
Private Information Retrieval Using

Trusted Hardware

Shuhong Wang

1
, Xuhua Ding

1
, Robert H. Deng

1
, and Feng Bao

2

1
S
hool of Information Systems, SMU

{shwang,xhding,robertdeng}�smu.edu.sg

2
Institute for Info
omm Resear
h, Singapore

baofeng�i2r.a-star.edu.sg

Abstra
t. Many theoreti
al PIR (Private Information Retrieval)
on-

stru
tions have been proposed in the past years. Though information

theoreti
ally se
ure, most of them are impra
ti
al to deploy due to the

prohibitively high
ommuni
ation and
omputation
omplexity. The re-

ent trend in outsour
ing databases fuels the resear
h on pra
ti
al PIR

s
hemes. In this paper, we propose a new PIR system by making use of

trusted hardware. Our system is proven to be information theoreti
ally

se
ure. Furthermore, we derive the
omputation
omplexity lower bound

for hardware-based PIR s
hemes and show that our
onstru
tion meets

the lower bounds for both the
ommuni
ation and
omputation
osts,

respe
tively.

1 Introdu
tion

Retrieval of sensitive data from databases or web servi
es, su
h as patent databases,

medi
al databases, and sto
k quotes, invokes
on
erns on user priva
y exposure.

A database server or web server may be interested in garner information about

user pro�les by examining users' database a

ess a
tivities. For example, a
om-

pany's query on a patent from a patent database may imply that it is pursuing

a related idea; an investor's query on a sto
k quote may indi
ate that he is

planning to buy or sell the sto
k. In su
h
ases, the server's ability of perform-

ing information inferen
e is unfavorable to the users. Ideally, users' database

retrieval patterns are not leaked to any other parties, in
luding the servers.

A PIR (Private Information Retrieval) s
heme allows a user to retrieve a

data item from a database without revealing information about the data item.

The earliest referen
es of "query priva
y" date ba
k to Rivest et al [19℄ and

Feigenbaum [9℄. The �rst formal notion of PIR was de�ned by Chor et al [6℄. In

their formalization, a database is modelled as a n-bit string x = x1x2 · · ·xn, and

a user is interested in retrieving one bit from x. With this formalization, many

results have been produ
ed in re
ent years. Depending on whether trusted hard-

ware is employed or not, we
lassify PIR s
hemes into two
ategories: traditional

PIR whi
h does not utilize any trusted hardware and hardware-based PIR whi
h

employs trusted hardware in order to redu
e
ommuni
ation and
omputation

omplexities.

2 Shuhong Wang et. al.

The major body of PIR work fo
uses on the traditional PIR. Interested read-

ers are referred to a survey [10℄ for a thorough review. A big
hallenge in PIR

design is to minimize the
ommuni
ation
omplexity, whi
h measures the num-

ber of bits transmitted between the user and the server(s) per query. A trivial

solution of PIR is for the server to return the entire database. Therefore, the

upper bound of
ommuni
ation
omplexity is O(n) while the lower bound is

O(log n), sin
e by all means the user has to provide an index. For a single server

PIR with information theoreti
 priva
y, it is proven in [6℄ that the
ommuni-

ation
omplexity is at least O(n) and therefore
on�rming that O(n) is the

lower bound. Two approa
hes are used to redu
e the
ommuni
ation
ost. One

is to dupli
ate the database in di�erent servers, with the assumption that the

servers do not
ommuni
ate with ea
h other. Without assuming any limit the

servers'
omputation
apability, PIR s
hemes with multiple database
opies are

able to o�er information theoreti
 se
urity with lower
ommuni
ation
ost. The

best known result is [3℄ due to Beimel et. al., with
ommuni
ation
omplexity

O(nlog log ω/ω log ω), where ω is the number of database
opies. The other ap-

proa
h still uses single server model but assumes that the server's
omputation

apability is bounded. S
hemes following this approa
h o�er
omputational se-

urity with relatively low
ommuni
ation
omplexity. The best result to date is

due to Lipmaa [16℄, where the user and the server
ommuni
ation
omplexity

are O(κ log2 n) and O(κ log n) respe
tively, with κ being the se
ure parameter

of the underlying
omputationally hard problem.

Another key performan
e metri
 of PIR s
hemes is their
omputation
om-

plexity. All existing traditional PIR s
hemes require high
omputation
ost at

the server(s) end. Beimel et al [4℄ proved that the expe
ted
omputation of the

server(s) is Ω(n)3, whi
h implies that any study on traditional PIR s
hemes is

only able to improve its
omputation
ost by a
onstant fa
tor.

To the best of our knowledge, two hardware-based PIR
onstru
tions exist in

literature. The earlier s
heme [20℄ due to Smith and Sa�ord is proposed solely to

redu
e the
ommuni
ation
ost. On ea
h query, a trusted hardware reads all the

data items from an external database and returns the requested one to the user.

The other hardware-based s
heme [14, 15℄ is due to Iliev and Smith. The s
heme

fa
ilitates an e�
ient online query pro
ess by o�oading heavy
omputation load

o�ine. For ea
h query, its online pro
ess
osts O(1). Nonetheless, depending on

the hardware's internal storage size, for every k (k << n) queries the external

database needs to be reshu�ed with a
omputation
ost O(n log n). For
onve-
nien
e, we refer to the �rst s
heme as SS01 and the latter as IS04. Both s
hemes

have O(log n)
ommuni
ation
omplexity.

Our Contributions The
ontributions of this paper are three-fold: (1) We

present a new PIR s
heme using the same trusted hardware model as in [14℄ and

prove that it is se
ure in the information theoreti
al sense; (2) Among all existing

PIR
onstru
tions, our s
heme a
hieves the best performan
e in all aspe
ts:

3 Ω is the notation for asymptoti
 lower bound. f(n) = Ω(g(n)) if there exists a

positive
onstant c and a positive integer n0 su
h that 0 ≤ cg(n) ≤ f(n) for all

n ≥ n0.

