
Fast and Secure Elliptic Curve Scalar
Multiplication Over Prime Fields Using Special

Addition Chains

Nicolas Meloni1,2

1 Institut de Mathmatiques et de Modlisation de Montpellier,
UMR 5149, Montpellier, France
2 Laboratoire d’Informatique,

de Robotique et de Microélectronique de Montpellier,
CNRS UMR 5506, Montpellier, France

meloni@lirmm.fr

Abstract. In this paper, we propose a new fast and secure point mul-
tiplication algorithm. It is based on a particular kind of addition chains
involving only additions (no doubling), providing a natural protection
against side channel attacks. Moreover, we propose new addition formu-
lae that take into account the specific structure of those chains making
point multiplication very efficient.

1 Introduction

Since it has been introduced by Miller and Koblitz in [12, 9], elliptic curve
cryptography (ECC) has been the subject of plenty of improvements and
attacks. Various methods has been proposed to speed up and secure the
computation of the scalar point multiplication (the computation of kP
where k is an integer and P a point of a curve). See [3, 4] for a complete
overview of methods.
In this paper, we study a very particular kind of addition chains (that
we called Special Addition Chains) that leads to a natural side channel
analysis (SCA) resistant exponentiation algorithm. Moreover we show
that it is very well suited to general and Montgomery elliptic curves over
prime fields, giving rise to a fast and secure point multiplication.
After some recall about ECC, we introduce special addition chains (SAC)
and the way they can be adapted to ECC. Then we study more precisely
the length of such chains and finally compare them to other SCA resistant
algorithms.

2 Background

2.1 Elliptic Curve Cryptography

Definition 1. An elliptic curve E over a field K denoted by E/K is
given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y) on E, the
partial derivatives do not vanish simultaneously.

In practice, the equation can be simplified into

y2 = x3 + ax + b

where a, b ∈ K and 4a3 + 27b2 6= 0, over field of characteristic greater
than 3.

The set of points of E/K is an abelian group. There exist explicit for-
mulae to compute the sum of two points, and several coordinate sys-
tems have been proposed to speed up this computation. For a com-
plete overview of those coordinates, one can refer to [3]. As an example,
in jacobian coordinates, the curve E (over a prime field) is given by
Y 2 = X3 + a4XZ4 + a6Z

6, the point (X, Y, Z) on E correspond to the
affine point (X

Z2 , Y
Z3) and the formulae are :

Addition:
P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = (X3, Y3, Z3)

A = X1Z
2
1 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B −A, F = D − C

and

X3 = −E3 − 2AE2 + F, Y3 = −CE3 + F (AE2 −X3), Z3 = Z1Z2E

Doubling:
[2]P = (X3, Y3, Z3)

A = 4X1Y 12, B = 3X2
1 + a4Z14

and

X3 = −2A + B2, Y3 = −8Y 14 + B(A−X3), Z3 = 2Y1Z1.

The computation cost is 12 multiplications (M) and 4 squarings (S) (8M
and 3S if one of the point is given in the form (X,Y,1)) for the addition
and 4M and 6S for the doubling.

Montgomery proposed in [13] to work with the following kind of curves:

Definition 2. Let K be a prime field, an elliptic curve EM/K is said to
be in Montgomery form if its equation is:

EM : By2 = x3 + Ax2 + x

Note that curves in Montgomery form can always be converted into short
classic form, however the converse is false.
On such curves the addition and doubling formulae are the following :

Addition: n 6= m

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,

Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

Doubling: n = m

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,

X2n = (Xn + Zn)2(Xn − Zn)2,

Z2n = 4XnZn((Xn − Zn)2 + ((A + 2)/4)(4XnZn)),

where (Xn, Yn, Zn) represent the point [n]P , for a given point P . Thus,
an addition takes 4M and 2S whereas a doubling needs 3M and 2S.

Note that to compute the point [m + n]P = [m]P + [n]P , on need to
know the x and z-coordinates of the points [m]P, [n]P and [m]P − [n]P .

