
1

Password-Authenticated Constant-Round
Group Key Establishment with a

Common Reference String

Jens-Matthias Bohli1?, Maŕıa Isabel González Vasco2, and Rainer Steinwandt3

1 NEC Laboratories Europe,
Kurfürsten-Anlage 36, 69115 Heidelberg, Germany;

bohli@nw.neclab.eu
2 Departamento de Matemática Aplicada, Universidad Rey Juan Carlos,

c/ Tulipán s/n, 28933 Madrid, Spain;
mariaisabel.vasco@urjc.es

3 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA;

rsteinwa@fau.edu

Abstract. A provably secure password-authenticated protocol for group
key establishment in the common reference string (CRS) model is pre-
sented. Our construction assumes the participating users to share a com-
mon password and combines projective hashing as introduced by Cramer
and Shoup with a construction of Burmester and Desmedt. Our protocol
is constant-round. Namely, it is a three-round protocol that can be seen
as generalization of a two-party proposal of Gennaro and Lindell.

Keywords: group key establishment, password-based authentication

1 Introduction

In distributed applications, low-entropy passwords are still a dominating tool for
authentication. Reflecting this, significant research efforts are currently devoted
to the exploration of password-authenticated key establishment protocols. In
this contribution we focus on group key establishment involving n ≥ 2 users.
In the password setting, different scenarios can be considered depending on the
application context. E. g., it can be plausible to assume that a dedicated server
is available, and each user has an individual password shared with this server. A
different scenario does not involve a server, and assumes all users involved in the
key establishment to share a common password. In this paper we consider the
latter approach. It seems well-suited for small user groups without a centralized
server or for applications where the legitimate protocol participants are devices
controlled by a single human user.

Several group key establishment protocols for such a scenario have been pro-
posed, including [10, 3, 5]. However, to the best of our knowledge, all suggested
? Work partly done while the author was at Universität Karlsruhe (TH).

constructions base on the random oracle or the ideal cipher model. On the other
hand, using work of Katz et al. [18] as starting point, for the two-party case,
Gennaro and Lindell [14, 15] recently proposed a protocol in the Common Refer-
ence String (CRS) model. Their main technical tool are smooth projective hash
functions, which were introduced by Cramer and Shoup in [13]. The protocol
we propose below can be taken for a generalization of Gennaro and Lindell’s
construction to a group setting, although there are some relevant differences.
For instance, we do not rely on a one-time signature scheme, and we use Cramer
and Shoup’s original definition of projective hash families. Generally speaking,
we describe a password-based constant-round group key establishment protocol
that neither uses the random oracle nor the ideal cipher model. We would like to
point out that in independent work, Abdalla et al. [4] follow a different approach
aiming at the same goal.

The three-round protocol we propose considers a fully asynchronous net-
work with an active adversary. The theoretical model underlying our proof is
basically adapted from [18, 19], building in turn on [7, 6]. In the subsequent
section we recall the basic components of the security framework, addressing
specifics of password-based authentication. Thereafter, in Section 3 we recall
the needed tools concerning strongly universal projective hash functions and
non-malleable commitments. Finally, in Section 4 we present our password-
authenticated constant-round protocol for group key establishment along with
a security proof in the CRS model.

2 Security Model and Security Goals

We assume that a common reference string CRS is available that, similarly as
in [14], encodes

i) the information needed for implementing a non-malleable commitment scheme,
ii) a uniformly at random chosen element from a family of universal hash func-

tions
iii) and two values v0, v1 that will serve as input for a pseudorandom function.

Also, a dictionary D ⊆ {0, 1}∗ is assumed to be publicly known. We model the
dictionary D to be efficiently recognizable and of constant or polynomial size.
In particular, we must assume that a polynomially bounded adversary is able
to exhaust D. The polynomial-sized set U = {U1, . . . , Un} of users is assumed
to share a common password pw ∈ D. Further users, not contained in U and
not knowing the shared password, can be simulated by the adversary. For the
sake of simplicity, we adopt the common assumption that pw has been chosen
uniformly at random from D, therewith slightly simplifying the formalism.

2

2.1 Communication Model and Adversarial Capabilities

Users are modeled as probabilistic polynomial time (ppt) Turing machines.4

Each user U ∈ U may execute a polynomial number of protocol instances in
parallel. To refer to instance si of a user Ui ∈ U we use the notation Πsi

i (i ∈ N).

Protocol instances. A single instance Πsi
i can be taken for a process executed

by Ui. To each instance we assign seven variables:

usedsi
i indicates whether this instance is or has been used for a protocol run.

The usedsi
i flag can only be set through a protocol message received by the

instance due to a call to the Send-oracle (see below);
statesi

i keeps the state information needed during the protocol execution;
termsi

i shows if the execution has terminated;
sidsi

i denotes a possibly public session identifier that can serve as identifier for
the session key sksi

i ;
pidsi

i stores the set of identities of those users that Πsi
i aims at establishing a

key with—including Ui himself;5
accsi

i indicates if the protocol instance was successful, i. e., the user accepted
the session key;

sksi
i stores the session key once it is accepted by Πsi

i . Before acceptance, it
stores a distinguished null value.

For more details on the usage of the variables we refer to the work of Bellare et
al. in [6].

Communication network. Arbitrary point-to-point connections among the users
are assumed to be available. The network is non-private, however, and fully
asynchronous. More specifically, it is controlled by the adversary, who may delay,
insert and delete messages at will.

Adversarial capabilities. We restrict to ppt adversaries. The capabilities of an
adversary A are made explicit through a number of oracles allowing A to com-
municate with protocol instances run by the users:

Send(Ui, si,M) This sends message M to the instance Πsi
i and returns the reply

generated by this instance. If A queries this oracle with an unused instance
Πsi

i and M being the string “Start”, the usedsi
i -flag is set, and the initial

protocol message of Πsi
i is returned.

Execute({Πsu1
u1 , . . . ,Π

suµ
uµ }) This executes a complete protocol run among the

specified unused instances of the respective users. The adversary obtains a
transcript of all messages sent over the network. A query to the Execute oracle
is supposed to reflect a passive eavesdropping. In particular, no online-guess
for the secret password can be implemented with this oracle.

4 All our proofs hold for both uniform and non-uniform machines.
5 Dealing with authentication through a shared password exclusively, we do not con-

sider key establishments among strict subsets of U . With pidsi
i := U being the only

case of interest, in the sequel we do not make explicit use of pidsi
i when defining

partnering, integrity, etc.

3

Reveal(Ui, si) yields the session key sksi
i .

Test(Ui, si) Only one query of this form is allowed for an active adversary
A. Provided that sksi

i is defined, (i. e., accsi
i = true and sksi

i 6= null), A
can execute this oracle query at any time when being activated. Then with
probability 1/2 the session key sksi

i and with probability 1/2 a uniformly
chosen random session key is returned.