PIR Using Trusted Hardware 3

O(log n)
ommuni
ation
omplexity, O(1) online
omputation
ost and O(n)
o�ine
omputation
ost; (3) We prove that our average
omputation
omplexity

per query, O(n/k), is the lower bound for hardware-based PIR s
hemes using

the same model, where k (k << n) is the maximum number of data items stored

by the trusted hardware.

2 Models and De�nitions

Database Model and Its Permutation. We use π to denote a permutation of n
integers: (1, 2, · · · , n). For 1 ≤ i ≤ n, the image of i under π is denoted by π(i).
A database D is modelled as an array, represented by D = [d1, d2, · · · dn], where
di is the i-th data item in its original form, for 1 ≤ i ≤ n. A permuted D under π
is denoted by Dπ and its i-th data re
ord is denoted by Dπ[i], for 1 ≤ i ≤ n. The
database D is permuted into Dπ by using π in su
h a way that the i-th element

of Dπ is the π(i)-th element in D, i.e.

Dπ[i] = dπ(i) (1)

In other words, Dπ = π−1(D). To prote
t the se
re
y of π, the permutation

is always
oupled with en
ryption operations. In the rest of the paper, we use

Dπ[i] ≃ dπ(i) to denote that Dπ[i] is the
iphertext of dπ(i). To illustrate the idea,

a trivial example is as follows. Let π = (1324), whi
h means π(1) = 3, π(2) =
4, π(3) = 2, π(4) = 1. Then for D = [d1, d2, d3, d4], we have Dπ ≃ [d3, d4, d2, d1].
To distinguish the entries in the original plaintext database and the permuted

and en
rypted database, we use the
onvention throughout the paper that data

items refer to those in D and data re
ords refer to those in Dπ.

Ar
hite
ture. As shown in Figure 1 below, our hardware-based PIR s
heme

omprises of three types of entities: a group of users; a server and a trusted

hardware denoted by TH. The server hosts a permuted and en
rypted version

of a database D = [d1, · · · , dn], whi
h
onsists of n items of equal length

4

. TH

is a se
ure and tamper-resistant devi
e residing on the server. With limited

omputation power and storage
a
he, TH shu�es the original database D into

database Dπ based on a permutation π; it remembers the permutation π and

answers users' queries.

Ea
h user intera
ts with TH via a se
ure
hannel, e.g. a SSL
onne
tion.

When a user wants to retrieve the i-th data item of D, she sends a query q to

TH through the
hannel. On re
eiving q, TH a

esses the permuted database Dπ

and retrieves the intended item di. Throughout the paper, by using "q = i", we
mean the query q requests the i-th item of D. By saying "the index of a (data)

item", we refer to its index in the original database D, by saying "the index of a

(data) re
ord", we refer to its index in the shu�ed database in whi
h the re
ord

lo
ates.

4

If ne
essary, we use padding for those data items with di�erent length. Di�erent to

the bit model in [6℄, we extend it to the blo
k model.

4 Shuhong Wang et. al.

I/O

Server

Trusted Hardware

...2 n1

Database

shuffled database

i

i
d

Secure Channel

User

D

πD

Host

 Initial shuffle

Retrieval

Fig. 1. Hardware-based PIR Model

Trusted Hardware TH is trusted in the sense that it honestly exe
utes the

PIR proto
ol. Neither outside adversaries nor the server is able to tamper its

exe
ution or a

ess its private spa
e. Its limited private
a
he is able to store up

to k (k << n) data items along with their indi
es. The indi
es of those
a
hed

items are managed by TH using a list denoted by Γ . In other words, Γ stores

the original indi
es. We assume TH is
apable of performing CPA-se
ure (i.e.,

se
ure under Chosen Plaintext Atta
ks) symmetri
 key en
ryption/de
ryption

and to generate random numbers or se
ret keys.

A

ess Pattern: As in [11℄, the a

ess pattern for a time period is de�ned

A = (a1, · · · , aN), where ai is the data re
ord read in the i-th database a

ess,

for i ∈ [1, N]. We observe that a re
ord in the a

ess pattern is essentially a

probabilisti
 result of both the
urrent query and the query history. In fa
t, the

latter results in the
urrent state of TH and the database.

Adversary : We
onsider adversaries who attempt to derive non-trivial infor-

mation from the user's queries. Possible adversaries in
lude both outside atta
k-

ers and the server. Note that we do not assume any trust on the server. The

adversary is able to monitor all the input and output of TH. Moreover, the ad-

versary is allowed to query the database at her will and re
eives the replies from

TH.

Stained Query and Clean Query : A query is stained if its
ontent, e.g. the

index of the requested data, is known to the adversary without observing the

a

ess pattern. This may o

ur in several s
enarios. For instan
e, a query is

ompromised or revealed a

idently; or the query
ould be originated from the

adversary herself. On the other hand, a query is
lean if the adversary does not

know its
ontent before observing the a

ess pattern.

Se
urity Model : Our se
urity model follows the se
urity notion in ORAM

[11℄. We measure the information leakage from PIR query exe
utions. A se
ure

PIR s
heme ensures that the adversary does not gain additional information to

determine the distribution of queries. Formally, we de�ne it as follows.

PIR Using Trusted Hardware 5

De�nition 1. A hardware-based PIR s
heme is se
ure, if given a
lean query q
and an a

ess pattern A, the
onditional probability for the event that the query

is on index j (i.e., q=j) is the same as its a-priori probability, i.e.

Pr(q = j|A) = Pr(q = j), for all j ∈ [1, n].

The equation implies that the a

ess pattern A reveals to the adversary no

information on the target query q's
ontent.
Table 1 below highlights the notations used throughout this paper.

Table 1. Notations

Notation Des
ription

k The maximum number of data items
a
hed in TH.

D The original database in the form of (d1, d2, · · · , dn).
π0, π1, · · · A sequen
e of se
ret random permutations of n elements {1, 2, · · · , n}.
Dπs A permuted database of D using permutation πs su
h that Dπs [j] ≃ dπs(j), for 1 ≤

j ≤ n, where Dπs [j] denotes the j-th re
ord in Dπs .

ai The retrieved data re
ord by TH during its i-th a

ess to a shu�e database.

