 11; V 10; Z11; Z12; z11; U21; U20; V 21; V 20; Z21; Z22; z21

Output Variables: Up1; Up0; V p1; V p0; Zp1; Zp2; zp1; zp2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= U

21

9: R

9

:= U

20

10: R

10

:= V

21

11: R

11

:= V

20

12: R

12

:= Z

21

13: R

13

:= Z

22

14: R

14

:= z

21

15: R

15

:= R

1

� R

14

16: R

16

:= R

2

� R

14

17: R

17

:= R

5

�R

6

18: R

17

:= R

7

�R

17

19: R

18

:= R

12

� R

13

20: R

14

:= R

14

� R

18

21: R

3

:= R

3

� R

14

22: R

4

:= R

4

� R

14

23: R

14

:= R

7

+R

1

24: R

6

:= R

6

�R

13

25: R

5

:= R

5

� R

12

26: R

12

:= R

5

�R

5

27: R

13

:= R

5

� R

5

28: R

6

:= R

6

�R

13

29: R

11

:= R

11

� R

17

30: R

10

:= R

10

�R

17

31: R

3

:= R

3

�R

10

32: R

4

:= R

4

�R

11

33: R

17

:= R

4

+R

3

34: R

9

:= R

9

� R

7

35: R

16

:= R

9

�R

16

36: R

18

:= R

16

� R

7

37: R

8

:= R

8

� R

7

38: R

15

:= R

15

�R

8

39: R

1

:= R

1

�R

15

40: R

1

:= R

1

+R

18

41: R

18

:= R

16

� R

1

42: R

4

:= R

1

� R

4

43: R

19

:= R

15

� R

15

44: R

19

:= R

19

� R

2

45: R

18

:= R

18

+R

19

46: R

6

:= R

6

� R

18

47: R

5

:= R

5

�R

6

48: R

6

:= R

6

�R

6

49: R

3

:= R

15

�R

3

50: R

7

:= R

7

� R

15

51: R

1

:= R

1

+R

7

52: R

1

:= R

1

�R

17

53: R

1

:= R

1

�R

4

54: R

7

:= R

3

� R

14

55: R

2

:= R

2

�R

3

56: R

2

:= R

4

�R

2

57: R

1

:= R

1

�R

7

58: R

3

:= R

1

� R

1

59: R

4

:= R

2

�R

13

60: R

7

:= R

1

�R

13

61: R

13

:= R

18

� R

7

62: R

2

:= R

2

� R

7

63: R

1

:= R

1

�R

7

64: R

10

:= R

13

� R

10

65: R

11

:= R

13

� R

11

66: R

13

:= R

16

�R

1

67: R

14

:= R

2

+R

1

68: R

15

:= R

7

� R

4

69: R

16

:= R

7

�R

7

70: R

17

:= R

15

+R

15

71: R

4

:= R

4

�R

4

72: R

18

:= R

1

� R

8

73: R

15

:= R

18

+R

15

74: R

1

:= R

15

�R

1

75: R

1

:= R

17

�R

1

76: R

1

:= R

1

�R

12

77: R

15

:= R

15

�R

1

78: R

17

:= R

15

�R

1

79: R

19

:= R

2

� R

9

80: R

2

:= R

2

+R

2

81: R

9

:= R

9

+R

8

82: R

9

:= R

14

�R

9

83: R

9

:= R

9

�R

19

84: R

11

:= R

19

+R

11

85: R

9

:= R

9

�R

18

86: R

9

:= R

9

+R

10

87: R

10

:= R

10

+R

10

88: R

11

:= R

16

� R

11

89: R

14

:= R

15

+R

8

90: R

8

:= R

8

+R

8

91: R

3

:= R

3

�R

14

92: R

2

:= R

3

�R

2

93: R

2

:= R

15

�R

2

94: R

3

:= R

8

+R

15

95: R

3

:= R

3

�R

6

96: R

2

:= R

4

+R

2

97: R

2

:= R

2

+R

13

98: R

2

:= R

2

+R

10

99: R

2

:= R

2

+R

3

100: R

3

:= R

15

� R

2

101: R

3

:= R

3

�R

11

102: R

4

:= R

9

�R

2

103: R

4

:= R

16

� R

4

104: R

4

:= R

17

�R

4

Up

1

:= R

1

Up

0

:= R

2

V p

1

:= R

4

V p

0

:= R

