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Abstract

Redundant number systems (e.g., signed binary repreissrsahave been utilized to efficiently
implement algebraic operations required by public-keyptogystems, especially those based on elliptic
curves. Several families of integer representations haea Iproposed that have a minimal number of
nonzero digits (so-calleghinimal weightepresentations). We observe that many of the constriscion
minimal weight representations actually work by buildiegresentations which are minimal in another
sense. For a given set of digits, these constructions leoilekicographically minimatepresentations;
that is, they build representations where each nonzero idigiositioned as far left (toward the most
significant digit) as possible. We utilize this strategy ineav algorithm which constructs a very general
family of minimal weight dimensiort joint representations for arty > 1. The digits we use are from
the setfa e Z : ¢ < a < u} where/ < 0 andu > 1 are integers. By selecting particular values
of £ andu, it is easily seen that our algorithm generalizes many ofhtiémal weight representations
previously described in the literature. From our algorithm@ obtain a syntactical description of a
particular family of dimensiort joint representations; any representation which obegssiynitax must
be both colexicographically minimal and have minimal wéighoreover, every vector of integers has
exactly one representation that satisfies this syntax. Weeuthis syntax in a combinatorial analysis of
the weight of the representations.

Key words. redundant number systems, signed digits, integer repietmms, joint representations,
minimal weight, colexicographic order, Joint Sparse Form.
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1 Introduction and Background

In this paper, we deal with a class of integer representatimown agoint representations

Definition 1.1. Letd > 1 andr > 2 be integers. Alimension-d radix-r joint representatida a sum of the
form 3576 Ajrl where eachh; e Z9%1.
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Joint representations are representationgegtorsof integers. We are particularly interested in the case
when the radix is equal to 2. IfN e Z9*1 is a vector such thal = Z?j) A2}, then we say that

ZT;%) A 2l is aradix-2 joint representation of N To denote radix-2 joint representations, we use the
following notation:
(As—1... AtAg)2 '= As 12T+ + A2+ A

EachA,; is a column vector and the entries in these column vectorsadiexldigits. Note that a dimension-1
joint representation is an ordinary integer represemniatio

Example 1.2. Here is a dimension-4 radix-2 joint representation withtdigom the se{0, 1}:

0111 0 1 1 1 7
1011}  [1] .3 0] . 1] .1 1l 0 [11
1201 = |12 T 1]% | ol? T|1]% = |13
1110 ) 1 1 1 0 14
The values ofAz, Ay, A1, Ay are as listed above. O

Example 1.3. Here is a dimension-4 radix-2 joint representation withtdiffom the sef0, 1, 2, 3}:

10 1 0 3 7

203 2] 2 0] 1 3l 0 (11

31| = 3|% T |o]% t|1]? 7|13

302/, 3 0 2 14
The column vectorN = (7,11 13,147 has several other joint representations which use thesdigit
{0, 1, 2, 3}. Notice that the representation above has just two nonzgonns, namelyA, and Aq. The
representation in Example 1.2 has four nonzero columns. O

Joint representations were introduced by Solinas [18] wiertonsidered how to compute a linear
combination of two elliptic curve points efficiently; i.ehe considered the computation fP; + n, P,
whereny, n, € Z and Py, P, are elements of an elliptic curve group. What motivatedralito consider
this particular algebraic operation was its use in the Edligurve Digital Signature Algorithm’s signature
verification operation [4].

The algorithm for computingi; P; + n, P, Solinas investigated is a special case of an algorithm due to
Straus [19, see the proof at the bottom of page 80Me general form of Straus’ algorithm is presented in
Appendix A and the special case is presented as Algorithimhg. general algorithm comput@id:1 n; P,
using a dimensiomntradix-X joint representation dil = (ny, Ny, ..., Ng)" with digits in{0, 1, ..., 2¢—1}.
Setting the parametets= 2 andk = 1, we get an algorithm that computesP; + n, P, using a dimension-

2 joint representation with digits ifD, 1}; i.e., the rows of the joint representation are just ordiri@inary
representations. For each nonzero column of this joinessgrtation (not countings_1), an elliptic curve
addition operation is performed (see lines 6-9). Thesetiaddbperations are computationally expensive,
so it is desirable to do only as few of them as necessary.

For a given value oN, we could reduce the number of addition operations in Atgaril by utilizing
a joint representation dfl with fewer nonzero columns. However, when restricted todigés {0, 1}, this
observation is of little consequence; every vedtbof nonnegative integers has exactly one radix-2 joint
representation with digits if0, 1}. But if we instead consider joint representations which theedigits
{0, £1}, the situation changes.



Algorithm 1 Straus’ algorithm fod =2,k =1

Input: N = (ng, )7, P = (P, P,)
Output: Q = n1Py 4+ nyPs

1. R«P+P

2: As_1... At Ay < the columns of the dimension-2 radix-2 joint rep.Mfwith digits from {0, 1}
3: based on the value d&s_1, initialize Q to one ofP;, P,, R

4. for j=s—2...0do

5: Q « 2Q

6: if Aj % Othen

7: if Aj =(1,00"thenQ « Q+ P,

8: else ifAj = (0, )" thenQ « Q + P;
o: elseifAj = (L, )" thenQ « Q+ R
10: return Q

It is possible to modify Algorithm 1 so that it processes axatjoint representation oN with digits
in {0, +1}.2 This is done in Algorithm 2. Notice now that for every nonzemumn inAs_1 ... A; Aq (not
countingAs_1) an addition osubtractionoperation is carried out. In elliptic curve groups, poinbsaction
can be done just as efficiently as point addition, so utifjzihis operation does not carry any extra cost.
Every nonzero vectoN e Z2*! has infinitely many radix-2 joint representation with dsgitom {0, +1},
and any one of these can be used in Algorithm 2. This led Sotméhe following problem:

Problem 1.4. Given N e Z?*1, construct a radix-2 joint representation of N using theitdig0, +1} that
has a minimal number of nonzero columns.

The number of nonzero columns in a joint representationtenafeferred to as itweight

Solinas solved Problem 1.4 by presenting an algorithm thragtcucts a canonical joint representation for
any pair of integers called theint sparse forr{JSF). The JSF was developed as a generalization of the well-
known nonadjacent form{NAF) due to Reitwiesner [17]. The NAF is a family of radix-@presentations
with digits in {0, 1} that have the property that any two consecutive digits, at most one is nongeo,
their nonzero digits are nonadjacent). Reitwiesner shatliatl every integer has exactly one NAF, and
that this representation has a minimal number of nonzerigsdi§olinas showed every pair of integers has
exactly one JSF, and that this representation has a mininmabar of nonzero columns.

Example 1.5. Here are two radix-2 joint representations(602 1365 " with digits from {0, £1}:

1010101 1010101010

0010100101 01010101010
101010101011/, .

Note that we use1” to denote “-1”. The first representation is composed of 12 columns, 7 dtlwh
are nonzero. The second representation has 11 columnslatid ade nonzero. Each row of the second
representation is a NAF. This demonstrates that taking eaglof a joint representation to be a NAF does
not necessarily give a minimal number of nonzero columns. %

Solinas suggested some additional research problemsringglbint representations. The ones most
relevant to the work presented here are the following:

IThis special case of Straus’ algorithm is often incorreatlyibuted to Shamir. Bernstein explains this and a numbetter
misconceptions regarding exponentiation algorithms ireauscript [2].

2The benefits of using radix-2 representations with digi{st1} in elliptic curve arithmetic were first demonstrated by Mora
and Olivos [12].



Algorithm 2 Straus’ algorithm fod = 2, k = 1 modified to use the digitf, +1}
Input: N = (n,nx)", P = (P, P)
Output: Q =ny Py +nyP,
L. R«P+P, SP-P
2: As_1... A1 Ay < the columns of a dimension-2 radix-2 joint rep.dfwith digits from{0, 1}
3: based on the value &_1, initialize Q to one of+=Py, £P,, +R, £S
4. for j=s—2...0do

5: Q « 20
6: if Aj # Othen

7: if Ay =(1,00TthenQ « Q+ Py

8: elseifAj = (1,0)"thenQ « Q — P,
o: else ifAj = (0, )" then Q « Q + P>
10: elseifAj = (0,1)TthenQ « Q— P,
11: elseifAj = (L, )" thenQ « Q+ R
12: elseifAj = (L, )" thenQ « Q—R
13: elseifAj = (L, )" thenQ « Q+ S
14: elseifAj = (1,)"thenQ « Q-S
15: return Q

Problem 1.6. Generalize the JSF to dimension d where .
Problem 1.7. Give an analogue of the JSF which uses digits other fitas:1}.

