Computationally Sound Symbolic Secrecy in the
Presence of Hash Functions

Veéronique Cortier Steve Kremet, Ralf Kuisterd, and Bogdan Warinschi

1 Loria, CNRS & INRIA project Cassis, Nancy, France
2 LSV, CNRS & ENS Cachan & INRIA project Secsi, France
3 Christian-Albrechts-Universitat zu Kiel, Germany

Abstract. The standard symbolic, deducibility-based notions of egciare in

general insufficient from a cryptographic point of view, esially in presence
of hash functions. In this paper we devise and motivate a rappeopriate se-
crecy criterion which exactly captures a standard cry@tpigic notion of secrecy
for protocols involving public-key enryption and hash ftinns: protocols that
satisfy it are computationally secure while any violatidroor criterion directly

leads to an attack. Furthermore, we prove that our critésidecidable via an NP
decision procedure. Our results hold for standard secndtipns for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for therags design and analysis
of cryptographic protocols: the so-called Dolev-Yao, spiitg or formal models on the
one hand and the cryptographic, computational, or concnetgels on the other hand.
In symbolic models messages are considered as formal texchtha adversary can
manipulate these terms based on a fixed set of operationsn@meadvantage of the
symbolic approachiis its relative simplicity which makearitenable to automated anal-
ysis tools (see, e.g., [7,14]). In cryptographic modelsssages are actual bit strings
and the adversary is an arbitrary probabilistic polynostirak (ppt) Turing machine.
While proofs in this kind of models yield strong security garstees, the proofs are
often quite involved and only rarely suitable for automatjeee, e.g., [11, 6]).

Starting with the seminal work of Abadi and Rogaway [2], anffigant amount
of research has been directed at bridging the gap betweetwthapproaches. The
goal is to obtain the best of both worlds: simple, automatedisty proofs that entail
strong security guarantees. The typical approach is to shatthe executions of the
computational adversaries correspond to executions o$\hebolic adversaries, and
then use this result to show how to translate security nstfozm the symbolic world
to the computational world.

For some security notions like integrity and authentiaatihe derivation of com-
putational guarantees out of symbolic ones can be done aldkive simplicity [4, 13].
In contrast, analogous results for the basic notion of egqueoved significantly more
elusive and have appeared only recently [5, 10, 12, 8]. Tipar@mt reason for this sit-
uation is the striking difference between the definitiodalds used in the two different

models. Symbolic secrecy typically states that the adveisannot deduce the entire
secret from the messages it gathers in an execution. Ontiee lodnd, computational
secrecy requires that not only the secret, but also no parf@mation is leaked to
the adversary. A typical formulation that is used requitesddversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS In this paper we investigate soundness results for symbeli
crecy in the presence of hash functions. One of the main mtdagivs for considering
hash functions, which have not been considered in the afeméaned resulfs is that
they present a new challenge in linking symbolic and crygpbic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.ey, taird party can verify if a
valueh is the hash value corresponding to a given messagehis implies that a sim-
ple minded extension of previous results on symbolic andprgational secrecy fails.
Assume, for example, that in some protocol the Wash h(s) of some secret is sent
in clear over the network. Then, while virtually all symhotnodels would conclude
that s remains secret (and this is also a naive assumption oftere fimagractice), a
trivial attack works in computational models: givens’ andh, compareh with h(s)
andh(s’), and therefore recover. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal thesage signed.

In this paper we propose a new symbolic definition for nonceessy in protocols
that use party identities, nonces, hash functions, andgkéy encryption. The defini-
tion that we give is based on the intuitively appealing carcé patterns [2].

The central aspect of our criterion is that it captures edgisecurity in the compu-
tational world in the sense that it is both sound and complédtee specifically, nonces
that are secret according to ogymboliccriterion are also secret according to a stan-
dard computationaldefinition. Furthermore, there exist successful attaclksnsg the
secrecy of any nonce that does not satisfy our definition. t®eorems hold for pro-
tocols implemented with encryption schemes that satisfgdaird notions of security,
and for hash functions modeled as random oracles. In thépvamcombine different
techniques from cryptography and make direct use of a (rieiad) extension of the
mapping theorem of [13] to hash functions.

Our second important result is to prove the decidability of symbolic secrecy
criterion (w.r.t. a bounded number of sessions). This isuaiat result that enables the
automatic verification of computational secrecy for nond¥s give an NP-decision
procedure based on constraint solving, a technique thafteée for practical imple-
mentations [3]. While the constraint solving techniquetandard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secred@giion: For the standard
deducibility-based secrecy definition it suffices to transf constraint systems until
one obtains a so-called simple form. However, for our symatselcrecy criterion further
transformations might be required in order for the procedaibe complete. Identify-
ing a sufficient set of such transformations and proving they are sufficient turned
out to be non-trivial.

RELATED WORK. The papers that are immediately related to our work areetlods
Cortier and Warinschi [10], Backes and Pfitzmann [5], andeftaand Herzog [8],

4 One exception is [12] where hash functions are allowed, biyt@s randomness extractors.

who study computationally sound secrecy properties. Is ¢ontext, our work is the

first to tackle computationally sound secrecy in the preseidashes. We study the
translation of symbolic secrecy into a computational \@r$n a setting closely related
to thatin [10]. However, the use of hashes requires, as mquabove, new notions and
non-trivial extensions of the results proved there. Theki([5] and [8] is concerned

with secrecy properties of key-exchange protocols in theed of simulation-based
security, and hence, they study different computatioritihggs. Interestingly, the sym-
bolic criterion used in [8] is also formalized using patterbut their use is unrelated to
ours. None of the mentioned works considers decidabiliyés.

PAPER OUTLINE. In the following section, we introduce the symbolic and pata-
tional models. Our symbolic secrecy criterion is developefiection 3. We state and
prove the soundness and completeness of this criterion @@mputational secrecy in
Section 4, and prove its decidability in Section 5.

2 The Symbolic and Concrete Protocol and Intruder Models

In this section, we introduce the symbolic and the concrattopol and intruder models
(see Appendix A to D for more details).

2.1 The Symbolic Model

We define (symbolic) messages and terms, how honest agehtssfDolev-Yao-style)
intruder can derive messages from a set of messages, andbimagis are specified.

MESSAGES ANDTERMS. To define messages, we consider an infiniteAsef agent
identities, infinite setsNonce,4, Nonceqqy, Rand,y, andRandqq, (Nnonces and ran-
dom coins generated by the agents and the adversary, respgctind an infinite set
Garbage representing garbage messages. All of these sets are absuine pairwise
disjoint. We sefNonce = Nonce,, U Nonce,q, andRand = Rand,, U Randgy.

The set of messagéed (w.r.t. A, Nonce, andRand) is defined by the following
grammarM ::= A | Nonce | ek(A) | dk(A) | (M,M) | {M}X) | h(M) | Garbage
whereek(a) anddk(a) with a € A denote the public and private key @frespectively,
(m,m’) denotes pairing ofr andm’, {m},,, denotes the messageencrypted with
ek(a) using the random coing andh(m) is the hash ofn. We define the following
subsets oM: EKey, DKey, Ciphertext, Hash, andPair are the sets of all messages
starting withek(-), dk(-), {-}:, h(-), and{-, -), respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variab¥eshere the types are as above and for
avariable of a certain type only messages of this type maybstisuted. In particular,
we assume variable$;, : € {1,..., k}, for agent identities and variablég’ L JEN,
for fresh nonces generated Hy. The set of term3 (X) overX is defined analogously
to the set of messages.

DERIVING MESSAGESLet ¢ denote a set of terms. The set of terms that can be derived
from ¢ is defined by the deduction rules given in Figure 1. We wgite,..,,q t to say

¢Fb ¢Fm1 (bkmg ¢F<m1,m2>

QH——mmG¢ m be AUuX.a d>|—<m17m2> e 16{1,2}
oFek).obm ¢ {mlaw ¢Fdkd) pFm
QSF{m}gk(b) oFm ¢ F h(m)

Fig. 1. Deduction rules

thatt can be derived from (using randomnessind C Rand). For example, we have
that{(dk(a), {c}g())} UA FRand,a. {c}a) Whereb € A andr’ € Randqaw.

ProTOCOLS Roles are usually specified by a sequence of input/outpiotec In order

to model branching protocols, tn@leswe consider are ordered edge-labeled finite trees
where every edge is labeled byagent rule(l, r), wherel, r € T(X) are messages with
variables, and certain syntactic conditions are satisfiet that the actions can actually
be carried out (in a computational interpretation) kAparty protocolis a mapping

IT : [k] — Roles where[k] = {1, ..., k} andRoles denotes the set of roles.

SyMBoOLIC EXECUTION OF APROTOCOL The symbolic execution of l-party proto-
col is modeled as a finite sequence of global stategloBal stateis a triple(Sld, f, ¢)
whereyp is a finite set of messages (tberrent intruder knowledgdeSld is a finite set of
session ids, andl maps every session id §id to the current state of the corresponding
session. This state is called tleeal stateand is of the form(i, o, p, (a1, a9, . . ., ax))
wherei € [k] is the index of the role that is executed in this sessiois a substitu-
tion whose domain is a subset of the variables occurring) (i.e., o determines
the messages assigned to variables so far in the curreirgggsis a node offI(7)
and determines at what node the agent currently stands(aang, . .., a;) € A* is
the tuple of names of the agents that are involved in the@gssiherea; is the agent
carrying out the current session (supposedly with the roeatl agents;, j #). The
initial state isg; = (0,), AUEKey U Nonce,q,), i-€., the intruder knows all names and
public keys of agents as well as the infinite set of intruderoes.

We allow three kinds of transitions between global states.

— The adversary corrupts a set of parties and thereby leaengrivate keys of the

agentsy; XML g g A EKey U {dk(a;) | 1 < j < 1}). Note that
this transition can only be applied at the beginning (sticuption).

— The adversary can initiate new sessiof&id, f,) il Ve L) (SId’, £/,)
whereSld" andf’ are defined as follows. Leid = |SId|+1 be the session identifier
of the new session whet8ld| denotes the cardinality &ld. We defineSld’ =
Sld U {sid}. The functionf’ is defined as followsy’(sid’) = f(sid’) for every
sid’ € Sld and f'(sid) = (i, 0,¢, (a1, ..., ax)) wheree denotes the root of the role
tree ands(A;) = a; for everyl < j < k ando (X,) = n®-/* for everyj € N.

— The adversary can send messaggkt, f, ¢ Sid, f7, ¢") wheresid €
Sld, m € M, andy’ andf’ are defined as follows. We defirfé(sid’) = f(sid’) for

send (sid,m)
) ———

everysid’ # sid. Suppose thaf(sid) = (i, 0, p, (a1, .., ax)) and(ly,r1),. .., (In,
rp,) are the labels of edges leavipgin this order). We distinguish two cases:
o there does not existasuch thatn andl;o match. Then, we defing (sid) =
f(sid) andy’ = ¢ (the state remains unchanged);
o else, letj be minimal s. tm andl;o match. Letd be the matcher, i.em =
(1;0)0. We definef’(sid) = (4,006, pj, (a1, ..., axr)) andy’ = oU{(r;7,, sid)00}.

