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Abstract. The standard symbolic, deducibility-based notions of secrecy are in
general insufficient from a cryptographic point of view, especially in presence
of hash functions. In this paper we devise and motivate a moreappropriate se-
crecy criterion which exactly captures a standard cryptographic notion of secrecy
for protocols involving public-key enryption and hash functions: protocols that
satisfy it are computationally secure while any violation of our criterion directly
leads to an attack. Furthermore, we prove that our criterionis decidable via an NP
decision procedure. Our results hold for standard securitynotions for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for the rigorous design and analysis
of cryptographic protocols: the so-called Dolev-Yao, symbolic, or formal models on the
one hand and the cryptographic, computational, or concretemodels on the other hand.
In symbolic models messages are considered as formal terms and the adversary can
manipulate these terms based on a fixed set of operations. Themain advantage of the
symbolic approach is its relative simplicity which makes itamenable to automated anal-
ysis tools (see, e.g., [7, 14]). In cryptographic models, messages are actual bit strings
and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing machine.
While proofs in this kind of models yield strong security guarantees, the proofs are
often quite involved and only rarely suitable for automation (see, e.g., [11, 6]).

Starting with the seminal work of Abadi and Rogaway [2], a significant amount
of research has been directed at bridging the gap between thetwo approaches. The
goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The typical approach is to showthat the executions of the
computational adversaries correspond to executions of thesymbolic adversaries, and
then use this result to show how to translate security notions from the symbolic world
to the computational world.

For some security notions like integrity and authentication, the derivation of com-
putational guarantees out of symbolic ones can be done with relative simplicity [4, 13].
In contrast, analogous results for the basic notion of secrecy proved significantly more
elusive and have appeared only recently [5, 10, 12, 8]. The apparent reason for this sit-
uation is the striking difference between the definitional ideas used in the two different



models. Symbolic secrecy typically states that the adversary cannot deduce the entire
secret from the messages it gathers in an execution. On the other hand, computational
secrecy requires that not only the secret, but also no partial information is leaked to
the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS. In this paper we investigate soundness results for symbolic se-
crecy in the presence of hash functions. One of the main motivations for considering
hash functions, which have not been considered in the aforementioned results4, is that
they present a new challenge in linking symbolic and cryptographic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a
valueh is the hash value corresponding to a given messagem. This implies that a sim-
ple minded extension of previous results on symbolic and computational secrecy fails.
Assume, for example, that in some protocol the hashh = h(s) of some secrets is sent
in clear over the network. Then, while virtually all symbolic models would conclude
that s remains secret (and this is also a naive assumption often made in practice), a
trivial attack works in computational models: givens, s′ andh, compareh with h(s)
andh(s′), and therefore recovers. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal the message signed.

In this paper we propose a new symbolic definition for nonce secrecy in protocols
that use party identities, nonces, hash functions, and public key encryption. The defini-
tion that we give is based on the intuitively appealing concept of patterns [2].

The central aspect of our criterion is that it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
that are secret according to oursymboliccriterion are also secret according to a stan-
dardcomputationaldefinition. Furthermore, there exist successful attacks against the
secrecy of any nonce that does not satisfy our definition. Ourtheorems hold for pro-
tocols implemented with encryption schemes that satisfy standard notions of security,
and for hash functions modeled as random oracles. In the proofs we combine different
techniques from cryptography and make direct use of a (non-trivial) extension of the
mapping theorem of [13] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy
criterion (w.r.t. a bounded number of sessions). This is a crucial result that enables the
automatic verification of computational secrecy for nonces. We give an NP-decision
procedure based on constraint solving, a technique that is suitable for practical imple-
mentations [3]. While the constraint solving technique is standard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secrecy criterion: For the standard
deducibility-based secrecy definition it suffices to transform constraint systems until
one obtains a so-called simple form. However, for our symbolic secrecy criterion further
transformations might be required in order for the procedure to be complete. Identify-
ing a sufficient set of such transformations and proving thatthey are sufficient turned
out to be non-trivial.

RELATED WORK. The papers that are immediately related to our work are those of
Cortier and Warinschi [10], Backes and Pfitzmann [5], and Canetti and Herzog [8],

4 One exception is [12] where hash functions are allowed, but only as randomness extractors.

2



who study computationally sound secrecy properties. In this context, our work is the
first to tackle computationally sound secrecy in the presence of hashes. We study the
translation of symbolic secrecy into a computational version in a setting closely related
to that in [10]. However, the use of hashes requires, as explained above, new notions and
non-trivial extensions of the results proved there. The work in [5] and [8] is concerned
with secrecy properties of key-exchange protocols in the context of simulation-based
security, and hence, they study different computational settings. Interestingly, the sym-
bolic criterion used in [8] is also formalized using patterns, but their use is unrelated to
ours. None of the mentioned works considers decidability issues.

PAPER OUTLINE. In the following section, we introduce the symbolic and computa-
tional models. Our symbolic secrecy criterion is developedin Section 3. We state and
prove the soundness and completeness of this criterion w.r.t. computational secrecy in
Section 4, and prove its decidability in Section 5.

2 The Symbolic and Concrete Protocol and Intruder Models

In this section, we introduce the symbolic and the concrete protocol and intruder models
(see Appendix A to D for more details).

2.1 The Symbolic Model

We define (symbolic) messages and terms, how honest agents and the (Dolev-Yao-style)
intruder can derive messages from a set of messages, and how protocols are specified.

MESSAGES ANDTERMS. To define messages, we consider an infinite setA of agent
identities, infinite setsNonceag, Nonceadv, Randag, andRandadv (nonces and ran-
dom coins generated by the agents and the adversary, respectively), and an infinite set
Garbage representing garbage messages. All of these sets are assumed to be pairwise
disjoint. We setNonce = Nonceag ∪ Nonceadv andRand = Randag ∪ Randadv.

The set of messagesM (w.r.t. A, Nonce, andRand) is defined by the following
grammar:M ::= A | Nonce | ek(A) | dk(A) | 〈M, M〉 | {M}Rand

ek(A) | h(M) | Garbage

whereek(a) anddk(a) with a ∈ A denote the public and private key ofa, respectively,
〈m, m′〉 denotes pairing ofm andm′, {m}rek(a) denotes the messagem encrypted with
ek(a) using the random coinsr, andh(m) is the hash ofm. We define the following
subsets ofM: EKey, DKey, Ciphertext, Hash, andPair are the sets of all messages
starting withek(·), dk(·), {·}··, h(·), and〈·, ·〉, respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variablesX where the types are as above and for
a variable of a certain type only messages of this type may be substituted. In particular,
we assume variablesAi, i ∈ {1, . . . , k}, for agent identities and variablesXj

Ai
, j ∈ N,

for fresh nonces generated byAi. The set of termsT(X) overX is defined analogously
to the set of messages.