3

Zp

1

:= R

7

Zp

2

:= R

5

zp

1

:= R

16

zp

2

:= R

12

Number of registers used = 19

31

Algorithm mHCADD

No

of [15℄

Curve Constants Used: None

Input Variables: U

10

; U

11

; V

10

; V

11

; U

20

; U

21

; V

20

; V

21

; Z

21

; Z

22

; z

21

; z

22

Output Variables: Up

0

; Up

1

; V p

0

; V p

1

; Zp

1

; Zp

2

; zp

1

; zp

2

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

10

:= R

9

� R

10

14: R

13

:= R

11

�R

10

15: R

14

:= R

1

�R

11

16: R

14

:= R

14

�R

5

17: R

15

:= R

2

� R

11

18: R

15

:= R

6

�R

15

19: R

16

:= R

1

�R

14

20: R

16

:= R

16

+R

15

21: R

15

:= R

15

� R

16

22: R

17

:= R

14

�R

14

23: R

17

:= R

17

� R

2

24: R

15

:= R

15

+R

17

25: R

10

:= R

15

� R

10

26: R

17

:= R

10

�R

9

27: R

10

:= R

10

� R

10

28: R

18

:= R

17

� R

17

29: R

4

:= R

4

� R

13

30: R

4

:= R

4

�R

8

31: R

3

:= R

3

� R

13

32: R

3

:= R

3

�R

7

33: R

13

:= R

16

+R

14

34: R

16

:= R

16

�R

4

35: R

14

:= R

14

� R

3

36: R

3

:= R

4

+R

3

37: R

3

:= R

13

� R

3

38: R

3

:= R

3

�R

16

39: R

4

:= 1 +R

1

40: R

4

:= R

14

�R

4

41: R

13

:= R

2

� R

14

42: R

13

:= R

16

�R

13

43: R

3

:= R

3

�R

4

44: R

4

:= R

15

�R

3

45: R

14

:= R

13

� R

11

46: R

9

:= R

3

� R

9

47: R

15

:= R

9

�R

9

48: R

16

:= R

13

� R

3

49: R

8

:= R

4

� R

8

50: R

4

:= R

4

� R

7

51: R

7

:= R

16

�R

11

52: R

11

:= R

3

�R

3

53: R

19

:= R

11

+R

16

54: R

16

:= R

16

�R

6

55: R

8

:= R

16

+R

8

56: R

8

:= R

15

�R

8

57: R

1

:= R

1

� R

3

58: R

1

:= R

13

�R

1

59: R

3

:= R

14

�R

3

60: R

3

:= R

14

�R

3

61: R

1

:= R

1

� R

3

62: R

3

:= R

7

+R

7

63: R

13

:= R

11

� R

5

64: R

7

:= R

13

+R

7

65: R

11

:= R

14

� R

11

66: R

3

:= R

3

�R

11

67: R

3

:= R

3

�R

18

68: R

7

:= R

7

�R

3

69: R

11

:= R

7

� R

3

70: R

6

:= R

5

+R

6

71: R

6

:= R

19

�R

6

72: R

6

:= R

6

�R

16

73: R

6

:= R

6

�R

13

74: R

1

:= R

1

+R

6

75: R

6

:= R

6

+R

4

76: R

4

:= R

4

+R

4

77: R

2

:= R

2

� R

15

78: R

1

:= R

1

�R

2

79: R

1

:= R

1

+R

4

80: R

2

:= R

5

+R

5

81: R

2

:= R

2

+R

14

82: R

2

:= R

2

� R

10

83: R

1

:= R

1

+R

2

84: R

2

:= R

7

�R

1

85: R

2

:= R

2

�R

8

86: R

4

:= R

6

�R

1

87: R

4

:= R

15

�R

4

88: R

4

:= R

11

�R

4

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

4

V p

0

:= R

2

Zp

1

:= R

9

Zp

2

:= R

17

zp

1

:= R

15

zp

2

:= R

18

Number of registers used = 19

32

Algorithm HCADD

N e

h

2

6=0

of [15℄

Curve Constants Used: h

2

; h

1

; h

0

Input Variables: U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

;