A finite sequence of global states is calleslymbolic execution tradgor a protocol
IT) if it starts with the initial global statg; and two consecutive global states in this
sequence are connected via one of the above transitionsaynat a trace ivalid

if every send transitioiSId, f, ¢) send(sidm), (Sld, f', ¢') verifies that the adversary
could actually deducer, that isp - m. The set of valid symbolic execution traces (for
a protocollT) is denoted byExec’(IT). The set of valid set of messages is defined by
Msg®(IT) = {¢ | (SId, f, ¢) is the last state of a valid execution trace

2.2 The Concrete Model

The concrete model is defined w.r.t. an encryption schdée= (K., Enc, Dec), which
we now fix once and for all. Hashing is modeled by the randorolera

CONCRETEMESSAGES Concrete messagese bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of tyer, the two components
can be efficiently retrievedand strings of typmhertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bitgéris denoted bg”. This

set depends on the security parametas this parameter determines the length of agent
names, nonces, and keys. Substitutions now map varialflesifee type) to concrete
messages (of the same type).

CONCRETEEXECUTION OF APROTOCOL A concrete global statis a 4-tuple(Sld, f,

©, H) wherey is a finite set of bit strings5Id is a finite set of session ids, agfdnaps
every session id i8ld to the current state of the corresponding session (the etcr
local states). Aconcrete local statés defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are #lswitjgs. The fourth
component carries the state of the random orékilés a set of coupleém, h) where
m is a bit string and: its corresponding hash value. A protocol is executed byingn
a ppt Turing machine, the (concrete) adversary, which makengaieries correspond-
ing to the transitions in the symbolic model. We allow foumdi$ of transitions between
global states, which we will refer to loorrupt, new; send transitionsandhash queries
The semantics of the first three queries is defined by analatytine formal execu-
tion model. In addition, the adversary may also make quedeke random oracle:

(Sld, f, o, H) hash(m), (Sld, f, o, H') where’H' is defined as follows. If there exists
n such thatim,n) € H, thenH’ = H and we definés = n. Else a hash valuk is
generated at random fat andH’ = HU{(m, h)}. In any caseh is returned to the ad-
versary. A finite sequence of concrete global states isccalt®ncrete execution trace

if it starts with the initial global state. Obviously, sintiee adversary is a ppt Turing
machine the length of the trace is bounded by a polynomidldérsecurity parametet
Also, the sequence of random coiRg used in the execution by the honest agents and

the random oracle as well as the sequence of random ébingsed by the adversary
can be bounded in length by polynomials(r) andp 4(n), respectively. Clearly, iR
andR 4 are fixed, we obtain a uniquely determined concrete tracieshwhe denote by

Execir(rp),A(rA)(N)-

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition ofreeg and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formatiie idea is to require that
the secret is indistinguishable from an unrelated random bitstihghosen (from an
appropriate distribution). The secrecy of nonce variable (the nonce generated by
A; in theith role of the protocol) in protocdll is defined as follows.

sec-b

Definition 1. Consider the experimerxpg,..., , (i, j)(n) parametrized by a bib

and that involves an adversan against protocolll. The experiment takes as input a
security parameten and starts by generating two random nonegsandn; in C".n.
Then the adversaryl starts interacting with the protocdll as in the execution de-
scribed byExecjz,_4(n). At some point in the execution the adversary initiates aieas

s in which the role ofA; is executed, and declares this session under attack. In this
session, the variabl&’ 341- is instantiated with,. The rest of the execution is exactly as
in Execyr, 4(n). At some point the adversary requires the two nomgesndn; and has

to output a guesd. The bitd is the result of the experiment. We define the advantage of
the adversaryA by:

AdVES,,, (i:7)(n) = Pr [Exped, (i 7)(n)=1] = Pr [Expged, | (1,5)(n)=1

We say that noncKA is computationally secret in protocdl, and we writell ¢
SecNonce(i,) if for every p.p.t. adversaryl its advantage is negligible.

SYMBOLIC SECRECY. As explained in the introduction, weak secrecy is not sieffic
to capture the standard indistinguishability-based matiged in computational settings.
The new notion of secrecy we propose here relies on theiwglyitappealing concept
of patterns [2]. Roughly, the pattern of an expression isioled by replacing witlil,

all the subterms of the expression that are secret. In oer aasibterri” of 7" is secret

if, even when giverT’ the adversary cannot verify thathas been used to constract
Formally, we addl" to the knowledge set in the deduction relation. The ideas behind
our definition of patterns are related to offline guessingcktt, where the adversary
is given the weak secret and should be unable to test whétbeyiven weak secret is
indeed the one used in the observed messages.

Definition 2 (Patterns). Given a set of closed terms = {M;, Ms,..., My} and a
termT’, we defin@®atr (¢) = {Patf.(M,), Path.(Ma), . .., Patd(My)}, wherePat?. (M)
defined recursively by:

a if ¢7, T I_Rand
O otherwise

Path.((My, M,)) = (Patf(Ml) PatT(Mz)>

{Pat? (M ek(ay I .7 FRand,,, dk(a) orif r € Randaay
Patz (M} ew)) { otherW|se '

adv

PatT a) =

(Pat if &, T FRran M
Patf,(h(M)) = {D (M) 16, T FRandue

Pat? is extended to set of messages as expe@tﬂ@:(S) =Uies Pat?(t).

The messages @f may contain some subterms of the fo{nM}gk(a) wherer €
Rand,q,. Because of the random coins such messages must have bé&bilie
adversary and/ should be deducible. Thus we consideaugmented with such mes-
sagesp = ¢ U {M | {M};‘k(a) subterm ofp}. For any valid message set(that is
¢ € Msg®(IT) for some protocolT), we can show thap - M for everyM € é.
Definition 3 (Nonce secrecy)Let IT be a protocol andXﬁi a nonce variable occur-
ring in some role4;. We say thaXﬁli is secretin/7 and we writell =° SecNonce(%, j),
if for every valid set of messagesc Msg® (1) it holds that for every session number
s, the symbolic nonce®:J>* does not occur iPat,,a; .5, (4).

To better appreciate these definitions, consider the fatigwxamples.

1. Letg; = {h({ny,n'))} = ¢1. ThenPat,, (¢1) = {O}. ¢1 preserves the indistin-
guishability ofn; since, intuitivelyn,, is hidden by the secret noneé

2. Let gy = {h({np;{n'}e(a))), '} Wherer ¢ Randaq,. Theng, = ¢, and
Pat,, (¢2) = {O0,7/}. In '[hIS example, the encryption ef does hide.

3. Letgs = {h({ns, {n'}g,))} wherer € Randagy. Thengs = ¢3 U {n'} and
Pat,, (¢3) = {h((np, {n’ ek(a)>), n'}. We have that;, occurs inPat,, (¢3). This
corresponds indeed to an attack.:/®#as been encrypted by the adversary himself
he knows the ciphertext. Givery andn, he computes both((no, {n'}¢,,)) and
h({n1,{n'}())) and compares them fe((ns, {n'}, ,)) Yielding the attack.

4. Letgy = {{{h(np), h(n))}¢(o)> dk(a)} Wherer & Randga. Theng, = ¢4 and
Pat,, (¢4) = {{(h(ny),) Yex(a)» dk(a) }. Again,n, does occur irPat,, (¢1). For
this attack an intruder may gét(n;) by decrypting and projecting the message
{(h(ne), h(n'))} G,y @and comparé(ns) with h(ng) andh(n,) that he may com-
pute fromngy andn; .

Our notion of secrecy has a useful equivalent formulaticstdbed in the follow-
ing lemma. Informally, the lemma states that all unencrgtecurrences of the secret
nonce in a set of messages are such that they occur in & thahis hashed, and such
thatt itself can not be computed fromandn.

Lemma 1. Let¢ be an arbitrary set of messages ané nonce symbol that occurs in
¢. n does not occur irPat,, (¢) if and only if ¢ I n andVM subterm ofp such that
¢ = M, Vp such that) |, = n, so that there is no encryption along3p’ < p such
that 1) M|, = h(M') and 2)¢,n I/ M.

4 Symbolic Secrecy is Equivalent to Computational Secrecy

To prove the soundness and the completeness of our secitecipar, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prquévalence of the symbolic
and computational notions.

RELATING SymBoOLIC AND CONCRETETRACES. The first step linking security prop-
erties in symbolic and concrete models is to exhibit a retalietween individual exe-
cution traces. The relation is similar to that developedrevjpus works [13,10], but
our definitions and results have to deal with the use of randi@tles in computational
executions. In line with common practice in symbolic modalssh applications (ex-
plicitly captured as queries to the random oracle by cordrates) are not reflected by
the symbolic traces. Therefore, we defineltash-query fre¢raceclean_hash(t¢) asso-
ciated to the concrete tra¢e = (SId{, g1, v1, H1), - - -, (SIdS., gn, on, Hrn). The trace
clean_hash(t¢) is the concrete tradsld;, , i, , vi, , Hi,), - - -, (SId5, , g4y, , @iy, Hay,), Ob-
tained by removing froni® the states that are the result of a hash request.

ik

Definition 4. Lett®* = (SId3, f1, 1), ..., (SId}, fn, &) be a symbolic execution trace
and letclean_hash(t¢) = (SId{, g1, ¥1, H1), - - ., (SIS, gn, ¥n, H,) be the hash-query
free trace of concrete execution trate

— We say that tracé is aconcrete instantiation @f with (partial) mapping: : M —
C" and we writet® <¢ ¢€ if for every¢ (1 < ¢ < n) it holds thatSld; = Sldj
and for everysid € SId; if fo(sid) = (09,3 pd (ay,...,a;)) and g,(sid) =
(,rsid’jsid7 qsid, (‘117 . ak)) thenTSid —co O.sid’ ,L'sid — jsid andpsid — qsid.

— Tracet® is aconcrete instantiation with Dolev-Yao hash quenés’ and we write
t* < t¢ if there exists a partial, injective functian: M — C” such thatt® <°¢ ¢¢
and for everyl < k < n, for every message such that(m, h) € Hy, for someh,
there exists a term/ such that(M) = m and ¢y, Frand,,, M.

adv

Proposition 1. Let IT be an executable protocol. If the encryption scheA® is
IND-CCA secure, and the hash functions are random oracles, thenrfgrpap.t. al-
gorithm A

Pr | 3t° € Exec®(IT) | t* = ExecCiy(p,,),ara)(n) | = 1 —va(n)

where the probability is over the choi¢®;;, R4) < {0,1}74(x {0,1}94(") and
v 4(+) is some negligible function.

The proof shares many ideas with earlier work [13, 10] andviergin Appendix H.1.

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY The follow-
ing theorem states that the symbolic secrecy criterion tessary and sufficient for
computational secrecy to hold.

Theorem 1. Let IT be an executable protocol and LKtﬁli be a nonce variable occur-
ring in some role4,. If the encryption schemd¢ used in the implementation &f is
IND-CCA secure thed] =° SecNonce(3, j) if and only if I =€ SecNonce(i, j).

Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no samecan distinguish the
modified execution, which we call the “oracle executionrfrthe real execution.

Next, we argue that in the oracle execution, the nonces thatyanbolically secret
are information theoretically hidden from the computasibadversary. Indeed, if the
symbolic secrecy property is satisfied, by Lemma 1 the nomeceirs only in some
hashed terms, and the term themselves are secret (in theethahi cannot be computed
efficiently). Since in the random oracle model the hash ahre independent of the
hashed message, the view of the adversary is independentlimvalue of the secret
nonces.

STEPI. We now describe the “oracle execution”. Whenever thequoltdictates that an
honest party encrypts some bitstring the party encrypts instead a randomly selected
bitstringr,,, of equal length. The execution keeps a table with all astoocié&mn, r,,),
which we call the random associations table (RAT). The RAlasmade available to
the adversary, but only to honest parties. Specificallynelier an honest party receives
encrypted messages, the party performs the appropriatgpdien and recovers some
plaintext. If the plaintext is some’ such thatm, m’) occurs in RAT, the party treats
the encryption as an encryption.fand continues its execution as normal. Otherwise,
the underlying plaintext is set ta/'.

Intuitively, if any adversary behaves differently in theot@xecutions, it is because
he can see the difference between encryptions of true, amtbna ciphertexts. For-
mally, if we letExec 4, ;7(n) be the output of adversarg when executed with protocol
IT for security parametey, andExec’; (1) the output of the adversary in the associ-
ated oracle execution, we have the following lemma (whiclprese in Appendix H.2).

Lemma 2. Let IT be an executable protocol, andlan arbitrary ppt adversary. Then,
if the encryption schemd€ used in the implementation &f is IND-CCA secure, then
Pr[Execa m(n) =1]—Pr [Execf47n(17) = 1] is negligible.

Notice that we can apply the above lemma for the case whenxéeugon that is
considered is used in the experim@tps? (i, 7)(n), for someb, 1, j. If we write

Execa, 1

Expet . (i, 7)(n) for the corresponding oracle execution, we obtain thagtkegists

Exec9

some negligible functiom; ; ; such that
Pr[Exped, | (i,)(n) = 1] = Pr [Bxpged, () =1] =vijeln) @)

STEP II. In the next step, we associate symbolic traces to the coatipnal traces
of the oracle execution. This enables us to reason about\arsaty’s success in the
oracle execution (which is conceptually simpler). The aigmn is in fact the one
in the proof of Proposition 1, with an additional parsingpsteecessary to take into
account the random association table that we detail beloaddition to access to the
keys and the randomness of the parties, the parsing prozetio uses access to the
random association table, and is as follows: the first stggragessing some message
m’ is a search in the random association tablénlfm’) occurs in the RAT, then the
procedure proceeds as before, withreplaced byn, otherwise the procedure remains
unchanged.

Next, we argue that the symbolic traces obtained as abowabdexecution traces,
and moreover, that they are included among the traces ofk#mugon ofI. The for-
malization is given in the next lemma. Its proof is in AppenHi3.

Lemma 3. The symbolic traces dixec® (11, .A) are valid with overwhelming probabil-
ity and Execj’él_’H C Execa, 1.

STEPIII. Finally, we prove that ifA£ is IND-CCA secure theti/ = SecNonce®(i, j) =
IT |=° SecNonce(i, 7). For an arbitrary adversary against the secrecy of nonég)

recall that we writeExp;e<, for the oracle version of the experiment definin
oA p g

Exec?;
secrecy of noncé(J Let AdviiCeco .. (n) be the corresponding advantage functions.
By definition we have that:

AdvE, (i7)(n) = Pr [BxpEe, (i) (n)=1] ~Pr [Bxpgas, | (i) (n)=1]
Advis, (,5)(n) = Pr [Bxpied, (i) n)=1]~Pr [Expged (i.)(n)=/1]

By subtracting, using Equation 1, and rearranging termshtaio that for some negli-
gible functionv

AdViee, 4 (1,5)(n) = Adviee | (i,5)(n) + v (1))

Finally, we show that in the oracle execution the advanfadeg; . RE 7)(n) of
any adversary4 is negligible since nonces that are symbolically secrenraimrma-
tional theoretically hidden from the adversary. This carséen as follows.

Consider the symbolic tracgthat corresponds to the execution of the experiment

Expgs?d (), up to the point when the adversary is given the nonces ansldsked

Exec?;
to determlne the bit. Let s be the id of the session under attack, andhlet* be the
symbolic nonce that corresponds to the nonce under attackeBima 3, the trace is
with overwhelming probability a Dolev-Yao trace of protddd. By the hypothesis of
the theoreml |=* SecNonce(i, j) and therefore by Lemma 1, all occurrences®f
in ¢ that are not under an honest encryption are in some frthat appears under
a hash, and; is nondeductible fronp, n*7:. Lett; be the bitstrings that correspond
to the termsT;. We conclude by observing that in the real execution, thesesdry
may observe the values = h(t1),ca = h(tz2), ..., but provided that it does not query
t1,t2,...tothe random oracle, their values (and thus in particulawtiiue of the secret
nonce) are independent from thg co, Since all queries to the random oracle are
the images of deductible terms, we conclude thatoes not requedi(t;), for all .

The “only if” direction. Itis importantto observe that if a messayeis deducible
from a set of messagéd, M-, ..., M, the associated deduction treean be trans-
lated into an (efficient) program which given the bit-string representationsrof for
M; (i =1,2,...,n) computes the bit-string representatiarof M.

We proceed as follows. Assume that for some symbolic ttatiee symbolic nonce
n%-J oceurs inPat,,., ;.- (¢), starting from Lemma 1 we can show that there exist a
term M € ¢ and a deduction treesuch that: 1) (¢, n%+7»*) yields messagé/ and 2)

10

for n # n%3%, 7(¢,n) does not yield\I. SinceM € ¢, we know that there also exists
a deduction tree such thatr(¢) yields M.

“Based on the above, we construct a two-stage adversarysagairecy of nonce
Xii. In the first stage, the adversary produces a computatiepedsentation© of the
trace¢ (by simply following the instructions of the Dolev-Yao adsary that defines
$). Onceg is created, it requests the two values of the naufte-* and receives from
the experiment;, andn;_,. Then it computesn, = 7(¢, np) for b = 0,1 andm =
7(¢°), and retrieve$ by comparingn with mq andm; .

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is dedaldVe present an NP-
procedure that decides nonce non-secrecy for the case ofalbd number of sessions
(that is, adversaries are allowed only a fixed numbaref queries)

Without loss of generality, we assume that all of ikew queries are performed at
the beginning of the execution. Our decision procedurésskarguessing the sequence
of these requests together with the identities of the agemtdved. Then, the proce-
dure guesses an interleaving for the execution. Using atdneéchniques [14], such
executions can be translated to constraint systems. W tteeia definition:

Definition 5. A constraint systend’ is a finite set of expressiorf§ I+ # or T; I+ w;,
whereT; is a non empty set of term#,is a special symbol that represents an always
deducible term, and (for < i < n) u; is a term such that:

- T, CTipq,forall1 <i<n-—1,;
- if x € var(T;) then3j < i such thatl; = min{T | T I+ v € C,z € var(u)} (for
the inclusion relation) and’; C 7.

Theleft-hand sidg(right-hand sidgof a constraintl’ I+ « is T' (respectivelyu). The
left-hand sideof a constraint syster@, (for which we writelhs(C')), is the maximal set
of messages,,. By | we denote the unsatisfiable system.

The left-hand side of a constraint represents the messigasgasent on the network,
while the right-hand side represents the message expegtad &gent in order to per-
form the next protocol step. Bolutionof a constraint syster is a ground substitution
o suchthafl’o Frang,,, vwo foranyT I u € C. We say thal preserves nonce secrecy
of n if there does not exist a solutienof C' such that: occurs inPat,, (Ihs(C)o).

The transformation of protocols into constraint systenatdd systems that are well-
formed. A constraint systef is well-formedif 1) any subterm of© of the formdk(¢')
is such that’ is an agent identity and 2) any subterm/ofof the form{t, }}, is such
thatr € Rand andr ¢ Rand,q,. The following theorem states that our notion of nonce
secrecy (Section 3) is decidable for a bounded number ofbsesss

Theorem 2. The following problem is co-NP complete:
5 For the case of an unbounded number of sessions our sectimy isacundecidable, just as the

standard deducibility-based notions.

11

Given: a well-formed constraint syste@and a nonceu.
Decide: DoesC preserve the nonce secrecyrdf

The decision procedure for nonce secrecy preservationsvaskfollows. First, given
an arbitrary constraint system we reduce it tsodvedsystem using non-deterministic
transformation rules similar to those in [9] (see Appendix & constraint system is
solvedif it is different from | and each of its constraints are of the fofhit- # or T" I+ x
wherez is a variable. Second, we check whethasccurs inPat,, (1hs(C)). If not, we
check whetheC' can further be simplified into a solved form that does not gmess
nonce secrecy, and so on. Note that although for standanacielity-based notions
decision procedures can stop as soon as the constraininspsi® been transformed
into solved form, for our secrecy notion further transfotimas might be necessary.
NP-hardness is proved analogously to the case of standdtetithdity-based notions
[15].

References

1. M. Abadi and V. Cortier. Deciding knowledge in securitypfmcols under equational theo-
ries. InICALP 2004 volume 3142 of NCS pages 46-58, 2004.
2. M. Abadi and P. Rogaway. Reconciling two views of cryptgdry. InIFIP TCS 2000
volume 1872 oLNCS pages 3—22, August 2000.
3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagd. Cuellar, P. H. Drielsma,
P. Heam, O. Kouchnarenko, J. Mantovani, S. Modersheimpb Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigano, and L. Vigneron. The #pa tool for the automated
validation of internet security protocols and applicaionn CAV 2005 volume 3576 of
LNCS 2005.
4. M. Backes and I. Christian Jacobi. Cryptographicallyreband machine-assisted verifica-
tion of security protocols. ISTACS 2003pages 675-686, 2003.
5. M. Backes and B. Pfitzmann. Relating cryptographic undifim key secrecy. IriProc.
26th IEEE Symposium on Security and Privacy (SSRi#&ges 171-182, 2005.
6. M. Bellare and P. Rogaway. Entity authentication and ketyibution. InCrypto’93 volume
773 of LNCS pages 232—-249, 1993.
7. B. Blanchet. An efficient cryptographic protocol verifleased on Prolog rules. [IRroc.
14th IEEE Computer Security Foundations Workshop (CSF)Viidges 82—-96, 2001.
8. R. Canetti and J. Herzog. Soundness of formal encryptidhe presence of active adver-
saries. INTCC 2006) LNCS, 2006. To appear.
9. H. Comon-Lundh and V. Shmatikov. Intruder deductionsist@int solving and insecurity
decision in presence of exclusive or.UICS 2003 pages 271-280, 2003.
10. V. Cortier and B. Warinschi. Computationally Sound, @uated Proofs for Security Proto-
cols. INESOP 2005volume 3444 oL NCS pages 157-171, 2005.
11. S. Goldwasser and S. Micali. Probabilistic encryptidournal of Computer and System
Sciences28:270-299, 1984.
12. P. Gupta and V. Shmatikov. Towards computationally dosymbolic analysis of key ex-
change protocols. IRMSE 2005 pages 23-32, 2005.
13. D. Micciancio and B. Warinschi. Soundness of formal gption in the presence of active
adversaries. ITCC 2004 volume 2951 of NCS pages 133-151, 2004.
14. J. K. Millen and V. Shmatikov. Constraint solving for Inoled-process cryptographic proto-
col analysis. INCCS 2001 pages 166-175, 2001.
15. M. Rusinowitch and M. Turuani. Protocol Insecurity wimite Number of Sessions and
Composed Keys is NP-complet€heoretical Computer Scienc299:451-475, April 2003.