Problem 1.6 was solved independently by Proos [16] and byiiatra Heuberger and Prodinger [6]. Both
works demonstrate how to build arbitrary dimenstradix-2 joint representations using the didifs +1}
that have minimal weight. To date, there has been little sgmade on Problem 1.7.

Our contributions.  We consider the problem of constructing minimal weight disiend radix-2 joint
representations, for arbitrad/ > 1, which use the digit$a € Z : £ < a < u}, wheref < 0 andu > 1 are
integers. We provide an efficient algorithm which conssuwsiich representations. By selecting particular
values ofd, £, u, it can be seen that our construction generalizes a numbamewsiously known minimal
weight representations (see Table 1). One unusual propktte digit sets we consider is that they are not
necessarily symmetric about zero; i.e., they can contaimaual number of negative and positive digits.

| minimal weight representation | d | ¢ \ u \
nonadjacent form [17] 1 -1
width-w nonadjacent form [15] [1] [14] 1 |- t-1|2vt-1
signed fractional window representation [15] [11] 1 —m m
simple joint sparse form [6] >1 -1 1

TaBLE 1: Families of minimal weight integer representationsaf@iins are given to minimality proofs).

An important concept we emphasize is the commonality betwei@imal weight representations and
colexicographicallyminimal representations.For a fixed set of digits, the set of all joint representations
of a vectorN € Z can be ordered by comparing thesitionsof their nonzero columns, as read right-to-
left. Representations which are minimal with respect te {holexicographic) ordering share a number of

3Common properties of minimal weight and colexicograptycatinimal integer representations were described in Muh.D.
thesis [13, see Ch.4].



properties with those that have minimal weight. Thus, foivem set of digits, it is natural to ask whether
a colexicographically minimal representation has minimvalght. For the digit sets we consider, this is
indeed true, and the design of our algorithm exploits this. fa

The main results presented herein can be summarized asgollo

¢ the outputs of our algorithm are minimal weight represéoat (Theorem 1).
¢ the outputs of our algorithm are colexicographically mialmepresentations (Theorem 2).

e any representation with digits restricted{tbe Z : £ < a < u} that is colexicographically minimal
must also have minimal weight (Corollary 3).

e any representation with digits restricted{® € Z : ¢ < a < u} which satisfies three syntactic
properties must be colexicographically minimal and havweimmal weight. Every integer vector admits
exactly one representation satisfying these three syotaiperties (Theorem 4).

e the probability distribution of the weight of theleast significant columns of a colexicographically
minimal representation o can be explicitly determined; from this, asymptotic foramulfor its
expected value and variance follow (Theorem 5).

Related Work. Integer representations using digit sets of the f¢ane Z : £ < a < u} wheref < 0 and

u > 1 have been proposed previously in the literature. Phillipg Burgess [15] introduced a “generalized
sliding window” transformation which is applied to an ingelg standard radix-representation where> 2.

If the parameterg andu satisfy =0 or¢ =1 (modr) andu = —1 (modr), then they are able to prove
that their transformation produces a minimal weight repnégtion. In the case where= 2, which is
the only radix value considered in our work, these two caoilit can always be satisfied because of the
fact that only the odd digits fronfa € Z : ¢ < a < u} are utilized (e.g., ilu is even, it can be replaced
with u — 1 and then their proof will go through). Although PhillipscaBurgess consider only integer
representations (not joint representations), our tecknigr proving minimality is similar to theirs (both
works use induction and the properties of addition) with éixeeption that we do not require any extra
conditions or? andu; this is important since our joint representations, in geheitilize both even and odd
digits from{a e Z: ¢ < a < u}.

The connection between colexicographically minimal repregations and minimal weight representa-
tions is unique to our work. This observation provides soersective on sliding window transformations,
including the one proposed by Phillips and Burgess. Sligdiimglow transformations tend to produce colex-
icographically minimal representations, and this is wigytbften give minimal weight representations.

Outline. We begin by presenting some preliminary concepts and po&win 82. In 83 we explain the
design of our algorithm. A number of properties common tdibmtnimal weight and colexicographically
minimal representations are presented in 84. That the tugifour algorithm are minimal is established in
85. A syntax which characterizes the outputs, along withreayais of their weight, is given in 86. We end
with some remarks in §7.

2 Preliminaries

2.1 Column-strings

Let D c Z be a finite set of digits with @ D. D9** denotes the set of all dimensianeolumn vectors with
entries (digits) fromD. We use) to denote the all-zero column vector. Column vectors catobeatenated
together to form strings of column vectors.



Given N e 7Z9%1, when looking for a column-stringl = As_1 ... A1 Ay such that(4), = N, leading
zeros do not matter since we obviously h&, = N if and only if (6A)2 = N. We denote the number of
nonzero columns in the string by wt(.4). This value is often referred to as tjent Hamming weightor
simply, theweight of A.

To denote the columns of a joint representation, we usealdptters; e.g.As_1 ... A1 Ag where each
Aj e DY*1, To denote the digits of an integer representation, rattaer & joint representation, we use lower
case letters; e.ga—1 . .. 218 Where eacla; € D.

2.2 Colexicographic Order

For a vectorN e Z9%*! and a digit seD c Z, consider the set of all dimensiahradix-2 joint represen-
tations of N with digits restricted toD. We can order the representations in this set by consid¢hiag
positions of their nonzero columns.

SupposgAs_1...A1A))2 = N. FromA = As 1... A1 Ay, we derive a binary stringhar(4) defined
as follows: char(A) = as_; ... aa;a Where

~._]O if Ajisazero column
" |1 otherwise

Now, if B = Bs_1...B1Bg and(B), = N, we write A < B if char(A) is less than or equal tchar(B)
when they are comparamblexicographically Colexicographic order is similar to lexicographic ordecept
that strings are compared by reading their symbiglst-to-left rather than left-to-right. Here is an example
to illustrate:

column string
digit minimal
minimal column
radix representation
representation weight
string digit
weight radix

The strings in the left column are ordered lexicographjcalhd the strings in the right column are ordered
colexicographically.

Comparing integer representations using colexicograpider has been utilized previously in the lit-
erature. Grabner, Heuberger and Prodinger [6, see p. 38d]aaexicographic order to prove that their
Simple Joint Sparse Form has minimal weight. Muir and Stirj4d] showed that the width» nonadjacent
form of an integer is uniquely determined as its colexicpbieally minimal representation.

2.3 The Digit SetD,

For integers < 0 andu > 1, we define the digit set
Diui={aeZ:f{<a<u.

Notice that because of the bounds®andu, D, , always contains the digits, @. Also, if D, contains
negative digits, ther-1 € D, . On the other hand, f = 0, then the digits irDo , can certainly only be
used to represent nonnegative numbers. Observe hat # u — ¢ + 1.

Given a set of digitD, ,, we definew to be the unique positive integer that satisfies

210—1 < #Df,u < 2w

6



This implies thatD, , contains a complete system of residues modtifot 2Two such systems are

IOWEY(D&U) = {a c D[,u A <ac< {+ 211)—1},
upper(Df,u) = {a € Dg,u U - 2")_1 <a< u}.

Depending on the values &fandu, these two sets might coincide. Note tHag, doesnot contain a
complete system of residues modulbtcause B, , < 2*. Since{0, 1} C D, ,, it is always the case that
2 < #D, ; from this, we see thab > 2.