2.2 Correctness, Integrity and Secrecy

Before we define correctness, integrity and secrecy, we introduce partnering to
express which instances are associated in a common protocol session.

Partnering. We adopt the notion of partnering from [8]. Namely, we refer to
instances Πsi

i , Π
sj

j as being partnered if both sidsi
i = sid

sj

j and accsi
i = acc

sj

j =
true.

To avoid trivial cases, we assume that an instance Πsi
i always accepts the

session key constructed at the end of the corresponding protocol run if no de-
viation from the protocol specification occurs. Moreover, all users in the same
protocol session should come up with the same session key, and we capture this
in the subsequent notion of correctness.

Correctness. We call a group key establishment protocol P correct, if in the
presence of a passive adversary A—i. e., A must not use the Send oracle—the
following holds: for all i, j with both sidsi

i = sid
sj

j and accsi
i = acc

sj

j = true, we
have sksi

i = sk
sj

j 6=null.

Key integrity. While correctness takes only passive attacks into account, key
integrity does not restrict the adversary’s oracle access: a correct group key
establishment protocol fulfills key integrity, if with overwhelming probability all
instances of users that have accepted with the same session identifier sid

sj

j hold
identical session keys sk

sj

j . Next, for detailing the security definition, we will have
to specify under which conditions a Test-query may be executed.

Freshness. A Test-query should only be allowed to those instances holding a key
that is not for trivial reasons known to the adversary. To this aim, an instance
Πsi

i is called fresh if the adversary never queried Reveal(Uj , sj) with Πsi
i and

Π
sj

j being partnered.
The idea here is that revealing a session key from an instance Πsi

i trivially
yields the session key of all instances partnered with Πsi

i , and hence this kind
of “attack” will be excluded in the security definition.

Security/key secrecy. Because of the polynomial size of the dictionary D, we
cannot prevent an adversary from correctly guessing the shared secret pw ∈ D
with non-negligible probability. Our goal is to restrict the adversary A to online-
verification of password guesses. For a secure group key establishment protocol,

4

we have to impose a corresponding bound on the adversary’s advantage: The
advantage AdvA(`) of a ppt adversary A in attacking protocol P is a function
in the security parameter `, defined as

AdvA := |2 · Succ− 1|.

Here Succ is the probability that the adversary queries Test on a fresh instance
Πsi

i and guesses correctly the bit b used by the Test oracle in a moment when
Πsi

i is still fresh.
Now, to capture key secrecy we follow an approach of [14]. The intuition

behind the definition is that the adversary must not be able to test (online)
more than one password per protocol instance. This approach is stricter than
the one taken in [3] in the sense that we do not tolerate a constant number > 1
of online guesses per protocol instance:

Definition 1. A password-authenticated group key establishment protocol P pro-
vides key secrecy, if for every dictionary D and every ppt adversary A querying
the Send-oracle with at most q different protocol instances, the following inequal-
ity holds for some negligible function negl(`):

AdvA ≤ q

|D|
+ negl(`)

3 Strongly Universal2 Hashing and Non-Malleable
Commitments

The design of our protocol mainly builds on two basic tools: projective hashing
and non-malleable commitments. Our usage of these tools is to a large extent
inherited from [14]. In this section we review the main definitions and results
necessary for the sequel. This revision is deployed at a somewhat intuitive level,
and we refer to [13, 14] for formal definitions and proofs.

3.1 Strongly Universal2 Projective Hashing

Kurosawa and Desmedt introduced in [21] the notion of strongly universal2 pro-
jective hash families, building on the previous work of Cramer and Shoup on
different flavors of projective hashing [13]. Projective hash families are usually
understood as related to hard subset membership problems and in this fashion
serve as basis for several provably secure cryptographic constructions [13, 14, 16,
17, 21].

Definition 2. A subset membership problem I is a specification of a collection
of probability distributions {I`}`∈N, where for each `, I` is a probability distribu-
tion over instance descriptions. An instance description Λ specifies:

1. Two finite, non-empty sets X`, L` ⊆ {0, 1}poly(`) with L` ⊆ X`.

5

2. Two probability distributions D(L`) and D(X` \ L`) over L` and X` \ L`

respectively.
3. A set W` ⊆ {0, 1}poly(`), together with an NP-relation R` ⊆ X` × W` such

that x ∈ L` if and only if there exists w ∈ W` such that (x,w) ∈ R`.

The above definition is taken from [14], and deviates slightly from that of [13].
Again following [14], we will only be interested in subset membership problems
that are efficiently samplable, that is, for which probabilistic polynomial-time
algorithms for the following tasks are available:

1. Upon input 1`, sample an instance Λ from I`,
2. Upon input 1` and an instance Λ, sample x ∈ L` according to D(L`), together

with a witness w ∈ W` for x.
3. Upon input 1` and an instance Λ, sample a value x ∈ X` \ L` according to

D(X` \ L`).

Our definition of a hard subset membership problem is identical to the one
in [14] and basically says that within X` distinguishing random elements inside
and outside L` is hard:

Definition 3. Let I be a subset membership problem as above. Then we say that
I is a hard subset membership problem, provided that the ensembles {(Λ`, x`)}`∈N
and {(Λ`, x̂`)}`∈N are computationally indistinguishable for Λ`, x` and x̂` sam-
pled according to I`, D(L`) and D(X` \ L`) respectively.

Subsequently, we make use of subset membership problems, where the set
X` comes along with a certain type of partition:

Definition 4. Let I be a subset membership problem as above and suppose that
X` = C` × D`. Further, for each pw ∈ D` denote by X`(pw) (resp. L`(pw))
the set of pairs (c, pw) ∈ X`, (resp. (c, pw) ∈ L`). The distributions induced by
D(L`) and D(X` \ L`) in X`(pw) and L`(pw) are denoted by D(L`(pw)) and
D(X`(pw) \ L`(pw)).

We say that I is a hard partitioned subset membership problem, provided
that for every pw ∈ D`, the ensembles {(Λ`, x`)}`∈N and {(Λ`, x̂`)}`∈N are com-
putationally indistinguishable for Λ`, x` and x̂` being sampled according to I`,
D(L`(pw)) and D(X`(pw) \ L`(pw)) respectively.

This definition of hard partitioned subset membership problems is taken
from [14] and captures the situation where each set X` can actually be parti-
tioned into disjoint sets of hard problems. As Gennaro and Lindell do in [14],
we stress here that the projective hash functions considered in the sequel will
not take this partitioning into account. Moreover, in accordance with [13] (and
differing from [14]) we use a definition of projective hash families where the
projection function α has only one argument:

Definition 5. Let X, Π be finite non-empty sets and K some finite index set.
Consider a family H = {Hk : X −→ Π}k∈K of mappings from X into Π, and

6

let α : K −→ S be a map from K into some finite non-empty set S (which may
be seen as a projection).