12

A Protocol Roles

An agent ruleis a tuple of the forn{l,) (also written ag — r) wherel,r € T(X).
Typically, the substitutionr of some of the variables ihandr is already fixed by
applications of preceding agent rules (sharing variabl&stive current agent rule). If,
now, the agent receives a messagethenm is matched againr, say the matcher is

1, and the messagern is produced as output (as explained below, it will always be
the case thaton does not contain variables)..f and/o do not match, then the agent
will not produce output. Ifn andlc match, we say that the ru(@,) is applied to (is
applicable to)n.

A role an agent performs in a run of a protocol is specified byatered edge-
labeled finite tree where every edge is labeled by an ageatlrul run of a protocol
an agent will stand at a certain node of the tree. Assumehibaiutgoing edges of that
node are of the forndly, 1), ..., (Is, rs) (starting with the left-most edge). Now, if the
agent receives a message, saythen the agent will apply the first agent rule (from left)
applicable tan to produce its output.

Formally, we first define role trees and then roles, which afe tree satisfying
certain conditions.

A role treeR is a finite ordered edge-labeled tree where the domain ista firefix-
closed subset di* (theith successor of a nogeis pi) and every edge is labeled by
an agent rule. Given a nogein R, we denote byRules, the sequence of agent rules
the edges on the path from the root®fto p are labeled with. We Writé{ulesé and
Rules;, to denote the sequence of left- and right-hand sides of thésg respectively.
(We sometimes consider these sequences as segs7¥ I, we writerule, to denote
the agent rule the edge leadingptas labeled with. The left-hand side of this rule is
refered to by"uleé and the right-hand side byule;,.

The ith role performed by agenti; in a k-party protocolis a role treeR such
that certain conditions are satisfied. To define these donditve need some notation.
Let p we a node inRk. Then, we denote byC, = {ek(A1),...,ek(A),dk(4;)} U
X.n(Ai)URulesé the set of terms agent; knows in node. (Note that this set includes
ruleé.) If p’ is the predecessor of (we definep’ = p if p = ¢), then we define
Ki = {ek(A1),... ek(Ay),dk(A;)} U X.n(A;) U Rulesl,. (This set coincides with
IE; except thaﬁ“uleé is not added.) We can now formulate the mentioned conditions
required forR (see below for informal description): For every ngde# ¢ in R we
require that:

1. ruleé andrule;, do not contain a subterm of tyfiKey,

2. everyr € Rand,, occurs inRules, at most in the context of one term of type
Ciphertext, i.e., the set of subterms of the foiti }} in Rules,, (for somet andt’)
is a singleton,

3. everyr € X.r occurs inRulesé at most once and does not occurlinles; if it
occurs it occurs in a term of the forf}(, ,) for somet.

4. K;) I_Randag TUle; and(l/c\; n X) U IC; l_X.TURandag ruleé,

The first condition says that decryption keys are not exglimbntained in agents rules.
This implies that these keys may be output by an agent. Ashfosécond condition,

13

a term of the form{¢'}, means thatd; computes the encryption for plain textising
keyt’ and random coins. The agen#4; might use the computed ciphertext at different
places in the role. Therefore, the tefwi}} (and hence;) may occur also in different
places in the agent rules. However/if computes the encryption for a different plain
text and/or a different key, theA; will also use different random coins. The intuition
behind the third condition is as follows: Variables{m are used in terms for decrypting
messages. More precisely, in the concrete execution matisim of the form{t}g, ,)

will causeA; to perform the following action. It first checks whether thieegy message

is a ciphertext withek(A4;) as public key. Then it would decrypt the message and try to
parse this message according.t®herefore, message of the for{rt}gk(Ai) should only
occur on the left-hand side of agent rules and only in termeeform{t}_, , ,. Note
that if a term of the form{¢}, , ., with j # < would occur on the left-hand side of an
agent rule for4;, then this would mean that; can decrypt a message encrypted with
the public key of4 ;. This should of course be forbidden. Also, when parsing asampes
according to{t}¢, ,,), we don't assume that the agent is able to extract the random
coinsz used to encrypt the message. Depending on the encryptiemscthis might
not be possible, and more importantly, protocols typicdtiynot use this information.
Thereforex should only occur at one position in the agent rulesiaf Together with
the previous conditions, the last condition implies tHatcan actually carry out the
tests when receiving a message and can actually producetymet onessage.

B Transitions in the Formal Execution Model

To define transitions between global states, we use theafisiipnotation. Byn®9»* €
Nonce,, With a € A andj, s € N we denote distinct nonces. Analogously,/l¥y* €
Rand,, with @ € A, j € Rand,y, s € N we denote distinct random coins. By ,
we denote a mapping that maps everye Rand,, to r*™*. Givent € T(X), we
denote byt7, , the term obtained froriby simulataneous replacing every Rand,,
occurring int by 7, s(r). We use this mapping to replace the randomness usebyin
fresh randomness. (Belotwill be the right-hand side of an agent rule).

We allow three kinds of transitions between global statésckvwe will refer to by
corrupt, new andsend transitionsrespectively.

— The adversary corrupts a set of parties by outputting a sdeatities and thereby

learns the private keys of the agenis:">"""?*“12), (¢ ¢ AUEKeyU{dk(a;) |
1 < j <'1). Note that this transition can only be applied at the begigrstatic

corruption).

— The adversary can initiate new sessioffld, f, ¢) (SId’, f', ¢)
whereSld" andf’ are defined as follows. Leid = |SId|+1 be the session identifier
of the new session whetéld| denotes the cardinality @fld. We defineSld’" =
Sld U {sid}. The functionf’ is defined as follows.

o f/(sid") = mf(sid’) for everysid’ € Sld.

o f'(sid) = (i,0,¢,(a1,...,ax)) where the domain of is {Ay,..., Ax} U
X.n(A;) with 0(A;) = a; for everyl < j < k ando(X?) = n®7* for
everyj € N.

new (i,ai,...,ak)
b S hebb btk el AN

14

send (sid,m)

— The adversary can send messaggkt, f, ©) (Sld, f', ') wheresid €
Sld, m € M, andy’ and f’ are defined as follows. We defirfé(sid’) = f(sid")
for everysid’ # sid. Suppose thaf(sid) = (i, 0, p, (a1, ...,ax)) and((l,71), ...

, (In, 7)) are the labels of edges leavipgin this order). We distinguish two cases:

o there does not existasuch thatn andl;o match. Then, we defing (sid) =
f(sid) andy’ = ¢ (the state remains unchanged);

o otherwise, letj be minimal such that: andl;o match. Lety be the matcher,
i.e.,m = (l;0)0. Then, we defing”’(sid) = (i,0 U 8, pj, (a1, ...,ar)) and
¢ = U{(rj7a, sia)o0}.

C Concrete Types

We will identify every element ifa,n, e, d, ¢, h, p, g} with some bit string of length
three. ByC".a we denote the set of bit strings of the formn m where - denotes
concatenation aneh € {0,1}" is interpreted as the name of the agent. (Recall that
a € {0,1}3.) The seC".n of nonces and the sét’.h of hash values are defined anaol-
ogously, where, howevet,is replaced by, andn, respectively. (The specific details of
the encoding of types and the exact length of the bit strifigfsase sets is not essential
for the results shown in this paper as long as certain camditare satisfied. For ex-
ample, the size of the set of nonces and hashes should grawmextally inn, which

for the specific definition is the case.) Giverand a bit stringm, type returnsa iff

m € {0,1}"3 andm is prefixed witha. Analogously for the types andh.

We say that a bit string of the form- m (wherem may have to satisfy certain
efficiently checkable conditions) is a public key or a biirgjrof typee. Hence, the
algorithmtype returnse if a message is of the above type. Analogously for typé/e
assume that public and private keys obtained by runKirig) are prefixed witke and
d, respectively. The set of bit strings of typéd) is denoted by".e (C".d).

By (-,)¢, m1(+), andm2(-) we denote efficiently computable functions which sat-
isfy the following conditionsi{m, m’). is prefixed withp, 71 ({(m,m’).) = m, and
w2 ({m, m’).) = m/ for all bit stringsm andm’. On inputy andm, the algorithmtype
returnsp iff m is prefixed withp and (71 (m), m2(m)). = m. By C".p we denote the
set of bit strings for whichype returnsp.

A bit string obtained as a concatenationcofthe type), a public key (as defined
above), and some bit string (the actual ciphtertext, whigy watisfying certain effi-
ciently computable conditions) such that all three compésiean efficiently be recov-
ered is called a ciphertext or a bit string of typeHence type returnsc if a given bit
string is of the required form. We assume that the encrymigorithm returns a bit
string of typec. The set of bit strings of typeis denoted by".c. Given a bit string of
typec, we denote byubkey the algorithm recovering the public key, i.e., the second
component of the message. We emphasize that this public &eyet necessarily used
to obtain actual ciphtertext of the message.

We denote byC".g the set of bit strings on whictype does not return one of the
typesa, n, e, d, ¢, h, p. In this case, we requingpe to returng (for garbage).

15

D Transitions in the Concrete Execution Model

In an execution of a protocol, the adversary may make a sequargueries, which in-
duces a sequence of (concrete) global states. Next we exptagueries the adversary
may make.

— Corrupt query: at the beginning of the execution, the adirgrmay corrupt a set
of parties via a requesbrrupt(ay, as, . ..,q;) whereay,as,...,a; € C".a. As
a result, public and private keys are generated for the aggntunningKe(n) {
times (with independent random coins). All agent namesglath their public and
private keys are given to the adversary and added to thentimteuder knowledge.