Finally, one should notice that there exist formulae to recover the y-
coordinate at the end of a point multiplication [14].

2.2 Side Channel attacks

Side channel attacks have been discovered by Kocher in [10, 11]. They
consist in deducing secret informations, as the bits of the exponent in a
point multiplication, by analysing the amount of time required to per-
form secret operations, but also power consumption or electromagnetic
radiations. This weakness mainly depends on the fact that during a point
multiplication, additions are more expensive than doublings, thus a side-
channel analysis allows to deduce what kind of operations are computed,
and so to guess the bits of the exponent.

Several counter measures have been proposed against this threat. We
can cite for example the use of dummy operations during the process in
order to make the group operations look identical, side channel atomic-
ity which consist in splitting the curve operations into identical atomic
blocks, Montgomery ladder or elliptic curve in Hessian form [1, 3, 5].

In this paper, to avoid side channel attack, we propose to perform the
point multiplication using only point additions. We will show that this
can be done in an efficient way using Montgomery curves or with special
addition formulae in jacobian coordinates.

3 Scalar point multiplication without doubling

In this section, we present our new exponentiation method and how it
can be adapted to elliptic curve scalar point multiplication.

3.1 Special addition chains

We begin by some classic definition used in addition chain study :

Definition 3. An addition chain computing an integer k is given by two
sequences v and w such that

v = (v0, . . . , vs), v0 = 1, vs = k

vi = vi1 + vi2 for 1 ≤ i ≤ s with

w = (w1, . . . , ws), wi = (i1, i2) and 0 ≤ i1, i2 ≤ i− 1

The length of the addition chain is s.

Definition 4. A star addition chain is an addition chain which satisfies:

∀i, wi = (i− 1, j),

for some j such that 0 ≤ j ≤ i− 1. That is to say that for all i we have
vi = vi−1 + vj.
In this case we can omit i− 1 an just write wi = j.

One can find lot of literature about addition chains [7] and how they are
used in exponentiation problems.

In the remainder of the paper we will study a particular kind of star
addition chains define as follow :

Definition 5. A special addition chain is a star addition chain with

wi =


i− 2 or
wi−1

As wi can take only two different values we rewrite w as follow:
w = (w3, . . . , ws) ∈ {0, 1}s−2 satisfying :

v0 = 1, v1 = 2, v2 = 3,

vi = vi−1 + vj ⇒ vi+1 = vi +


vi−1 if wi+1 = 0
vj if wi+1 = 1

Finally, in order to lighten the notations, we will abusively note k =
(w3, . . . , ws).

Example 1. 34 = (1, 0, 0, 1, 1, 0)

v2 = v1 + v0 = 2 + 1 and w3 = 1⇒ v3 = v2 + v0 = 4

w4 = 0⇒ v4 = 4 + 3

w5 = 0⇒ v5 = 7 + 4

w6 = 1⇒ v6 = 11 + 4

w7 = 1⇒ v7 = 15 + 4

w8 = 0⇒ v8 = 19 + 15 = 34

Given a point P on an elliptic curve E, an integer k and w = (w3, . . . , ws)
an special addition chain computing k, it is easy to deduce the following
exponentiation algorithm :

Algorithm 1: AddExp(k, P)

Data: P ∈ E and k = (w3, . . . , ws);
Result: [k]P ∈ E;
(U1, U2, U3)← (P, [2]P, [3]P);
for i = 3 . . . s do

if wi = 0 then
U1 ← U2 ;

end
U2 ← U3 ;
U3 ← U1 + U2 ;

end
return U3

This algorithm is particularly well suited to elliptic curves in Mont-
gomery form as at each step we have the points U1 = [k1]P , U2 = [k2]P
and U3 = U1 + U2 = [k1 + k2]P = [k′]P that is we have exactly what
we need to compute U3 + Ui = [k′]P + [ki]P, i ∈ {1, 2}.
Eventually, the cost of this algorithm is one initial doubling and s − 1
addition, that is (4s− 1)M and (2s + 1)S.