Then, given a subset L ⊆ X, we refer to the tuple H = (H,K,X, L, Π, S, α),
as projective hash family (PHF) for (X, L) if for all k ∈ K, x ∈ L the value
Hk(x) is determined by α(k).

We are mainly interested in a special type of projective hash families, which
in [21] are called strongly universal2:

Definition 6. Let H = (H,K,X, L, Π, S, α) be a PHF. Then we refer to H as
strongly universal2 if for k ∈ K chosen uniformly at random, for any x, x∗ ∈
X \ L, x 6= x∗ the random variables

- ξk := Hk(x), conditioned to α(k)
- ηk, the variable ξk conditioned to both α(k) and Hk(x∗)

are statistically close to the uniform distribution over Π.

In the sequel, we will consider only projective hash families which are efficient
in the sense of [14], i. e., there are efficient algorithms available for sampling
uniformly at random elements from K, computing α and evaluating Hk at a
given x ∈ X provided that

– either k is given as an input, or
– x ∈ L and (x, w), α(k) are given as input, where w is a witness for x.

It is worth noting here that, in combination with a hard subset membership
problem, the strongly universal2 property guarantees that, for x 6= x∗ ∈ X
and α(k),Hk(x∗) the value Hk(x) is indistinguishable from random unless a
corresponding witness is known.6

3.2 Strongly Universal2 Hashing from Non-Malleable Commitments

Another essential component of Gennaro and Lindell’s construction and of our
proposal are non-interactive and non-malleable commitment schemes. Roughly
speaking, they should fulfill the following requirements:

1. Every commitment c defines at most one value (decommit(c)) (i. e., the
scheme must be perfectly binding).

2. If an adversary receives several commitments to a value ν, he must not be
able to output a commitment to a value β related to ν in a known way (that
is, it must achieve non-malleability for multiple commitments).

6 Smooth projective hashing would not suffice to guarantee independence with arbi-
trary different inputs x 6= x∗ ∈ X.

7

In the common reference string model, the above commitment schemes can
be constructed from any public key encryption scheme that is non-malleable and
secure for multiple encryptions (in particular, from any IND-CCA2 secure public
key encryption scheme).

We briefly recall Gennaro and Lindell’s proposal for constructing smooth
projective hash families, given a suitable commitment scheme as above: Let C be
a commitment scheme fulfilling the conditions above (thus, we are in the common
reference string model). Let D a fixed message (password) space. We denote by
Cρ(pw; r) a commitment to pw ∈ D using randomness r and common reference
string ρ. By Cρ, let us denote the set of all strings that may be output by C
when the common reference string is ρ. For an efficiently recognizable superset
C ′

ρ ⊇ Cρ, define Xρ := C ′
ρ ×D and let

Lρ := {(c, pw) ∈ Cρ ×D | ∃ r : c = Cρ(pw; r)} ⊆ Xρ.

We consider a subset membership problem defined as follows. For each ` ∈ N
a common reference string ρ (of polynomial size in `) is selected. Further, for each
pw ∈ D define D(Xρ(pw) \ Lρ(pw)) respectively D(Lρ(pw)) as the distribution
induced by choosing random r and computing (Cρ(0|pw|; r), pw) respectively
(Cρ(pw; r), pw)). As it is argued in [14], it is easy to see that the hiding property
of the commitment scheme yields the following

Proposition 1. Let C be a non-interactive and non-malleable perfectly binding
commitment scheme. Consider the above subset membership problem I, where
for each ρ the set Xρ is partitioned by the sets {C ′

ρ × {pw}}pw∈D. Then, I is a
hard partitioned subset membership problem.

Now, assume we have a strongly universal2 projective hash family defined
with respect to (Xρ, Lρ) as follows: Let K be the key space, and for every k ∈ K
define

Hk : C ′
ρ ×D −→ G,

where G is a finite abelian group of superpolynomial size. For the security proof
of our protocol we need an analog of [14, Lemma 3.1]. Namely, we need that
given a projection α(k) ∈ S and two valid commitments c1 and c2 on the same
password pw, the values Hk(c1, pw) and Hk(c2, pw) are computationally indis-
tinguishable from random (independent) values, provided appropriate witnesses
are not known. Note that if the commitments are invalid (and hence (c1, pw)
and (c2, pw) are outside L), this follows trivially from the definition of strongly
universal2. For valid commitments, this is a consequence of the hard subset
membership problem.

Lemma 1. Let I be the hard partitioned subset membership problem described
above. To each instance Λ = (X, D(X \ L), L,D(L),W, R), associate the above
strongly universal2 projective hash family H = (H,K,X, L, G, S, α) for (X, L).
Let M be a ppt oracle machine, and define the following experiments:

8

Exp-Hash(M): An instance Λ = (X, D(X \ L), L,D(L),W, R) is selected from
I`. Then M is given access to three oracles ΩL, Project and Hash :
ΩL: When queried with a value pw ∈ D, it outputs Cρ(pw, r) with the pair

(Cρ(pw, r), pw) being selected according to D(L(pw)) from L(pw).
Project: Chooses a key k ∈ K uniformly at random and returns α(k).
Hash: When queried with input (pw, c, α(k)), it first checks if c was output

by ΩL on input pw, and α(k) has been output by Project. If at least
one of this is the case, Hash outputs Hk(c, pw). Otherwise Hash outputs
nothing.

The output of the experiment is the output of M .
Exp-Unif(M): Exactly as above, except that the Hash oracle is substituted by an

oracle Unif which first checks whether the input c was output by ΩL on input
pw, and that α(k) has been output by Project. If both are true, Unif outputs
a uniformly at random chosen g ∈ G; moreover, for two different calls with
the same input α(k), the corresponding two random group elements will be
selected independently. If only one of c and α(k) was output by an oracle,
Unif outputs Hk(c, pw), otherwise, Unif outputs nothing.

Then, the above experiments are computationally indistinguishable, that is,
for any ppt oracle machine M, for any value v it may output,

|Pr[Exp-Unif(M) = v]− Pr[Exp-Hash(M) = v]|

is negligible in the security parameter `.