DERIVING MESSAGES.Letφ denote a set of terms. The set of terms that can be derived
from φ is defined by the deduction rules given in Figure 1. We writeφ ⊢rand t to say

3



φ ⊢ m
m ∈ φ

φ ⊢ b

φ ⊢ ek(b)
b ∈ A ∪ X.a

φ ⊢ m1 φ ⊢ m2

φ ⊢ 〈m1, m2〉

φ ⊢ 〈m1, m2〉

φ ⊢ mi

i ∈ {1, 2}

φ ⊢ ek(b), φ ⊢ m

φ ⊢ {m}r
ek(b)

r ∈ rand
φ ⊢ {m}r

ek(b) φ ⊢ dk(b)

φ ⊢ m

φ ⊢ m

φ ⊢ h(m)

Fig. 1. Deduction rules

thatt can be derived fromφ (using randomnessrand ⊆ Rand). For example, we have
that{〈dk(a), {c}r

ek(a)〉} ∪ A ⊢Randadv
{c}r

′

ek(b) whereb ∈ A andr′ ∈ Randadv.

PROTOCOLS. Roles are usually specified by a sequence of input/output actions. In order
to model branching protocols, theroleswe consider are ordered edge-labeled finite trees
where every edge is labeled by anagent rule(l, r), wherel, r ∈ T(X) are messages with
variables, and certain syntactic conditions are satisfied such that the actions can actually
be carried out (in a computational interpretation). Ak-party protocol is a mapping
Π : [k]→ Roles where[k] = {1, . . . , k} andRoles denotes the set of roles.

SYMBOLIC EXECUTION OF A PROTOCOL. The symbolic execution of ak-party proto-
col is modeled as a finite sequence of global states. Aglobal stateis a triple(SId, f, ϕ)
whereϕ is a finite set of messages (thecurrent intruder knowledge), SId is a finite set of
session ids, andf maps every session id inSId to the current state of the corresponding
session. This state is called thelocal stateand is of the form(i, σ, p, (a1, a2, . . . , ak))
wherei ∈ [k] is the index of the role that is executed in this session,σ is a substitu-
tion whose domain is a subset of the variables occurring inΠ(i) (i.e., σ determines
the messages assigned to variables so far in the current session), p is a node ofΠ(i)
and determines at what node the agent currently stands, and(a1, a2, . . . , ak) ∈ Ak is
the tuple of names of the agents that are involved in the session, whereai is the agent
carrying out the current session (supposedly with the mentioned agentsaj , j 6= i). The
initial state isqI = (∅, ∅, A∪EKey∪Nonceadv), i.e., the intruder knows all names and
public keys of agents as well as the infinite set of intruder nonces.

We allow three kinds of transitions between global states.

– The adversary corrupts a set of parties and thereby learns the private keys of the

agents:qI
corrupt(a1,...,al)
−−−−−−−−−−−→ (∅, ∅, A ∪ EKey ∪ {dk(aj) | 1 ≤ j ≤ l}). Note that

this transition can only be applied at the beginning (staticcorruption).

– The adversary can initiate new sessions:(SId, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (SId′, f ′, ϕ)

whereSId′ andf ′ are defined as follows. Letsid = |SId|+1 be the session identifier
of the new session where|SId| denotes the cardinality ofSId. We defineSId′ =
SId ∪ {sid}. The functionf ′ is defined as follows:f ′(sid′) = f(sid′) for every
sid′ ∈ SId andf ′(sid) = (i, σ, ε, (a1, . . . , ak)) whereǫ denotes the root of the role
tree andσ(Aj) = aj for every1 ≤ j ≤ k andσ(Xj

Ai
) = nai,j,s for everyj ∈ N.

– The adversary can send messages:(SId, f, ϕ)
send(sid,m)
−−−−−−−→ (SId, f ′, ϕ′) wheresid ∈

SId, m ∈ M, andϕ′ andf ′ are defined as follows. We definef ′(sid′) = f(sid′) for
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everysid′ 6= sid. Suppose thatf(sid) = (i, σ, p, (a1, . . . , ak)) and(l1, r1), . . . , (lh,
rh) are the labels of edges leavingp (in this order). We distinguish two cases:
• there does not exist aj such thatm andljσ match. Then, we definef ′(sid) =

f(sid) andϕ′ = ϕ (the state remains unchanged);
• else, letj be minimal s. t.m andljσ match. Letθ be the matcher, i.e.,m =

(ljσ)θ. We definef ′(sid) = (i, σ∪θ, pj, (a1, . . . , ak)) andϕ′ = ϕ∪{(rjτai,sid)σθ}.

A finite sequence of global states is called asymbolic execution trace(for a protocol
Π) if it starts with the initial global stateqI and two consecutive global states in this
sequence are connected via one of the above transitions. We say that a trace isvalid

if every send transition(SId, f, ϕ)
send(sid,m)
−−−−−−−→ (SId, f ′, ϕ′) verifies that the adversary

could actually deducem, that isϕ ⊢ m. The set of valid symbolic execution traces (for
a protocolΠ) is denoted byExecs(Π). The set of valid set of messages is defined by
Msgs(Π) = {ϕ | (SId, f, ϕ) is the last state of a valid execution trace}.

2.2 The Concrete Model

The concrete model is defined w.r.t. an encryption schemeAE = (Ke, Enc, Dec), which
we now fix once and for all. Hashing is modeled by the random oracle.

CONCRETEMESSAGES. Concrete messagesare bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of typePair, the two components
can be efficiently retrievedand strings of typeCiphertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bit strings is denoted byCη. This
set depends on the security parameterη as this parameter determines the length of agent
names, nonces, and keys. Substitutions now map variables (of some type) to concrete
messages (of the same type).