U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

3

:= R

3

�R

20

22: R

4

:= R

4

� R

20

23: R

20

:= R

2

� R

17

24: R

21

:= R

1

� R

17

25: R

9

:= R

9

�R

19

26: R

13

:= R

13

� R

10

27: R

3

:= R

3

+R

13

28: R

10

:= R

14

� R

10

29: R

4

:= R

4

+R

10

30: R

14

:= R

4

+R

3

31: R

12

:= R

12

� R

7

32: R

19

:= R

20

+R

12

33: R

20

:= R

19

� R

7

34: R

11

:= R

11

� R

7

35: R

21

:= R

21

+R

11

36: R

22

:= R

1

� R

21

37: R

20

:= R

22

+R

20

38: R

22

:= R

19

� R

20

39: R

4

:= R

20

� R

4

40: R

23

:= R

21

� R

21

41: R

23

:= R

23

� R

2

42: R

22

:= R

22

+R

23

43: R

9

:= R

22

� R

9

44: R

3

:= R

21

� R

3

45: R

21

:= R

21

� R

7

46: R

20

:= R

20

+R

21

47: R

14

:= R

20

� R

14

48: R

14

:= R

14

+R

4

49: R

20

:= R

21

� R

9

50: R

1

:= R

7

+R

1

51: R

1

:= R

3

�R

1

52: R

1

:= R

14

+R

1

53: R

2

:= R

3

�R

2

54: R

2

:= R

4

+R

2

55: R

3

:= R

12

+R

11

56: R

4

:= R

7

� R

17

57: R

7

:= R

9

�R

4

58: R

9

:= R

2

� R

4

59: R

4

:= R

1

�R

4

60: R

14

:= R

22

� R

4

61: R

2

:= R

2

�R

4

62: R

12

:= R

2

�R

12

63: R

13

:= R

14

� R

13

64: R

10

:= R

14

� R

10

65: R

10

:= R

12

+R

10

66: R

14

:= R

9

�R

9

67: R

17

:= R

21

+R

11

68: R

17

:= R

21

� R

17

69: R

21

:= R

21

� R

1

70: R

1

:= R

1

� R

4

71: R

11

:= R

1

� R

11

72: R

2

:= R

2

+R

1

73: R

1

:= R

19

�R

1

74: R

2

:= R

2

� R

3

75: R

2

:= R

2

+R

12

76: R

2

:= R

2

+R

11

77: R

2

:= R

2

+R

13

78: R

3

:= R

17

�R

21

79: R

3

:= R

14

+R

3

80: R

1

:= R

3

+R

1

81: R

3

:= R

9

+R

17

82: R

3

:= h

2

�R

3

83: R

9

:= R

4

�R

9

84: R

9

:= R

11

+R

9

85: R

11

:= h

1

� R

4

86: R

3

:= R

3

+R

11

87: R

3

:= R

3

+R

20

88: R

3

:= R

7

� R

3

89: R

1

:= R

1

+R

3

90: R

2

:= R

2

+R

1

91: R

3

:= R

21

� R

4

92: R

11

:= R

4

� R

4

93: R

2

:= R

11

�R

2

94: R

10

:= R

11

� R

10

95: R

12

:= R

4

� R

7

96: R

13

:= R

7

� R

7

97: R

14

:= R

11

� R

12

98: R

17

:= h

2

� R

12

99: R

19

:= h

2

� R

12

100: R

9

:= R

9

+R

19

101: R

3

:= R

3

+R

17

102: R

3

:= R

3

+R

13

103: R

9

:= R

9

+R

21

104: R

17

:= R

9

�R

1

105: R

10

:= R

17

+R

10

106: R

9

:= R

9

�R

21

107: R

2

:= R

9

+R

2

108: R

9

:= h

1

�R

14

109: R

2

:= R

2

+R

9

110: R

9

:= h

0

� R

14

111: R

9

:= R

10

+R

9

Up

1

:= R

3

Up

0

:= R

1

V p

1

:= R

2

V p

0

:= R

9

Zp

1

:= R

4

Zp

2

:= R

7

zp

1

:= R

11

zp

2

:= R

13

zp

3

:= R

12

zp

4

:= R

14

Number of registers used = 23

33

Algorithm mHCADD

N e

h

2

6=0

of [15℄

Curve Constants Used: h

2

; h

1

; h

0

:

Input Variables: U

11

; U

10

; V

11

; V

10

; U

21

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= U

21

6: R

6

:= U

20

7: R

7

:= V

21

8: R

8

:= V

20

9: R

9

:= Z

21

10: R

10

:= Z

22

11: R

11

:= z

21

12: R

12

:= z

22

13: R

13

:= z

23

14: R

14

:= z

24

15: R

15

:= R

1

�R

11

16: R

15

:= R

15

+R

5

17: R

11

:= R

2

� R

11

18: R

11

:= R

6

+R

11

19: R

16

:= R

1

�R

15

20: R

16

:= R

16

+R

11

21: R

17

:= R

11

� R

16

22: R

18

:= R

15

�R

15

23: R

18

:= R

18

�R

2

24: R

17

:= R

17

+R

18

25: R

13

:= R

17

� R

13

26: R

4

:= R

4

� R

14

27: R

4

:= R

4

+R

8

28: R

3

:= R

3

�R

14

29: R

3

:= R

3

+R

7

30: R

14

:= R

16

+R

15

31: R

16

:= R

16

�R

4

32: R

15

:= R

15

� R

3

33: R

3

:= R

4

+R

3

34: R

3

:= R

14

� R

3

35: R

3

:= R

3

�R

16

36: R

4

:= 1 +R

1

37: R

4

:= R

15

� R

4

38: R

2

:= R

2

� R

15

39: R

2

:= R

16

+R

2

40: R

3

:= R

3

�R

4

41: R

4

:= R

17

� R

3

42: R

14

:= R

2

� R

9

43: R

2

:= R

2

� R

3

44: R

8

:= R

4

�R

8

45: R

4

:= R

4

� R

7

46: R

7

:= R

3

� R

3

47: R

3

:= R

3

� R

9

48: R

11

:= R

7

� R

11

49: R

15

:= R

7

+R

2

50: R

2

:= R

2

� R

6

51: R

8

:= R

2

+R

8

52: R

16

:= R

3

� R

14

53: R

17

:= R

13

� R

13

54: R

9

:= R

13

� R

9

55: R

13

:= R

15

�R

17

56: R

15

:= R

15

� R

7

57: R

7

:= R

7

� R

5

58: R

16

:= R

7

+R

16

59: R

5

:= R

5

+R

6

60: R

5

:= R

15

� R

5

61: R

2

:= R

5

�R

2

62: R

2

:= R

2

�R

7

63: R

2

:= R

2

+R

4

64: R

4

:= h

2

� R

9

65: R

4

:= R

14

+R

4

66: R

4

:= R

14

� R

4

67: R

5

:= R

3

� R

3

68: R

6

:= R

5

�R

8

69: R

7

:= R

3

� R

9

70: R

8

:= R

9

� R

9

71: R

14

:= R

15

+R

8

72: R

15

:= h

2

� R

7

73: R

15

:= R

15

+R

15

74: R

1

:= R

1

� R

15

75: R

1

:= R

4

+R

1

76: R

1

:= R

1

+R

11

77: R

4

:= h

1

� R

7

78: R

1

:= R

1

+R

4

79: R

1

:= R

1

+R

13

80: R

2

:= R

2

+R

1

81: R

2

:= R

5

� R

2

82: R

4

:= R

5

� R

7

83: R

11

:= h

2

� R

7

84: R

11

:= R

14

+R

11

85: R

13

:= h

2

�R

7

86: R

13

:= R

16

+R

13

87: R

13

:= R

13

+R

15

88: R

14

:= R

13

� R

1

89: R

6

:= R

14

+R

6

90: R

13

:= R

13

�R

15

91: R

2

:= R

13

+R

2

92: R

13

:= h

1

� R

4

93: R

2

:= R

2

+R

13

94: R

13

:= h

0

�R

4

95: R

6

:= R

6

+R

13

Up

1

:= R

11

Up

0

:= R

1

V p

1

:= R

2

V p

0

:= R

6

Zp

1

:= R

3

Zp

2

:= R

9

zp

1

:= R

5

zp

2

:= R

8

zp

3

:= R

7

zp

4

:= R

4

Number of registers used = 18

34

Algorithm HCADD

N e

h

2

=0

of [15℄

Curve Constants Used: h

0

; h

1

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; Z

11

; Z

12

; z

11

; z

12

; z

13

; z

14

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

11

2: R

2

:= U