We show next that this approach can be generalized to non Montgomery
curves.

3.2 New elliptic curve point addition formulae over
prime field

Let p > 3 be a prime number and E/Fp an elliptic curve, if P =
(X1, Y1, Z), Q = (X2, Y2, Z) and P + Q = (X3, Y3, Z3) are three points
of E given in jacobian coordinates then we have :

X3 = (Y2Z
3 − Y1Z

3)2 − (X2Z
2 −X1Z

2)3 − 2X1Z
2(X2Z

2 −X1Z
2)2

= ((Y2 − Y1)
2 − (X2 −X1)

3 − 2X1(X2 −X1)
2)Z6

= ((Y2 − Y1)
2 − (X1 + X2)(X2 −X1)

2)Z6

= X ′
3Z

6

Y3 = −Y1Z
3(X2Z

2 −X1Z
2)3 + (Y2Z

3 − Y1Z
3)(X1Z

2(X2Z
2 −X1Z

2)2 −X3)

= (−Y1(X2 −X1)
3 + (Y2 − Y1)(X1(X2 −X1)

2 −X ′
3))Z

9

= Y ′3Z9

Z3 = Z2(X2Z
2 −X1Z

2)

= Z(X2 −X1)Z
3

= Z′3Z
3

Thus we have (X3, Y3, Z3) = (X ′
3Z

6, Y ′3Z9, Z′3Z
3) ∼ (X ′

3, Y
′
3 , Z′3).

So when P and Q have the same z-coordinate, P + Q can be obtained
using the following formulae:

Addition:

P = (X1, Y1, Z), Q = (X2, Y2, Z) and P + Q = (X ′
3, Y

′
3 , Z′3)

A = (X2 −X1)
2, B = X1A, C = X2A, D = (Y2 − Y1)

2

and

X ′
3 = D −B − C, Y ′3 = (Y2 − Y1)(B −X3)− Y1(C −B), Z′3 = Z(X2 −X1)

This addition requires 5M and 2S.

It may seem infrequent to have both P and Q sharing the same z-
coordinate. However if we look at the quantities X1A = X1(X2 −X1)

2

and Y1(C −B) = Y1(X2−X1)
3 computed during the addition, they can

be seen as the x and y-coordinates of the point (X1(X2−X1)
2, Y1(X2−

X1)
3, Z(X2−X1)) ∼ (X1, Y1, Z). Thus it is possible to add P and P +Q

with our new formulae.

The same remark can be done from the doubling formulae, indeed the
quantities A = X1(2Y1)

2 and 8Y 4
1 = Y1(2Y1)

3 are the x and y coordi-
nates of the point (X1(2Y1)

2, Y 1(2Y1)
3, 2Y1Z1) ∼ (X1, Y1, Z1) allowing

us to compute P + [2]P without additional computation.

Using these formulae, the computational cost of algorithm 1 becomes
(5s− 1)M and (2s + 4)S.

Some cryptographic protocols only require the x-coordinate of the point
[k]P . In this case it is possible to save one multiplication by step of the
algorithm 1 by noticing that Z does not appear during the computation
of X ′

3 and Y ′3 , thus it is not necessary to compute Z′3 during the process.
You will find in appendix A how to recover the x-coordinate in the end.

Thus we have proposed new addition point addition formulae taking
advantage of the specificity of special addition chains. In the following
section we make a theoretical study of those chains in order to find
suitable ones for a cryptographic use.

4 Study of special addition chains

4.1 How to find special addition chains

Two questions rise from the previous sections: can any integer be ob-
tained using a special addition chain and how to find such a chain ?