Example 2.1. For¢ = —3 andu = 7, we have
D—3,7 = {_39 _2’ _19 09 19 29 39 49 59 6’ 7}’

and 2 < #D_3;7 < 2*(i.e.,w = 4). Each of the eight congruence classes modtilea either one or two
representatives ib_s 7:

01 23 456 7

321
01 23 456 7

Each of the sixteen congruence classes modtitwa2 either zero or one representativeding 7:

0123456 789 10 11 12 13 14 15
012345867 3 2 1. O

We say that a digia € D, is unique modula2”~? if there is no other digi’ € D, such that
a =a (mod 27!y anda’ # a. The set of digits ofD,, which are unique modulo2? is denoted by
unique(D, ). Itis easily seen that

unique(D,.,) = lower(D;,,) Nupper(D;y) ={ae Dyy:u—2""1 <a < +2°71, 1)
The set of digitsD, , \ unique(D,_,) is denoted byonunique(D, ). We have
nonunique(D,.,) = lower(D, ) A upper(D,y) ={ae D;y:a<u—-2""tor 4+2°t<a}; (2
here,A denotes the symmetric difference of two sets. From Examglen& see that

unique(D_37) = lower(D_37) Nupper(D_37) = {0, 1, 2, 3, 4],
nonunique(D_37) = lower(D_37) A upper(D_37) = {—-3, -2, —-1,5,6, 7}.

Givenn e Z, to compute a digid € D, , such than = a (mod 2°~1), we can take either

a«{(+((n—¢) mod 271, or ©))
a <« u—((u=n) mod 2°7Y). (4)

Since 0< x mod 2°~1 < 2~ for anyx e Z, it is easily seen that both assignments yield a digDjn,.
Moreover, for the first assignment we have lower(D, ), and for the second we haaes upper(Dg ).



3 The Algorithm

There are two main tasks ahead of us:

1. give an algorithm which builds minimal weight radix-2rjprepresentations where digits are restricted
to the setDy .

2. prove that the outputs of this algorithm do in fact haveimai weight.

In this section, we concentrate on task 1. Our strategy, wiay initially seem misguided, will be to
develop an algorithm which buildsolexicographicallyminimal joint representations. We will see later
on that colexicographically minimal representations amcimmal weight representations have a number of
common properties. This fact will hopefully postpone anggnrings about our approach until, with the
completion of task 2, they can be laid to rest completely.

3.1 Building Colexicographically Minimal Representatiors

GivenN e 79! and a set of digitdD,, (if £ = 0, we require all components &f to be nonnegative),
we will construct a joint representatiof®s_; . .. A1 Ag)2, Of N by setting the value of each column in turn
from least- to most-significant (i.e., right-to-left). Ifexcan correctly set the digits of the least significant
column, then this leads to an algorithm of the following form

s« 0
while N # 0do
select digits fromD, , to form A, the least significant column of a representatiomNof
A <« A
N« (N—-A)/2
S«s+1
return As_1...A1Aq

We start with the columm,. So thatAg ;... AjAg has low colexicographic rank, we try to apply the
following rule: If possible, make fa zero column; otherwise, choose the digits gfsA that the number of
zero columns which follow As maximized.

If N = (As_1... A1Ag)2, thenN = Ay (mod 2. Thus, a condition under which it is not possible to
make Ag a zero column iN # 0 (mod 2. If this condition does not hold (i.e., ¥l = 0 (mod 2), then
we will set Ag « 0. But suppose it is the case thdit£ 0 (mod 2. SinceD, , contains a complete system
of residues modulo2!, we can chooséy so thatN = Ay (mod 2°~1). Setting the digits ofA, in this
manner allowst leastw — 2 zero columns to followA,. But, depending on the valueswf¢ andN, there
can be more than one possibility f8g; our choice can influence the number of zero columns follgwg.

Using the expression in (3), we initially s& « L + ((N — L) mod 2°~1) whereL = (¢, ¢,...,0)".
Each digit of Ay is either unique modulo“2? (in D, ) or not. The next possible nonzero column will
occur no sooner thaA,,_;. By computingM « (N — Ag)/2°~2 and checking iM = 0 (mod 2, we can
determine if the initial value o, causesA,,_; to be nonzero. However, it is only the digits &§ which
are unique modulo2* which determine whether or n@,,_; must be nonzero. This is because a digit of
Ag = (a1, @, ..., aq)" which is not unique can be replaced wéht2“~1, and this changes the parity iof
whereM = (my, m,, ..., my)". These replacements can sometimes be used to makea zero column.

Using the setsinique(Dy ), nonunique(D, ) introduced in (1) and (2), our observations so far on
how to computed, are incorporated in the method below:

if N=0 (mod 2 then
A« 0
else



AL+ ((N=L)mod 207}
Tunique < {i €{1,2,...,d} : g € unique(D, )}
Znonunique < {i € {1,2,...,d} : & € nonunique(D, )}
M « (N — A)/2v-1
if m =0 (mod 2 foralli € Zynigue then
for i € Znonunique SUCh thatm; = 1 (mod 2 do
g < a+2"""
m«<m—1
Ag < A
However, as the following example shows, we are not done yet.

Example 3.1. Consider the vectoN = (3,5)" and the digit seD_3; = {—3, -2, —1,0,1}. We have
unique(D_31) = {—2,—1,0} andnonunique(D_3;) = {—3,1}. By iterating the method above, we

obtain the following representation: o
10301y (3
102/, \5)"

However, this representation is not colexicographicaligimal because

(101) _ (3)
101/, 5
has lower colexicographic rank. Our method sets the legsifigiant column to(—1, —3)T. The digit 1
could be used in place ef3, but our method does not recognize the advantage of doing so %

If it is true that bothAq and A,_; must be nonzero columns (i.e., ¥ = 0 (mod 2 andm; = 1
(mod 2 for somei € Zynique), then our current method does not make any changes to tia w@lue of
Ao. But there is another reason to change the initial valudgfaside from making?,_; a zero column.
Doing so may result in more choices for the digits of colup_,; this in turn may allow us to prevent a
nonzero column when choosing digits &, _».

The vectorM above determines which digits can be used in colidn,;. By computingf + ((m; —
¢) mod 2°~1) and checking if this digit is imnique(D,,,) or nonunique(D, ), we can determine whether
or not we have a choice for the digit at coordinataf A, _;. By replacingm; with m; — 1 (after updating
Ap), itis sometimes possible to move coordinatd A,,_1 from unique(D, ) into nonunique(D, ). From
(1), we see that the minimum digit ahique(D,,,,) isu—2°"1+1. Itis easily seen that ifonunique(Dy )
is nonempty, then the following implication holds fios:

€+ ((m —¢) mod 2°7Y) =u—2"1 + 1 € unique(D,,,)
= (+ (M —1—¢) mod 2°~1) = u— 2"~ € nonunique(Dy ).

We will test for the conditior? + ((m; —¢) mod 2°~1) = u—2*~1 4 1 and make the changes necessary to
allow two choices for digit of A,_1.* We do this by adding an “else” clause to the second “if” staem
in the previous pseudocode listing. This is the only conditinder which replacingy with m; — 1 moves
us fromunique(Dy ) into nonunique(Dy ).
Here is the modified “if” statement:
if mi =0 (mod 2 for alli € Zynique then
for i € Znonunique SUch thatm; =1 (mod 2 do

4The test condition can be simplified (e.qg., it is equivalentf = u + 1 (mod 2°~1)), but, for the sake of clarity, we leave it
asis.



g «a +2"""
m«<m—1
else
for i € Znonunique SUch that + ((mj — ¢) mod 2°~1) =u -2~ 4 1do
g «a +2"""
m«<m—1
This change completes our algorithm.

Example 3.2. Repeating Example 3.1 with our modified pseudocode resulteifollowing representation:

(101) _ (3)
101/, 5
It is easily seen that this representation is colexicogratlly minimal. %

3.2 The Final Algorithm

Our final algorithm is listed as Algorithm 3. The claim madehe caption there (i.e., that the outputs are
colexicographically minimal and have minimal weight) vk justified later on. Here, we show only that
Algorithm 3 terminates for all its inputs (i.e., we show tlitatally is an algorithm).

Lemma 3.3. For any valid input Ne Z%*1, Algorithm 3 terminates.

By “valid input”, we mean that i¥ = 0, then all components di must be nonnegative; #f < 0, then any
N e Z9*1is valid.

Proof. We first consider the case that< O (i.e., we also have negative digits). Then we obviouslyehav
maxu|, |f]} < u—¢—1 < 2 — 2. We note that ifA # 0 in some step of the algorithm, we have
N = A (mod 2°~1). This implies that in the subsequant— 2 steps of the algorithm, we will hawk = 0.
We temporarily call thesey — 2 steps “insignificant steps” as opposed to the other stepighwve call
“significant steps”.