A The a

ess pattern
omprising all the retrieved re
ords (a1, · · · , aN) during a �xed

time period.

As The a

ess pattern
omprising all the retrieved re
ords during the s-th session, as

de�ned in Se
tion 3.

Γ The list of (original) indi
es of all data items stored in TH's
a
he.

3 The PIR S
heme

System setup

We
onsider appli
ations where a trusted third party (TTP) is available to ini-

tialize the system. This TTP is involved only in the initialization phase and then

stays o�ine afterwards. For other s
enarios where the TTP is not available, an

alternative solution is provided in Se
tion 6.

TTP se
retly sele
ts a random permutation π0 and a se
ret key sk0. It per-

mutes the original database D into Dπ0
, whi
h is en
rypted under sk0, su
h that

Dπ0
[j] ≃ dπ0(j) for j ∈ [1, n]. Dπ0

is then delivered to the server. TTP se
retly

assigns π0 and sk0 to TH, whi
h
ompletes the system initialization.

The outline of our PIR s
heme is as follows. Every k
onse
utive query ex-

e
utions are
alled a session. For the s-th session, s ≥ 0, let πs,Dπs
and sks

denote the permutation, the database, and the en
ryption key respe
tively. On

re
eiving a query from the user, TH retrieves a data re
ord from Dπs
, de
rypts

it with sks to get the data item, and stores the item in its private
a
he. Then

6 Shuhong Wang et. al.

TH replies to the user with the desired data item. The detailed operations on

data retrieval are shown in Algorithm 1. After k queries are exe
uted, TH gener-

ates a new random permutation πs+1 and an en
ryption key sks+1. It reshu�es

Dπs
into Dπs+1

by employing πs+1 and sks+1. Note that in the newly shu�ed

database Dπs+1
, all data items are en
rypted under the se
ret key sks+1. The

details on database reshu�e are given in Algorithm 2.

The original database D is not involved in any database retrieval operations.

Sin
e TH always performs a de
ryption for every read operation and an en
ryp-

tion for every write operation, we omit them in the algorithm des
ription in

order to keep the presentation
ompa
t and
on
ise.

Retrieval Query Pro
ess

The basi
 idea of our retrieval algorithm is the following. TH always reads a

di�erent re
ord on every query and every re
ord is a

essed at most on
e. Thus,

if the database is well permutated (in the sense of oblivious permutation), all

database a

esses within the session appear random to the adversary.

Without loss of generality, suppose that the user intends to retrieve di in D
during the s-th session (s ≥ 0). On re
eiving the query for index i, TH performs

the following: If the requested di is not in TH's
a
he, it lo
ates the
orresponding

re
ord in the permutated database Dπs
by
omputing the re
ord index as π−1

s (i).
If the requested item resides in TH, it reads from Dπs

a random re
ord whi
h is

not a

essed before

5

. The algorithm is elaborated in Figure 2 below.

Algorithm 1: Retrieving re
ord di using Dπs

1. TH de
rypts the query and gets the requested index i.
2. If i /∈ Γ
3. TH reads π−1

s (i)-th re
ord of Dπs and stores the item di into the
a
he;

4. Γ = Γ ∪ {i};
5. Else

6. TH sele
ts a random index j, j ∈R {1, · · · , n} \ Γ
7. TH reads the π−1

s (j)-th re
ord from Dπs and stores the item dj into the
a
he;

8. Γ = Γ ∪ {j};
9. TH returns di to the user.

Fig. 2. Retrieval Query Pro
essing Algorithm

A

ess Pattern The a

ess pattern As produ
ed by Algorithm 1 is a

sequen
e of data re
ords whi
h are retrieved from Dπs
during the s-th session. It

is
lear from Figure 2 that on ea
h query, TH reads exa
tly one data re
ord from

Dπs
. Therefore, when the s-th session terminates, As has exa
tly k re
ords.

5

The operation should be
oded so that both "if" and "else" situations take the same

time to stand against side-
hannel atta
k. This requirement is applied at the similar

situation of reshu�e algorithm later.

PIR Using Trusted Hardware 7

Reshu�e Pro
ess

After k retrievals, TH's private
a
he rea
hes its limit, whi
h demands a reshu�e

of the database with a new permutation. Note that simply using
a
he substitu-

tion introdu
es a risk of priva
y exposure. The reason is that when a dis
arded

item is requested again, the adversary knows that a data re
ord is retrieved more

than on
e by TH from the same lo
ation. Therefore, a reshu�e pro
edure must

be exe
uted at the end of ea
h session.

TH �rst se
retly
hooses a new random permutation πs+1. The expe
ted

database Dπs+1
satis�es Dπs+1

[j] ≃ dπs+1(j), j ∈ [1, n]. The
orrelation between

Dπs
and Dπs+1

is

Dπs+1
[j] ≃ Dπs

[π−1
s ◦ πs+1(j)], (2)

for 1 ≤ j ≤ n, where π−1
s ◦ πs+1(j) means π−1

s (πs+1(j)).

The basi
 idea of our reshu�e algorithm is as follows. We sort the items in

TH's
a
he in as
ending order based on their new positions in Dπs+1
. We observe

that those un-
a
hed items in Dπs
will also be logi
ally sorted in the as
ending

order based on their new indexes, be
ause the database supports index-based

re
ord retrieval. The reshu�e pro
ess is similar to a merge-sort of the sorted

a
hed items and un-
a
hed items. TH plays two roles: (1) parti
ipating in the

merge-sort to initialize Dπs+1
; (2) obfus
ating the read/write pattern to prote
t

the se
re
y of πs+1.

TH �rst sorts indi
es in Γ based on the as
ending order of their images

under π−1
s+1. It assigns database Dπs+1

sequentially, starting from Dπs+1
[1]. For

the �rst n−k assignments, TH always performs one read operation and one write

operation; for the other k assignments, TH always performs one write operation.