10

3: R

3

:= V

11

4: R

4

:= V

10

5: R

5

:= Z

11

6: R

6

:= Z

12

7: R

7

:= z

11

8: R

8

:= z

12

9: R

9

:= z

13

10: R

10

:= z

14

11: R

11

:= U

21

12: R

12

:= U

20

13: R

13

:= V

21

14: R

14

:= V

20

15: R

15

:= Z

21

16: R

16

:= Z

22

17: R

17

:= z

21

18: R

18

:= z

22

19: R

19

:= z

23

20: R

20

:= z

24

21: R

3

:= R

3

� R

20

22: R

4

:= R

4

�R

20

23: R

20

:= R

2

� R

17

24: R

21

:= R

1

� R

17

25: R

9

:= R

9

� R

19

26: R

13

:= R

13

� R

10

27: R

3

:= R

3

+R

13

28: R

10

:= R

14

�R

10

29: R

4

:= R

4

+R

10

30: R

14

:= R

4

+R

3

31: R

12

:= R

12

� R

7

32: R

19

:= R

20

+R

12

33: R

20

:= R

19

�R

7

34: R

11

:= R

11

� R

7

35: R

21

:= R

21

+R

11

36: R

22

:= R

1

� R

21

37: R

20

:= R

22

+R

20

38: R

22

:= R

19

� R

20

39: R

4

:= R

20

� R

4

40: R

23

:= R

21

�R

21

41: R

23

:= R

23

�R

2

42: R

22

:= R

22

+R

23

43: R

9

:= R

22

� R

9

44: R

3

:= R

21

� R

3

45: R

21

:= R

21

�R

7

46: R

20

:= R

20

+R

21

47: R

14

:= R

20

� R

14

48: R

14

:= R

14

+R

4

49: R

20

:= R

9

�R

9

50: R

1

:= R

7

+R

1

51: R

1

:= R

3

� R

1

52: R

1

:= R

14

+R

1

53: R

2

:= R

3

� R

2

54: R

2

:= R

4

+R

2

55: R

3

:= R

21

+R

11

56: R

4

:= R

1

� R

1

57: R

3

:= R

4

� R

3

58: R

4

:= R

7

�R

17

59: R

7

:= R

20

� R

4

60: R

3

:= R

3

+R

7

61: R

3

:= R

21

�R

3

62: R

7

:= R

9

�R

4

63: R

9

:= R

2

� R

4

64: R

4

:= R

1

� R

4

65: R

14

:= R

22

�R

4

66: R

1

:= R

1

�R

4

67: R

2

:= R

2

� R

4

68: R

17

:= R

19

�R

1

69: R

19

:= R

21

�R

1

70: R

13

:= R

14

� R

13

71: R

10

:= R

14

� R

10

72: R

14

:= R

9

� R

4

73: R

20

:= R

2

+R

1

74: R

1

:= R

1

�R

11

75: R

2

:= R

2

� R

12

76: R

11

:= R

12

+R

11

77: R

11

:= R

20

�R

11

78: R

11

:= R

11

+R

1

79: R

1

:= R

1

+R

14

80: R

11

:= R

11

+R

2

81: R

11

:= R

11

+R

13

82: R

2

:= R

2

+R

10

83: R

9

:= R

9

� R

9

84: R

3

:= R

9

+R

3

85: R

3

:= R

3

+R

17

86: R

9

:= R

4

�R

4

87: R

2

:= R

9

� R

2

88: R

10

:= R

4

� R

7

89: R

12

:= R

7

�R

7

90: R

13

:= R

19

+R

12

91: R

1

:= R

1

+R

13

92: R

14

:= R

1

� R

13

93: R

17

:= h

1

� R

10

94: R

3

:= R

3

+R

17

95: R

1

:= R

1

� R

3

96: R

1

:= R

1

+R

2

97: R

2

:= R

11

+R

3

98: R

2

:= R

9

�R

2

99: R

11

:= R

9

� R

10

100: R

2

:= R

14

+R

2

101: R

14

:= R

11

� h

1

102: R

2

:= R

2

+R

14

103: R

14

:= R

11

� h

0

104: R

1

:= R

1

+R

14

Up

1

:= R

13

Up

0

:= R

3

V p

1

:= R

2

V p

0

:= R

1

Zp

1

:= R

4

Zp

2

:= R

7

zp

1

:= R

9

zp

2

:= R

12

zp

3

:= R

10

zp

4

:= R

11

Number of registers used = 23

35

Algorithm mHCADD

N e

h

2

=0

of [15℄

Curve Constants Used: h

1

; h

0

:

Input Variables: U

21

; U

11

; U

10

; V

11

; V

10

; U

20

; V

21

; V

20

; Z

21

; Z

22

; z

21

; z

22

; z

23

; z

24

Output Variables: Up

1

; Up

0

; V p

1

; V p

0

; Zp

1

; Zp

2

; zp

1

; zp

2

; zp

3

; zp

4

1: R

1

:= U

21

2: R

2

:= U

20

3: R

3

:= V

21

4: R

4

:= V

20

5: R

5

:= Z

21

6: R

6

:= Z

22

7: R

7

:= z

21

8: R

8

:= z

22

9: R

9

:= z

23

10: R

10

:= z

24

11: R

11

:= U11 � R

7

12: R

11

:= R

11

+R

1

13: R

7

:= U10 � R

7

14: R

7

:= R

2

+R

7

15: R

12

:= U11 � R

11

16: R

12

:= R

12

+R

7

17: R

13

:= R

7

� R

12

18: R

14

:= V 10 � R

10

19: R

14

:= R

14

+R

4

20: R

10

:= V 11 �R

10

21: R

10

:= R

10

+R

3

22: R

15

:= R

12

+R

11

23: R

12

:= R

12

�R

14

24: R

11

:= R

11

� R

10

25: R

10

:= R

14

+R

10

26: R

10

:= R

15

�R

10

27: R

10

:= R

10

�R

12

28: R

14

:= R

11

� R

11

29: R

14

:= R

14

� U10 30: R

13

:= R

13

+R

14

31: R

9

:= R

13

�R

9

32: R

14

:= R

9

� R

9

33: R

9

:= R

9

� R

5

34: R

15

:= 1 + U11

35: R

15

:= R

11

�R

15

36: R

11

:= U10 � R

11

37: R

11

:= R

12

+R

11

38: R

10

:= R

10

�R

15

39: R

12

:= R

13

�R

10

40: R

13

:= R

11

� R

5

41: R

11

:= R

11

� R

10

42: R

15

:= R

10

�R

10

43: R

5

:= R

10

�R

5

44: R

7

:= R

7

�R

15

45: R

10

:= R

11

� R

15

46: R

16

:= R

9

� R

9

47: R

10

:= R

10

+R

16

48: R

17

:= R

5

� R

9

49: R

18

:= R

15

� U11 50: R

14

:= R

18

+R

14

51: R

11

:= R

11

�R

14

52: R

14

:= R

13

� R

5

53: R

18

:= R

5

� R

5

54: R

19

:= R

1

+R

2

55: R

13

:= R

13

�R

13

56: R

11

:= R

13

+R

11

57: R

7

:= R

11

+R

7

58: R

4

:= R

12

� R

4

59: R

3

:= R

12

�R

3

60: R

1

:= R

15

� R

1

61: R

11

:= R

15

+R

11

62: R

11

:= R

11

�R

19

63: R

2

:= R

11

�R

2

64: R

11

:= R

11

�R

2

65: R

2

:= R

2

+R

4

66: R

4

:= R

11

�R

1

67: R

3

:= R

4

+R

3

68: R

1

:= R

1

+R

14

69: R

1

:= R

1

+R

10

70: R

4

:= R

1

� R

10

71: R

11

:= h

1

� R

17

72: R

7

:= R

7

+R

11

73: R

1

:= R

1

� R

7

74: R

11

:= h

1

�R

17

75: R

3

:= R

3

+R

11

76: R

3

:= R

3

+R

7

77: R

3

:= R

18

� R

3

78: R

3

:= R

4

+R

3

79: R

4

:= h

0

�R

17

80: R

2

:= R

2

+R

4

81: R

2

:= R

18

� R

2

82: R

4

:= R

18

� R

17

83: R

1

:= R

1

+R

2

Up

1

:= R

10

Up

0

:= R

7

V p

1

:= R

3

V p

0

:= R

1

Zp

1

:= R

5

Zp

2

:= R

9

zp

1

:= R

18

zp

2

:= R

16

zp

3

:= R

17

zp

4

:= R

4

Number of registers used = 19

36

Algorithm HCADD

A

of [13℄

Curve Constants Used: h

2

; h

1

; h

0

; f

4

:

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

5

�R

1

10: R

3

:= R

3

�R

7

11: R

4

:= R

4

�R

8

12: R

10

:= R

3

+R

4

13: R

11

:= R

2

�R

6

14: R

12

:= R

2

� R

11

15: R

12

:= R

12

+R

9

16: R

9

:= R

9

� R

12

17: R

3

:= R

12

�R

3

18: R

13

:= R

11

� R

11

19: R

13

:= R

13

� R

1

20: R

9

:= R

9

+R

13

21: R

4

:= R

11

�R

4

22: R

11

:= R

12

+R

11

23: R

10

:= R

11

� R

10

24: R

10

:= R

10

�R

3

25: R

11

:= 1 +R

2

26: R

11

:= R

4

� R

11

27: R

4

:= R

1

� R

4

28: R

3

:= R

3

�R

4

29: R

4

:= R

10

�R

11

30: R

10

:= R

9

� R

4

31: R

4

:= R

4

� R

4

32: R

10

:= 1=R

10

33: R

4

:= R

4

� R

10

34: R

10

:= R

9

� R

10

35: R

9

:= R

9

� R

10

36: R

3

:= R

3

� R

10

37: R

10

:= R

3

�R

11

38: R

2

:= R

3

�R

2

39: R

11

:= h

2

�R

9

40: R

10

:= R

10

+R

11

41: R

2

:= R

2

� R

10

42: R

1

:= R

2

�R

1

43: R

2

:= 2 � R

6

44: R

2

:= R

2

+R

11

45: R

2

:= R

2

� f

4

46: R

10

:= 2 �R

3

47: R

10

:= R

10

�R

11

48: R

11

:= h

2

�R

9

49: R

10

:= R

10

+R

11

50: R

11

:= R

9

� R

9

51: R

2

:= R

2

� R

11

52: R

10

:= R

10

�R

11

53: R

11

:= R

5

�R

3

54: R

12

:= 2 �R

8

55: R

12

:= h

1

+R

12

56: R

9

:= R

12

� R

9

57: R

12

:= R

6

+R

3

58: R

3

:= R

6

�R

3

59: R

3

:= R

3

+R

5

60: R

1

:= R

1

+R

3

61: R

1

:= R

1

+R

9

62: R

1

:= R

1

+R

2

63: R

2

:= R

12

�R

10

64: R

5

:= R

10

� R

2

65: R

6

:= h

2

�R

10

66: R

5

:= R

5

+R

1

67: R

3

:= R

5

�R

3

68: R

3

:= R

3

� R

4

69: R

3

:= R

3

�R

8

70: R

3

:= R

3

� h

1

71: R

3

:= R

3

+R

6

72: R

2

:= R

1

� R

2

73: R

5

:= h

2

�R

1

74: R

2

:= R

2

�R

11

75: R

2

:= R

2

� R

4

76: R

2

:= R

2

�R

7

77: R

2

:= R

2

� h

0

78: R

2

:= R

2

+R

5

up

0

:= R

1

up

1

:= R

10

vp

0

:= R

2