— New session query: the adversary initiates a new sessiosshing a request of
the formnew (i, ay,...,a;) wherei € [k] anday,...,ar € C".a. As a result,
the following happens: first, for all; (j € [k]) for which no public key has been
generated so far, a public and private key pair is generatedrimingK.(n). Then,
an instance for running (a concrete version@f);) is initiated. This instance gets
n as well asay, ..., a; along with their public keys and the private key ofas
input. Then, for all variableXﬁxi occurring inl1 () random nonces (derived from
C".n) are generated. These are also given to the instance as Aquatrdingly, if
(Sld, f, ¢, H) is the current global state, then the new stat8ig’, f’, ¢, H) where
Sld" = SId U {sid} with sid = |SId| + 1 and f’ is defined as follows:

o f/(sid") = f(sid’) for sid" € SlId (i.e., the local states of previous sessions
remain unchanged);

o f/(sid) = (i,0,¢, (a1,...,ax)) Whereo is defined as follows:
o(4;) =aj 1<j<k
o(x%) ¢ j e N, XY, oceurringinfT ()

— Send message query: by issuing the a query of the $emd (sid, m), wheresid €
Sld andm € C" the adversary can send a message to instaidcehe effect
of this query is the following: assume that the current glalate is(Sld, f, ¢, H),
f(sid) = (i,0,p, (a1, ..., a;)), and the outgoing edges phre labeled by the agent
rules((l1,71), ..., (lx,m)) (in this order). Starting from the left-most rule, agent
a; (who carries out sessiaiid) will first check whethern matches with one of the
agent rules. Sayl,, ;) is the first to match. Them, produces output according
to this rule and then moves the program pointepfolt will also store the values
assigned to variables i) (and hencey;) along the way. We now briefly explain
how!; is matched against and then explain how the output is produced according
tor;.
Matjching ofl; againstn: this is done recursively on the structurel pf
e If I; is a variable such that no value has been stored for thishtars® far and
m is of the same type as the variable (this can be checked bymgitype on
m), thenm is assigned to this variable. If a variable has been assitmtuk
variable already, then it is checked whether is coincideis wmi.
o If [; is of the form(ty, t2), then itis checked whetheype(m) = p and the two
components ofn, are extracted by running; andms. Then, these components
are matched with, andt., respectively (in some order).

16

o If [is of the form{t}g, ., with = € X.r, then it is checked whethen is of
type ciphertext, and if it is, the public key is extracted (bgningpubkey on
m). Then,m is decrypted using the decyrption keyaf If the decryption is
successful, the resulting plaintext is matched with

o If [jis of the form{t},) with r € Rand,g, then the encryptiom” of the bit
string corresponding towith some randomness replaced foand the public
key of a; is computed. More precisely, we distinguish between twesaié
{t}gk(Aj) occurred in some preceeding agent rule, théras been computed
already and it is simply checked whetherandm’ coincide. Otherwise, if
{t}ex(a,) has no occurred before, then it follows from the conditiomales of

protocols thaft};, ,) can be derived from the messages seen so far (formally,

we have tha(l%; N X) UK}, Fx.rURanda, {t};’k(Aj)). Following the derivation
tree, one can therefore compute a bit string correspondingtthis bit string
can then be encryption with the public keyagfand some fresh random coins.
Itis then checked whether the resulting bit string coinsidéh m. (A techni-
cal detail is that not all variables iﬁ; N X might have been assigned values
yet since, for example, they occur in a different componért,o) which has
not been matched yet. However, if the matching is succegsbiy will be sub-
stituted by bit string and then can be used to evaluate

o If [; is of the formh(t), then it follows from the condition on roles of protocols
thatt can be derived from the messages seen so far (formally, we thav
(KL NX)UK Fx.rURand,, h(t) which implies thatxC, N X) UK? Fx rURanda,

t). As above, one can therefore evalugtehich results in a bit string, and then
compare this bit string to:.

If one of the above checks fails, the instance will ignoreittt®ming message and
the internal state will not be changed.

The output, i.e., the bit string, produced according;tés computed following the
structure ofr; in the obvious way. The condition for role of protocols guses
that the computation can actually be carried out.

According to the above description, the current globalesttd, f, ¢, H) is up-
dated ta(Sld, f/, ¢, H) in the obvious way: if the matching betwekrandm fails,
then the global state does not change. Otherwises obtained fromp by adding
the bit string produced as output. We defifiésid’) = f(sid") for everysid’ # sid.

If f(sid) = (i,0,p,(a1,...,a;)), the new local stat¢’(sid) of the sessionid is
(i,0',pj, (a1,...,a;)) whereo’ is obtained froms by adding the substitution of
the variables irl; that have not been subsituted before according to the nmagchi
of [; andm.

Hash query: the adversary may issue a hash request to themamdcle of the
form hash(m). If the current global state i§Sld, f, ¢, H), then the effect of this
query is the following: ifH does not contain an entry fer, then a bit string is
chosen randomly fron8”.h. This bit string is given to the adversary. The global
state, in particular and’, are updated accordingly.

17

E IND-CCA Security for Asymmetric Encryption Schemes

In this appendix we recall a standard notion of security feynrametric encryption
schemes, namellND-CCA security. The formulation that we give is the multi-user
version, known to be equivalent to the single user versiea,(s.g., [10]).

For a fixed encryption scheméf = (K., Enc, Dec), a left-right encryption oracle
parametrized by a bii and encryption kepk is an oracle which accepts as queries
pairs of equal-length bitstringn, m;) and returns an encryptidinc(pk, ms).

Given an encryption schemd& = (K., Enc,Dec) we consider the experiment
Expfﬁzgab (n) parametrized by the bit, and that uses adversaty The adversaryl
is provided access to polynomially many left-right oracksch parametrized yand
a public keypk; generated vidpk;, sk;) < K.(n). The adversary is also given access
to corresponding decryption oracles, that is, oraclesrpanazed by the decryption
keyssk;, that accept as input bitstrings and return the decryptidhebitstring under
sk;. The adversary is allowed to make as many encryption and/geéen queries as
he likes, under the condition that he is does not submit tal#eeyption oracle under
sk; a ciphertext obtained from the encryption oracle ungdgr When A finishes its
execution, the adversary outputs adiwhich is his guess as to what the biis) and
the bitd is the output of the experiment. We define the advantagé loy:

Advffffffga =Pr [Expf,djgao (n) = 1} —Pr [Expf,djgal(”) =1

and we say thatd€ is IND-CCA secure if for all probabilistic polynomial-time adver-
indcca

saries, the functioAdv’} %" (1) is negligible.

F Proof of Lemma 1

Let ¢ be an arbitrary set of messages ana nonce symbol that occurs ¢n

Right implication =. First, ¢ - n implies thatn occurs inPat,, (¢) by induction
on the proof ofp F n and using that can be obtained using only decomposition rules
(that is projections and decryption).

Second, assume that there exisfssubterm ofp such thaip - M andp such that
M]|, = n, so that there is no encryption alopgand for allp’ < p, M|, = h(M’)
implies ¢,n = M’. Since M only contains pairing and hashes algngt is easy to
verify thatn occurs inPat? (M) thus inPat,, (¢) (sinceM is a deducible subterm).

Left implication <. Assume thak occurs inPat, (¢) and thatvM € ¢, ¥p such
that} |, = n and such that there is no encryption algngp’ such thatV/|,, = h(M’)
and¢,n b/ M'.

We prove by induction or\/ that for anyM subterm ofg such thatp - M, n
occurs inPat? (M) implies ¢ F n.

— Base caselM is a constant or a name.occurs inPat? (M) implies M = n thus
¢t n=DM.

—If M = (My, M,). Thenn must occur inPat?(M;) for i equal 1 or 2. Since
¢ + M;, we deduce by induction hypothesis tigt n.

18

- M = {M'}7,,,- Thenn occurs inPat;; (M’).

e r € Rand,q,. Then M’ € ¢ by construction ofp. Thus¢ + M’ and by
inductiong n.

e Otherwise, we must have, n dk(a). This implies$ - dk(a) (this can
be shown using the fact thik(a) can be obtained using only decomposition
rules). We deduce that - M’ thus we obtain again by induction hypothesis
o+ n.

— M = h(M’). Thenn occurs inPat? (M’) and we must have, n - M’

e Either¢ - M’ and applying the induction hypothesis we geét n.

e Or ¢ I/ M'. It means that there exists some contéxtomputable by the
adversary (that is, there is no agent encryptiodjnand termsNy, . .., N,
deducible subterms ef such thatC[Ny, ..., Ny, n] = M'. (See for example
Proposition 7 of [1].) Lep be such thai/’|, = n (p also position of”).

x If there exists an adversary encryption algngdhat is, there exists a sub-
term {M"}{, .,y of M’ with n occurring inPat?(M”) thenM” € ¢ by
construction ofs. Hence g - n by induction hypothesis.

x If there is no adversary encryption alopgit means that there is no en-
cryption at all. Thus by hypothesis, there exigts< p such thatM|, =
h(M") and¢,n I/ M". But M" must be equal t@"'[Ny,..., Ny, n] for
someC’ sub-context of”. Henceg, n b/ M", contradiction.

G Decidability of nonce secrecy preservation

This appendix is devoted to the proof of Theorem 2. NP-hasslnemes from the same
construction than NP-hardness for deciding usual secfé&mnon-deterministic proce-
dure to decide nonce secrecy preservation works in two .Jtss$, arbitrary constraint
systems are reduced to solved constraint systems usingeterministic transforma-
tion rules Second, we show how to decide nonce preservatiosdived constraint
systems.

G.1 Reduction to solved forms

Using some simplification rules, solving general constraystems can be reduced to
solving simpler constraint systems that we have calledesblv

The simplification ruleswe consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index thenidentity substitution
is implicitly considered. We writ&' ~~" C’ if there areCy,...,C, with n > 1,
C''=Cp,C ~g Cp ~ogy -~y Cpande = g102...0,. We writeC ~~T C' if
C ~7 C' for somen > 1.

The simplification rules are correct, complete and terniiigeih polynomial time.

Theorem 3. LetC' be a constraint systeml,a substitution andh be a nonce.

o and if 6 is a solution ofC” such thatn occurs inPat, (lhs(C”)0) thenod is a
solution ofC' such thatr occurs inPat,, (lhs(C)o#6).

1. (Correctness) If2' ~} C’ for some constraint systefi and some substitution

19

Ry CATIFu ~ CATIF# ifTU{z|T k2 eCT T} Frana

adv

R CATIFu ~,Co ATolkuo if o = mgu(t, u),t € St(T),
t # u, t,u not variables
Rs3 CATIFu ~sCo ATolFuo if o = mgu(t1,t2),t1,t2 € St(T),
t1 # t2, t1,t2 Not variables
R4 CANTIFu ~ L if var(T, u) = (andT VRa”dadv u
R<’> C ANTIF <U1,UQ> ~ CANTIFur ANTIFus
Ry CATIFh(u) ~ CATIFu
R{} C ANTIF {UJ}L‘Q ~ CANTIFu ANTIFus 7€ Randgds
Riey C ~s Co if o = {ek(a)/z},ek(a) € Ihs(C),

x key variable in key position
St(T) denotes the set of subterms of the term®'in

Fig. 2. Simplification rules.

2. (Completeness) is a solution ofC such that: occurs inPat,, (Ihs(C)60) and if
C'is not in solved form, then there exist a constraint systénand substitutions
0,0 such that) = o#’, C ~~+ C’ and#’ is a solution ofC’ such that: occurs in
Pat,,(lhs(C")0").