The initialization of Dπs+1
[j], j ∈ [1, n], falls into one of the following two
ases,

depending on whether its
orresponding item is in the
a
he or not.

Case(i) The
orresponding item is not
a
hed (i.e., πs+1(j) 6∈ Γ): TH reads it

(i.e., the re
ord Dπs
[π−1

s ◦πs+1(j)]) from Dπs
and writes it to Dπs+1

as Dπs+1
[j].

Case (ii) The
orresponding item is in the
a
he (i.e., πs+1(j) ∈ Γ): Before
retrievingDπs

[π−1
s ◦πs+1(j)] from the
a
he and writing it into Dπs+1

as Dπs+1
[j],

TH also performs a read operation for two purposes: (a) to demonstrate the same

reading pattern as if in Case (i) so that the se
re
y of πs+1 is prote
ted; (b) to

save the
ost of future reads. Moreover, instead of randomly reading a re
ord

from the Dπs
, TH looks for the smallest index whi
h has not been initialized

and falls in Case (i). It then retrieves the
orresponding data re
ord from Dπs
.

Sin
e Γ is sorted, this sear
hing pro
ess totally
osts k
omparisons for the entire

reshu�e pro
ess. The bene�t of this approa
h
oupled with a sorted Γ is that

both the
osts for testing if πs+1(j) ∈ Γ and the item retrieval from the
a
he

are O(1); Otherwise, both
ost O(k) per item and O(nk) in total.

The details of the reshu�e algorithm are shown in Figure 3, where min
denotes the head of sorted Γ . We use sortedel(i)/ sortins(i) to denote the

sorted deletion/insertion of index i from/to Γ and subsequent adjustments.

8 Shuhong Wang et. al.

Fig. 3. Database Reshu�e Algorithm

Algorithm 2: Reshuffle Dπs into Dπs+1, exe
uted by TH

1. se
retly sele
t a new random permutation πs+1;

2. sort indi
es in Γ based on the order of their images under π−1
s+1.

set j = 1; j′ = 1.
3. while 1 ≤ j ≤ n − k do

4. while πs+1(j
′) ∈ Γ do j′ = j′ + 1 end;

5. set r = π−1
s ◦ πs+1(j

′); read Dπs [r] from Dπs ;

6. if j = j′ /∗ Case (i): πs+1(j) /∈ Γ ∗/

7. write Dπs+1 by setting Dπs+1 [j] ≃ Dπs [r];
8. else /∗ Case (ii): πs+1(j) ∈ Γ ∗/

9. write Dπs+1 by setting Dπs+1 [j] ≃ dmin;
a

10. sortedel(j); Insert Dπs [r] into
a
he and sorteins(j′);
11. j = j + 1;j′ = j′ + 1;
12. end{while};

13. while n − k + 1 ≤ j ≤ n do

14. set Dπs+1 [j] = dmin; sortdel(j);
15. j = j + 1;
16. end

a dmin is exa
tly Dπs [π−1
s ◦πs+1(j)] sin
e Dπs+1 is �lled in by an in
reas-

ing order.

The reshu�e algorithm is se
ure and e�
ient. An intuitive explanation of its

se
urity is as follows. After a reshu�e, the new database is reset to its initial

status. If an item has been a

essed in the previous session, it is pla
ed at a ran-

dom position by the reshu�e. Other items are indeed relatively linkable between

sessions. However, the linkage does not provide the adversary any advantage

sin
e they have not been a

essed at all. Note that the addition in the inner loop

is exe
uted at most n − 1 times in total, sin
e j′ never de
reases. Be
ause Γ is

a sorted list and the inserted and deleted indi
es are in an as
ending order, the

insertion and deletion are of
onstant
ost. Totally at most n
omparisons are

needed for the whole exe
ution. Therefore, the overall
omputation
omplexity

of Algorithm 2 is O(n).
Reshuffle Pattern The a

ess pattern produ
ed by Algorithm 2 is de-

noted by Rs. Sin
e TH only reads n − k data re
ords, Rs has exa
tly n − k
elements. Note that the writing pattern is omitted be
ause it is in a �xed order,

i.e., sequentially writing from position 1 to position n.

4 Se
urity

We now pro
eed to analyze the se
urity of our s
heme based on the notion

de�ned in Se
tion 2. Our proof essentially goes as follows. Lemma 1 proves that

the reshu�e pro
edure is oblivious in the same notion as in Oblivious RAM [11℄.

Thus after ea
h reshu�e, the database is reset into the initial state su
h that

PIR Using Trusted Hardware 9

the a

esses between di�erent sessions are not
orrelated. Then in Theorem 1 we

show that ea
h individual query session does not leak information of the query,

whi
h leads to the
on
lusion on user priva
y a
ross all sessions.

Lemma 1. The reshu�e algorithm in Figure 3 is oblivious. For any non-negative

integer s, any integer j ∈ [1, n],

Pr(Dπs
[j] = dl |A0,R0, · · · ,As−1,Rs−1) = 1/n, (3)

for all l ∈ [1, n], where Ai and Ri, i ∈ [0, s − 1], are the a

ess pattern and

reshu�e pattern for i-th session respe
tively.

Proof We prove Lemma 1 for a �xed j by indu
tion on the session index s.
The proof applies to all j ∈ [1, n].
I. s = 0. Sin
e Dπ0

, the initial shu�ed database, is
onstru
ted in advan
e under

a se
ret random permutation π0, the probability Pr(Dπ0
[j] = dl | ∅) = 1/n holds

for all 1 ≤ l ≤ n.

II. Suppose the lemma is true for s = i, that is, Pr(Dπi
[j] = dl |A0,R0, · · · ,Ai−1,Ri−1) =

1/n. We pro
eed to prove that it holds for s = i + 1, i.e.

Pr(Dπi+1
[j] = dl |A1,R1, · · · ,Ai,Ri) = 1/n, (4)

for all l ∈ [1, n].
In order to use the re
ursive assumption, We link the two databases Dπi+1

and Dπi
by the following
onditional probability,

Pr(Dπi+1
[j] = dl |A1,R1, · · · ,Ai,Ri)

=

n∑

x=1

Pr(Dπi+1
[j] = Dπi

[x] |A1,R1, · · · ,Ai,Ri) · Pr(Dπi
[x] = dl |A1,R1, · · · ,Ai,Ri).