CONCRETEEXECUTION OF A PROTOCOL. A concrete global stateis a 4-tuple(SId, f,
ϕ,H) whereϕ is a finite set of bit strings,SId is a finite set of session ids, andf maps
every session id inSId to the current state of the corresponding session (the concrete
local states). Aconcrete local stateis defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are also bit strings. The fourth
component carries the state of the random oracle:H is a set of couples(m, h) where
m is a bit string andh its corresponding hash value. A protocol is executed by running
a ppt Turing machine, the (concrete) adversary, which may make queries correspond-
ing to the transitions in the symbolic model. We allow four kinds of transitions between
global states, which we will refer to bycorrupt, new, send transitions, andhash queries.
The semantics of the first three queries is defined by analogy with the formal execu-
tion model. In addition, the adversary may also make queriesto the random oracle:

(SId, f, ϕ,H)
hash(m)
−−−−−→ (SId, f, ϕ,H′) whereH′ is defined as follows. If there exists

n such that(m, n) ∈ H, thenH′ = H and we defineh = n. Else a hash valueh is
generated at random form andH′ = H∪{(m, h)}. In any case,h is returned to the ad-
versary. A finite sequence of concrete global states is called aconcrete execution trace
if it starts with the initial global state. Obviously, sincethe adversary is a ppt Turing
machine the length of the trace is bounded by a polynomial in the security parameterη.
Also, the sequence of random coinsRΠ used in the execution by the honest agents and
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the random oracle as well as the sequence of random coinsRA used by the adversary
can be bounded in length by polynomialsgA(η) andpA(η), respectively. Clearly, ifRΠ

andRA are fixed, we obtain a uniquely determined concrete trace, which we denote by
ExecΠ(RΠ ),A(RA)(η).

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition of secrecy and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formalizethis idea is to require that
the secrets is indistinguishable from an unrelated random bitstrings′ chosen (from an
appropriate distribution). The secrecy of nonce variableXAi

(the nonce generated by
Ai in theith role of the protocol) in protocolΠ is defined as follows.

Definition 1. Consider the experimentExpsec b
ExecΠ,A

(i, j)(η) parametrized by a bitb
and that involves an adversaryA against protocolΠ . The experiment takes as input a
security parameterη and starts by generating two random noncesn0 andn1 in Cη.n.
Then the adversaryA starts interacting with the protocolΠ as in the execution de-
scribed byExecΠ,A(η). At some point in the execution the adversary initiates a session
s in which the role ofAi is executed, and declares this session under attack. In this
session, the variableXj

Ai
is instantiated withnb. The rest of the execution is exactly as

in ExecΠ,A(η). At some point the adversary requires the two noncesn0 andn1 and has
to output a guessd. The bitd is the result of the experiment. We define the advantage of
the adversaryA by:

Advsec
ExecΠ,A

(i, j)(η) = Pr
[
Expsec 1

ExecΠ,A
(i, j)(η)=1

]
− Pr

[
Expsec 0

ExecΠ,A
(i, j)(η)=1

]

We say that nonceXj
Ai

is computationally secret in protocolΠ , and we writeΠ |=c

SecNonce(i, j) if for every p.p.t. adversaryA its advantage is negligible.

SYMBOLIC SECRECY. As explained in the introduction, weak secrecy is not sufficient
to capture the standard indistinguishability-based notion used in computational settings.
The new notion of secrecy we propose here relies on the intuitively appealing concept
of patterns [2]. Roughly, the pattern of an expression is obtained by replacing with�,
all the subterms of the expression that are secret. In our case, a subtermT of T ′ is secret
if, even when givenT the adversary cannot verify thatT has been used to constructT ′.
Formally, we addT to the knowledge setφ in the deduction relation. The ideas behind
our definition of patterns are related to offline guessing attacks, where the adversary
is given the weak secret and should be unable to test whether the given weak secret is
indeed the one used in the observed messages.

Definition 2 (Patterns). Given a set of closed termsφ = {M1, M2, . . . , Mk} and a
termT , we definePatT (φ) = {Pat

φ
T (M1), Pat

φ
T (M2), . . . , Pat

φ
T (Mk)}, wherePat

φ
T (M)

defined recursively by:
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Pat
φ
T (a) =

{
a if φ, T ⊢Randadv

a
� otherwise

Pat
φ
T (〈M1, M2〉) = 〈Pat

φ
T (M1), Pat

φ
T (M2)〉

Pat
φ
T ({M}r

ek(a)) =

{
{Pat

φ
T (M)}r

ek(a) if φ, T ⊢Randadv
dk(a) or if r ∈ Randadv

� otherwise

Pat
φ
T (h(M)) =

{
h(Pat

φ
T (M)) if φ, T ⊢Randadv

M
� otherwise

Pat
φ
T is extended to set of messages as expected:Pat

φ
T (S) =

⋃
t∈S Pat

φ
T (t).

The messages ofφ may contain some subterms of the form{M}r
ek(a) wherer ∈

Randadv. Because of the random coins such messages must have been build by the
adversary andM should be deducible. Thus we considerφ augmented with such mes-
sages:φ = φ ∪ {M | {M}r

ek(a) subterm ofφ}. For any valid message setφ (that is

φ ∈ Msgs(Π) for some protocolΠ), we can show thatφ ⊢M for everyM ∈ φ.

Definition 3 (Nonce secrecy).Let Π be a protocol andXj
Ai

a nonce variable occur-

ring in some roleAi. We say thatXj
Ai

is secret inΠ and we writeΠ |=s SecNonce(i, j),
if for every valid set of messagesφ ∈ Msgs(Π) it holds that for every session number
s, the symbolic noncenai,j,s does not occur inPatnai,j,s(φ).

To better appreciate these definitions, consider the following examples.

1. Letφ1 = {h(〈nb, n
′〉)} = φ1. ThenPatnb

(φ1) = {�}. φ1 preserves the indistin-
guishability ofnb since, intuitively,nb is hidden by the secret noncen′.

2. Let φ2 = {h(〈nb, {n′}r
ek(a)〉), n

′} where r 6∈ Randadv. Then φ2 = φ2 and

Patnb
(φ2) = {�, n′}. In this example, the encryption ofn′ does hidenb.

3. Let φ3 = {h(〈nb, {n′}r
ek(a)〉)} wherer ∈ Randadv. Thenφ3 = φ3 ∪ {n′} and

Patnb
(φ3) = {h(〈nb, {n′}r

ek(a)〉), n
′}. We have thatnb occurs inPatnb

(φ3). This
corresponds indeed to an attack. Asn′ has been encrypted by the adversary himself
he knows the ciphertext. Givenn0 andn1 he computes bothh(〈n0, {n′}rek(a)〉) and
h(〈n1, {n′}rek(a)〉) and compares them toh(〈nb, {n′}rek(a)) yielding the attack.

4. Letφ4 = {{〈h(nb), h(n′)〉}r
ek(a), dk(a)} wherer 6∈ Randadv. Thenφ4 = φ4 and

Patnb
(φ4) = {{〈h(nb),�〉}rek(a), dk(a)}. Again,nb does occur inPatnb

(φ1). For
this attack an intruder may geth(nb) by decrypting and projecting the message
{〈h(nb), h(n′)〉}r

ek(a) and compareh(nb) with h(n0) andh(n1) that he may com-
pute fromn0 andn1.