Proof. This proof is a straightforward variation of the proof of [14, Lemma 3.1].
As they do, we define the experiments Exp-UnifX\L and Exp-HashX\L by replac-
ing the oracle ΩL by an oracle ΩX\L defined in the obvious way. Now, as we are
dealing with a hard partitioned subset membership problem, both

|Pr[Exp-HashX\L(M) = v]− Pr[Exp-Hash(M) = v]|
and

|Pr[Exp-UnifX\L(M) = v]− Pr[Exp-Unif(M) = v]|
are negligible. Furthermore,

|Pr[Exp-HashX\L(M) = v]− Pr[Exp-UnifX\L(M) = v]|

is also negligible by the definition of strongly universal2, and putting it all to-
gether we have

|Pr[Exp-Unif(M) = v]− Pr[Exp-Hash(M) = v]|
≤ |Pr[Exp-Hash(M) = v]− Pr[Exp-HashX\L(M) = v]|

+|Pr[Exp-HashX\L(M) = v]− Pr[Exp-UnifX\L(M) = v]|
+|Pr[Exp-UnifX\L(M) = v]− Pr[Exp-Unif(M) = v]|,

from which the desired result follows. ut

9

4 A Group Key Establishment Protocol

The protocol we propose builds on a non-interactive non-malleable commitment
scheme C and a strongly universal2 projective hash family H = {Hk}k∈K as
described in the previous section. In particular, we assume the image of the
hash functions Hk to be contained in a finite abelian group G. Furthermore, we
use a family of universal hash functions UH that maps elements from Gn onto a
superpolynomial-sized set {0, 1}L, and a family of universal hash functions UH′

that map elements from G onto a superpolynomial sized set T of cardinality
|T | ≤

√
|G|. Similarly as Bresson et al. [9], we impose an additional restriction

on UH′, saying that there are no “bad indices” into the family UH′. Namely,
for each UH′ ∈ UH′ we require the following to hold: any ppt algorithm having
UH′ as input, has no more than a negligible probability to predict UH′(g) for an
(unknown) uniformly at random chosen g ∈ G.

Example 1. Let G := Z/pZ be the additive group of integers modulo an `-bit
prime p, and let L′ := b`/2c. Choosing T := {0, 1}L′

to be the set of bitstrings
of length L′, the following family UH′ considered by Carter and Wegman [12]
contains no “bad indices”:

UH′ := {g 7→ [a · g + b]0→L′−1 : a, b ∈ Z/pZ with a 6= 0},

where [·]0→L′−1 denotes selection of the L′ least significant bits (“mod 2L′
”).

The universality of UH′ is well-known (cf., e. g., [12, 22]). Moreover, as the case
a = 0 is excluded in the affine maps considered, for a uniformly at random chosen
g ∈ G, also a · g + b is uniformly at random distributed in G, and the probability
of predicting the correct value UH′

a,b(g) = [a · g + b]0→L′−1 is negligible.

The CRS selects one universal hash function UH from the family UH. We use
UH to select an index within a collision-resistant pseudorandom function family
F = {F `}`∈N as used by Katz and Shin [20]. We assume F ` = {F `

η}η∈{0,1}L to
be indexed by {0, 1}L and denote by v0 = v0(`) a publicly known value such
that no ppt adversary can find two different indices λ 6= λ′ ∈ {0, 1}L with
Fλ(v0) = Fλ′(v0) (see [20] for more details). As in [20] we use another public
value v1 (which, like v0 can be included in the CRS) for deriving the session
key. The family UH′ is used for confirming the auxiliary two-party keys Zi,i−1

in Round 2 of our protocol without jeopardizing the password pw.
Our protocol is symmetric in the sense that all users perform the same steps.

Figure 1 shows the three rounds of our protocol. For the sake of readability, we
do not explicitly refer to instances si of users.

4.1 Design Rationale

The basic design of the protocol follows the Burmester-Desmedt [11] construction
where the Diffie-Hellman key exchanges are replaced by a simultaneous version
of Gennaro-Lindell’s [14] key exchange. A difference is the construction of the
master key as

mk = (Z1,2, Z2,3, . . . , Zn−1,n, Zn,1).

10

Round 1:
Broadcast Each Ui chooses uniformly at random a value ki ∈ K and random

nonces ri. Then, Ui constructs ci := Cρ(pw;ri), Si := α(ki), and broadcasts
M1

i := (Ui, Si, ci).
Check Each Ui waits until messages M1

j for all Uj arrived, and checks if the
values ci+1 and ci−1 are contained in C′

ρ. If ci+1 6∈ C′
ρ or ci−1 6∈ C′

ρ, then
set acci := false and terminate the protocol execution.

Round 2:
Computation Each Ui computes

Zi,i+1 := Hki(pw, ci+1) ·Hki+1(pw, ci),

Zi,i−1 := Hki(pw, ci−1) ·Hki−1(pw, ci).

Each Ui sets Xi,0 := Zi,i+1 · Z−1
i,i−1 and chooses a random Xi,1 ∈ G. Fur-

thermore, Ui chooses random values r′i,0, r′i,1 to compute commitments
Cρ(Ui, Xi,0;r

′
i,0) and Cρ(Ui, Xi,1;r

′
i,1) and chooses at random UH′

i ∈ UH′

to compute a test value testi := UH′
i(Zi,i−1).

Broadcast Each user Ui broadcasts for a random bit b

M2
i := (Ui, Cρ(Ui, Xi,b;r

′
i,b), Cρ(Ui, Xi,1−b;r

′
i,1−b), testi, UH′

i).

Check Each user Ui waits until messages M2
j for all j arrived, and checks if

UH′
i+1(Zi,i+1) = testi+1. If the check succeeds, set (Xi, r

′
i) := (Xi,0, ri,0)

otherwise (Xi, r
′
i) := (Xi,1, ri,1).

Round 3:
Broadcast Each user Ui broadcasts M3

i := (Ui, Xi, r
′
i).

Check Each Ui checks that X1 · · ·Xn = 1 and the correctness of the commit-
ments Cρ(Uj , Xj ;r

′
j). If at least one of theses checks fails, set acci := false

and terminate the protocol execution.
Computation Each Ui computes the values

Zi−1,i−2 := Zi,i−1/Xi−1

Zi−2,i−3 := Zi−1,i−2/Xi−2

...

Zi,i+1 := Zi+1,i+2/Xi+1,

a master key
mk := (Z1,2, Z2,3, . . . , Zn−1,n, Zn,1),

and sets ski := FUH(mk)(v1), sidi := FUH(mk)(v0) and acci := true.

Fig. 1. A password-authenticated 3-round protocol for group key establishment.

11

The original construction mk =
∏

i=1,...,n Zi,i+1 can be determined by two mali-
cious users as pointed out in [8]. Thus, if an adversary guesses the password, he
would be able to provoke pathological behaviors such that each protocol run ends
up with exactly the same mk (and thus, identical sidi, ski). Note that with the
construction of mk proposed above, both sidi and ski will be indistinguishable
from random if a sole honest user is involved in the protocol run.

One might also wonder about the additional Round 2 where commitments to
the quotients Xi are broadcast. This is motivated by the following online attack
on the protocol consisting only of Round 1 and Round 3, that allows to test two
passwords using only one instance Πsi

i :

– The adversary A chooses two candidate passwords pw1 and pw2. Then A
initializes a protocol run of Ui via Send and tries to impersonate all users to
Ui.