We claim that||N|, strictly decreases from one significant step to the nextifsgignt step. Here,
IIN|ls denotes the infinity norm o, i.e., max{|n;j|}. If A = 0 in some step of the algorithm, it is clear
that||[(N — A)/2|lcc = IIN/2||c0 < [IN|loo. If A # 0, we have to consider the next significant step, i.e., the
next number will balN — A)/2°~1, If ||N]l» > 2, we have

(N = A)/2° oo < (IN]loo +max{|ul, 1£]})/2°7" < (IN]lso + 2271 = 1))/2°7! < |IN]lco,

as claimed. We still have to consider the case (Nl = 1. The algorithm will choosé\ = N in this
case, since all entries &f belong to the digit set. Thus the algorithm terminates is taise.

We now turn to the casé = 0. Here, we have to show that during the execution of the glgor no
component ol ever becomes negative. This could only happen-#u < 0 for somd. This means that;
itself is a digit. The situation can only be dangerous; if- 2¢~! is also a digit, thu®; € nonunique(Do_,)
with n; e lower(Dyg ). Thus, at line 16, the quantity; equals 0. But; + 2*~ will neither be taken to
makem; even (at line 19) nor will it happen that8 m; mod 2°~! = u — 2»~1 4+ 1 (at line 25) because
u > 2»~1 (since we have a digit inonunique(Dq_)). Thusg = n; in this case.

This means that in the cage= 0, all intermediate numbend will be nonnegative and the components
of N will strictly decrease until they reach 0, where they remain O

When Algorithm 3 terminates for an inptt € Z9*%, from line 30 it is clear that the columns returned
form a joint representation afl.
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Algorithm 3 Computation of a colexicographically minimal & minimal wgét joint representation

Input:

N =(ny, Ny, ...,Nng)" € Z9%1 £ < 0,u > 1 (with all components oN nonnegative i = 0).

Output: Ag_;... A1 A, a colexicographically minimal & minimal weight represation of N.

W INNRNNMNNNNNNNRERRRRRRRRR R
©Q © O N U A WNREOO®NORAWNRO

31:

Dy {aeZ:t<a<u}
w « the integer such that2! < #D,, < 2v
unique(Dy) < {ae D,y :u—2""1 <a < 4 2v71
nonunique(D, ) « {ae Dyy:a<u—2v"1 or £4+2v71 < a}
{these sets respectively consist of the digits which are unique and nonunique modulo 2v1.}
S0, L«(t,...,07
while N # 0do
if N =0 (mod 2 then

else

{We can make column s zero, so we do this.}
A«<O0O

{We cannot make column s zero, thus it will be nonzero.}
AL+ ((N=L)mod 2
Zunique < {1 €{1,2,...,d} : & e unique(D; )}
Tnonunique < {i € {1,2,...,d} : & e nonunique(D, )}
M« (N = A)/2v1
if mi =0 (mod 2 foralli € Zynique then
{We can make column s+ w — 1 zero.}
for i € Znonunique SUCh thatm; is odddo
a «a +2vt
m<m—1
else
{Column s + w — 1 will be nonzero.}
{Use redundancy at column sto increase redundancy at column s+w—1.}
for i € Znonunique SUCh that + ((m; — ¢) mod 2°~1) =u—2*"1 4+ 1do

a «a +2vt
m < m—1
{(We have N= A (mod 22~ and M = (N — A)/2» 1)
As <« A
N « (N — A)/2
S«<s+1

32: return As_1... A1 Ay

4 Common Properties

Here, we describe some common properties of colexicogralhiminimal representations and minimal
weight representations. The properties are presentedeggiarsce of lemmas. We first show that both kinds
of representations are recursive.

Lemma4.1. If (... A, A1 Ag)- is a colexicographically minimal representation of a vedib € Z9%*, then
(... A2Ay) is a colexicographically minimal representation@ — Ag)/2.

Proof. Let A = ... AAA A and A" = ... A,A;. Let B’ be the columns of a colexicographically minimal
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representation ofN — Ag)/2. Suppose;har(B’) is strictly less tharmhar(A’), colexicographically. Then
B <A
= B'A < AA
= B'Ay< A
Since(B’'Ag)2 = N, we see thatd is not a colexicographically minimal representationNof O

The same recursive property is true for minimal weight repngations.

Lemma 4.2. If (... Ay A1 A)» is a minimal weight representation of a vector dNZ*1, then(... Ay A1)
is a minimal weight representation G — Ag)/2.

Proof. Let A = ... A AjAgand A’ = ... ALA;. Let B’ be the columns of a representation(df — Ag)/2
that has fewer nonzero columns thdh Then

wt(B') < wt(A)
= Wt(B'Ag) < wt(A'Ao)
= Wt(B'Ag) < wt(A).

Since(B’'Ag)2 = N, we see thatd is not a minimal weight representation Mf O

Notice that the above lemmas are truedaydigit setD C Z. For the digit seD, ,;, other commonalities
can be demonstrated. Before we get to those, we establisbhwvbfacts.

Fact 4.3. For any representatioita,,— . . . &180)> Where each pe D, ,, the Diophantine equation
(Bw-2...280)2 =X 2"t 4y (5)

has a solution(x, y), with X, y € Dy .

Proof. Observe that all integers in the range
-2 e, u-20t 4 u

can be expressed as 2¢~! 4+ y with x, y € D, . Now, sincef < 0 andu > 1, we have

-2 <2 < (@pp...mag)s<u-2°t—u<u-20t 4,
and so(a,_»...a189)2 is an integer in this range. O

Fact 4.4. For any representationiOas_; . . . a189)2, With each @ € D, , and integer a, with & D, ,, there
exists a representatiofbsbs_: . . . bybp)», with each h € D, ,, such that

(bsbs_1...b1bg)> = (Oas_; ... a130)2 + @,

and
wt(bsbs_1...0b1bg) < wt(Oas_;...a1a0) + 1.

Proof. Use the classical addition algorithm to aaltb (Oas_; . .. a1a9)2. This may trigger a carry, however,
carries stop when reaching the first zero column from thd raghhe latest. Therefore, the Hamming weight
will be increased by at most one. O

12



Fact 4.4 extends to joint representations as well; thateszan carry out the additiai®As_1 ... A1 Ag)2+ A
with only increasing the number of nonzero columns by at noost We use this to establish additional
common properties.

Lemma 4.5. If (... AyA1 A)» is a colexicographically minimal representation of a vedib € Z9** with
digits restricted to D, then every nonzero column ©f . A, A; Ag), must contain an odd digit.

Proof. Let A = ... A, A1 Ay and supposeld contains a nonzero column consisting of only even digits. By
Lemma 4.1, we can assume thgtis such a nonzero column. L&¢ be the first zero column that precedes
Ag. Then we have .

A=...0A_1... AAp.

nonzero columns

By Fact 4.4, we can replace the colurrfmi_l .o ALAg with BiB_q. .. Blﬁ where
(BiBi_1...Br)s = (0A1... A)o + Ao/2.
Thus, we have
N = (. A2A10A 1. .. AtA)2 = (... Ao Aa BB ... Bi0)y;

but this new representation contradicts the fact (85 is colexicographically minimal (it has lower colex-
icographic rank becausty # 0). O

Lemma 4.6. Every vector Ne Z9*! (with N > 0if ¢ = 0) has a minimal weight representation with digits
restricted to D , where each nonzero column contains an odd digit.

Proof. Supposs. .. A A; Ag)2 is a minimal weight representation bff that has a nonzero column consist-

ing of only even digits. Letd = ... A, A1 Ap. By Lemma 4.2, we can assume th&f is such a nonzero
column. We describe how to modif so thatAg becomes a zero column while the joint weight does not
change.

Let A; be the first zero column that preced&s Then we have

A=.. . 0A_1...AA.
——

nonzero columns

By Fact 4.4, we can replace the colurrfmi_l .o ALAg with BiB_q ... Blﬁ where

(BiBi_1...B1)2 = (0A_1... Az + Av/2,
and

Wt(B;Bi_1...By) < Wt(OA_1... A) +1
— Wt(BBi_1...B10) < Wt(OA_1... A1A).