Our notion of secrecy has a useful equivalent formulation described in the follow-
ing lemma. Informally, the lemma states that all unencrypted occurrences of the secret
nonce in a set of messages are such that they occur in a termt that is hashed, and such
thatt itself can not be computed fromφ andn.

Lemma 1. Letφ be an arbitrary set of messages andn a nonce symbol that occurs in
φ. n does not occur inPatn(φ) if and only ifφ 6⊢ n and∀M subterm ofφ such that
φ ⊢ M , ∀p such thatM |p = n, so that there is no encryption alongp, ∃p′ < p such
that 1)M |p′ = h(M ′) and 2)φ, n 6⊢M ′.
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4 Symbolic Secrecy is Equivalent to Computational Secrecy

To prove the soundness and the completeness of our secrecy criterion, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prove equivalence of the symbolic
and computational notions.

RELATING SYMBOLIC AND CONCRETETRACES. The first step linking security prop-
erties in symbolic and concrete models is to exhibit a relation between individual exe-
cution traces. The relation is similar to that developed in previous works [13, 10], but
our definitions and results have to deal with the use of randomoracles in computational
executions. In line with common practice in symbolic models, hash applications (ex-
plicitly captured as queries to the random oracle by concrete traces) are not reflected by
the symbolic traces. Therefore, we define thehash-query freetraceclean hash(tc) asso-
ciated to the concrete tracetc = (SIdc

1, g1, ϕ1,H1), . . . , (SIdc
n, gn, ϕn,Hn). The trace

clean hash(tc) is the concrete trace(SIdc
i1

, gi1 , ϕi1 ,Hi1), . . . , (SIdc
ik

, gik
, ϕik

,Hik
), ob-

tained by removing fromtc the states that are the result of a hash request.

Definition 4. Let ts = (SIds
1, f1, φ1), . . . , (SIds

n, fn, φn) be a symbolic execution trace
and letclean hash(tc) = (SIdc

1, g1, ϕ1,H1), . . . , (SIdc
n, gn, ϕn,Hn) be the hash-query

free trace of concrete execution tracetc.

– We say that tracetc is aconcrete instantiation ofts with (partial) mappingc : M→
Cη and we writets �c tc if for everyℓ (1 ≤ ℓ ≤ n) it holds thatSIds

ℓ = SIdc
ℓ

and for everysid ∈ SIds
ℓ if fℓ(sid) = (σsid, isid, psid, (a1, . . . , ak)) andgℓ(sid) =

(τ sid, jsid, qsid, (a1, . . . , ak)) thenτ sid = c ◦ σsid, isid = jsid andpsid = qsid.
– Tracetc is aconcrete instantiation with Dolev-Yao hash queriesof ts and we write

ts � tc if there exists a partial, injective functionc : M → Cη such thatts �c tc

and for every1 ≤ k ≤ n, for every messagem such that(m, h) ∈ Hk for someh,
there exists a termM such thatc(M) = m andφk ⊢Randadv

M .

Proposition 1. Let Π be an executable protocol. If the encryption schemeAE is
IND-CCA secure, and the hash functions are random oracles, then for any p.p.t. al-
gorithmA

Pr
[
∃ts ∈ Execs(Π) | ts � Execc

Π(RΠ ),A(RA)(η)
]
≥ 1− νA(η)

where the probability is over the choice(RΠ , RA)
$

← {0, 1}pA(η) × {0, 1}gA(η) and
νA(·) is some negligible function.

The proof shares many ideas with earlier work [13, 10] and is given in Appendix H.1.

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY. The follow-
ing theorem states that the symbolic secrecy criterion is necessary and sufficient for
computational secrecy to hold.

Theorem 1. Let Π be an executable protocol and letXj
Ai

be a nonce variable occur-
ring in some roleAi. If the encryption schemeAE used in the implementation ofΠ is
IND-CCA secure thenΠ |=s SecNonce(i, j) if and only ifΠ |=c SecNonce(i, j).
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Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no adversary can distinguish the
modified execution, which we call the “oracle execution” from the real execution.

Next, we argue that in the oracle execution, the nonces that are symbolically secret
are information theoretically hidden from the computational adversary. Indeed, if the
symbolic secrecy property is satisfied, by Lemma 1 the nonce occurs only in some
hashed terms, and the term themselves are secret (in the sense that it cannot be computed
efficiently). Since in the random oracle model the hash values are independent of the
hashed message, the view of the adversary is independent from the value of the secret
nonces.

STEP I. We now describe the “oracle execution”. Whenever the protocol dictates that an
honest party encrypts some bitstringm, the party encrypts instead a randomly selected
bitstringrm of equal length. The execution keeps a table with all association (m, rm),
which we call the random associations table (RAT). The RAT isnot made available to
the adversary, but only to honest parties. Specifically, whenever an honest party receives
encrypted messages, the party performs the appropriate decryption and recovers some
plaintext. If the plaintext is somem′ such that(m, m′) occurs in RAT, the party treats
the encryption as an encryption ofm and continues its execution as normal. Otherwise,
the underlying plaintext is set tom′.

Intuitively, if any adversary behaves differently in the two executions, it is because
he can see the difference between encryptions of true, and random ciphertexts. For-
mally, if we letExecA,Π(η) be the output of adversaryA when executed with protocol
Π for security parameterη, andExeco

A,Π(η) the output of the adversary in the associ-
ated oracle execution, we have the following lemma (which weprove in Appendix H.2).

Lemma 2. LetΠ be an executable protocol, andA an arbitrary ppt adversary. Then,
if the encryption schemeAE used in the implementation ofΠ is IND-CCA secure, then
Pr [ ExecA,Π(η) = 1 ]− Pr

[
Execo

A,Π(η) = 1
]

is negligible.

Notice that we can apply the above lemma for the case when the execution that is
considered is used in the experimentExpsec b

ExecA,Π
(i, j)(η), for someb, i, j. If we write

Expsec b
Execo

A,Π
(i, j)(η) for the corresponding oracle execution, we obtain that there exists

some negligible functionνi,j,b such that

Pr
[
Expsec b

ExecΠ,A
(i, j)(η) = 1

]
− Pr

[
Expsec b

Execo
Π,A

(i, j)(η) = 1
]

= νi,j,b(η) (1)

STEP II. In the next step, we associate symbolic traces to the computational traces
of the oracle execution. This enables us to reason about an adversary’s success in the
oracle execution (which is conceptually simpler). The association is in fact the one
in the proof of Proposition 1, with an additional parsing step necessary to take into
account the random association table that we detail below. In addition to access to the
keys and the randomness of the parties, the parsing procedure also uses access to the
random association table, and is as follows: the first step inprocessing some message
m′ is a search in the random association table. If(m, m′) occurs in the RAT, then the
procedure proceeds as before, withm′ replaced bym, otherwise the procedure remains
unchanged.
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Next, we argue that the symbolic traces obtained as above arevalid execution traces,
and moreover, that they are included among the traces of the execution ofΠ . The for-
malization is given in the next lemma. Its proof is in Appendix H.3.