– In the name of the neighboring users Ui−1 and Ui+1, A sends the respective
messages

M1
i−1 = (Ui−1, α(ki−1), Cρ(pw1;ri−1))

M1
i+1 = (Ui+1, α(ki+1), Cρ(pw2;ri+1)),

with honestly generated ki−1, ki+1, ri−1, ri+1. The other users’ messages are
not relevant as Ui will ignore them.

– In the following round (we assume it will be Round 3) A can make up values
X1, . . . , Xi−1, Xi+1, . . . , Xn such that X1 · · ·Xn = 1 and send the messages
M3

j = (Uj , Xj) for j = 1, . . . , n, j 6= i. (Note that the message part r′j is only
part of the full protocol that includes Round 2.)

– The adversary will now compute two candidate views of Ui for the values
Zµ,ν . Assuming pw1 was correct and so knowing Ui’s value Zi,i−1, A com-
putes Zpw1

i−1,i−2, Zpw1
i−2,i−3, . . . , Z

pw1
i,i+1 as in the protocol. In a similar way A

computes the values Zpw2
i−2,i−1, . . . , Z

pw2
i,i+1 starting from Zi,i+1. Then A can

compute candidate master keys

mkpwb
= (Zpwb

1,2 , . . . , Zpwb

n,1) (b = 1, 2)

and finally two candidate session keys.
– The adversary will now query Reveal(Ui, si) giving him the session key ski

and compare it with his candidate keys.

Through this attack, the adversary could check two passwords per session and
the protocol would not fulfill the tight bound of security in Definition 1.

Remark 1. In principle, this observation applies to the proposal of Abdalla et
al. [3], too. However, in their model a constant number of password checks per
faked message is allowed.

The testi-values in Round 2 addresses attacks where one party did not receive
the correct projection but rather a bogus one, inserted by the adversary. Note
that this is needed despite the projective hash function being strongly universal2,

12

as this gives no guarantees if projections are not constructed from randomly
selected elements k ∈ K (for details see Game 4 and Game 5 in the proof of
Theorem 1).

Finally, the random value Xi,1 is needed if the check of a testi-value fails. In
this case, the true Xi,0 must not be revealed. On the other hand, an adversary
should not recognize if the check fails, as this would give a hint if the respective
hash values and therefore a password that the adversary may have used was
correct. This is again, to prevent that two passwords may be tested with one
instance running the protocol.

4.2 Security Analysis

Theorem 1. With the prerequisites as described above, the protocol in Figure 1
is correct and achieves key secrecy and key integrity.

Proof. It is easy to see that the above protocol fulfills correctness and integrity,
and the main part of our proof is devoted to key secrecy:

Correctness and Integrity. Owing to the collision-resistance of the family F ,
all oracles that accept with identical session identifier use with overwhelming
probability the same index value UH(mk) and therewith also derive the same
session key.

Key Secrecy. We imagine a simulator that simulates the oracles and instances
for the adversary. The proof is set up in terms of several experiments or games,
where from game to game the simulator’s behavior somehow deviates from the
previous. Following standard notation, we denote by Adv(A, Gi) the advantage of
the adversary when confronted with Game i. The security parameter is denoted
by `. Furthermore, we will index the Send oracle, denoting by Send0 the Send
query that initializes a protocol run and by Sendi a Send query that delivers a
message of round i for i ∈ {1, 2, 3}. As we must consider the session identifiers
known to the adversary, we assume them to be part of the output of the final
Send3 query.

For the sake of readability, we start by sketching an informal proof roadmap
here:

– Game 0 is, as usual, modelling the real experiment faced by the adversary.
– Game 1 to Game 3 deal with the case of passive adversaries; thus, they

progressively modify the Execute oracle: in Game 1 the two-party keys Zi,j

are replaced by random bitstrings, then in Game 2 the “real” password is
substituted by another one and finally the session key is chosen in Game 3
uniformly at random. The adversary is unable to notice these steps, due to
the hiding property of the commitment scheme and the fact that the values
Zi,j and Xi look anyway random to him.

Games 4 to 8 deal with adversaries that modify messages in Round 1. For
all possible modifications, the recipient of the bogus message will randomize its
value Xi, or the game is aborted. Also for correct messages, the values Zi,i−1

13

and Zi,i+1 are randomized. Table 1 gives an overview which game deals with
which modifications caused by the adversary A.

Game Si−1 Si+1 ci−1 ci+1

4 replaced ∗ oracle-generated oracle-generated

5 ∗ replaced oracle-generated oracle-generated

6 X X oracle-generated oracle-generated

7
* * invalid *

* * * invalid

8 * * valid from A valid from A

Table 1. Handling modified Round 1 messages in the proof of Theorem 1.

– Game 4 and 5 are concerned with the situation in which the adversary may in-
sert projections in the first round. A malicious insertion of Si−1 results in Ui

choosing Zi,i−1 uniformly at random; in Game 5, if Ui gets an adversarially
sent Si+1 the corresponding Xi is chosen uniformly at random.
The adversary will not notice these changes in the simulation. In Game 4
the argument follows because inserting a projection will not help him distin-
guishing the Zi,j from values selected independently and uniformly at ran-
dom, and thus messages from Round 2 will not help him detect the change.
Furthermore, in both games the messages from Round 3 will not help the
adversary in distinguishing. The adversary cannot prevent that with over-
whelming probability the check in Round 2 will fail and thus in Round 3
uniform random values Xi,1 will be broadcast.

– Game 6. Once ruled out the possibility of inserted projections, the simulator
will now generate the two-party keys Zi,j independently and uniformly at
random if the commitments were oracle-generated, i. e., honestly transmitted
or replayed from other instances. Distinction between this game and Game
5 reduces to distinguishing between Exp-Hash and Exp-Unif from Lemma 1.

– Game 7 deals with the case in which the adversary may insert invalid com-
mitments. The simulator, detecting an invalid commitment, will choose Xi,0

at random. This modification is by definition of strongly universal2 not de-
tectable by the adversary from the messages exchanged.

– Game 8 deals with the case of valid commitments generated by the adversary,
in which case he wins. This corresponds to a correct guess for the password.

– Game 9 aborts in case any commitment, projection or Xi-value is inserted
by the adversary. The advantage of the adversary can only vary negligibly,
as due to the non-malleability of the commitment scheme and the condi-
tion X1 · · ·Xn = 1, the protocol would anyway abort with overwhelming
probability.

– Game 10 and 11 argue similarly as in the passive case, once ruled out all ma-
licious Send-queries. First, in Game 10, commitments are constructed using
a randomly selected password. To conclude, the key generation is modified

14

in Game 11 in that the session key is chosen uniformly at random. The ad-
versary can only win by having inserted a valid commitment he constructed;
otherwise he will not be able to tell the difference, given that UH is a uni-
versal hash function and (at least) one of its inputs Zi,k is a random group
element. This concludes the proof.

Having outlined the structure of the proof, we are left to fill in the details:

Game 0. All oracles are simulated as defined in the model. Thus, Adv(A, G0)
is exactly Adv(A).

