
The Kurosawa-Desmedt Key Encapsulation is not

Chosen-Ciphertext Secure

Javier Herranz Dennis Hofheinz Eike Kiltz

September 13, 2006

CWI Amsterdam, The Netherlands
{herranz,hofheinz,kiltz}@cwi.nl

Abstract

At CRYPTO 2004, Kurosawa and Desmedt presented a hybrid public-key encryption
scheme that is chosen-ciphertext secure in the standard model. Until now it was unknown
if the key-encapsulation part of the Kurosawa-Desmedt scheme by itself is still chosen-
ciphertext secure or not. In this short note we answer this question to the negative, namely
we present a simple chosen-ciphertext attack on the Kurosawa-Desmedt key encapsulation
mechanism.

1 Introduction

Hybrid public-key encryption [4] consists of a key-encapsulation (KEM) part and a data encap-
sulation (DEM) part. For the hybrid scheme to be chosen-ciphertext secure it is sufficient that
both the KEM and the DEM part are chosen-ciphertext secure [4]. Kurosawa and Desmedt [5]
propose a very efficient public-key encryption scheme that, as a full hybrid encryption scheme is
chosen-ciphertext secure (under the DDH assumption in the standard model). Due to its great
flexibility and other reasons, in practise one always prefers a secure KEM over a full encryption
scheme. However, until now it was unknown if the KEM part alone is still chosen-ciphertext
secure or not. Whereas in [5] the authors claim that this is most likely not the case, in [2] this is
referred to as an open problem. In this note we settle this question by giving a chosen-ciphertext
attack on the KEM part of the Kurosawa-Desmedt encryption scheme. In fact our attack even
holds in a stronger security setting, i.e. it breaks the chosen-plaintext non-malleability of the
KD-KEM. Our results show that (under the DDH assumption) there exists a hybrid KEM/DEM
encryption scheme that is chosen-ciphertext secure whereas the KEM part alone is not.
We stress that our results do not affect the security of the original Kurosawa-Desmedt hybrid

public-key encryption scheme.

2 Key Encapsulation Mechnisms

We recall the definition of a key encapsulation mechanism (KEM). A KEM KEM = (Kg,Encaps,
Decaps) with key-space KeySp(k) consists of three polynomial-time algorithms. Via (pk , sk) ←
Kg(1k ) the randomized key-generation algorithm produces keys for security parameter k ∈ N;
via (K,C ) ← Encaps(1k , pk) a key K ∈ KeySp(k) together with a ciphertext C is created;
via K ← Decaps(sk ,C ) the possessor of secret key sk decrypts ciphertext C to get back a
key. For consistency, we require that for all k ∈ N, and all (K,C ) ← Encaps(1k , pk) we have
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Pr [Decaps(sk ,C ) = K ] = 1, where the probability is taken over the choice of (pk , sk)← Kg(1k ),
and the coins of all the algorithms in the expression above.
The formal security of a KEM against chosen-ciphertext attacks is defined as follows.

Definition 2.1 The following experiment is associated to an adversary A :

Experiment Expkem-ind-cca
KEM ,A

(k)

(pk , sk)← Kg(1k)
K0 ← KeySp(k) ; (K1,C )← Encaps(pk)
δ ← {0, 1} ; K ← Kδ

δ′ ← ADecaps(·)(pk ,K,C )
If δ 6= δ′ then return 0 else return 1

where the oracle Decaps(C ) returns K ← Decaps(sk ,C ) with the restriction that A is not
allowed to query Decaps(·) on the target ciphertext C . The advantage of A in the experiment
is defined as

Advkem-ind-cca
KEM ,A (k) =

∣

∣

∣

∣

Pr
[

Expkem-ind-cca
KEM ,A (k) = 1

]

−
1

2

∣

∣

∣

∣

A key encapsulation mechanism KEM is said to be indistinguishable against chosen-ciphertext
attacks if the advantage functionAdvkem-ind-cca

KEM ,A (k) is a negligible function in k for all polynomial-
time adversaries A.

3 Kurosawa-Desmedt Key Encapsulation

3.1 The KD Key Encapsulation Mechanism

Let G be a group of prime order p and let g1, g2 be two public generators of G. Let TCR : G×G→
Zp be a hash function. In the original paper a target collision-resistant hash function is proposed
(whose definition can be looked up in [5]). However, the particular choice of the hash function
TCR is independent of our attack. The key encapsulation part of the Kurosawa-Desmedt scheme
is as follows:

Kg(1k)
x1, x2, y1, y2 ← Z

∗
p

h1 ← gx1

1 gx2

2 ; h2 ← gy1

1 gy2

2

pk ← (h1, h2)
sk ← (x1, x2, y1, y2)
Return (pk , sk)

Encaps(pk)
r ← Z

∗
p ; c1 ← gr1 ; c2 ← gr2

C ← (c1, c2) ∈ G
2

t← TCR(C)
K ← htr

1 hr
2 ∈ G

Return (C ,K)

Decaps(sk ,C )
Parse C as (c1, c2)
t← TCR(C)