The following example answer both questions :

Example 2. Let k = 34 and k′ = 19 and let apply them the subtractive
form of Euclid’s algorithm:

34− 19 = 15

19− 15 = 4

15− 4 = 11

11− 4 = 7

7− 4 = 3

4− 3 = 1

3− 1 = 2

2− 1 = 1

1− 1 = 0

If we look at the first number of each line we obtain a special addition
chain computing 34 : v = (1, 2, 3, 4, 7, 11, 15, 19, 34). One should remark
that, on the one hand, k′ and k have to be coprime in order to be sure
that the chain ends by 1, and on the other hand that k′ can be taken
greater than k

2
as (k, k − k′) gives the same addition chain as (k, k′). So

in order to find a special addition chain computing an integer k it suffices
to apply the following algorithm :

Algorithm 2: SpecialChain(k, k′)

Data: k > k′ > k
2

two coprime integers;
Result: k = w ∈ {0, 1}n;
v = ();
(U1, U2)← (k, k′);
while U1 > 3 do

if U1 − U2 > U2
2

then
(U1, U2)← (U2, U1 − U2) ;
concat(0, w);

end
(U1, U2)← (U2, 2U2 − U1) ;
concat(1, w);

end
return V

As an example, algorithm 2 applied to 34 and 19 returns 34 = (1, 0, 0, 1, 1, 0).

4.2 About special addition chains length
At this point we know how to easily find special addition chains comput-
ing any integer, however we are going to see that the study of the length
of such chains is a lot more complicated.
We begin by a theorem proved by D. Knuth and A. Yao in 1975 [6].

Theorem 1. Let S(k) denote the average number of steps to compute
gcd(k, k′) using the subtractive Euclid’s algorithm when k′ is uniformly
distributed in the range 1 ≤ k′ ≤ k. Then

S(k) = 6π−2(ln k)2 + O(log k(log log k)2)

This theorem show that if, in order to find a special addition chain for
an integer k, we choose an integer k′ at random, it will return a chain
of length about (ln k)2, which is too much long to be used with ECC.
Indeed, for a 160-bit exponent, we will see in the last section that to be
efficient, our method requires chains of length at most 300, whereas the
previous theorem tells us that, theoretically, special chains have a length
of 7000 on average (it is rather 2500 in practice).

Before tackling this problem, we need to make some basic recall about
the Fibonacci sequence.

Definition 6. The Fibonacci sequence is defined as follow :

Fn =

8<:
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n ≥ 2

The Fibonacci sequence has hundreds of properties, one can refers to [7]
or [15] to find (almost) them all. We just recall here Binet’s Formulae :

Theorem 2. Binet’s Formula :

∀n ∈ N, Fn =
φn − (1− φ)n

√
5

where φ = 1+
√

5
2

is the positive root of the real polynomial X2 −X − 1.

From this formula it is easy to deduce the classical results

lim
n→∞

Fn

Fn−1
= φ,

and

Fn = d φn

√
5
c

where x→ dxc is the nearest integer function.

Fibonacci numbers are easy to compute using special addition chains,
indeed one can check that :

Fn = (0, . . . , 0)| {z }
n−4 times

,

moreover, Fn is the greatest integer that can be compute by a special
addition chain of length n− 2 (n− 4 additions plus the initial doubling
and addition).
We define now linf (k) as the minimal length of a special addition chain
computing k one can expect, and lmin(k) as the length of (one of) the
shortest special addition chains computing k. So if n is such that Fn−1 <
k ≤ Fn then lmin(k) ≥ n− 2 = linf (k).
As we see previously lmin(Fn) = linf (Fn) = n − 2, however a random
integer k does not always satisfy lmin(k) = linf (k). As an example :

lmin(6) = 5 = linf (6) + 1,
lmin(54) = 10 = linf (54) + 2,

lmin(43800) = 25 = linf (43800) + 3

An exhaustive search showed that there are no integer lower or equal
than 224 for which lmin ≥ linf + 4. It is tempting to conjecture that
lmin(k) ≤ linf (k) + 3 for any k but up to now, we have not found any
result tending to confirm such a conjecture and an exhaustive search
from 224 to at least 2160 is completely unrealistic.

At this point, we must admit that we have no method to find minimal
chains, however efficient point multiplication can be made with just small
but not optimal chains, so in the next section we propose a method to
find some of them.