Game 1. In this game, the simulation of the Execute oracle is modified. Instead
of computing the values Zi,i−1, Zi,i+1 for i = 1, . . . , n as specified in the protocol,
they are chosen uniformly at random from G. As a result, also the values Xi will
be random though fulfill the property X1 · · ·Xn = 1 and the master key mk will
be a randomly selected element from Gn.

Let us now reason that the probability an adversary has of distinguishing
between the values Xi generated in Game 0 and the ones generated in Game 1
is no greater than the probability he has of distinguishing the experiments Exp-
Unif and Exp-Hash from Lemma 1. Indeed, for a fixed common reference string
and password the adversary cannot distinguish between Exp-Unif and Exp-Hash,
for i = 1, . . . , n. That means, seeing commitments ci−1, ci+1 and the projection
α(ki), he cannot tell Hki

(ci−1, pw) and Hki
(ci+1, pw) apart from independent

random values, thus, the same applies to each element Xi generated in Game 0.
Therefore, having a negligible probability of distinguishing between the two

experiments we have

|Adv(A, G1)− Adv(A, G0)| ≤ negl(`).

Game 2. At this, the Execute oracle is again modified, so that a password p̂w
is chosen uniformly at random from D. Further, define each ci accordingly as
ci = Cρ(p̂w;ri) for randomly selected nonces ri. Due to the hiding property of
the commitment scheme, we again have

|Adv(A, G2)− Adv(A, G1)| ≤ negl(`).

Game 3. Let us consider a further modification of the Execute oracle. Namely,
the simulator will assign to the instances a session key sksi

i ∈ {0, 1}`, chosen
uniformly at random.

Note that even knowing all values Xi, still the value of at least one of the
two-party keys Zk,j is indistinguishable from a random group element. Thus,
with the leftover hash lemma, we see that the master key mk = (Z1,2, . . . , Zn,1)
has sufficient entropy so that the output of the pseudorandom function FUH(mk)

is distinguishable from a random sksi
i with negligible probability only.

|Adv(A, G3)− Adv(A, G2)| ≤ negl(`).

15

By now the Execute oracle returns only random values, independent of the
password, and instances used by an Execute-query hold only random session
keys. The following games will deal with the Send oracle.

We will in the following call a commitment that was generated by the simu-
lator oracle-generated and in accordance a commitment that was generated by
the adversary adversary-generated. This can be checked efficiently by keeping a
list of all commitments the simulator generates. Furthermore, we call the com-
mitment valid if it is indeed a commitment for the password pw and invalid
otherwise. This cannot be checked efficiently, but as the commitment scheme
is perfectly binding it is information-theoretically computable. Note that also
commitments that are replayed by the adversary are oracle-generated.

Game 4. In this experiment all commitments are oracle-generated and the sim-
ulator will keep a list for the projections Si he generated for each user Ui in
Round 1. Once an instance Πsi

i has got all messages of the first round, the sim-
ulator checks if the received Si−1 is consistent with the one generated for the
Ui−1. In case Si−1 was replaced and the respective commitment ci−1 is oracle-
generated, the respective key Zi,i−1 is replaced by a random group element. If
Zi,i−1 was replaced, Ui−1 will use Xi−1,1 in Round 3.

The replacement of Zi,i−1 was caused by a replaced projection Si−1 and
hence Hki−1(pw, ci) may be known to the adversary. However, as ki was hon-
estly generated, ci−1 oracle-generated, and the PHF is strongly universal2, the
hash Hki(pw, ci−1) computed by Ui is indistinguishable from an element cho-
sen independently and uniformly in the group. Therefore Zi,i−1 computed by
Ui is for the adversary indistinguishable from an independently uniformly at
random chosen element. This holds of course only, if Ui−1 does not release any
information about Hki

(pw, ci−1). Therefore Ui−1 will use Xi−1,1 in Round 3.
It is left to show that Ui−1’s check of testi will indeed fail. Ui will randomly

choose UH′
i ∈ UH

′ and compute and broadcast testi = UH′
i(Zi,i−1). Neither can

the adversary recognize the replacement of Zi,i−1 from testi nor can he produce
a testi that will be accepted by Ui−1.

– Even with knowledge of all testj , j = 1 . . . n, the value Zi,i−1 remains indis-
tinguishable from an independently and uniformly at random chosen element
in G, because the testj carry only a negligible amount of information due to
|T | ≤

√
|G|.

– The adversary cannot produce test′i that would be accepted by Ui−1: As UH′
i

is chosen independent at random it is independent from Zi−1,i and the adver-
sary has no prior information on the testi-value expected by Ui−1, because
Zi,i−1 is indistinguishable from random for him. Suppose the adversary tries
to insert both test′i and UH′′

i . He will only succeed if he is able to find h
and UH′′

i so that h = UH′′
i (Zi−1,i), where Zi−1,i is indistinguishable from

random for him. By our assumption on the hash family UH′ that there are
no “bad indices” into UH′, this is not possible, however. Thus, in either case,
the adversary has only a negligible probability of success.

16

Therefore we have

|Adv(A, G4)− Adv(A, G3)| ≤ negl(`).

Game 5. Again, the commitments are oracle-generated, but this experiment
deviates from the previous one in that the simulator also checks if Si+1 is con-
sistent with the one generated for the Ui+1. In case Si+1 was replaced and the
respective commitment ci+1 is oracle-generated, Ui will continue with Xi,1 in
Round 3.

We show that Ui’s check of testi+1 would indeed fail, so that this replacement
makes no difference for the adversary. The argument is analogous as above: when
Ui+1 chooses UH′

i+1 ∈ UH′, the adversary is unable to produce a testi+1 that
will be accepted by Ui, as again the value Zi,i+1 computed by Ui+1 is indistin-
guishable from random for the adversary. Neither will the adversary succeed in
computing a pair (UH′′

i+1, test
′
i+1) that will convince Ui: due to our assumption

on the hash family UH′, the adversary has no a priori information on the testi+1

value expected by Ui.
Therefore we have

|Adv(A, G5)− Adv(A, G4)| ≤ negl(`).

Game 6. In this experiment, if the commitments were oracle-generated the
simulator chooses the values Zi,i−1 and Zi,i+1 independently and uniformly at
random from the group G. The simulator keeps a list for entries of the form
(ci−1, Si−1, ci, Si) → Zi,i−1, (ci, Si, ci+1, Si+1) → Zi,i+1. The simulator behaves
as in Game 5, except for the answer following a Send1 query that delivers the
last first round message to an instance Πsi

i .
Once an instance Πsi

i has received all messages of the first round, the simu-
lator checks if ci−1 and ci+1 were both oracle-generated (but all projections were
unmodified). In this case, the simulator checks if (ci−1, Si−1, ci, Si) → Zi,i−1 or
(ci, Si, ci+1, Si+1) → Zi,i+1 are already in the list, and uses the according values
Zi,i−1 respectively Zi,i+1 for further computations. The values Zi,i−1 or Zi,i+1

that are not yet determined by the list are chosen at random from the group G
and the assignment (ci−1, Si−1, ci, Si) → Zi,i−1 and (ci, Si, ci+1, Si+1) → Zi,i+1,
respectively, is stored in the list to assure consistency between neighbored in-
stances.