Because of the bound above, this replacement cannot igcteasnumber of nonzero columns; thus, we
maintain the minimal weight property. O

Example 4.7. A dimensiond joint representation witkd = 1 is just a radix-2 representation of an integer.
Suppose we want to build minimal weight integer represantatusing the digit set

D_77=1{0, £1, +2, +3, +4, +5 46, +7}.
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According to Lemma 4.6, if we restrict ourselves to the seraligit set
{0, +£1, £3, 45, £7}

we will still be able to construct minimal weight represdimias. This is because any minimal weight
representation with digits iD_; ;7 can be transformed into one with digits {0, £1, +3, £5, &7} which
has the same weight. This property underlies the construdti the width« nonadjacent forms. The digits
{0, £1, £3, 45, £7} are the width-4 nonadjacent form digits. Note however, #iathis is only true in
dimension 1. O

Lemma 4.8. Let(... A, A1 Ag)2 be a colexicographically minimal representation of a vedtoe Z9%1 with
digits restricted to . If A; # O, then A ,—» = --- = Aj;1 = 0 (i.e., immediately preceding any
nonzero column, there must be at least- 2 zero columns).

Proof. Suppose the result is false. Ldt= ... A, A1 Ag. By Lemma 4.2, we can assume thgtis nonzero
and one ofA,_, ... A; is also nonzero. By Fact 4.3, there eXiGtY e Dg’udXI such that

(Ap—z2...AMAg) = X-2°71 4.
Now we have

N==(C..A,Au_1A—2... A1 Ap)>
= (. ALA, 1)2- 2 4 (A AtAg)2
=(..AA, 1)2- 2"t X207 4y
= (C.- AyAD2+ X) - 2714 Y
= (...B,B,_10...0Y),.
Note that the addition. .. A, A,_1)2 + X is carried out using Fact 4.4. But this new representatioN of

contradicts the fact thdt . . A; A; Ag) is colexicographically minimal because it has lower categraphic
rank. O

Lemma 4.9. Every vector Ne Z9*! (with N > 0if ¢ = 0) has a minimal weight representation with digits
restricted to D , where each nonzero column is immediately preceded by dtdeas2 zero columns.

Proof. The statement can be proved in essentially the same way asaen8. The only difference is that
we use the weight bound of Fact 4.4 to conclude that the newvigteucted representation also has minimal
weight. O

In the next section, we show that there is an even strongemextion between colexicographically
minimal representations and minimal weight represematiith digits restricted taD,,: any colexico-
graphically minimal representation is a minimal weightresggntation.

5 Minimality

We now return to the second task described in §3: provingthiiebutputs of Algorithm 3 have minimal
weight. To accomplish this, we apply some of the results in 84 also show that the outputs of the
algorithm are colexicographically minimal.

Theorem 1. For any input Ne Z9*! (with N > 0if £ = 0), the representation constructed by Algorithm 3
has minimal weight.
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Proof. Suppose the resultis false. Then Algorithm 3 produces @&septation which does not have minimal
weight for some inputN € Z9%1, Of all suchN, choose one such that the number of columns returned by
Algorithm 3 is minimal.

Let A = Ag_1... AjAq be the columns returned by Algorithm 3 and Igt= B;_;... B1Bg be the
columns of a minimal weight representationdf We have

(A)2 =N = (B),, and wt(A) > wt(5).

By Lemma 4.6 and Lemma 4.9, we can chodiseo that each nonzero column contains an odd digit and
each nonzero column is preceded by at least 2 zero columns. We will show how to construct a new
input, N’, for which the output of Algorithm 3 is shorter and does natdhaninimal weight. This contradicts
our choice ofN and thereby establishes the result.

SupposeA;, = By. The output of Algorithm 3 on inpulN’ = (N — Ag)/2 is As_1... Ar. Now,
(Asc1...A)2 = N = (Bi_1...By)2 andwt(As_1... A;) > wt(B;_;...B;). But this contradicts our
choice ofN. Thus it must be thaf\, # Bg.

If N = 0 (mod 2, then bothA, = O (by the definition of Algorithm 3) an®, = O (because each
nonzero column o8 contains an odd digit). Buly # By, so it must be thaN = 0 (mod 2. Hence both
Ay and By are nonzero columns.

So far, we have the following picture:

zero columns zero columns
—_—— —_—~—
A=Ac1...ALA_1Ab_2... AL Ag, B=B_,...B,B,_1B,_2...B1Bg.

Thus, Ay = By (mod 2°~1) but Ay # Bo. However, if #D,, = 2¢~1, thenAg = By (mod 2°~1) implies
Ay = By. So for the special caseDy,, = 2°~1, we are done. We will continue under the assumption that
#D,.y # 2°~1 (this implies thanonunique(Dy.,) is nonempty).

We denote the digits of columns — 1 and 0 ofA and 5 like so:

A (w-1) aio b1(w-1) b1o
A (w—1) azo Bo(—1) boo
w—1 — . ) AO = . w—1 — . 5 o= . -
ag(w-1) ago Bd(w-1) bao

We argue that botld,_; andB,,_; must be nonzero columns.

If Bp_1 = 6, then we have thall = By (mod 2°). But then Algorithm 3 would have s&, = By. So
it must be thaB,,_1 # 0. This implies that columnB,,,_3. .. B, are all zero.

Suppose tha#,, 1 = 0. We haveB, 121+ By = Ay (mod 2°), which implies thaB/, := B,,_1/2+

(Bo — Ap)/2" is an integer vector. Observe that every emtifryof B/ is an element oD, , since
t—1<¢(/2—-1<byyu-1/24+ (Bio —a0)/2" <u/2+1<u;

note that the strict inequalities follow becausg—ao = +2°~1. We setB] _, = 0, By = Ao, andB; := B;
for j ¢ {O,w — 1, w}. ForB' :=...B/ B, _,... Bywe have thatB'), = (B), = N. Thus we can replace

B by B’ and proceed as above. Hence, we can assuméihat+ 0.
Consider the vectofN — Ag)/2°~1. We have
N AO zero columns B AO
— — | —
o1 = (B Bow—2Bou—3... By Bu-1)2 + —0210_1

= (As—l cee A2m—2 A2w—3 v Aw Aw—l)Z-
—

zero columns
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Each coordinate of the vectoBy — Ag)/2°~tis in {0, £1}. We will show that we can perform the addition

(Bi_1...By_1)2+ Bzom;fio by changing only columi,,_; (thus no new nonzero columns are created).
Considerb;,,—1), theith coordinate of8,,_1. We must either add 1 tiy 1), subtract 1 fromb;, 1,

or leaveb;,_1) as itis. The only difficulty in computindp;,—1) + 1 occurs wherb;,—1y = u (because

u+1¢ D.y). Inthis case, we havee Znonunique SinCea;o # big and

bi (w—1) +1= ai(m—l) (mOd 20—1)
= u+1l= i (w-1) (mOd 20_1)
— Q. =U—2""141
But this cannot happen: At line 25 of Algorithm 3, the valueagfwas set to avoid;,—1) = U — 2v-141
(i.e., Algorithm 3 would have s&iy = bjg). So the problem of computing+ 1 does not occur.
The only difficulty in computingo;,,—1) — 1 occurs whem;,,—1) = ¢ (becaus€ — 1 ¢ D, ). In this
case, we have
biw-1) — 1= a&-1 (Mmod 2™
— (—-1= 8 (w-1) (mOd 20_1)
- ai(m—l) ={+ 2w—l -1
However, because we are subtracting 1, it must beghat bjo + 2°~1; so we haveyo € upper(D, ). But
Algorithm 3, by default, selects digits frotawer(D, ,); it would only do otherwise if it could maké\w_l
a zero column or increase the redundancy at @gjt_,,. But neither of those conditions occubf_; # 0
andaj(,—1 = € +2°71 — 1 # u — 2°~1). Thus, we never need to compute- 1.
So we can carry out the addition by replaciBg_; with a new columnB; _; with digits from D, . Let
N’ = (N — Ag)/2~1. We have
(Asm1...AyA,-1)2=N"=(Bi_:...B,B;,_;)> and
Wt(As_1... ALAL_1) > Wt(Bt_l... B, B{U_l) . (6)

But thenN’ contradicts our choice dfl and we are done. O

Theorem 2. For any input Ne Z9*1 (with N > 0if £ = 0), the representation constructed by Algorithm 3
is colexicographically minimal.