(5)

Then the formula is evaluated depending on
ases that whether or not l is
stained and whether or not the item
orresponding to x is in the
a
he. The

on
lusion is obtained by showing that the right hand side of the equation sums

to be 1/n in any
ase.

For
larity, we de�ne px and qx by

px = Pr(Dπi+1
[j] = Dπi

[x] |A1,R1, · · · ,Ai,Ri),

and

qx = Pr(Dπi
[x] = dl |A1,R1, · · · ,Ai,Ri).

The obje
tive now is to prove

n∑

x=1

pxqx = 1/n. (6)

10 Shuhong Wang et. al.

De�ne X = {x| x ∈ [1, n], πi(x) ∈ Γ} and Y = {x| x ∈ [1, n], πi(x) /∈ Γ}.
Note that |X| = |Γ | = k, |Y | = n − k and X ∪ Y = [1, n]. Thereafter,

n∑

x=1

pxqx =
∑

x∈X

pxqx +
∑

x∈Y

pxqx. (7)

We observe that the adversary would have di�erent proje
tions on the new

indi
es for those re
ords in Dπi
. For those items in TH's
a
he, i.e. those whose

indi
es in Dπi
are in X, the adversary obtains no information about their posi-

tions in Dπi+1
. On the other hand, for the other items, i.e. those whose indi
es

in Dπi
are in Y , the adversary is
ertain that they would not be pla
ed to posi-

tions whi
h have been initialized before their retrievals from Dπi
. Moreover, the

item retrieved by the �rst read in reshu�e will appear in one of the �rst k + 1
positions in Dπi+1

. Therefore, only for x ∈ X,

px = Pr(πi+1(j) = πi(x)) = 1/n (8)

But this does not hold for px, x ∈ Y . Consequently,

∑

x∈Y

px = 1 −
∑

x∈X

px = (n − k)/n. (9)

The
omputation of qx is related to the stained queries. Re
all that our

adversary is allowed to explore the proto
ol by sending queries and re
eiving

replies. Therefore, queries in TH
ould be stained. Let C denote the set of stained

queries in the i-th session. We have two
ases for 1 ≤ l ≤ n:

� Case (1) l ∈ C:
∑

x∈X qx = 1, be
ause in the adversary's perspe
tive, there

exists one and only one item in the
a
he whi
h
orresponds to query on dl.

For x ∈ Y , qx = 0 be
ause none mat
hes. Thus

n∑

x=1

pxqx = 1/n + 0 = 1/n, for l ∈ C. (10)

� Case (2) l /∈ C: Suppose

∑
x∈X qx = δ for 0 ≤ δ ≤ 1, then

∑
x∈Y qx = 1−δ.

Note that the exe
ution of queries does not a�e
t the adversary's observa-

tion on those not
a
hed re
ords, sin
e they are not a

essed. Therefore, by

indu
tion assumption: Pr(Dπi
[x] = dl | A0,R0, · · · ,Ai−1,Ri−1) = 1/n, for

all l ∈ [1, n], we have qx = 1−δ
n−k due to equiprobability

6

. Hen
e,

n∑

x=1

pxqx = δ/n + (1 − δ)/n = 1/n. (11)

6

Hint: Otherwise, for x0, x1 ∈ Y , qx0 6= qx1 implies Pr(Dπi [x0] = dl) 6= Pr(Dπi [x1] =
dl) where d /∈ C. This result is also provable by the indistinguishability for the

adversary using two di�erent permutations whi
h are identi
al for l ∈ C.

PIR Using Trusted Hardware 11

Combining Case 1 and Case 2, we have

n∑

x=1

pxqx = 1/n, for all 1 ≤ l ≤ n,

whi
h
on
ludes the proof. �

Lemma 1 implies that the reshu�e pro
edure resets the observed distribution

of the data items. Therefore, the events o

urring during separated sessions

are independent of ea
h other. Theorem 1 below addresses the se
urity of the

proposed PIR s
heme.

Theorem 1. Given a time period, the observation of the a

ess pattern A =
(a1, a2, · · · , aN), N > 0, provides the adversary no additional knowledge to de-

termine any
lean query q, i.e. for all j ∈ [1, n],

Pr(q = j|A) = Pr(q = j) (12)

where Pr(q = j) is an a-priori probability of query q being on index j.

Proof For 1 < t ≤ N , let Pr(at | a1, · · · , at−1) denote the probability of the

event that data at is a

essed immediately after the a

ess of t − 1 re
ords.

Let Pr(at | a1, · · · , at−1; q = j) denote the probability of the same event with

additional knowledge that the requested index of query q is j. Note that we do
not assume any temporal order of the query q and the t-th query. We pro
eed

to show below that

Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j) (13)

Without loss of generality, suppose at is read from Dπs
during the s-th session.

Consider the following two
ases:

1. at ∈ Rs, i.e. at is a

essed during a reshu�e pro
ess: Obviously Pr(at |
a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j), due to the fa
t that the a

ess

to at is
ompletely determined by permutation πs and πs+1.

2. at ∈ As, i.e. at is a

essed during a query pro
ess: Let this query be the l-th
query in this session, l ∈ [1, k]. Therefore, l− 1 data items are
a
hed by TH

before at is read. We
onsider two s
enarios based upon Algorithm 1:

(a) The requested data is
a
hed in TH: at is randomly
hosen from those

data items not
a
hed in TH. Therefore, Pr(at | a1, · · · , at−1) = 1
n−(l−1) .

(b) The requested data is not
a
hed in TH: at is retrieved from Dπs
based

on the permutation πs. A

ording to Lemma 1, the probability that at

is sele
ted is

1
n−(l−1) .