Lemma 3. The symbolic traces ofExeco(Π,A) are valid with overwhelming probabil-
ity andExeco

A,Π ⊆ ExecA,Π .

STEP III. Finally, we prove that ifAE is IND-CCA secure thenΠ |= SecNonces(i, j)⇒
Π |=c SecNonce(i, j). For an arbitrary adversaryA against the secrecy of nonceXj

Ai

recall that we writeExpsec b
Execo

Π,A
(η) for the oracle version of the experiment defining

secrecy of nonceXj
Ai

. Let Adv
sec
Execo

A,Π
(η) be the corresponding advantage functions.

By definition we have that:

Advsec
ExecΠ,A

(i, j)(η) = Pr
[
Expsec 1

ExecΠ,A
(i, j)(η)=1

]
−Pr

[
Expsec 0

ExecΠ,A
(i, j)(η)=1

]

Advsec
Execo

Π,A
(i, j)(η) = Pr

[
Expsec 1

Execo
Π,A

(i, j)(η)=1
]
−Pr

[
Expsec 0

Execo
Π,A

(i, j)(η)=f1
]

By subtracting, using Equation 1, and rearranging terms we obtain that for some negli-
gible functionν

Advsec
ExecΠ,A

(i, j)(η) = Advsec
Execo

Π,A
(i, j)(η) + ν(η) (2)

Finally, we show that in the oracle execution the advantageAdvsec
Execo

Π,A
(i, j)(η) of

any adversaryA is negligible since nonces that are symbolically secret areinforma-
tional theoretically hidden from the adversary. This can beseen as follows.

Consider the symbolic traceφ that corresponds to the execution of the experiment
Expsec b

Execo
Π,A

(η), up to the point when the adversary is given the nonces and he is asked

to determine the bitb. Let s be the id of the session under attack, and letna,j,s be the
symbolic nonce that corresponds to the nonce under attack. By Lemma 3, the traceφ is
with overwhelming probability a Dolev-Yao trace of protocol Π . By the hypothesis of
the theoremΠ |=s SecNonce(i, j) and therefore by Lemma 1, all occurrences ofna,j,s

in φ that are not under an honest encryption are in some termTi that appears under
a hash, andTi is nondeductible fromφ, ni,j,s. Let ti be the bitstrings that correspond
to the termsTi. We conclude by observing that in the real execution, the adversary
may observe the valuesc1 = h(t1), c2 = h(t2), . . ., but provided that it does not query
t1, t2, . . . to the random oracle, their values (and thus in particular the value of the secret
nonce) are independent from thec1, c2, . . .. Since all queries to the random oracle are
the images of deductible terms, we conclude thatA does not requesth(ti), for all i.

The “only if” direction. It is important to observe that if a messageM is deducible
from a set of messagesM1, M2, . . . , Mn, the associated deduction treeτ can be trans-
lated into an (efficient) programτ which given the bit-string representations ofmi for
Mi (i = 1, 2, . . . , n) computes the bit-string representationm of M .

We proceed as follows. Assume that for some symbolic traceφ, the symbolic nonce
nai,j,s occurs inPatnai,j,s(φ), starting from Lemma 1 we can show that there exist a
termM ∈ φ and a deduction treeτ such that: 1)τ(φ, nai,j,s) yields messageM and 2)
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for n 6= nai,j,s, τ(φ, n) does not yieldM . SinceM ∈ φ, we know that there also exists
a deduction treeπ such thatπ(φ) yieldsM .

Based on the above, we construct a two-stage adversary against secrecy of nonce
Xj

Ai
. In the first stage, the adversary produces a computational representationφc of the

traceφ (by simply following the instructions of the Dolev-Yao adversary that defines
φ). Onceφ is created, it requests the two values of the noncenai,j,s and receives from
the experimentnb andn1−b. Then it computesmb = τ(φc, nb) for b = 0, 1 andm =
π(φc), and retrievesb by comparingm with m0 andm1.

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is decidable. We present an NP-
procedure that decides nonce non-secrecy for the case of a bounded number of sessions
(that is, adversaries are allowed only a fixed number ofnew queries)5

Without loss of generality, we assume that all of thenew queries are performed at
the beginning of the execution. Our decision procedure starts by guessing the sequence
of these requests together with the identities of the agentsinvolved. Then, the proce-
dure guesses an interleaving for the execution. Using standard techniques [14], such
executions can be translated to constraint systems. We recall their definition:

Definition 5. A constraint systemC is a finite set of expressionsTi 
 tt or Ti 
 ui,
whereTi is a non empty set of terms,tt is a special symbol that represents an always
deducible term, and (for1 ≤ i ≤ n) ui is a term such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1;
- if x ∈ var(Ti) then∃j < i such thatTj = min{T | T 
 u ∈ C, x ∈ var(u)} (for

the inclusion relation) andTj ( Ti.

The left-hand side(right-hand side) of a constraintT 
 u is T (respectivelyu). The
left-hand sideof a constraint systemC, (for which we writelhs(C)), is the maximal set
of messagesTn. By⊥ we denote the unsatisfiable system.

The left-hand side of a constraint represents the messages already sent on the network,
while the right-hand side represents the message expected by an agent in order to per-
form the next protocol step. Asolutionof a constraint systemC is a ground substitution
σ such thatTσ ⊢Randadv

uσ for anyT 
 u ∈ C. We say thatC preserves nonce secrecy
of n if there does not exist a solutionσ of C such thatn occurs inPatn(lhs(C)σ).

The transformation of protocols into constraint systems yields systems that are well-
formed. A constraint systemE is well-formedif 1) any subterm ofE of the formdk(t′)
is such thatt′ is an agent identity and 2) any subterm ofE of the form{t1}rt2 is such
thatr ∈ Rand andr /∈ Randadv. The following theorem states that our notion of nonce
secrecy (Section 3) is decidable for a bounded number of sessions.

Theorem 2. The following problem is co-NP complete:

5 For the case of an unbounded number of sessions our secrecy notion is undecidable, just as the
standard deducibility-based notions.
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Given: a well-formed constraint systemC and a noncen.
Decide: DoesC preserve the nonce secrecy ofn?