Given an adversary A able to distinguish between Game 5 and Game 6 we
can construct a distinguisher D between Exp-Hash and Exp-Unif. Thus, from
Lemma 1 we can conclude that A’s advantage between the two games differs at
most negligibly.

The distinguisher D is either facing Exp-Hash or Exp-Unif from Lemma 1. D
is constructed so that it will behave like the simulator from Game 5, except:

– commitments c are not computed but obtained by the ΩL(pw) oracle,
– if a Send-query of the adversary requires D to compute values Zi,i−1 respec-

tively Zi,i+1, D will query Hash/Unif with the respective values ci−1 and
ci+1 if both were oracle-generated.

17

Now the view of A will be exactly as in Game 5 if D is facing Exp-Hash and
exactly as in Game 6 if D is facing Exp-Unif.

|Adv(A, G6)− Adv(A, G5)| ≤ negl(`).

For the following games, the simulator is given an Extract oracle, that checks
if a given commitment is valid, i. e., a commitment to the password pw. This
can be done because the password is information-theoretically contained in the
commitment. On input a commitment c, the Extract oracle exhausts all possible
random choices r to check whether c is a commitment to pw or not. Indeed, the
set of possible values r is of superpolynomial size in the security parameter; this
is however allowed for the Extract oracle.

Game 7. In this experiment, the simulator behaves as in Game 6, except that
in Round 2’s computation phase, following a Send1 query, the received commit-
ments ci−1 and ci+1 are checked by the simulator w.r.t. the password using the
Extract oracle. Then, those instances Πsi

i that received an invalid commitment
ci−1 or ci+1 will choose a random group element for Xi,0.

By a statistical argument, we see that the probability for the adversary
to distinguish between Game 7 and Game 6 is negligible. If in Round 1 an
invalid commitment c to a wrong password p̃w (that is, (c, p̃w) /∈ Lρ,) was
sent, then by the strongly universal2 property of the PHF, the distribution of
(c, p̃w, α(k),Hk(c, p̃w)) is statistically close to the distribution of (c, p̃w, α(k), g)
for a random group element g ∈ G. Thus, the respective Zi,i−1 or Zi,i+1 and
therefore Xi,0 will look like a random group element for the adversary, who thus
has only a negligible chance to detect the difference.

As a result,
|Adv(A, G7)− Adv(A, G6)| ≤ negl(`).

By now, only such executions of Round 2 following a Send1 query are unchanged
where the commitments from the neighboring users are both valid and at least
one was adversary-generated. The following experiments will also modify this
situation.

Game 8. Now the simulator will abort the game with a win of the adversary, if
an instance Πsi

i received from a Send1-query valid commitments ci−1 and ci+1

of which at least one was adversary-generated.
This will only increase the success probability of the adversary, therefore:

Adv(A, G8) ≥ Adv(A, G7).

Game 9. In this game, the simulation aborts if the adversary has inserted
commitments, projections or Xi-values in Round 3:

Note that in Game 9, if a message in Round 1 to an instance of Ui was mod-
ified, as a result Ui individually chooses Zi,i−1 or Zi,i+1, respectively, uniformly
at random. Therefore, Ui holds Xi unknown to anyone and expects commit-
ments to values Xj such that X1 · · ·Xn = 1. Now, in Round 2 Ui outputs a

18

commitment Cρ(Xi;r′i) to a value Xi that only with negligible probability fulfills
X1 · · ·Xn = 1. To avoid users U1, . . . , Ui−1, Ui+1, . . . , Un from aborting, there-
fore, the adversary needs to be able to construct a commitment Cρ(X∗

i ;r∗) to a
value X∗

i such that X1 · · ·X∗
i · · ·Xn = 1. Again, as all Xj are unknown to the

adversary, this can only succeed with negligible probability. Note that moreover,
Xi is a random value and only Cρ(Xi;r′i) contains information about Xi. Thus,
the non-malleability of the commitment scheme gives the adversary only a neg-
ligible probability to insert values X∗

j with j = 1, . . . , i − 1, i + 1, . . . , n which
would be accepted by Πsi

i in Game 8. The above argument also demonstrates
that the adversary cannot insert any value Xi in Round 3 without resulting in
an abort (with overwhelming probability). Therefore,

|Adv(A, G9)− Adv(A, G8)| ≤ negl(`).

At this point, we have excluded all situations in which the adversary may
have inserted commitments, projections or Xi-values in Round 3: either he has
guessed the password and inserted valid commitments to it (Game 8) or his
attempts to insert rogue messages resulted in a protocol abortion before the
computation of a session key. Thus the only situation left to handle is that all
queries to the Send-oracle contain messages faithfully constructed following the
protocol specification. Here we can mimic the reasoning for the passive case.

Game 10. Now the simulation changes in that, for constructing the commit-
ments from Round 1, a password p̂w is chosen uniformly at random from D.
This does not change anything, as in the previous game, the commitments were
not used in any projective hash function anymore. All information about the
password, which was available to the adversary, were commitments of the form
Cρ(pw;r) for a random value r. Due to the hiding property of the commitment
scheme, the adversary detects the use of p̂w instead of pw with negligible prob-
ability only. Now the adversary does not have any correct commitments to the
password as input. But, due to the non-malleability of the commitment scheme,
the adversary’s probability to succeed in producing a new commitment on pw
drops at most negligibly.

|Adv(A, G10)− Adv(A, G9)| ≤ negl(`).

Game 11. We modify now the computation of the session key. The simulator
keeps a list of assignments (Z1,2, . . . , Zn,1, sk

si
i). Once an instance receives the

last Send3-query, the simulator computes Z1,2, . . . , Zn,1 and checks if for the
sequence (Z1,2, . . . , Zn,1) a master key was already issued and assigns this key
to the instance. If no such entry exists in the list, the simulator chooses a session
key sksi

i ∈ {0, 1}` uniformly at random.
The adversary can only detect the difference, if he knows the master key

mk = (Z1,2, . . . , Zn,1). The master key has once the Xi are public, sufficient
entropy because knowing all quotients Xi, still the value of at least one of the two-
party keys Zk,j is indistinguishable from a random group element. Therefore the

19

output of the function FUH(mk) is only with negligible probability distinguishable
from a random sksi

i .

|Adv(A, G11)− Adv(A, G10)| ≤ negl(`).