Note that the
ompromise of a query, i.e. knowing q = j, possibly helps

an adversary to determine whether at is in
ase (2a) or (2b). Nonetheless,

this information does not
hange Pr(at | a1, · · · , at−1), sin
e their values are
1

n−(l−1) in both
ases. Thus, Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1, q =

j) when at ∈ As.

12 Shuhong Wang et. al.

In total, we
on
lude that for any t and q = j,

Pr(at | a1, · · · , at−1) = Pr(at | a1, · · · , at−1; q = j).

As a result,

Pr(A | q = j) = Pr(a1, · · · , aN | q = j)

= Pr(aN | a1, · · · , aN−1; q = j) · Pr(a1, · · · , at−1 | q = j)

=
N∏

t=1

Pr(at | a1, · · · , at−1; q = j)

=
N∏

t=1

Pr(at | a1, · · · , at−1)

= Pr(A). (14)

Then,

Pr(q = j |A) = Pr(q = j,A)/Pr(A)

=
Pr(A | q = j) · Pr(q = j)

Pr(A)

= Pr(q = j).

The result shows that, given the a

ess pattern, the a-posteriori probability

of a query equals to its a-priori probability, whi
h
on
ludes the se
urity proof

for our PIR s
heme. �

5 Performan
e

We pro
eed to analyze the
ommuni
ation and
omputation
omplexity of our

PIR s
heme. They are evaluated with respe
t to the database size n. Both
om-

plexities of our s
heme rea
h the respe
tive lower bounds for hardware-based

PIR s
hemes.

Communi
ation: We
onsider the user/system
ommuni
ation
ost per query.

In our s
heme, the users only inputs an index of the desired data item and TH

returns exa
tly one data item. Therefore, its
ommuni
ation
omplexity per

query is O(log n). Note that O(log n) is the lower bound of
ommuni
ation
ost

for all PIR
onstru
tions.

Computation: For simpli
ity purpose, ea
h reading, writing, en
ryption, and

de
ryption of a data item is treated as one operation. The
omputation
ost

is measured by the average number of operations per session and per query.

We also measure the online
ost whi
h ex
ludes the expense of o�ine reshu�e

operations.

As evident in Figure 2 and 3, it
osts the trusted hardware O(1) operations to
pro
ess a query and O(n) operations to reshu�e the database. Table 2
ompares

the
omputation
ost of our s
heme against [20℄ and [14, 15℄.

PIR Using Trusted Hardware 13

Table 2. Comparison of Computation Cost of Three Hardware-based PIR S
hemes.

S
hemes

Total
ost Online
ost Average Cost

per session (k queries) per query per query

Our s
heme O(n) a O(1) O(n/k)

IS04 [14, 15℄ O(n log n) b O(1) O(n
k

log n)

SS01 [20℄ O(kn) O(n) O(n)

a

We only take
ount of the main
ost for simpli
ity and
omparison
larity. The a
tual

ost should be O(n) + O(k log k), where the later quantity
omes from sorting T ,
on
e ea
h session, whi
h
osts k log k operations.

b

Their a
tually
ost is approximately O(n log n) + O(n) + O(k log k), where

O(n)(+O(k log k))
omes from sorting T̄ (Step (i) of [14℄), k log k
omes from sorting

T (Step (ii)), and O(n log n)
omes from Step (iii). In fa
t, our whole reshu�e only

osts what their Step (i)
osts.

Our s
heme outperforms the other two hardware-based PIR s
hemes in all

three metri
s. The advantage originates from our reshu�e algorithm whi
h

utilizes the hardware's
a
he in a more e�
ient manner. Moreover, we prove

that the average
ost per retrieval of our s
heme rea
hes the lower bound for

all information-theoreti
 PIR s
hemes with the same trusted hardware system

model. Our result is summarized in the following theorem.

Theorem 2. For any information-theoreti
ally se
ure PIR s
heme with a trusted

hardware storing maximum k data items, the average
omputation
ost per re-

trieval is Ω(n/k).

Proof: Our proof is
onstru
ted in a similar manner to the proof in [4℄ whi
h

shows the
omputational lower bound for traditional PIR s
hemes.

Fix a PIR s
heme, let Bi denote the set of all indi
es that the hardware

reads in order to return di. Bi is essentially a random variable probabilisti
ally

determined by both the user query on di and the items that the hardware has

already stored inside. Consequently, E(|Bi|) denotes the expe
t number of data
items to read by the hardware to pro
ess a query on index i. We evaluate E(|Bi|)
as the
omputation
ost for PIR s
hemes.

For 1 ≤ l ≤ n, let Pr(l ∈ Bi) be the probability that the hardware reads dl in

order to answer the query on index i. We de�ne P(l) as the maximum of these

probabilities for all 1 ≤ i ≤ n, i.e.

P(l) = max
1≤i≤n

{Pr(l ∈ Bi)}.

Note that for an information-theoreti
ally se
ure PIR s
heme, user priva
y im-

plies that B1, B2, · · · , Bn have the identi
al distribution. Therefore, for
onve-

nien
e purpose, let

P(l) = Pr(l ∈ B1).

14 Shuhong Wang et. al.

Due to Lemma 5 of [4℄

7

,

E(|Bi|) =
n∑

l=1

P(l). (15)

Our target now is to show E(|Bi|) = Ω(n/k). We prove it by
ontradi
tion.

Suppose that among P(1), · · · ,P(n), there at least exist k +1 of them whose

values are less than 1/(k+1). Without loss of generality, let the k+1 probabilities
be P(1),P(2), · · · ,P(k+1). Now
onsider the probability Pr(1 /∈ B1∩2 /∈ B2 · · ·∩
(k + 1) /∈ Bk+1). We have,

Pr(1 /∈ B1 ∩ 2 /∈ B2 · · · ∩ (k + 1) /∈ Bk+1)

= 1 − Pr(1 ∈ B1 ∪ 2 ∈ B2 · · · ∪ (k + 1) ∈ Bk+1)

≥ 1 −
k+1∑

l=1

Pr(l ∈ Bl) = 1 −
k+1∑

l=1

P(l)

> 1 − (k + 1)
1

k + 1
= 0.