3. (Termination) IfC' ~~" C’ for some constraint syste@! and some substitution
thenn is polynomially bounded in the size Gf

The proof is a simple extension of the proof provided in [9]thwut XOR). The ex-
tension to our nonce secrecy notion simply relies on thetfattwheneve€ ~~1 C’
and thenhs(C)(a8) = (Ihs(C)o)8 = lhs(C")0 for any substitutiord solution ofC".
The rule R, has been added for our decidability purposes but does napraonise
the correctness and completeness of the transformaties. rul

G.2 Decidability of nonce secrecy for solved forms

Using the general approach presented in the previous segtoifying nonce secrecy
can be reduced in non deterministic polynomial time to dagidhese properties on
constraint systems in solved form. Indeed, applying Th®oBe we have that a con-
straint systemZ preserves the nonce secrecyroff and only if there exists a con-
traint system in solved fornk’ such thatE’ preserves the nonce secrecyrofnd
E ~7 E'. By definition, a constraint systed’ in solved form preserves the nonce
secrecy ofn if and only if there does not exist a solutiet of E’ such that: occurs
in Pat,, ({hs(C")o’). Since we only consider well-typed substitutiofi(x) = ek(a) for
some agent identity for any key variablec. We can thus assume that the rédg, has
been applied as much as possible.

Let E be a solved form and be a nonce. We considér the solved form defined
as follows:

E ={Tuvar(Tl)IFu|TIFue E}

Then it is easy to verify that:

20

— o is a solution ofF if and only if o is a solution ofE”,

— n occurs inPat,, (lhs(Eo)) if and only if n occurs inPat,, (1hs(E'o)).

We can thus assume thedr(T) C T for anyT IF w € E. In that case, we say that
FE contains its variablesin what follows, a solved form is redefined as a well-formed
constraint system in solved form that contains its variahled has no successor for the
Ry, rules. Itis sufficient to decide nonce secrecy only on sofeeahs.

Given E in solved form, the decision procedure works as follows:

1. CheckwhetheF U{lhs(FE) IF n} has a solution (this is decidable [15]). If yes then
E clearly does not preserve nonce secrecy.

2. If not, choose non-deterministically a succesgbrin solved form ofE, that is
E’ = EorE ~~7 E'forsomer and check whether occurs irPatZ“(El)(lhs(E’)).
If yes thenFE clearly does not preserve nonce secrecy. If not th@meserves nonce
secrecy of.

The completeness of the non-deterministic decision praeeetlies on the follow-
ing property.
Proposition 2. Let E be a solved form and be a nonce. Assunié U {lhs(E) IF n}

has no solution. Assumié does not preserve nonce secrecy:pfhat is, there exists a
solutiond of E such thatr occurs inPat,, (lhs(E6)). Then

— eithern occurs inPat,, ({hs(E)),
— or there existsr such thatt ~} E’ and E’ does not preserve nonce secrecy.of

Assuming Proposition 2, we get that does not preserve nonce secrecynaf and
only if E has a successdr’ in solved form such thatl ~~1 E’ andn occurs in
Pat,, (Ihs(E’)), which proves the correctness of our decision procedudedd, apply-
ing Proposition 2, ifE? does not preserve nonce secrecyhahen eitherm occurs in
Pat,, (ihs(E)) or there existg such that” ~} E’ andE’ does not preserve nonce se-
crecy ofn. We can assume that' is in solved form otherwise we can apply Theorem 3
(possibly several times) and until we gét in solved form and’ such thate” ~7, E”
and E” does not preserve nonce secrecy.ofrhus we can apply Proposition 2 again
until n occurs inPat,, (lhs(E")).

The remaining of the section is devoted to the proof of thigpsition. We need
some intermediate lemmas and definitions.

We define public terms to be terms constructed by the adwersar

Definition 6. Public contexare terms with variables defined inductively as follows:

t,ty,to = public terms
| x variablex
| a agent identitya
| ¢ garbageg
| {t}:k(a) adversary encryption; € Rand, g,
| h(t) hash
|

(ti1,t2) pairing

21

A public contexis a linear public term (no variable appears twice). By camven, the
expressiorC|t1,. .., t,] denotes the ter’c where the exact set of variables ©fis
{x1,...,zx}ando = {t1 /21, ... tn /20 }.

Lemma 4. Letn be anoncet be atermFE = {T1 I+ a;,...,T; Ik a;} with T; C T;11
be a constraint system in solved form antle a solution ofz.

— If Tjo, n Frand, ., tthenthere exists a public cont&Xisuchthat = Clti0,. .., tyo,n]
where eacht; is a subterm of; such thatl’}; Frand,,, t; @nd¢; is not a variable.

— If T} FRrand,,, ¢ then there exists a public contektsuch thatt = Cltq, ...,]
where each; is a subterm of ; such thatl’; Frand,,, t; @ndt¢; is not a variable.

adv

Proof. We prove the first part of Lemma 4, the second part is doneailyniM/e con-
sider a minimal proof offjo,n Frang,,, t in the sense that, at each step it uses the
smallest premises. More formally, for any sub-prdoé, n Frang,,, «, leti be the
minimal index such that it is also a proof @fo,n Frand,,, w. If i > 2, we must
haveT;_i0,n trand,,, u. The proofis done by inductiop and the length on the
proof of Tjo,n FRrand,,, t (I€xicographical order). If there exisis < j such that
Ti0,n FRrand,,, t» We are done by induction hypothesis. Thus we can assumeg that
is actually the minimal index such th@&}o, n Frand,,, -

adv

— If t = n then we considef’ = [_].

— If t € Tjo, thent = t10 with ¢, € T}. If ¢, is not a variable, we are done. Liehe
the minimal index such that it is also a proofBb, n Fgrand,,, t. If t1 is a variable,
we havet; € T;. By definition of constraint system, there exists i such that
T, IF t1 € E. Sinceos is a solution ofE, we havel;o Frang ,. ti0 = t, which
contradicts the minimality of.

— Ifthe last applied rule is a construction rute= f(t1, ...,) with f € {(),enc, h}.
By induction there exist public contet; such that; = Cftio, ...t} o,n]. We
consider the public context = f(C4,...,C,). Note that iff is an encryption, an
adversary randomness must have been used.

— If the last applied rule is a projection rule.

adv

T;0,1n FRand,,, (M1, M2)

Tjo, n I_Randadu m;
By induction hypothesis, there exist a public contéktsuch that(my,ms) =
Cltio,...,tgo,n] where each; is a subterm ofl; such thatl;; Frang,,, t; and
t; is not a variable. IiC = (Cy, Cs) then the public context’; satisfies the con-
ditions. Otherwisgmi, m2) = t10 some non variable deducible subtermIgf
Thust, = (t},t5). We havel; Frang,,, t; andm; = to. If t; is not a variable, we
are done. I} is a variable, we must hawe € T and there existé < j such that
Ti0 FRand,,, ™Mi, Which contradicts the minimality of.

— If the last applied rule is a decryption rule.

dk(b)

adv

T;0,1n FRand, 4, {m}gk(b) T;0,n FRand

Tjo,n |_Rand m

adv

22

By induction hypothesis, there exist a public contéxtsuch that{m}’e'k(b) =
Cltio,...,tgo,n] where each; is a subterm off; such thatl; Fgrand,,, ti
andt; is not a variable. IfC = {C;}¢, then the public contex’; satisfies
the conditions. Otherwisem}gk(b) = ty0 some non variable deducible subterm
of T;. Thust; = {t'}},. t” is not a variable otherwise the rul., would be
applicable, which contradicts thd has no successor. Th#$ = ek(b). Since
T;0,n Frand,,, dk(b), by induction hypothesis, there exists a public contéxt
such thatdk(b) = Cltio,...,tx0,n] where each; is a subterm ofl; such that
T; FRrand,,, t; @ndt; is not a variable. We must have = [_] thusdk(b) = t10.
Sincet; is not a variable, by well-formedness of the constraintesystwe must
havet; = dk(b) thusT; Frand,,, dk(b). We deduce thal; Frand,,, t'. If ¢’ is not

a variable, we are done. #f is a variable, we show again that this contradicts the
minimality of j.

Lemma 5. If Ihs(E)o,n Frand

adv

dk(a) thenlhs(E) Frand,,, dk(a).

adv

Proof. This aconsequence of Lemma 4. AssUm&FE)o, n Frand,,, dk(a). By Lemma4,
there exists a public contegt such thatlk(a) = C[tio, ..., tro, n] where eachi; is

a subterm oflhs(E) such thatths(F) FRrand,,, t: andt; is not a variable. We must
haveC = [] thusdk(a) = t;0. Sincet; is not a variable, by well-formedness of the
constraint system, we must hasie= dk(a) thusihs(E) Frand,,, dk(a).

Lemma 6. lhs(E)o,n Frand,,, tif and only iflhs(E)o, n Frand

Proof. Sincelhs(E)o C lhs(E)o, ths(E)o,n Frand
t.

t.

adv adv

wa timpliesihs(E)o,n Frand,,,

Conversely, sincé is well formedihs(E) = lhs(E) thusihs(E)o = lhs(E)o U
{{m}} subtermofr | r € Rand,q,}. Let us show that actually any terfm}}, sub-
term ofo such that € Rand, 4., is deducible fronihs(E)o, n. By Lemma 4, there ex-
ists a public context” such thafm}}, = C[t10, ..., tro, n] where each; is a subterm
of [hs(E) such thaths(E) Frand,,, t: @ndt; is not a variable. Sinc& is well-formed,
r cannot appears in the. Thus{m}; = C|[n] thusihs(E)o, n Frand,q, {m}}-

Lemma 7. Let F be a constraint system in solved form antle a solution ofZ. Let¢
be aterm.

th(E)O’ FRand
andt = t'o.

t if and only if there exists a ter such thaths(E) Frand, ,, t’

adv

Proof. If there exists a ternt’ such thatlhs(E) Frand,,, t' @ndt = t'o then clearly
th(E)O’ FRandadv t.

Conversely, assumis(E)o Frand,,, t- Applying Lemma 4 (with a nonce that
does not occur i), there exists a public conte&t such tha{m}) = C[tio, ..., t;0]
where each; is a subterm oflhs(E) such thatlhs(F) Frang,,, ti @andt; is not a
variable. We choosé = C[t1, ..., t;]. We havet = t'o. Moreoverihs(E) Frand, ,, ti
andC public context implies thalis(E) Frand,,, -

Lemma 8. Let n be a nonce ' be a constraint system in solved form ande a
solution of E. AssumeE U {lhs(E) |- n} has no solution. Assume thatdoes not
occur inPat™*(E)(ihs(E)). Leto be a solution ofZ. Then

n

23

1. eithern does not occur iPat*(E)7(¢) for any termt such thatihs(E)o Frand
ﬁy

2. or there exists’ such thatt ~7, E’, o = 0’6, ¢’ is a solution ofE’ andn occurs
in Pat!*(F)% (1hs(E")0).

adv

Note that this lemma implies Proposition 2. Indeed, assime{/hs(E) I n} has no
solution. Assume there exists a solutionf E such thak occurs inPat*(®)7 (Jhs(E)o).