vp

1

:= R

3

Number of registers used = 13

37

Algorithm HCADD

A

of [20℄

Input Variables: u

10

; u

11

; v

10

; v

11

; u

20

; u

21

; v

20

; v

21

Output Variables: up

0

; up

1

; vp

0

; vp

1

1: R

1

:= u

10

2: R

2

:= u

11

3: R

3

:= v

10

4: R

4

:= v

11

5: R

5

:= u

20

6: R

6

:= u

21

7: R

7

:= v

20

8: R

8

:= v

21

9: R

9

:= R

2

+R

6

10: R

10

:= 1 +R

2

11: R

4

:= R

4

�R

8

12: R

3

:= R

3

�R

7

13: R

11

:= R

3

+R

4

14: R

12

:= R

5

�R

1

15: R

13

:= R

2

�R

6

16: R

4

:= R

13

�R

4

17: R

10

:= R

4

� R

10

18: R

4

:= R

1

� R

4

19: R

14

:= R

2

�R

13

20: R

14

:= R

14

+R

12

21: R

12

:= R

12

� R

14

22: R

3

:= R

14

� R

3

23: R

14

:= R

14

+R

13

24: R

11

:= R

14

� R

11

25: R

11

:= R

11

�R

3

26: R

10

:= R

11

�R

10

27: R

3

:= R

3

�R

4

28: R

4

:= R

13

�R

13

29: R

4

:= R

4

� R

1

30: R

4

:= R

12

+R

4

31: R

11

:= R

4

�R

10

32: R

10

:= R

10

� R

10

33: R

11

:= 1=R

11

34: R

10

:= R

10

�R

11

35: R

11

:= R

4

�R

11

36: R

4

:= R

4

�R

11

37: R

3

:= R

3

� R

11

38: R

11

:= R

4

� R

4

39: R

9

:= R

11

�R

9

40: R

12

:= R

6

+R

3

41: R

13

:= R

3

�R

2

42: R

6

:= R

6

� R

3

43: R

6

:= R

6

+R

5

44: R

5

:= R

5

�R

3

45: R

3

:= R

3

+R

12

46: R

3

:= R

3

�R

2

47: R

3

:= R

3

�R

11

48: R

2

:= R

12

�R

2

49: R

2

:= R

13

� R

2

50: R

1

:= R

2

�R

1

51: R

1

:= R

1

+R

6

52: R

1

:= R

1

+R

4

53: R

1

:= R

1

+R

9

54: R

2

:= R

12

�R

3

55: R

4

:= R

3

� R

2

56: R

4

:= R

4

+R

1

57: R

2

:= R

1

� R

2

58: R

2

:= R

2

�R

5

59: R

4

:= R

4

�R

6

60: R

4

:= R

4

�R

10

61: R

2

:= R

2

� R

10

62: R

4

:= R

4

�R

8

63: R

2

:= R

2

�R

7

64: R

4

:= R

4

� 1

up

0

:= R

1

up

1

:= R

3

vp

0

:= R

2

vp1 := R

4

Number of registers used = 14

38