On the other hand, note that TH only
a
hes k data items in maximum. As a

onsequen
e, there always exists one data item whi
h must be read from the

database during the k + 1 queries on 1, 2, · · · , k + 1. Thus, the event that 1 /∈
B1∩2 /∈ B2 · · ·∩(k+1) /∈ Bk+1 never o

urs, i.e. Pr(1 /∈ B1∩2 /∈ B2 · · ·∩(k+1) /∈
Bk+1) = 0, whi
h
ontradi
ts the probability
omputation above.

Thus, at most k elements in {P(1), · · · ,P(n)} whose values are less than

1/(k + 1) . As a result,

n∑

l=1

P(l) ≥ (n − k) ·
1

k + 1
, (16)

whi
h shows the lower bound for average
omputation
ost is Ω(n/k). �

6 Dis
ussion

Database Initialization Using TH

For appli
ations where no trusted third party exists, TH
an be used to initialize

the database. TH �rst
hooses a random permutation π0. For 1 ≤ i ≤ n, TH
tags the i-th item di with its new index π−1

0 (i). Using the merge-sort algorithm

[8℄, d1, d2, · · · , dn are sorted based on their new indi
es by TH. With the limited

a
he size in TH, Bat
her's odd-even merges sorter [1℄ is an appropriate
hoi
e

whi
h requires (log2 n−log n+4)n/4−1
omparisons. One may argue that Bene²

network [22℄ and Goldstein et al's swit
h networks [12℄ in
ur less
omparisons.

Unfortunately, neither is feasible in our system sin
e the �rst one requires at

7

It
an be proved by de�ning the random variables Y1, · · · , Yn where Yl = 1 if l ∈ Bi

and Yl = 0 otherwise.

PIR Using Trusted Hardware 15

least n log n-bit (>> k) memory in TH while the latter has a prohibitively high

setup
ost. Note that en
ryption is applied during tagging and merging so that

the pro
ess is oblivious to the server.

A simple example is presented in Fig. 4. The database in the example has

4 items d1, d2, d3, d4. The permutation is π0 = (1324), i.e. π0(1) = 3, π0(2) =
4, π0(3) = 2 and π0(4) = 1. The
ir
les denote TH and the squares denote

en
rypted data items. After initialization, the original four items are permuted

as shown on the right end. All the en
rypted items are stored on the host. In

every operation, only two items are read into TH's
a
he and then written ba
k

to the server.

1||3d1||3d3||2d4||1d

1||3d

3||2d

2||4d

1d

2d

3d

4d

1||3d

2||4d

4||1d 3||2d

2||4d

4||1d

3||2d

2||4d

4||1d

tag merge 1 by 1 to
length 2

merge 2 by 2 to length 4

Fig. 4. Initial oblivious shu�e example using odd-even merges.

Instantiation of En
ryption and Permutation Algorithms

An impli
it assumption of our se
urity proof in Se
tion 4 is the semanti
 se-

urity of the en
ryption of the database. Otherwise, the en
ryption reveals the

data information and
onsequently exposes user priva
y. Our adversary model

in Se
tion 2 allows the adversary to submit queries and observe the subsequent

a

ess patterns and replies. Thereafter, the adversary is able to obtain k pairs

of plaintext and
iphertext in maximum for ea
h en
ryption key, sin
e di�erent

random keys are sele
ted in di�erent sessions. Thus, it is demanded to have an

en
ryption algorithm semanti
ally se
ure under CPA (Chosen Plaintext Atta
k)

model. In pra
ti
e, CPA se
ure symmetri

iphers su
h as AES, are preferred

over publi
 key en
ryptions, sin
e the latter have more expensive
omputation

ost and higher storage spa
e demand.

For the permutation algorithm, we argue that it is impra
ti
al for a hardware-

based PIR to employ a true random permutation, sin
e it requires O(n log n)
bits of storage,
omparable to the size of the whole database. As a result, we opt

for a pseudo-random permutation with a light
omputation load.

Sin
e a
ipher se
ure under CPA is transformed into an invertible pseudo-

random permutation, we
hoose a CPA se
ure blo
k
ipher, e.g. AES, to im-

plement the needed pseudo-permutation. With a blo
k
ipher, a message is en-

rypted by blo
ks. When n 6= 2⌈log n⌉
, the
iphertext may be greater than n.

16 Shuhong Wang et. al.

In that
ase, the en
ryption is repeated until the output is in the appropriate

range. Sin
e 2⌈log n⌉ ≤ 2n, the expe
ted number of en
ryptions is less than 2.

Bla
k and Rogaway's result in [5℄ provides more information on
iphers with

arbitrary �nite domains.

Servi
e Continuity

The database servi
e is disrupted during the reshu�e pro
ess. The duration

of a reshu�e is non-negligible sin
e it is an O(n) pro
ess. A trivial approa
h to

maintaining the
ontinuity of servi
e is to deploy two pie
es of trusted hardware.

While one is re-permuting the database, the other deals with user queries. In

ase that installing an extra hardware is infeasible, an alternative is to split the

a
he of the hardware into two halves with ea
h having the
apa
ity of storing

k/2 items. Consequently, the average
omputation
ost will be doubled.

Update of data items

A byprodu
t of the reshu�e pro
ess is database update operations. To update

di, the trusted hardware reads di obliviously in the same way as handling a read

request. Then, di is updated inside the hardware's
a
he and written into the

new permuted database during the up
oming reshu�e pro
ess. Though the new

value of di is not written immediately into the database, data
onsisten
y is

ensured sin
e the hardware returns the updated value dire
tly from the
a
he

upon user requests.

7 Con
lusion

In summary, we present in this paper a novel PIR s
heme with the support of a

trusted hardware. The new PIR
onstru
tion is provably se
ure. The observation

of the a

ess pattern does not o�er additional information to adaptive adversaries

in determining the data items retrieved by a user.