The decision procedure for nonce secrecy preservation works as follows. First, given
an arbitrary constraint system we reduce it to asolvedsystem using non-deterministic
transformation rules similar to those in [9] (see Appendix G). A constraint system is
solvedif it is different from⊥ and each of its constraints are of the formT 
 tt orT 
 x
wherex is a variable. Second, we check whethern occurs inPatn(lhs(C)). If not, we
check whetherC can further be simplified into a solved form that does not preserve
nonce secrecy, and so on. Note that although for standard deducibility-based notions
decision procedures can stop as soon as the constraint system has been transformed
into solved form, for our secrecy notion further transformations might be necessary.
NP-hardness is proved analogously to the case of standard deducibility-based notions
[15].
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A Protocol Roles

An agent ruleis a tuple of the form(l, r) (also written asl → r) wherel, r ∈ T(X).
Typically, the substitutionσ of some of the variables inl and r is already fixed by
applications of preceding agent rules (sharing variables with the current agent rule). If,
now, the agent receives a messagem, thenm is matched againtlσ, say the matcher is
η, and the messagerση is produced as output (as explained below, it will always be
the case thatrση does not contain variables). Ifm andlσ do not match, then the agent
will not produce output. Ifm andlσ match, we say that the rule(l, r) is applied to (is
applicable to)m.

A role an agent performs in a run of a protocol is specified by anordered edge-
labeled finite tree where every edge is labeled by an agent rule. In a run of a protocol
an agent will stand at a certain node of the tree. Assume that the outgoing edges of that
node are of the form(l1, r1), . . . , (ls, rs) (starting with the left-most edge). Now, if the
agent receives a message, saym, then the agent will apply the first agent rule (from left)
applicable tom to produce its output.

Formally, we first define role trees and then roles, which are role tree satisfying
certain conditions.

A role treeR is a finite ordered edge-labeled tree where the domain is a finite prefix-
closed subset ofN∗ (the ith successor of a nodep is pi) and every edge is labeled by
an agent rule. Given a nodep in R, we denote byRulesp the sequence of agent rules
the edges on the path from the root ofR to p are labeled with. We writeRulesl

p and
Rulesr

p to denote the sequence of left- and right-hand sides of theserules, respectively.
(We sometimes consider these sequences as sets.) Ifp 6= ε, we writerulep to denote
the agent rule the edge leading top is labeled with. The left-hand side of this rule is
refered to byrulel

p and the right-hand side byruler
p.

The ith role performed by agentAi in a k-party protocol is a role treeR such
that certain conditions are satisfied. To define these conditions we need some notation.
Let p we a node inR. Then, we denote bŷKi

p = {ek(A1), . . . , ek(Ak), dk(Ai)} ∪

X.n(Ai)∪Rulesl
p the set of terms agentAi knows in nodep. (Note that this set includes

rulel
p.) If p′ is the predecessor ofp (we definep′ = p if p = ε), then we define

Ki
p = {ek(A1), . . . , ek(Ak), dk(Ai)} ∪ X.n(Ai) ∪ Rulesl

p′. (This set coincides with

K̂i
p except thatrulel

p is not added.) We can now formulate the mentioned conditions
required forR (see below for informal description): For every nodep 6= ε in R we
require that:

1. rulel
p andruler

p do not contain a subterm of typeDKey,
2. everyr ∈ Randag occurs inRulesp at most in the context of one term of type

Ciphertext, i.e., the set of subterms of the form{t′}rt in Rulesp (for somet andt′)
is a singleton,

3. everyx ∈ X.r occurs inRulesl
p at most once and does not occur inRulesr

p; if it
occurs it occurs in a term of the form{t}x

ek(Ai)
for somet.

4. K̂i
p ⊢Randag

ruler
p and(K̂i

p ∩ X) ∪ Ki
p ⊢X.r∪Randag

rulel
p,

The first condition says that decryption keys are not explicity contained in agents rules.
This implies that these keys may be output by an agent. As for the second condition,
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a term of the form{t′}rt means thatAi computes the encryption for plain textt using
key t′ and random coinsr. The agentAi might use the computed ciphertext at different
places in the role. Therefore, the term{t′}rt (and hence,r) may occur also in different
places in the agent rules. However, ifAi computes the encryption for a different plain
text and/or a different key, thenAi will also use different random coins. The intuition
behind the third condition is as follows: Variables inX.r are used in terms for decrypting
messages. More precisely, in the concrete execution model,a term of the form{t}x

ek(Ai)

will causeAi to perform the following action. It first checks whether the given message
is a ciphertext withek(Ai) as public key. Then it would decrypt the message and try to
parse this message according tot. Therefore, message of the form{t}x

ek(Ai)
should only

occur on the left-hand side of agent rules and only in terms ofthe form{t}x
ek(Ai)

. Note
that if a term of the form{t}xek(Aj)

with j 6= i would occur on the left-hand side of an
agent rule forAi, then this would mean thatAi can decrypt a message encrypted with
the public key ofAj . This should of course be forbidden. Also, when parsing a message
according to{t}x

ek(Ai)
, we don’t assume that the agent is able to extract the random

coinsx used to encrypt the message. Depending on the encryption scheme this might
not be possible, and more importantly, protocols typicallydo not use this information.
Therefore,x should only occur at one position in the agent rules ofAi. Together with
the previous conditions, the last condition implies thatAi can actually carry out the
tests when receiving a message and can actually produce the output message.

B Transitions in the Formal Execution Model

To define transitions between global states, we use the following notation. Byna,j,s ∈
Nonceag with a ∈ A andj, s ∈ N we denote distinct nonces. Analogously, byra,j,s ∈
Randag with a ∈ A, j ∈ Randag, s ∈ N we denote distinct random coins. Byτa,s

we denote a mapping that maps everyr ∈ Randag to ra,r,s. Given t ∈ T(X), we
denote bytτa,s the term obtained fromt by simulataneous replacing everyr ∈ Randag

occurring int by τa,s(r). We use this mapping to replace the randomness used int by
fresh randomness. (Belowt will be the right-hand side of an agent rule).

We allow three kinds of transitions between global states, which we will refer to by
corrupt, new, andsend transitions, respectively.

– The adversary corrupts a set of parties by outputting a set ofidentities and thereby

learns the private keys of the agents:qI
corrupt(a1,...,al)
−−−−−−−−−−−→ (∅, ∅, A∪EKey∪{dk(aj) |

1 ≤ j ≤ l). Note that this transition can only be applied at the beginning (static
corruption).