— Eithern occurs inPat**(®) (Ihs(E)),
— or, by Lemma 8, there is two possibilities
« eithern does not occur iRat”*(¥)7 (¢) for any terme such thaths (E)o Frand,.,

t. In that case, we know by Lemma 6 that, for any tefnPat’*(£)7 (1) =

Pat"*(E)7 (4) sincelhs(E)o, n Frand,,, t' if and only if ihs(E)o, n Frand, .
t’ for any termt’. Sincelhs(E)o bRrand,,, t for anyt € lhs(E)o, we deduce
thatn does not occur iRat,, (lhs(E)o) thus does not occur iRat,, (Ihs(E)o),
contradiction.

e orthere exists’ suchthat ~, E’, o = ¢’6 andn occurs inPat™*(E)% (1ns(E')0),

which means thak’ does not preserve nonce secrecy.of

adv

It is thus now sufficient to prove Lemma 8

Proof. Let n be a nonceE be a constraint system in solved form antbe a solution
of E. AssumeFE U {lhs(E) I n} has no solution. Assume thatdoes not occur in
Pat"*(®) (1hs(E)).

Either there exists’ such thatt ~!, E', ¢ = ¢’6, ¢’ is a solution ofE’ andn
occurs inPat* ()% (1hs(E")9) in which case we are done. Or we prove thatoes
not occur inPat**(E)7 (1) for any termt such thaths(E)o Fgrand, ,, t. Let E = {T IF

n adv

a, ..., Ty lFa}.
Assuméhs(E)o Frand,,, t- By Lemma7, there exists a temvsuch thaths(E) Frand, .,
t'andt = t'o.

We first assume that is a subterm ofhs(E) and prove the following statement by
induction on(k, |t'|) (Ilexicographical ordering), whet€| denotes the size f.

ths(E)o
n

n does not occur irPat
th(E) FRandadv tl.

(t'o) for any termt’ subterm off;, such that

Base casek = 1 andt’ is atomic.

— If ¢’ isanonce or anamé&go = ¢'. Thent’ # n sinceE U {lhs(E) IF n} has no
solution. Thus: does not occur ifat*(E)7 (¢/q).

n

— If ¢ is avariable is excluded sin¢&is a subterm of ; and7} contains no variables.
Induction step: ¢’ subterm off};, such thaths(F) Frand, ,, t'-

— If ' is anonce or a namé&g = ¢'. Thent’ # n sinceE U {lhs(E) IF n} has no

solution. Thus: does not occur ifat*(F)7 (¢/4),

24

— If ¢ is a variable, then by definition of constraint systems,dheistsk’ < k such
thatTy, I- ¢ € E. We deduce thdf} o Frand,,, t'c. Lett = t'o. By applying
Lemma 4 to constraint systeffy I+ aq,..., Ty |- ag }, there existuq, ..., uy,
subterms off}, such that = Cfus,...,u,]o whereC' is a public context. We

deduce thaPat*(¥)7 (1) = C[Pat*(®)7 (4, 0), ..., Pat*(®)7 (4, 5)]. Applying

the induction hypothesis, we get thatloes not occur iPat’*(#)7 (y,0) thusn

does not occur ilat s (E)7 (1),

—If t/ = (t;,t5). ThenPat®*(B)o (/o) = (Pat!*(B)o (1)) Pat!s(F)7(4,)). Since
Ihs(E) FRrand,,, t' implies hs(E) Frand,,, t1,t2 andt; andte are subterms
of Ty, we can apply the induction hypothesis, we get thadoes not occur in
Pats(B)o ¢/ 5),

- If t" = {t:}}, andtso = ek(a). We must have, = ek(a) or ¢, is a variable.
The case, variable is excluded by application of the transformatiole Ry, . We
assume nowt, = ek(a).

The case € Rand,g, is excluded sincé¥ is a subterm of’, andE is well-formed.
Either lhs(E)o, 1 rand,,, dk(a), in that casePat*()?(¢) = J andn does not
occur in(d.

Or lhs(E)o,n FRrand,,, dk(a). Then by Lemma 5/hs(E) Frand,,, dk(a). Thus
Ihs(E) FRrand,,, ti1 andt; is a subterm off}, thus we can apply our induction
hypothesis.

— If ¢/ = h(t"o). Eitherlhs(E)o,n Hrand,,, t"o, in that casePat™*(F)7 (1) = O
andn does not occur ifd. Or lhs(E)o, n Frand,,, t”’o. Applying Lemma 4, there

exists a public context’ such that”o = Cluyo,...,uro,n] where eachy; is a

subterm oflhs(E) such thaths(E) Frand,,, u: andu; is not a variable.

Either there exists a paghof ¢’ such that’|, is not a variable and'|, = u,c for

some; andt’|, # ;. Sinceu; is not a variable, the rul®; of the transformation

rules can be applied. Let = mgu(u,,t'|,). We haver = ¢’6 for somef), E ~-,

Eo’ andn occurs inPat,, (lhs(E’)0) sincelhs(E")0 = lhs(E)o’0 = lhs(F)o,

contradiction.

Ort" =C'[n,x1,..., Tk, Uiy, - - -, U3,]. TheNlhs(E) Frand,,, t” sincevar(lhs(E)) C

Ihs(E) and theu; are subterms af thus ofT}, thus we can apply the induction hy-

pothesis.

In the general case, applying Lemmal#s(E)o FRrand,,, timplies that there exists

adv

a public contexC such that = C|t1,...,t,Jo where eaclt] is a subterm ofhs(E)
such thaths(E) Frand,,, t; @andt; is not a variable. Sinc€' is a public context,

Pat)*)7 (t) = C[Pat)*)7 (t10), ..., Patl* (P (t}0)]

n

Since thet] are subterms dfis(E), we have seen thatdoes not occur iRat*(£)7 (¢),

We conclude that does not occur ifPat/*(#)7 (1),

H Proofs for Results in Section 4
H.1 Proof of Proposition 1
Proof (Sketch).

25

The proof is in two steps, which we briefly sketch before givine details.

First, we associate to each computational trace of an arpitdversaryd a sym-
bolic trace by parsing each bit-string down to its most basimponents (keys, identi-
ties, nonces, randomness), and mapping each of these centpaa appropriate sym-
bolic constants. In parsing the messages we may freely esgeitryption keys, which
are fixed by the randomness used in the trace.

In the second step, we show that the trace associated asialzovalid trace, with
overwhelming probability (over the coins used in the exgeyt The proof is based
on a characterization of non valid traces that identifiesval)s in which the messages
output by the adversary are invalid. Then, we construct aermarys that simulates
the execution of the protocol in the presence of the adwerdaAdversaryi is against
the encryption scheme and uses its encryption oracles watethe execution of the
honest parties. Then, ifl with non-negligible probability outputs a non-Dolev-Yao
message, adversalfbreaks the security of the encryption scheme.

STEP I. For each concrete execution trate= Execy(g,,) a(r.)(n) We construct
the symbolict® and the functiorc by tracing the queries made by adversatyand
translating them into symbolic queries. Notice that sin@ede not require that is
efficiently constructable, in its construction we may sa$sume that all decryption
keys are known (notice that they are fixed Ry;).

For corrupt andnew queries the translation is straightforward (party idégsit
are mapped to appropriate symbols). The interesting parhowsend queries are
treated. Each bitstringn that occurs in &end query is translated to a symbolic term
c(m) as follows. Agent identities, cryptographic keys, randessused for encryption
by honest parties, and random nonces (all quantities tleatirsiguely determined by
R) are canonically mapped to symbolic representations: fample the bit-string
representing the encryption key of padtyis mapped tek(a;). Ciphertexts created by
the adversary are decrypted with the appropriate key (rénalall decryption keys are
available while defining the mapping).

The rest of the messages are interpreted as they occur: esmdagen sent by the
adversary is parsed (notice that all decryption keys nefmtgghrsing are known, since
they are fixed by the randomness used in the experiment).

StepIl. In the second step of the proof we show that the trdadnstructed as above
is Dolev-Yao with overwhelming probability. The proof redi on the following lemma
that characterizes non Dolev-Yao adversaries. In whab\a]ag(i) € Rand,, and
adv(i) € Randgay-

Lemma 9. Let My, ..., M, M be ground terms such that

— My, My M;
— names(M) C |J; <, names(M;);

—if {M’ Zf((g is a subterm of\/ then{ M’ :f((;; is a subterm of soma/;.

There exists a non deducible tefiip subterm of\/, thatisM;, . .., My t/ T and there
is a positionp such thatM/|, = T and

1. for any patty’ < p, M|,s is non deducible fromi{y, ..., M,

26

2. for any pattp’ < p such thatM/|,, = {M’}:EE;)) or M|, = h(M'), M|, is nota
subterm of thél/;’s,
3. — Tisadecryption keyk(a),
— or T is subterm of somé/; and is either a nonce or an encrypted message of

the form{M’}ngi)) or a hashh(M").

We say thaf" is under attack

Proof. We prove the lemma by induction on the sizeldf

Base caseM is a nonce, an agent identity, a key or, a garbage symboleSifc
is non deducible, by construction of the deduction syst&mmust be a nonce or a
decryption keydk(a) of some honest agent. M is a decryption key]" := M satisfies
Lemma 9. IfM is a nonce then by hypothesi¥, € | J, ., names(M;). ThusM is a
subterm of somé/;. We then takd" := M which satisfies the lemma.

The induction stepl is a composed term.

— EitherM = h(M'). If M is a subterm of som&f; thenT := M satisfies the condi-
tions of Lemma 9. Otherwis&/ is not a subterm of any/;. ThenM’ must be non
deducible. Otherwiséd/ would be deducible. We apply the induction hypothesis
on M’ and findT satisfying Lemma 9 fodfy, ..., My andM’.

-0OrM = {M’}::(VS)). Then M’ must be non deducible otherwige would be
deducible. We apply the induction hypothesisidhand findT" satisfying Lemma 9
for My, ..., M, andM’.

— OrM = (M*, M?). ThenM* or M?, sayM’, must be non deducible otherwia£
would be deducible. We apply the induction hypothesidfhand findI™ satisfying
Lemma 9 forM, ..., M and M7,

- OrM = {M’}ZE‘E%_. By hypothesis, this implies that/ is a subterm of soma/;,

thusT := M satisfies Lemma 9.

In the three first cases, it is easy to verify tiiatlso satisfies Lemma 9 far, ..., My,
andM sinceM is non deducible and/ is not a subterm of som&/; (or M is a pair).

For our proofs, it is important to also show thatlif;, M-, ..., M,, are the output
of honest parties in a symbolic execution of a protocol, ttienterm?” (which occurs
in somel/;) is in fact constructed by the honest parties, and not by diveraary.