Proof. This can be established using essentially the same prodfemd@m 1. The only difference comes at
(6): we obtain the desired contradiction by noting tAat; ... A, A,_1 >~ Bi_1... B, B, _; (i.e., the newly
constructed representation has lower colexicographic)ran O

Corollary 3. Any colexicographically minimal representation of a vedib € Z9*! with digits restricted
to D,y has minimal weight.

Proof. By Theorems 1 and 2, we know that at least one colexicograjhiminimal representation dfl
has minimal weight. However, all colexicographically nmial representations & have the same number
of nonzero columns, so the result follows. O

6 Analysis

We now analyze the weight of the outputs of Algorithm 3. We ddyg defining a probability distribution
on a setM of infinite sequences ov@aud“. Each sequence in satisfies the same syntax as the outputs
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of Algorithm 3 (e.g., each nonzero column contains an odd)dign explicit description of this syntax is
presented in 86.1. By considering the number of nonzeranmoduout of the firsh columns of a sequence
drawn fromM, we obtain a random variabléy,. The expected value and the variancé\gfare computed

in 86.2.

6.1 Combinatorial Characterization

Here we provide a precise combinatorial description of thpuats of Algorithm 3.

Theorem 4. Let N € Z9** (with N > 0if £ = 0). Then there is exactly one representati@R_; . .. A1 Ag)2
(up to leading zeros) of N, such that the following condiiamne satisfied:

1. Each column Ais zero or contains an odd digit.

2. If Aj # Ofor some |, then p,_p =--- = Aj41 =0.

3. If A £ 0and A, _1 # Ofor some j, then
(a) thereis anie {1,...,d} such that g;.,—1) is odd and § € unique(Dy ),
(b) if aj € nonunique(Dy.u), then &1 # u+1 (mod 274),
(c) if & € upper(D,y) N nonunique(D;,), then & 4,—1y = U (mod 271).

Furthermore, A_; ... A;Agis the output of Algorithm 3 on input N.

Proof. It is easily seen that iAs_; ... A1 Ay is the output of Algorithm 3 on inpuN e Z%%%, then the
conditions above are satisfied because of the decisions im&ue Algorithm.

To complete the argument, assume now tNat Z9*! admits two different (not only up to leading
zeros) representations4), and (B), that satisfy the conditions stated in the Theorem. Withoss lof
generality, we choose the trip{#\, A, B) so that the minimum of the lengths gfand5 is minimum. This
ensures thafy # By.

We haveN = Aq = By (mod 2. If Ay = 0, then Condition 1 implies tha, = 0, which contradicts
Ao # Bo. Thus, Ay and By are both nonzero. By Condition 2, we conclude that , = --- = A, =
By_o=---=B; = 0. Therefore, we havéy = By (mod 2°~1). This implies that for all indices such
thata,o € unique(Dy,), we havebg = ajo.

If A,_1 = B,_1 = 6, we haveA; = By (mod 2°), which contradictsAy # Bp. Consequently,
we haveA,_; # 6, say. For the indek described in Condition 3a, we hawg, = ajg and therefore
Bi(w-1 = &w-1 =1 (Mod 2. Thus we haveB,,_; # 6, too. ThisyieldsAy,_ 3 =--- = A, = Byy_3 =
.= B, = 0 and therefore

Bm—l = Aw—l + (AO - BO)/Zw_l (mOd 20_1)' (7)

SinceAy # By, there is an indek € nonunique(Dy ) such that;, € upper(D, ) "nonunique(D, )
andbyo = ajp — 2°~! (we swapA andB, if necessary). From Condition 3¢ we conclude that-,y = u
(mod 2°7Y), thus (7) yieldsi(,—1y = u+ 1 (mod 2°~1). But this contradicts Condition 3b. O

Note that the well-known syntaxes of the nonadjacent formh &idth-w nonadjacent form and the
simple joint sparse form are special cases of the syntaxeabov
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6.2 Weight

We set up a probabilistic model as follows. Consider the spac
M ={ .. AAA: forallj >0, A e Dg,ud“ andA;_; ... A1 A satisfies the conditions of Thm}.4

The elements ofM are infinite sequences ové)r[,ud“. We define random variables. X, X1 Xq to be the
corresponding columns of a sequenceA; A; Ag drawn fromM. The probability measure, Pr, we utilize

is defined by the following property: for any nonnegativeegggrn and vectorA € {0, ..., 2" — 1}9x1,
n—-1 _ 1
Prl > X;2) mod 2= A = o

j=0

Note that this measure is simply the image of the Haar measutbe space of infinite sequences over
{0, 1}9%% (which can be identified witll-tuples of 2-adic integers) via the map given by Algorithmli3.
fact, Algorithm 3 describes a continuous map from the spécktaples of 2-adic integers td1.
We are interested in the random variable
n—1 .
W := > [Xj # Ol;
j=0
note that here, we have used Iverson’s notatierpfessiohequals 1 ifexpressions true and 0 otherwise.
Thus, we see that/, equals the number of nonzero columns among therigtlumns of a sequence in
M. The X;’s are not independent random variables; the valuX pfs influenced by the value of some
of Xj_1... Xo (e.g., see Condition 2 of Theorem 4). We determine the egfecilue and variance &%,
by carrying out an analysis similar to the one done by Gralihenberger, Prodinger and Thuswaldner [5]
which combines techniques from the analysis of Markov pses with generating functions.
We begin by deriving a number of transition probabilitiefieollowing notation facilitates this:

Definition 6.1. For a vectorA = (a,, ..., aq)" € Z%*! and a seR C Z, we define
Ir(A) :={i €{1,2,...,d}:a =r (mod 2°7%) for somer € R}.
Observe thafg(A) equals some subset of the index $&12, ..., d}, of A. We also define

Zoad(A) :={i € {1,2,...,d}: g isodd,
Iunique(A) = Iunique(Dg,u)(A),
Inonunique(A) = Inonunique(D[,u)(A)

Now, let A be a vector fromO, ..., 21 — 1}9%1 containing at least one odd element. We compute
conditional probabilities foX|,,—1 under the assumption thxt mod 2°-* = A. We have

1

PaE ‘= PI‘(XH_w_l = 6| Xj mod -1 = A = m; (8)

here, the indexE in pag stands for “even”. pag is the probability that we transition from the state
X; mod 27t = A0 Xjyp-1 = 0. Let B also be a vector fronf0, ..., 2°~1 — 1}9%1 containing at
least one odd element. Assuming tBgdq(B) N Zunique (A) # 9 andZnonunique (B) N Ziu41;(A) = @ (so that
Conditions 3a and 3b of Theorem 4 are satisfied), we have

z#(I(u) ( B)mznonunique(A))
2(w-1)d ! (9)

Pag ‘= Pr(Xj;,—1 mod 2”1 =B | X; mod 22"t = A) =
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This can be seen as follows. For edcle Zy,;(B) N Znonunique (A), Algorithm 3 can make(j+y-1) =

u (mod 2°~Y) in two ways: either lines 26-27 are executed, whergin= u + 1 is changed so that
m; = u, or they are not executed because = u already. Now, if eithetZygq(B) N Zynique(A) # @ or
Tnonunique (B) N Zu4+1;(A) = @ does not hold, theiX;,_1 mod 2>~1is never equal td; so we have

pag = 0.
Observe,
_ . 1
Pes = Pr(Xj s mod 271 = B | Xj = Xj_1 = = Xj_u2 = 0) = 5.
1 (10)

Pee ‘= Pr(Xj;1=0| Xj =Xj_1=-- = Xj_y42=0) = Tk
We setX_; = -+ = X_p41 = 0, so that (10) holds for alj > —1 (X_; = --- = X_,+1 = 0 can be
viewed as an initial state). Finally, it is clear that

Pr(xj+m—2 = Xj+ln—3 == Xj+l = 6 | X] mod 27t = A =1

The transition probabilities calculated so far are moreitet than necessary (and useful). They can be
aggregated into similar cases. For® < d, we set

S ={Ae{0,..., 2wt — 1}dX1 - Zogd(A) # 0 and #nonunique (A) = S}.
Fix somes and A € S;. We compute