4.3 Finding small special addition chains

The first method we proposed to find a special addition chain computing
k was to choose an smaller integer k′ coprime to k and then apply Euclid’s
algorithm. Thus, a naive way to find small chains is to test several value
for k′ and keep the best one. Theorem 1 showed that this method will
return chains of length about 6π−2(ln k)2on average, and in practice one
need billions of attempts to find suitable chains.

So in order to find small chains more rapidly, our idea is to make an
”clever” exhaustive search. More precisely, it is to reduce the choice of
k′ to an area of the range [k

2
, k] where the chains are smaller.

To find such an area, first remark that if k = Fn for some n, then the
best choice for k′ is Fn−1, that is to say more or less Fn

φ
(see 2). In-

tuitively it comes to mind that, for an ordinary k, searching k′ around
k
φ

could be a clever choice. We are going to see that, indeed, it is the case.

Let k be a positive integers and k′ in the range [b k
φ
c − t, b k

φ
c + t]. We

have k′ = k
φ

+ ε for some real number ε.

We define also the sequence :

kn =

8<:
k if n = 0
k′ if n = 1
kn−2 − kn−1 if n ≥ 2

In fact, as long as kn > 0, this sequence correspond to the successive
steps of Euclid’s algorithm applied to k and k′. We show that choosing
k′ around k

φ
implies that algorithm 2 will return a chain with many 0 in

the end.

We have

k2 = k − k′ = k − (
k

φ
+ ε) = k(

φ2 − φ

φ2
)− ε =

k

φ2
− ε

k3 = k1 − k0 =
k

φ
+ ε− (

k

φ2
− ε) =

k

φ
(
φ2 − φ

φ2
) + 2ε =

k

φ3
+ 2ε

By induction, it comes that :

kn =
k

φn
+ (−1)n+1Fn × ε

It is clear that (Fn × |ε|)n is an increasing sequence and (k
φn)n is a

decreasing sequence, so if for some n we have Fn× |ε| < k
φn , then ∀ m ≤

n, 0 < km < km−1. Moreover,∀m ≤ n − 2, km >
km−1

2
, indeed let

suppose that km ≤ km−1
2

then :

km+1 = km−1 − km ≥
km−1

2
,

km+2 = km − km+1 ≤ 0

whereas km+2 should be greater than 0.

The previous property show that if n satisfy Fn×|ε| < k
φn , then algorithm

2 will return a chain with at least n−2 zeros in the end. Now if l(kn−1, kn)
is the length of the chain returned by algorithm 2 applied to kn−1 and
kn, then, then the length of the total chain is (n− 2) + l(kn−1, kn).

Now remember that kn−1 = k
φn−1 + (−1)nFn−1 × ε so if Fn × |ε| < k

φn

then ln kn−1 ' ln k
φn−1 . If we estimate l(kn−1, kn) with theorem 1 we get

l(kn−1, kn) ' 6π−2(ln k
φn−1)2.

As an example, fix n = 100, (that is force |ε| < k
φ100F100

), then we get a

theoretical average length of 2500 (1100 in practice).

Of course it is not a rigorous proof, but this gives a good reason why, on
average, special addition chains are smaller around k

φ
.

So in order to find small addition chains, we begin by testing the value
k′ = d k

φ
c and then we test consecutive integers until we find a sufficiently

small chain. In table 1 we give practical results on the number of itera-
tions one have to make to find chains computing a 160 bit integer smaller
than a fixed length.

The experiments have been made on a 3 GHz Pentium 4, over 10000
random 160-bits integers for chains of length 320 to 270 and 100 random
integers for chains of length 260. On average it takes on average 2.5 ms
to find a 320 length chain, to 3.24 seconds for a 270 length chain. Finding
260 length can take a few minutes to hours.