This can be seen as follows. Lef;, . . ., M}, be messages sent (in this order) during
the execution of a protocdll. Therefore, eacld/; is of the formM; = r;,0;, where
l;, — r; is a edge of a role off and for each variable of the domain &f 0;(z)
is either a subterm o#/y, ..., M;_, or a deducible term fromd/y, ..., M;_,. LetT
satisfy Lemma 9. Sinc& is non deducible it must occur as a non trivial subterm of
somer;,, that is there exists j and a non variable positignof r; such thatl” = r;|,6;,
which shows thaf” is computed by an honest party.

The main (and final) step of the proof is to show that if theristexan adversaryl
for which the associated symbolic traces are non-Dolevs¥i#onon-negligible prob-
ability, then we can construct an advers8rihat breaks encryption.

The adversan3 that we construct uses its access to left-right encryptiacle
and to the corresponding decryption oracles to simulat@#ntes against whicll is

27

normally executed, and also simulates the random oraclgemeral 5 intercepts and
answers all queries that are madeys follows.

— WhenA sends itxorrupt(ay, as, . . ., a;) request adversarg generates private
and public keys for parties; , ao, . . ., a; and sends them to the adversary.
— WhenA wants to initiate a new sessiarew (i, a1, ..., ax), if agentsa; are new,

B requests new users corresponding to these agents in thiepamjt setting for
public-key encryption. The8 generates all the honest nonces corresponding of
agentss; in that new session.

— When A makes asend(s, m) request,3 parses the message possibly using the
decryption oracle and the records of the hashes alreadyajedevhen simulating
the random oracle and answers according to the protocoly(gtirtg the message
by himself).

— When.4 makes ahash(m) request, eitheB8 has already generated a hash value
h for m and simply returns: or B generates a new hash value, memorizes the
association and returns the value4o

The critical part of the proof is how adversadyuses the non-Dolev Yao message
T (described in Lemma 1) to break encryption. We treat seplgrtite case wheff’ is
a decryption key of an honest agent, and the case Whisna nonce or an encrypted

message of the forrﬁM’}Zf&)) or a hasth(M’) andT is a subterm of some previously
sent messages. We start with the latter case which is morplegm

The first step of3 is to guess wheff’ occurs in the execution of honest parties for
the first time. Sincd’ is created by some honest party (see the remark after Lemma 1)
this can be done by guessing a session number, in which atisinu;, r;), and on
which position ofr;, T occurs. The key idea is to construct two different bit-gfrin
interpretationg, andt; for 7', and uses the left-right encryption oracles in such a way
that the view simulated for is such that the bit-string associated’fais precisely
ty, Whereb is the selection bit of the encryption oracles. Then, wHemakes its first
non-Dolev Yao querys recoverg;, using the decryption oracles, and therefare

WhenB needs to produce the bit-string representation of the fiestsagéel/; that
contains’’, it proceeds as follows. If is a nonce)3 generates two noncésandt; , and
if T is an encryption3 generates two versiortg andt; of the encryption (by calling
the encryption algorithm twice, with different random cginf 7' is a hash/3 generates
two random valueg, andt;. Then,5 constructs the bitstring/; [T — t;] whereb is
the bit used by the left-right encryption oracle. NoticettsiaceT is non-deducible it
occurs either under an encryption or under a hash. In eits,ave compute the bit-
string associated to the inner-most “protectiont,pfvhich is either a honest encryption
or a hash, by using either the left-right oracle (if it is armption application), or by
a random value (if it is a hash). In the last case we sayiiddes acheating hashwe
give examples for the two cases below.

Example 1.If M;[T] is of the form{h(M’[T])}ZE((i)), andT is deducible fromM'[T]
by projections (thus is “unprotected” if’), thenB computes the concrete counterparts
mo andm; for Mtg] andM [t1], respectively and generates a cheating tashich is
associated to the couplei, m1). Then, the representation o (M’ [T])}ag(i) is an

ek(a)’
encryption ofh, computed bys himself.

28

If M;[17] s of the forma({M'[T1}252)) andT is deducible from\/'[T}] by projec-
tion thenB computes concrete counterparts andm, for M[to] andM[t;] and then
uses the left-right oracle to compute, } (). The final value is computed by who
generates a hash valtdor A({ms}ex(q))-

Now we argue thaB is able to proceed simulating the rest of the protocol, ngmel
to provide the concrete counterpartif; [¢,] whereb is the bit used by the left-right
encryption oracle. The problematic cases are wBenceives hash and send requests
send(s,m) or hash(m). In that casesi3 first parsesn to make sure that it does not
recovert, in clear, that isn is a non Dolev-Yao message.

— WhenB receives a hash quehash(m), there are two cases. EithBras already
generated a hash valdefor m, thenB simply answers by:; or 5 has generated
a cheating hash value fer which means thatn is equal to somen,, thusm is
already a non Dolev-Yao message; contradictiol8 Has never generated a hash
value form, B simply generates a new value, gives itAp and remembers the

association.
— When B receives a send requesind(sid, m), since5 simulates the protocol it
knows the values of (sid) = (o, 4, p). Let((l1,71), ..., (lg, 7)) be the outcoming

edges of the nodeof I1(3). B tries recursively to find a substitutidhcompatible
with o such thatn = [;00. Assume he finds one. If, when parsimgadversary3
finds a cheating hash or an encryption that was obtained fnerteft-right oracle,
adversaryBB recovers the two possibles valueg andm, for which we know
that the secret valug or ¢, is deducible by projection. Sinag is non-deducible,

t, must be re-encrypted or hashedrimf. As before,5 replaces the inner-most
“protection” of Ty, either a honest encryption or a hash, by using either the lef
right oracle or by replacing it by a random value (cheatinghha

Next, we explain hows recoversh out of the first non Dolev-Yao output ofl.
We abuse notation and occasionally write for both a symbolic representation of a
message, and for its bit-string representation. Whichdscdse can always be deduced
from the context.

This message occurs in either a send query, or in a hash tetye¢s\/ be the
symbolic representation of the first non-Dolev Yao querydpfand letp by the path
from the characterization af/ given by Lemma 1. We claim tha@ can parseV/ to
recovert, associated t@’, following the pathp. We reason inductively on the structure
of M.

—if M = (M [T], M?[T]) andp =i - p/, B opensM* following the pathp’.

—if M = {M'[T] lek(a) andp = 1-p/, then by Lemma 9M does not occur as
subterm of thel/;’s, and in particular it has not been obtained using the ety
oracle. Thud3 may submitM to the decryption oracle and recovéig|t;]. Then,
ty, is recovered following the pati.

—if M = h(M'[T]) andp = 1 - p'. Eitherh(M'[m;]) has been obtained using the
random oracle, thuB knows its form, i.e M’[m;], and opens it following the path
p’. Alternatively,h(M’[M,]) has been obtained by doingheating hash.e. B has
generated a nonce by himself. In this cas@\/'[m;]) is a subterm of soma/;,
which contradicts Lemma 9.

29

We conclude thaB is able to retrievd}, thusb, therefore breaking encryption.

H.2 Proof of Lemma 2

Proof. Given an adversaryl for which the above function is non-negligible, we show
how to construct a successful advers&ragainst the encryption scherfiec. Recall
that3 has access to polynomially many left-right encryption é#gscand to the corre-
sponding decryption oracles. We wrifgk;, sk;) (for i = 1,2, ...) for the encryption
and decryption keys that parametrize the oracle. AdverSayecutes4 as a subrou-
tine and simulates for its environment (that is, the experiment defining secrecy of
nonces) by playing the role of the honest parties whose plublis are set to be keys in
{pk1,pka, ...}

Notice that althougls does not know the secret keys that correspond to the encryp-
tion keys of the parties that it simulates, it can still pattse messages sent by by
using the decryption oracles.

The difference between the normal execution and the exactitat is simulated by
B is that the encryptions that the honest parties need to ctamgya computed using
the left right encryption oracles as follows. Whenever sdroaest partyi needs to
encrypt a message under the public key of party, and the message is sufficiently
long (that is, longer than the security parameter), adveisaelects a random message
r,n, Of equal length. The encryption is set to bg, the result obtained by submitting
(m, ry,) to the left-right oracle under the public kg¥,. Adversary3 maintains a table
of all pairs(m, ¢,,,). Whenever a party needs to decrypt a ciphertgxbbtained from
the left-right oracle 5 sets the underlying plaintext to be. In rest, the simulation of
the parties by3 is precisely as in the normal execution. The outpuaé whatever
adversaryA outputs. Notice that if the bit that parametrizes the left-right oraclesijs
then the simulation thas offers to.A is precisely as in the executidixec 4, ;7 Whereas
if the bit b is 0 then the simulation tha$ offers to A is as inExec’ ;. We therefore
have that: '

AdvEee(n) = Pr | Expgec®(n) = 1| — Pr | Expjygec () = 1]
= Pr[Execa,r(n) = 1] — Pr[Exec) ;(n) =1]

SinceEnc is IND-CCA secure, the conclusion of the lemma follows.

H.3 Proof of Lemma 3

Proof. The proof is similar to that of Lemma 2. We show that if therésexa com-
putational adversaryl for which the induced symbolic traces of its oracle exeagutio
are not Dolev-Yao, then, we construct an adverdarhat breaks4A£. AdversaryB
executes adversay as a subroutine and emulates the environmentthexpects by
simulating the honest parties. Advers#tyntercepts all queries and answers precisely
as adversary in the proof of Lemma 2 does. Recall that each time an honest pa
needs to encrypt some messaggeadversarys obtains the corresponding ciphertext by

30

submitting(m, r,,,) to its left-right encryption oracle. Here,, is selected uniformly at
random among the string of length equal to thatof

In addition, adversary keeps track of the symbolic trace that corresponds to the
execution trace, simply by parsing all messages that atebgethe adversary and the
honest parties, and constructing (during the executianjrtpping:. Each time adver-
sary.A sends a messageto one of the partied3 verifies if the symbolic representation
of m can be obtained using Dolev-Yao operations from the syrolepresentations of
the messages that the adversary had priorly seen. It is ktiatfior closed terms the
verification procedure can be done in polynomial time. Ifrat point the message out-
put by A is not Dolev-Yao, thet8 stops its execution and outputsOtherwise, whed
finishes its execution, adversagyoutputs). Notice that if the bit of the left-right oracle
is 0, thenB simulates perfectly the environment®fec 4 ;7 () whereas i = 1, then
the simulation is as iftxec) 7(n). Let NDY (Exec4,17(n)) denote the event that the
executionExec 4, 17(n) is not Dolev Yao. Similarly, leNDY (Exec’; ;;(n)) denote the
event that the executidixec’; (1) is not Dolev Yao. Then, we obtain that:

AdvE Lt (n) = Pr | Expiigec (n) = 1] = Pr [Expec (n) = 1]
= Pr[NDY(Execa,z7(n))] — Pr [NDY(Exec’ (1))]

SincePr [NDY (Exec4,17(n))] is negligible (Proposition 1) anAdvgf‘éf,’;“(n) is also
negligible (A€ is IND-CCA secure), we obtain that

Pr[NDY(Exec?, 11(n))] = Pr [NDY(Exec.q () | ~ Adviiees ()

is also negligible. We conclude thatfixec; ;; the computational execution traces are
valid Dolev-Yao traces.

31