Pat := Pr(Xj;,—1 mod 27t € S | X; mod 227t = A)

fort =0,...,d. We do this by considering the generating function
d
FA(Z) = Z pAtZt = Z pABZ#Inonunique(B).
t=0 Be{o,..., 210—1_1}d><1
Zodd(B)#0

One way to compute the coefficientsBf(2) is to use (9) directly; however, it is less cumbersome to
take a different route. Writ® = (b, ..., by)". For each e {1,...,d}, we choose which of the four
(disjoint) sets

I{U}(B)a Inonunique(B) \I{U}(B)a I{u+1}(B), Z-unique(B) \I{u+1}(B),

the indexi will belong to. Each choice has a certain number of valudg aksociated to it, carries proba-
bilities, and possibly contributions to the exponenZofthe product of these quantitieE[iT:1 ...) gives us
> 5 PapgZ#onuniaue(®) for a subset of values d. If we omit the requirement th&oqa(B) N Zunique (A) # @
for the moment, then each factor in the prodli¢t, . .. can be extracted from the table below:

‘ i € Zjy(B) i € Znonunique (B) i€ Zyyyy(B) i € Zynique(B)

i ¢ Z;u(B) i & Tjupy(B)
1. 5% -Z' (#nonunique/2—1)- 5=-Z' 1.0-Z°  (#unique — 1) 5 - Z°
1.5 -ZY (#nonunique/2—1)- - ZY 1.5+ -Z°  (#unique — 1) - 5 - Z°

2w—1

i e z-nonunique(A)
i€ z-unique(A)

Note that #ionunique is short for #ronunique(Dy ), and similarly for #inique. All possible products are
generated by the following polynomial:

27=D4 (unique — 1 + (#nonunique/2 + 1) Z)*renmiaet (Hunique + (#nonunique,/2) Z)* uiaue
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Recall thatA € §; thus we have Fonunique (A) = S and #ynigue (A) = d —s.

In order to correct the error made by omitting the conditigy(B) N Zunique(A) # @, we have to
subtract the contribution of thosB where all components with indices € Znique(A) are even. Let
even(nonunique) be the set of even digits inonunique(D,_,), and leteven(unique) be similarly de-
fined. Thus we obtain

Fa(Z) = 274 (#unique — 1+ (#nonunique/2 + 1)Z)®-
((#unique + #nonunique/2 - Z)d‘S — (#even(unique) + #even(nonunique)/2 - Z)d‘s) . (11)
Note that #honunique/2 and #&ven(nonunique)/2 are integers becausee nonunique(D, ) implies
that eithera + 2°~* or a — 2¢~1 is also innonunique(D; ). From (11), it is clear thaFa(Z) (and hence
the probabilitiespat) does not really depend ok, but only ons = #Znonunique (A) (i-€., Fa(Z) is the same

forall A € S). Thus, we define
Fs(Z) := Fa(Z) where Ae S..

It follows that
Pst = Pr(Xj4,—1 mod 2>t € § | X; mod 27! € S;) = Coefficient ofZ" in F5(Z).

We remark trjat setting = d in (11) yieldsF4(Z) = 0 which coincides with Condition 3a of Theorem 4
(i.e., if X; # 0 and each of its digits is inonunique(D, ), thenX;,,_1 must be a zero column).

Example 6.2. ConsiderD_; 3 = {—1,0, 1, 2, 3}. For eacld € {1, 2,3} ands € {0, ..., d}, we giveFs(Z).
d=1 s=0, $+3Z]|d=2 s=0 2+32z+17%?|d=3,
1 1 1
S=1, O S 1, §+EZ+§ZZ
s=2, 0

2 3
64 + 64Z + 64Z + 64Z

2 3
32 + 3ZZ + 32Z + 3ZZ

2 3
16 + 16Z + lGZ + 16Z
0.

I
w NP o

S
S
S
S

For this digit set, we have = 3. Consider the casd = 2 and suppos&q # 6 and #nonunique (Xo) = 1.
Then from the corresponding polynomlal we see that thbaiibity thath #* 0 and H nonunique (X2) = O
|s =. Similarly, the probability thaiX, # 0 and Hnonunique (X2) = 1 |s Z. Note that the probabllltle§

do not sum to 1. This is because we have not accounted for Eh}rtmuy thatX, = 0. This must happen
with probability 1— F1(1) = 3. O

The transition probabilitypae computed in (8) also depends o f#ique(A) = d — s only. Thus, we
have

5 1
Pse := Pr(Xj;,-1=0] X; mod 21leg)= 2d—s

And the final transition probability we require is

pet i= Pr(Xj41 mod 2t e § | X; = Xj_1 =--- = Xj_uy2 = 0) = Coefficient ofZ' in Fe(2),
where
Fe(Z) = 27~ ((#unique + #nonunique/2 - Z)* — (#even(unique) + #even(nonunique),/2 - Z)%) .

Now we are able to describe the distribution of Kgs using a(d 4 2) x (d 4 2) probability transition
matrix

PeEe Peo Pe1 - Ped
P Poe  Poo Poi --- Pod
Pde Pdo Pd1 -+ Pdd
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Note, however, that the step size (i.e., the number of cotuautput between states) is not constant: the
transition probabilities in all but the first row & describe the state im — 1 steps (because all intermediate
columns ard), whereas the probabilities in the first row describe thgesnh the next step.

Example 6.3. Here are the transition matrices for the digils; 3 = {—1,0, 1, 2, 3} whend € {1, 2, 3}:

119 27 9 1

1 5 3 1 8 64 64 64 64

11 1 i 16 8 16 119 27 9 1
2 4 1 1 5 3 1 8 64 64 64 64
11 1 i 16 8 16 15 U 7 1
2 4 4| 11 1 1] i 32 3» 32 32
1 0 0 2 8 4 8 11 3 3 1
1 0 0 0 2 16 16 16 16

1 0 0 0 O

Notice that the probabilities in row sum to 1, as they shol@émark also that the first two rows in each
matrix are identical; this is true in general sinég(Z) = Fo(Z) andpge = poe = 1/29. However, when
we enter stat& or 0 from any other state, the number of columns output asut ieglifferent wheno # 2

(1 column is output in stat&, andw — 1 columns in state 0). Because of this difference, the twesta
cannot (in general) be identified. O

We describe the distribution &%, using a bivariate generating function:

G(Y,Z) = > Pr(W, = k)Y*Z".
n,k>0
Observe that

G(]_’ Z) = L and M

1-7 oY =2 EWn)Z"

Y=1 n>0

To evaluate the coefficients & (Y, Z), we note that our sequeneég,_; ... Xg of random variables can be
described by the regular expression

(8 + (6(11)—3) + 6(10—4) 4o+ 6(1) + g)A)(E) + 6(11)—2) A)*,

here, A stands for a nonzero colum@{ for r consecutive zero columns;for the empty word, and. . .)*
for Kleene’s star (finite repetition). The sequences gdadray this expression will satisfy Conditions 1 and
2 of Theorem 4, of course, Condition 3 must also be satisfietithis has already been taken into account
in the derivation of the matri¥®.

We use the regular expression (read right-to-left) to obéai expression fa&(Y, Z). This gives us

G(Y, Z) = (Pee Peo Pe1 -+ Pea) - (I —diag(Z, Y Z°%,..., Y 2" HP) .

w—2 __
((11... 1)%\(2%(01... 1)T). (12)

In the product above, each column of the sequence genergtéielregular expression is marked with
the variableZ, and nonzero columns are additionally marked with the téeia. The dimensions of the
vectors/matrices in the product are, from left-to-rightx 1d + 2), (d + 2) x (d + 2) and(d + 2) x 1.