– The adversary can initiate new sessions:(SId, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (SId′, f ′, ϕ)

whereSId′ andf ′ are defined as follows. Letsid = |SId|+1 be the session identifier
of the new session where|SId| denotes the cardinality ofSId. We defineSId′ =
SId ∪ {sid}. The functionf ′ is defined as follows.
• f ′(sid′) = mf(sid′) for everysid′ ∈ SId.
• f ′(sid) = (i, σ, ε, (a1, . . . , ak)) where the domain ofσ is {A1, . . . , Ak} ∪

X.n(Ai) with σ(Aj) = aj for every1 ≤ j ≤ k andσ(Xj
Ai

) = nai,j,s for
everyj ∈ N.
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– The adversary can send messages:(SId, f, ϕ)
send(sid,m)
−−−−−−−→ (SId, f ′, ϕ′) wheresid ∈

SId, m ∈ M, andϕ′ andf ′ are defined as follows. We definef ′(sid′) = f(sid′)
for everysid′ 6= sid. Suppose thatf(sid) = (i, σ, p, (a1, . . . , ak)) and((l1, r1), . . .
, (lh, rh)) are the labels of edges leavingp (in this order). We distinguish two cases:

• there does not exist aj such thatm andljσ match. Then, we definef ′(sid) =
f(sid) andϕ′ = ϕ (the state remains unchanged);
• otherwise, letj be minimal such thatm andljσ match. Letθ be the matcher,

i.e., m = (ljσ)θ. Then, we definef ′(sid) = (i, σ ∪ θ, pj, (a1, . . . , ak)) and
ϕ′ = ϕ ∪ {(rjτai,sid)σθ}.

C Concrete Types

We will identify every element in{a, n, e, d, c, h, p, g} with some bit string of length
three. ByCη.a we denote the set of bit strings of the forma · m where · denotes
concatenation andm ∈ {0, 1}η is interpreted as the name of the agent. (Recall that
a ∈ {0, 1}3.) The setCη.n of nonces and the setCη.h of hash values are defined anaol-
ogously, where, however,a is replaced byh andn, respectively. (The specific details of
the encoding of types and the exact length of the bit strings of these sets is not essential
for the results shown in this paper as long as certain conditions are satisfied. For ex-
ample, the size of the set of nonces and hashes should grow exponentially inη, which
for the specific definition is the case.) Givenη and a bit stringm, type returnsa iff
m ∈ {0, 1}η+3 andm is prefixed witha. Analogously for the typesn andh.

We say that a bit string of the forme · m (wherem may have to satisfy certain
efficiently checkable conditions) is a public key or a bit string of typee. Hence, the
algorithmtype returnse if a message is of the above type. Analogously for typed. We
assume that public and private keys obtained by runningKe(η) are prefixed withe and
d, respectively. The set of bit strings of typee (d) is denoted byCη.e (Cη.d).

By 〈·, ·〉c, π1(·), andπ2(·) we denote efficiently computable functions which sat-
isfy the following conditions:〈m, m′〉c is prefixed withp, π1(〈m, m′〉c) = m, and
π2(〈m, m′〉c) = m′ for all bit stringsm andm′. On inputη andm, the algorithmtype

returnsp iff m is prefixed withp and〈π1(m), π2(m)〉c = m. By Cη.p we denote the
set of bit strings for whichtype returnsp.

A bit string obtained as a concatenation ofc (the type), a public key (as defined
above), and some bit string (the actual ciphtertext, which may satisfying certain effi-
ciently computable conditions) such that all three components can efficiently be recov-
ered is called a ciphertext or a bit string of typec. Hence,type returnsc if a given bit
string is of the required form. We assume that the encryptionalgorithm returns a bit
string of typec. The set of bit strings of typec is denoted byCη.c. Given a bit string of
typec, we denote bypubkey the algorithm recovering the public key, i.e., the second
component of the message. We emphasize that this public key was not necessarily used
to obtain actual ciphtertext of the message.

We denote byCη.g the set of bit strings on whichtype does not return one of the
typesa, n, e, d, c, h, p. In this case, we requiretype to returng (for garbage).
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D Transitions in the Concrete Execution Model

In an execution of a protocol, the adversary may make a sequence of queries, which in-
duces a sequence of (concrete) global states. Next we explain the queries the adversary
may make.

– Corrupt query: at the beginning of the execution, the adversary may corrupt a set
of parties via a requestcorrupt(a1, a2, . . . , al) wherea1, a2, . . . , al ∈ Cη.a. As
a result, public and private keys are generated for the agents by runningKe(η) l
times (with independent random coins). All agent names along with their public and
private keys are given to the adversary and added to the current intruder knowledge.

– New session query: the adversary initiates a new session by issuing a request of
the formnew(i, a1, . . . , ak) wherei ∈ [k] anda1, . . . , ak ∈ Cη.a. As a result,
the following happens: first, for allaj (j ∈ [k]) for which no public key has been
generated so far, a public and private key pair is generated by runningKe(η). Then,
an instance for running (a concrete version of)Π(i) is initiated. This instance gets
η as well asa1, . . . , ak along with their public keys and the private key ofai as
input. Then, for all variablesXj

Ai
occurring inΠ(i) random nonces (derived from

Cη.n) are generated. These are also given to the instance as input. Accordingly, if
(SId, f, φ,H) is the current global state, then the new state is(SId′, f ′, φ,H) where
SId′ = SId ∪ {sid} with sid = |SId|+ 1 andf ′ is defined as follows:
• f ′(sid′) = f(sid′) for sid′ ∈ SId (i.e., the local states of previous sessions

remain unchanged);
• f ′(sid) = (i, σ, ε, (a1, . . . , ak)) whereσ is defined as follows:

{
σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

)
R
←− Cη.n j ∈ N, Xj

Ai
occurring inΠ(j)

– Send message query: by issuing the a query of the formsend(sid, m), wheresid ∈
SId and m ∈ Cη the adversary can send a message to instancesid. The effect
of this query is the following: assume that the current global state is(SId, f, φ,H),
f(sid) = (i, σ, p, (a1, . . . , al)), and the outgoing edges ofp are labeled by the agent
rules((l1, r1), . . . , (lk, rk)) (in this order). Starting from the left-most rule, agent
ai (who carries out sessionsid) will first check whetherm matches with one of the
agent rules. Say(lj , rj) is the first to match. Then,ai produces output according
to this rule and then moves the program pointer topj. It will also store the values
assigned to variables inlj (and hence,rj) along the way. We now briefly explain
howlj is matched againstm and then explain how the output is produced according
to rj .
Matching oflj againstm: this is done recursively on the structure oflj .
• If lj is a variable such that no value has been stored for this variable so far and

m is of the same type as the variable (this can be checked by running type on
m), thenm is assigned to this variable. If a variable has been assignedto the
variable already, then it is checked whether is coincides with m.
• If lj is of the form〈t1, t2〉, then it is checked whethertype(m) = p and the two

components ofm are extracted by runningπ1 andπ2. Then, these components
are matched witht1 andt2, respectively (in some order).
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• If lj is of the form{t}x
ek(Ai)

with x ∈ X.r, then it is checked whetherm is of
type ciphertext, and if it is, the public key is extracted (byrunningpubkey on
m). Then,m is decrypted using the decyrption key ofai. If the decryption is
successful, the resulting plaintext is matched witht.