K ← ctx1+y1

1 ctx2+y2

2

Return K

3.2 A chosen-ciphertext attack

We now describe a chosen-ciphertext attack on the Kurosawa-Desmedt KEM. Let K be the
challenge key and C = (c1, c2) be the challenge ciphertext an attacker receives in the chosen-
ciphertext security game from Definition 2.1. The attacker picks two random integers a, b ∈ Z

∗
p

and computes the two ciphertexts

Ca = (c
a
1, c

a
2), Cb = (c

b
1, c

b
2) . (1)

Let t = TCR(C), ta = TCR(Ca), and tb = TCR(Cb). Note that the target collision resistance of
TCR implies ta 6= tb with overwhelming probability, so that we may simply assume ta 6= tb here.
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Now the attacker makes two queries to the decapsulation oracle:

Ka ← Decaps(Ca), Kb ← Decaps(Cb) . (2)

With Ka and Kb the correct challenge key (with respect to C ) can be reconstructed as

K̃ ← (Ktb/a
a K

−ta/b
b )

1

tb−ta · (K−1/a
a K

1/b
b )

t

tb−ta . (3)

The attacker returns 1 if this key K̃ equals the challenge key K and 0 otherwise. This completes
the description of the attack.

We claim that the above described attack successfully breaks the chosen-ciphertext security
of the Kurosawa-Desmedt KEM with (maximal) advantage 1/2. Namely, we show that the
key K̃ computed by the adversary in (3) always equals the key corresponding to the challenge
chiphertext C which is defined as Decaps(sk , C) = ctx1+y1

1 ctx2+y2

2 . This can be verified using the
following easy claim:

Claim 3.1 K
tb/a
a K

−ta/b
b = (cy1

1 cy2

2 )
tb−ta and K

−1/a
a K

1/b
b = (cx1

1 cx2

2 )
tb−ta .

Proof of Claim 3.1: Note that by definition of the decapsulation algorithm we have K
1/a
a =

((ca1)
tax1+y1(ca2)

tax2+y2)1/a = ctax1+y1

1 ctax2+y2

2 and K
1/b
b = ctbx1+y1

1 ctbx2+y2

2 . Consequently,

Ktb/a
a K

−ta/b
b = (ctax1+y1

1 ctax2+y2

2 )tb(ctbx1+y1

1 ctbx2+y2

2 )−ta

= ctatbx1+tby1−tatbx1−tay1

1 ctatbx2+tby2−tatbx2−tay2

2

= (cy1

1 cy2

2 )
tb−ta ,

and

K−1/a
a K

1/b
b = (c−tax1−y1

1 c−tax2−y2

2 )ctbx1+y1

1 ctbx2+y2

2

= c−tax1+tbx1

1 c−tax2+tbx2

2

= (cx1

1 cx2

2 )
tb−ta .

Remark 3.2 This attack is also successful against a variant of the Kurosawa-Desmedt KEM
where ciphertext are checked for consistency in the decapsulation algorithm, i.e. it is checked if
logg1 c1 = logg2 c2. Such a check can be implemented by verifying if c

ω
1 = c2, where ω = logg1 g2

which can be made part of sk . In our attack the two queried ciphertexts from (2) are obviously
both consistent.

Remark 3.3 Our attack reconstructs the original challenge session key and therefore the KEM
is not even one-way chosen-ciphertext secure.

Remark 3.4 Our attack in fact even breaks the chosen-plaintext (CPA) non-malleability of
the Kurosawa-Desmedt KEM, i.e. the KEM is not NM-CPA. In a non-malleability attack an
adversary is considered to be successful if she can come up with a vector of ciphertexts such
that the respective decapsulated session keys of those ciphertexts are meaningfully related to the
(unknown) session key of the challenge ciphertext. In the attack, given the challenge ciphertext
C the adversary simply outputs the ciphertexts Ca and Cb as in (1) and defines the relation
over K = K̃,Ka,Kb as in (3). Note that this is a chosen-plaintext attack since the adversary
never queries the decryption oracle. On the other hand it is easy to show that the Kurosawa-
Desmedt KEM is indistinguishable under chosen-plaintext attacks (IND-CPA) under the DDH
assumption.
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Remark 3.5 In the Kurosawa-Desmedt public-key encryption scheme the symmetric key K is
additionally hashed using a key-derivation function KDF : G → {0, 1}k. We now show that
even if one consideres this hash function as part of the Kurosawa Desmedt KEM then our
attack still applies. The point is that the hash function KDF only has to satisfy relatively
weak security properties, namely KDF(K) has to be uniformly distributed over {0, 1}k if K is
uniformly distributed over G. In particular, a hash function that is efficiently invertible may
satisfy this property. In that case the attacker can reconstruct K from KDF(K) and run the
attack as described above.
Surely, if we model KDF as a random oracle [3] or if we are willing to base security on a

much stronger assumption like the Oracle Diffie-Hellman Assumption [1] (which is an interactive
assumption between the hash function KDF and the group) then the hashed version of the
Kurosawa-Desmedt KEM indeed can be proved chosen-ciphertext secure.
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