Now the session keys are randomly distributed and independent from the
password and the messages. Instances that hold the same master key computed
the same UH(mk) and therefore hold identical session identifiers. Thus, those
instances are partnered and the freshness definition renders the Reveal-oracle
useless because instances that are not partnered have independently uniformly
at random chosen session keys. Besides the 1/2 probability of guessing the bit
b right, the only way for the adversary to win is having sent a valid adversary-
generated commitment to a neighbored instance that did not get an invalid
commitment from the other neighbor. Thus, the adversary has just one try per
instance to guess a password and the probability to win in Game 11 is

Succ(A, G11) =
q

|D|
+

1
2

(
1− q

|D|

)
+ negl(`),

giving an advantage of

Adv(A, G11) =
q

|D|
+ negl(`).

Remember, that q only counts the number of different instances that were ad-
dressed by a Send-query.

Putting everything together, we have

Adv(A) ≤ q

|D|
+ negl(`).

ut

5 Conclusion and Further Remarks

We have proposed a password-authenticated three-round protocol for group key
establishment that achieves key secrecy, implicit key authentication and key
integrity in the common reference string model. Moreover, our definition of key
secrecy imposes that adversaries are not able to test more than one password
at each session. To date, we are not aware of any other protocol fulfilling the
above requirements and neither requiring random oracles nor ideal ciphers. Our
construction can be seen as a generalization of the two-party protocol of Gennaro
and Lindell from [14], diverging from the approach taken there in that

– we do not require the use of a one-time signature scheme,
– we make use of the original definition of projective hash families, for which

projections determine the complete action of the corresponding hash func-
tion on L. Gennaro and Lindell’s usage of smooth projective hashing is less
demanding in this sense, as they only consider projection mappings that
applied to pairs (k, x) only determine the value of Hk(x).

20

– we construct session keys and session identifiers via collision-resistant pseu-
dorandom functions, following the approach of Katz and Shin from [20].
Note that if an adversary has guessed the password, in order to preserve the
integrity of the protocol we have to guarantee he will not be able to find two
different master keys yielding the same session identifier but two different
session keys.

In the same fashion as Gennaro and Lindell’s construction, instantiations of
our protocol can be constructed from any IND-CCA2 secure encryption scheme
that admits an efficient construction of strongly universal2 projective hashing.
Deriving the required non-malleable commitments via such an encryption scheme
would actually yield a hard subset membership problem related to the language
of pairs (c,m) where c is a valid encryption of m using part of the common
reference string as public key.

Following an observation of Abdalla [1], in joint work we have explored to
what extent ideas in the above protocol are useful in another setting. In [2] we
show that an appropriate use of commitments enables the efficient derivation
of a constant-round group key establishment from any authenticated two-party
key establishment without having to rely on signatures.

Acknowledgments

We are indebted to Michel Abdalla for numerous valuable comments and dis-
cussions that have improved the original draft significantly, as well as kindly
providing us a preprint of [4]. Moreover, we would like to thank an anonymous
referee for insightful and valuable comments.

References

1. Michel Abdalla. Personal communication, June 2006.
2. Michel Abdalla, Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer

Steinwandt. (Password) Authenticated Key Establishment: From 2-Party to
Group. In Salil P. Vadhan, editor, Theory of Cryptography Conference – TCC
2007, volume 4392 of Lecture Notes in Computer Science, pages 499–514. Springer,
2007.

3. Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, and David Pointcheval.
Password-based Group Key Exchange in a Constant Number of Rounds. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryp-
tography – PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages
427–442. Springer, 2006.

4. Michel Abdalla and David Pointcheval. A Scalable Password-based Group Key
Exchange Protocol in the Standard Model. In Xuejia Lai and Kefei Chen, editors,
Proceedings of ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 332–347. Springer, 2006.

5. Ratna Dutta amd Rana Barua. Password-Based Encrypted Group Key Agreement.
International Journal of Network Security, 3(1):23–34, July 2006.

21

6. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, 2000.

7. Mihir Bellare and Phillip Rogaway. Entitiy Authentication and Key Distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93, volume 773
of Lecture Notes in Computer Science, pages 232–249. Springer, 1994.

8. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt. Se-
cure Group Key Establishment Revisited. International Journal of Information
Security, 6(4):243–254, 2007.

9. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic Group
Diffie-Hellman Key Exchange under Standard Assumptions. In Lars R. Knud-
sen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 321–336. Springer, 2002.

10. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Group Diffie-
Hellman Key Exchange Secure Against Dictionary Attacks. In Advances in Cryp-
tology – Proceedings of ASIACRYPT ’02, volume 2501 of Lecture Notes in Com-
puter Science, pages 497–514. Springer, 2002.

11. Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key Dis-
tribution System. In Alfredo De Santis, editor, Advances in Cryptology – EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 275–286.
Springer, 1995.

12. J. Lawrence Carter and Mark N. Wegman. Universal Classes of Hash Functions.
In STOC ’77: Ninth Annual ACM Symposium on Theory of Computing, pages
106–112. ACM, 1977.

13. Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for
Adaptive Chosen Ciphertext Secure Public-Key Encryption. In Lars Knudsen, ed-
itor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 45–64. Springer, 2002.

14. Rosario Gennaro and Yehuda Lindell. A Framework for Password-Based Authenti-
cated Key Exchange. Cryptology ePrint Archive: Report 2003/032, 2003. Available
at http://eprint.iacr.org/2003/032.

15. Rosario Gennaro and Yehuda Lindell. A Framework for Password-Based Authen-
ticated Key Exchange (Extended Abstract). In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 524–543. Springer, 2003.

16. Maŕıa Isabel González Vasco, Consuelo Mart́ınez, Rainer Steinwandt, and Jorge L.
Villar. A new Cramer-Shoup like methodology for group based provably secure
schemes. In Joe Kilian, editor, Proceedings of the 2nd Theory of Cryptography
Conference TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages
495–509. Springer, 2005.

17. Yael Tauman Kalai. Smooth Projective Hashing and Two-Message Oblivious
Transfer. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science, pages 78–95. Springer,
2005.

18. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-
Authenticated Key Exchange Using Human-Memorable Passwords. In Birgit Pfitz-
mann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lec-
ture Notes in Computer Science, pages 475–494. Springer, 2001.

22

19. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient and Secure Authenti-
cated Key Exchange Using Weak Passwords, 2006. At the time of writing available
online at http://www.cs.umd.edu/~jkatz/papers/password.pdf.

20. Jonathan Katz and Ji Sun Shin. Modeling Insider Attacks on Group Key-Exchange
Protocols. In 12th ACM conference on Computer and communications security,
pages 180–189. ACM, 2005.

21. Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryption
Scheme. In Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, vol-
ume 3152 of Lecture Notes in Computer Science, pages 426–442. Springer, 2004.

22. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, second edition, 2008. At the time of writing available online
at http://www.shoup.net/ntb/ntb-v2.pdf.

23