Similar to other hardware-based PIR s
hemes, the
ommuni
ation
omplex-

ity of our s
heme rea
hes its lower bound, O(log n). In terms of
omputation

omplexity, our design is more e�
ient than all other existing
onstru
tions. Its

online
ost per query is O(1) and the average
ost per query is only O(n/k),
whi
h outperforms the best known result by a fa
tor O(log n) (though using a

big-O notation, the hidden
onstant fa
tor is around 1 here). Furthermore, we

prove that O(n/k) is the lower bound of
omputation
ost for PIR s
hemes with

the same trusted hardware based ar
hite
ture.

The Trusted Computing Group (TCG) [21℄ de�nes a set of Trusted Com-

puting Platform (TCP) spe
i�
ations aiming to provide hardware-based root of

trust and a set of primitive fun
tions to propagate trust to appli
ation software

as well as a
ross platforms. How to extend and improve our proposed PIR s
heme

based on trusted
omputing te
hnologies will be one of our future resear
h di-

re
tions.

PIR Using Trusted Hardware 17

Brief introdu
tion to Trusted Computing

The root of trust in TCP is a hardware
omponent on the motherboard
alled

the Trusted Platform Module (TPM). TPM provides prote
ted data by never

releasing root keys outside of the TPM. In addition, TPM provides some primi-

tive
ryptographi
 fun
tions, su
h as random number generation, RSA key pair

generation, RSA algorithms and hash fun
tion. Most importantly, TPM provides

me
hanism for integrity measurement, storage, and reporting of a platform, from

whi
h trust and attestation
apabilities
an be built. In addition to TCG
om-

pliant TPM, Intel's LaGrande Te
hnology (LT) [13℄ in
ludes an extended CPU

enabling software domain separation and prote
tion. Beyond the hardware layer

there is a domain manager supporting prote
ted exe
ution environments by do-

main separation, in
luding separation of pro
esses, memory pages, and devi
e

drivers. This emergen
e of industry standard trusted
omputing te
hnologies

promise to establish an adequate foundation for building a pra
ti
al trusted

platform for our proposed PIR s
heme.

Referen
es

1. Kenneth E. Bat
her. Sorting networks and their appli
ations. In AFIPS Spring

Joint Computing Conferen
e, pages 307�314, 1968.

2. M. Bellare, A. Desai, D. Point
heval, and P. Rogaway. Relations among Notions of

Se
urity for Publi
-key En
ryption S
hemes. In Pro
eedings of Crypto '98, LNCS

1462, pages 26�45, Berlin, 1998.

3. Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Break-

ing the o(n1/(2k−1)) barrier for information-theoreti
 private information retrieval.

In FOCS, pages 261�270. IEEE Computer So
iety, 2002.

4. Amos Beimel, Yuval Ishai, and Tal Malkin. Redu
ing the servers
omputation in

private information retrieval: Pir with prepro
essing. In CRYPTO, pages 55�73,

2000.

5. John Bla
k and Phillip Rogaway. Ciphers with arbitrary �nite domains. In Bart

Preneel, editor, CT-RSA, volume 2271 of Le
ture Notes in Computer S
ien
e, pages

114�130. Springer, 2002.

6. Benny Chor, Eyal Kushilevitz, Oded Goldrei
h, and Madhu Sudan. Private infor-

mation retrieval. In FOCS, pages 41�50, 1995.

7. Benny Chor, Eyal Kushilevitz, Oded Goldrei
h, and Madhu Sudan. Private infor-

mation retrieval. J. ACM, 45(6):965�981, 1998.

8. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Cli�ord Stein.

Introdu
tion to Algorithms, Se
ond Edition. ISBN 0-262-03293-7.

9. Joan Feigenbaum. En
rypting problem instan
es: Or ...,
an you take advantage

of someone without having to trust him? In Hugh C. Williams, editor, CRYPTO,

volume 218 of Le
ture Notes in Computer S
ien
e, pages 477�488. Springer, 1985.

10. William Gasar
h. A survey on private information retrieval. The Bulletin of the

European Asso
iation for Theoreti
al Computer S
ien
e, Computational Complex-

ity Column(82), 2004.

11. Oded Goldrei
h and Rafail Ostrovsky. Software prote
tion and simulation on obliv-

ious rams. J. ACM, 43(3):431�473, 1996.

18 Shuhong Wang et. al.

12. J. L. Goldstein and S. W. Leibholz. On the synthesis of signal swit
hing networks

with transient blo
king. IEEE Transa
tions on Ele
troni
 Computers. vol.16, no.5,

637-641, 1967.

13. LaGrande te
hnology ar
hite
rure. Intel Developer Forum, 2003.

14. Alexander Iliev and Sean Smith. Private information storage with logarithm-spa
e

se
ure hardware. In International Information Se
urity Workshops, pages 199�214,

2004.

15. Alexander Iliev and Sean W. Smith. Prote
ting
lient priva
y with trusted
om-

puting at the server. IEEE Se
urity & Priva
y, 3(2):20�28, 2005.

16. Helger Lipmaa. An oblivious transfer proto
ol with log-squared
ommuni
ation. In

Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume

3650 of Le
ture Notes in Computer S
ien
e, pages 314�328. Springer, 2005.

17. Mi
hael Luby and Charles Ra
ko�. How to
onstru
t pseudorandom permutations

from pseudorandom fun
tions. SIAM J. Comput., 17(2):373�386, 1988.

18. Ja
ques Patarin. Luby-ra
ko�: 7 rounds are enough for 2n(1−ǫ)
se
urity. In Dan

Boneh, editor, CRYPTO, volume 2729 of Le
ture Notes in Computer S
ien
e, pages

513�529. Springer, 2003.

19. Ronald L. Rivest, Leonard Adleman, and Mi
hael L. Dertouzos. On data banks

and priva
y homomorphisms.

20. Sean W. Smith and David Sa�ord. Pra
ti
al server priva
y with se
ure
opro
es-

sors. IBM Systems Journal, 40(3):683�695, 2001.

21. TCG Spe
i�
ation Ar
hite
ture Overview. Available from

http://www.trusted
omputinggroup.org.

22. Abraham Waksman. A permutation network. J. ACM, 15(1):159�163, 1968.