Note that for a 160-bit integer k, lmin(k) = 234, but it is difficult to
look for chains of length around 240 (we are not even sure that such
chains always exist). However the longer the chains are, the easier it is
to find them, so that we can find small chains relatively easily, even if,
the computation time of the chain itself being greater than the one of
the point multiplication, our method has to be restricted to protocols
where the exponent k is part of the secret key (allowing to look for very
small chains off-line).

chain length on average worst case

320 29 521

300 121 3 454

280 2 353 44 254

270 46 454 1 554 011

260 7 795 840 79 402 210

Table 1. Number of iterations needed to find a chain computing a 160 bit integer,
using a ”clever” exhaustive approach

Despite this limitation, we are going to see in the next section that special
addition chains allow efficient point multiplication and may be taken into
consideration in the future.

5 Comparisons to others SCA protected
algorithms

In this section we compare our algorithm to the Montgomery ladder when
it is used on Montgomery curves, and to the classic double-and-add, NAF
and 4-NAF methods, plus the recent Double-base chain proposed in [2]
when used on general curves.

5.1 Montgomery curves

The Montgomery ladder is a classical exponentiation algorithm naturally
SCA resistant. Indeed, for each bit (except the last) of the exponent k
one addition and one doubling are computed, which gives a complexity
of (7M+4S)(|k|2−1) over prime fields (where |k|2 is the bit length of k).
So if we consider that the ratio S/M is about 0.8 in Fp then, for 160-bit
integers, we obtain the following table:

Algorithm #M

Montgomery ladder 1622

SAC 300 1680

SAC 280 1568

SAC 260 1456

Table 2. Comparison between Montgomery ladder and SAC in Fp for a 160-bit expo-
nent

With chains of length 280 and 260 we obtain a gain of, respectively, 3
and 10 %.

5.2 General curves over Fp

In the case of general curves, protecting the classic algorithms against
SCA implies the use of side channel atomicity, which implies that the ra-
tio S/M is 1 (the same multiplier is used for multiplication and square),
whereas the very structure of special addition chains allows not to have
resort to side channel atomicity (so that we keep the ratio S/M=0.8).
We refer to [2] for a precise study of double-and-add, NAF, 4-NAF and
Double-base chain complexities. For 160-bit integers we obtain:

Algorithm #M

double-and-add 2511

NAF 2214

4-NAF 1983

double-base chain 1863

SAC 300 1983

SAC 280 1851

SAC 260 1719

Table 3. Comparison of different elliptic curve exponentiation algorithms over Fp for
a 160-bit exponent

We remark that the use of special addition chains of length 300 already
have a gain of 21% over double-and-add and 10% over NAF. From chains
of length 280 to 260, we outperform all the previous methods, with a gain
of 26 to 31% over double-and-add, 16 to 22% over NAF, 7 to 13% over
4-NAF and 1 to 8% over double base chain.

6 Conclusions

In this paper, we have proposed a new exponentiation method, based
on special addition chains, that suits very well to Montgomery elliptic
curves and general curves over prime fields. We also have presented new
formulae in the case of general curves that allow to take advantage of the
particular structure of special addition chains. Finally, even if we did not
solve the problem of finding minimal chains, we have shown a way to find
small chains by looking for them in a ”clever” range. All of this leading to
a very simple, efficient and naturally SCA resistant scalar multiplication
algorithms. However it still implies either off-line computation (if k is
part of the secret key) or, if k has to be chosen randomly, to generate
directly the exponent as a special addition chain. In this latest case, a
lot of study will have to be made in order to know how to generate a
”random” chain. Yet we hope that the reader has been seduced by the
originality of our approach and the interesting theoretical questions it
raises.

References

1. B. Chevalier-Mames, M. Ciet, and M. Joye. Low-cost solutions for
preventing simple side-channel analysis: Side-channel atomicity. IEEE
Transactions on Computers, 53(6):760-768, June 2004.

2. V. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and secure Elliptic
Curve Point Multiplication Using Double-Base Chains. ASIACRYPT
2005, volume 3788 of Lecture Notes in Computer Science, pages 59-78,
2005.

3. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography. CRC Press, 2005.

4. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

5. M. Joye and J.-J. Quisquater, Hessian elliptic curves and side-
channel attacks. Cryptographic Hardware and Embedded Systems-
CHESS 2001, volume 2162 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

6. D. Knuth, and A. Yao. Analysis of the subtractive algorithm for great-
est common divisors. Proc. Nat. Acad. Sct. USA, volume 72, No 1,
pages 4720-472, Dec. 1975.

7. D. Knuth. Fundamental Algorithms. The Art of Computer Program-
ming, vol. 1. Addison-Wesley (1981)

8. D. Knuth. Seminumerical Algorithms. The Art of Computer Program-
ming, vol. 2. Addison-Wesley (1981)

9. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48(177):203-209,Jan. 1987

10. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In N. Koblitz, editor, Advances in
Cryptology - CRYPTO’96, volume 1109 of Lecture Notes in Computer
Science, pages 104-113. Springer-Verlag, Aug. 1996.

11. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
M. Wiener, editor, Advances in Cryptology - CRYPTO’99, volume
1666 of Lecture Notes in Computer Science, pages 388-397. Springer-
Verlag, Aug. 1999.

12. V.S. Miller. Uses of elliptic curves in cryptography. In H. C.
Williams, editor, Advaces in Cryptology-CRYPTO’85, volume 218 of
Lecture Notes in Computer Science, pages 417-428. Springer-Verlag,
1986.

13. P. L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Math. Com. 48:177 (1987) 143-264.

14. K. Okeya, K. Sakurai. Efficient Elliptic curve cryptosystems from
a scalar multiplication algorithm with recovery of the y-coordinate
on a Montgomery-form elliptic curve. CHESS 2001, volume 2162 of
Lecture Notes in Computer Science, pages 126-141. Springer-Verlag,
2001.

15. N. Vorobiev. Fibonacci Numbers. Birkhuser Verlag, 2002.

A Recovery of x-coordinate

As said in section 3 the x-coordinate of the sum of two points P and Q
can be recovered without computing the z coordinate. Or in other word
the value

XP+Q

Z2
P+Q

(where P +Q = (XP+Q, YP+Q, ZP+Q) can be recovered

thanks to the the following property :

Proposition 1. Let P = (X1, Y1, Z), Q = (X2, Y2, Z) and P + Q =
(X3, Y3, Z3) be points of an elliptic curve E given in jacobian coordinates,
then

Z2 = a4
(X1 −X2)(X3 + 2Y2Y1 −X1X2(X1 + X2))− (X1 + X2)(Y

2
1 − Y 2

2 + X3
2 −X3

1)

2a6(Y 2
1 − Y 2

2 + X3
2 −X3

1)

and so

x3 =
X3

Z2
3

=
X3

Z2(X1 −X2)2

Proof : P and Q satisfy Y 2 = X3 + a4XZ4 + a6Z6 so

Y 2
1 − Y 2

2 = X3
1 −X3

2 + a4X1Z
4 − a4X2Z

4 + a6Z6 − a6Z6

which gives

Z4 =
Y 2

1 − Y 2
2 + X3

2 −X3
1

a4(X1 −X2)
moreover

X3 = (Y2 − Y1)
2 − (X1 + X2)(X2 −X1)

2

= Y 2
2 − 2Y2Y1 + Y 2

1 −X3
2 + X2

2X1 + X2
1X2 −X3

1

= Y 2
2 −X3

2 + Y 2
1 −X3

1 − 2Y2Y1 + X1X2(X1 + X2)

= a4X1Z
4 + a6Z6 + a4X2Z

4 + a6Z6 − 2Y2Y1 + X1X2(X1 + X2)

= Z4(a4(X1 + X2) + 2a6Z2)− 2Y2Y1 + X1X2(X1 + X2)

and so

Z2 = a4
(X1 −X2)(X3 + 2Y2Y1 −X1X2(X1 + X2))− (X1 + X2)(Y

2
1 − Y 2

2 + X3
2 −X3

1)

2a6(Y 2
1 − Y 2

2 + X3
2 −X3

1)

Recovering the final x-coordinate can be done in 11M, 4S an one inver-
sion.