Example 6.4. Using (12), we can give a general expression@giy, Z) for any givend in terms ofw,
#unique, #fnonunique, #even(unique) and #ven(nonunique). If desired, the latter four constants can be
replaced with functions of, u, w. For the casel = 1, we get

22 —-YZ-24+YZ'" Y ZA—2—-2Z+2)
1-2)(Z-2+YZ0"YZi—2—-Z+2)

G(Y, Z) =
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wherel = #odd(D,)/2"~?; note that 1< 1 < 2. To verify this expression, the fact thatdd(D, ) =
1/4-(2u—¢+1) — (-1 — (—=1)") can be utilized. O

Example 6.5. Ford = 2, we giveG(Y, Z) for the special case when the digils; 3 = {—1,0, 1, 2, 3} are
used:

(Y. 2) = Y2Z44+6YZ?+24YZ+ 32
P Y275 4 Y274 —6YZ3—-18YZ2—-8Z + 32
1 3 1 15 1 9 27
=1+(>+=Y)Z — 4+ Y )2+ (==Y +==Y?) 2%+
+(4+4) +(16+16) +(64+16 +64 ) +
The general expression f@&(Y, Z) whend = 2 is too long to display here. O

Write G(Y, Z2) = (Y, Z)/9(Y, Z) wheref andg are polynomials. Becausg(1, Z) = 1/(1— Z), we
have thag(1, Z) = (1— Z) - f(1, Z). From the properties of derivatives, it follows that

3t (Y,2) 09(Y,2)
N ly=1 Yy

oG(Y,2)|
ver (1-2)-fQ2) 1-22-f@2)

oY

Using a partial fraction expansion, we obtain

aG(Y, 2)
oY

eé’,u,d Cé’,u,d

= ower series ifl — Z
v -2z 1z P -2

for suitable constants, ,, ¢ andc,, 4. Extracting the coefficient aZ" yields the expectation i, as

E(Wy) = e[,u,d(n +1+ Crud+ o1
— & yan + O(1).

The constang, , 4 is theasymptotic densitgf the representations; observe that.lim, E(W,/n) = €/,4.
A general formula fore , 1 (listed below) can be obtained from the generating funclisted in Exam-
ple 6.4.

To determine VaiW,), the variance of\,, we compute BA?) — E(W,)?2. Observe that

32G(Y, 2)
aY?2

oG (Y, 2)

= E(W?Z".
Y=1 oY Z "

Y=1 n>0

Extracting the coefficient oZ" and subtracting 8V,)? = (&u.4(N + 1) + C;.u.4 + O(1))? gives
Var(Wh) = veuan + O(1)

for a suitable constanf, , 4. A general formula fop, , 1 (listed below) can be deduced. For other values of
d, general formulae fog, , 4 ando, 4 are quite long; however, Table 2 displays valuesgiqry ando, g
in a number of special cases.

In summary, our analysis can be taken as proof of the follgulirorem:

Theorem 5. There are constants,; g4 and v, .4 such that the expectation and variance of the random
variable W, defined to be the weight of the n least significant columnsamfiexicographically minimal
dimension-d joint representation with digits from [ are given by

E(Wh) = e uan+ O(1) and Var(W,) = vguan + O(D).
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4 uld| w €r,u,d U¢,u,d
-1|{1{1|2]| % Z
-1(1]2|2 : L
-1{1|3|2| Z 28
5/1|3]| 2 2
51213 & | a9
5|3 | 3| i | 3288008803
-3|7|1|4| 2 2
-3(7|2|4| &8 220
=317 |3| 4| 58 | 0030

TaBLE 2: Coefficients of the dominant term in the asymptotic meahwamiance of,.

£ u €r,u,2
34+3.27%(20-3)
even  even 3w+02—3+2-" (3w(20—3)+352—105+9)
even odd 34327 (20-3)

3w+02—3+2-" (3w(20—3)+352—105+9)

342~ m+l(26_3)_272w+3
odd even 3w+02-3+2~ “’Jrl(u) (26-3) +(52—4(5+3) —2720+2(21p429—3) 423w +3

342- w+2(2(5_3)+2—2w+4
odd odd 3w+(52—3+2*'“+2(w(2(5—3)+(52—3(5+3)+2*2“)‘*'2(4w+4(5—7)+2*3w+4

TABLE 3: General formula foe, , » whereu — £ + 1 = 62*~twith 1 < § < 2.

For d = 1, we have
(CEWAY)

and = 77
= ) — 14 )3

Qul= ————
tul w—1+1

where
#odd(Dy ) _2u—=Ct+1) - (=Df = (=1pV

A= 211)—2 - 2w
General formulae for g, 4 for d = 2 are given in Table 3. For & {1, 2, 3, 4}, general formulae for g, 4
ando, g are given on the accompanying web page [8].
Furthermore, the random variable Mgatisfies the central limit law

. 1 X e
nIl_)mOo Pr(Wn < EW,) + x\/Var(Wn)) = @/_we 7 dt.

Remark 6.6. The central limit law follows from Hwang'’s quasi-power tlem [9]. Also, the same expres-
sion fore, ;1 was obtained by Phillips and Burgess using a steady-statgsas of a Markov chain [15, see

equation (13)].

7 Remarks

Ford = 1, it is easily seen that every integer has at most one calgsaphically minimal representation
with digits from D, ,. The fact that every integer has a unique nonadjacent fodmagith-v nonadjacent
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form can be viewed as special cases of this result. Howewed £ 1, colexicographically minimal joint
representations are not necessarily unique.

Example 7.1. For the digit seD_35 = {—3, -2, —1,0, 1, 2, 3, 4, 5}, we have

5) (0005 (1008
9/ \1001/,  \100% .
It is easily seen that these two representations are bogiicographically minimal. O

Some authors [3] [10] have sought an algorithm which cortdrminimal weight joint representations
with digits restricted to the sd0, 1, 3} or {0, £1, £3}. It seems natural that since Solinas was able to
generalize th€0, +1}-nonadjacent form to joint representations that there daildo be a generalization
of the {0, 1, 3}-nonadjacent form, which is also known to have minimal weigih [7, see Lemma 19]).
But building minimal weight representations (fir= 1) with digits from{0, 1, 3} is actually equivalent to
building minimal weight representations with digits fraiy 1, 2, 3} (recall Lemma 4.6). So perhaps the
appropriate generalization is from tf@, 1, 3}-nonadjacent form to joint representations with digitgriro
{0,1,2, 3}

Nevertheless, it is possible that there may be a simpleegydor building minimal weigh{0, 1, 3}-joint
representations. However, all we can say for certain ahait a strategy is that it is not the one that builds
a colexicographically minimal representation.

Example 7.2. Suppose(... A,A; Ag)» is a colexicographically minimal representation Mf = (5,9)7
which uses the digit§0, 1, 3}. If we were trying to construct this representation, we wdirst try to make
Ay a zero column. However, since both 5 and 9 are odd, this isosdilple. So, we try to maka; a zero
column. This can only be done by settidgto (1,1)" = (5,9)T mod 4. If we continue in this manner, we

arrive at the following representation:
0101y (5
1001/, \9/)°

This is a colexicographically minimal representation®f9)" and it has weight 3. However,

0013\ (5

0033/, \9/°
and this representation has weight 2. So, for the d{§it4, 3}, the strategy of building a colexicographically
minimal representation does not necessarily give a minmegght representation. %

Although the new family of minimal weight joint represenais we have introduced (i.e., the outputs
of Algorithm 3) can be viewed as generalizations of Solirksht Sparse Form (JSF), Algorithm 3 cannot
(in general) be used to build the JSF. When the paramdtets2,{ = —1,u = 1 are used, the output
of Algorithm 3 may contain 1 or 11 which are not allowed in the JSF (e.g., this happens wihrtput
N = (1,2)7). For these parameters, the outputs of Algorithm 3 are Bxtet dimension-2 Simple Joint
Sparse Forms (SJSF) [6]. The SJSF and JSF have their zeroreoin the same positions [6]; thus, because
the SJSF is colexicographically minimal, so is the JSF.
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A Straus’ Algorithm

The general form of Straus’ algorithm is presented as Athori4. Note that the multiplication indicated at
line 2 (i.e.,P - A) is a matrix multiplication. The matrix (row vectoB has dimension ¥ d, and the matrix
(column vector)A has dimensiom x 1.

Algorithm 4 Straus’ algorithm
Input: N =(ny, Ny, ...,ne)", P=(Py, P, ...Py), ke Z*
Output: Q=3 niR

1 forall Ae{0,1,...,2¢—1)9%1\ {0} do

2: Ry« P-A

3t As_1... A1 Ay «the cols. of the dimensiod+adix-2 joint rep. ofN with digits from{0, 1, ..., 2<—1}
4: Q « RA571

5 for j=s—2...0do

6: fori =1...kdoQ « 2Q

7. if A; # Othen

8: Q < Q+ Ry,

9: return Q
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