• If lj is of the form{t}r
ek(Aj)

with r ∈ Randag, then the encryptionm′ of the bit
string corresponding tot with some randomness replaced forr and the public
key of aj is computed. More precisely, we distinguish between two cases: if
{t}r

ek(Aj)
occurred in some preceeding agent rule, thenm′ has been computed

already and it is simply checked whetherm andm′ coincide. Otherwise, if
{t}rek(Aj)

has no occurred before, then it follows from the condition onroles of
protocols that{t}r

ek(Aj)
can be derived from the messages seen so far (formally,

we have that(K̂i
p ∩ X) ∪ Ki

p ⊢X.r∪Randag
{t}rek(Aj)

). Following the derivation
tree, one can therefore compute a bit string corresponding to t. This bit string
can then be encryption with the public key ofaj and some fresh random coins.
It is then checked whether the resulting bit string coincides withm. (A techni-
cal detail is that not all variables in̂Ki

p ∩ X might have been assigned values
yet since, for example, they occur in a different component of 〈·, ·〉 which has
not been matched yet. However, if the matching is successful, they will be sub-
stituted by bit string and then can be used to evaluatet.)

• If lj is of the formh(t), then it follows from the condition on roles of protocols
that t can be derived from the messages seen so far (formally, we have that
(K̂i

p∩X)∪Ki
p ⊢X.r∪Randag

h(t) which implies that(K̂i
p∩X)∪Ki

p ⊢X.r∪Randag

t). As above, one can therefore evaluatet, which results in a bit string, and then
compare this bit string tom.

If one of the above checks fails, the instance will ignore theincoming message and
the internal state will not be changed.

The output, i.e., the bit string, produced according torj is computed following the
structure ofrj in the obvious way. The condition for role of protocols guarantee
that the computation can actually be carried out.

According to the above description, the current global state (SId, f, φ,H) is up-
dated to(SId, f ′, φ′,H) in the obvious way: if the matching betweenlj andm fails,
then the global state does not change. Otherwise,φ′ is obtained fromφ by adding
the bit string produced as output. We definef ′(sid′) = f(sid′) for everysid′ 6= sid.
If f(sid) = (i, σ, p, (a1, . . . , al)), the new local statef ′(sid) of the sessionsid is
(i, σ′, pj, (a1, . . . , al)) whereσ′ is obtained fromσ by adding the substitution of
the variables inlj that have not been subsituted before according to the matching
of lj andm.

– Hash query: the adversary may issue a hash request to the random oracle of the
form hash(m). If the current global state is(SId, f, φ,H), then the effect of this
query is the following: ifH does not contain an entry form, then a bit string is
chosen randomly fromCη.h. This bit string is given to the adversary. The global
state, in particular,φ andH, are updated accordingly.
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E IND-CCA Security for Asymmetric Encryption Schemes

In this appendix we recall a standard notion of security for asymmetric encryption
schemes, namelyIND-CCA security. The formulation that we give is the multi-user
version, known to be equivalent to the single user version (see, e.g., [10]).

For a fixed encryption schemeAE = (Ke, Enc, Dec), a left-right encryption oracle
parametrized by a bitb and encryption keypk is an oracle which accepts as queries
pairs of equal-length bitstring(m0, m1) and returns an encryptionEnc(pk, mb).

Given an encryption schemeAE = (Ke, Enc, Dec) we consider the experiment
Exp

indccab

A,AE (η) parametrized by the bitb, and that uses adversaryA. The adversaryA
is provided access to polynomially many left-right oracles, each parametrized byb and
a public keypki generated via(pki, ski)

$

← Ke(η). The adversary is also given access
to corresponding decryption oracles, that is, oracles parametrized by the decryption
keysski, that accept as input bitstrings and return the decryption of the bitstring under
ski. The adversary is allowed to make as many encryption and decryption queries as
he likes, under the condition that he is does not submit to thedecryption oracle under
ski a ciphertext obtained from the encryption oracle underpki. WhenA finishes its
execution, the adversary outputs a bitd (which is his guess as to what the bitb is) and
the bitd is the output of the experiment. We define the advantage ofA by:

Advindcca
A,AE = Pr

[
Expindcca0

A,AE (η) = 1
]
− Pr

[
Expindcca1

A,AE (η) = 1
]

and we say thatAE is IND-CCA secure if for all probabilistic polynomial-time adver-
saries, the functionAdvindcca

A,AE (η) is negligible.

F Proof of Lemma 1

Let φ be an arbitrary set of messages andn a nonce symbol that occurs inφ.
Right implication ⇒. First,φ ⊢ n implies thatn occurs inPatn(φ) by induction

on the proof ofφ ⊢ n and using thatn can be obtained using only decomposition rules
(that is projections and decryption).

Second, assume that there existsM subterm ofφ such thatφ ⊢ M andp such that
M |p = n, so that there is no encryption alongp and for allp′ < p, M |p′ = h(M ′)
implies φ, n ⊢ M ′. SinceM only contains pairing and hashes alongp, it is easy to

verify thatn occurs inPatφn(M) thus inPatn(φ) (sinceM is a deducible subterm).
Left implication ⇐. Assume thatn occurs inPatn(φ) and that∀M ∈ φ, ∀p such

thatM |p = n and such that there is no encryption alongp, ∃p′ such thatM |p′ = h(M ′)
andφ, n 6⊢M ′.

We prove by induction onM that for anyM subterm ofφ such thatφ ⊢ M , n

occurs inPatφn(M) impliesφ ⊢ n.

– Base case:M is a constant or a name.n occurs inPatφn(M) impliesM = n thus
φ ⊢ n = M .

– If M = 〈M1, M2〉. Thenn must occur inPatφn(Mi) for i equal 1 or 2. Since
φ ⊢Mi, we deduce by induction hypothesis thatφ ⊢ n.
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– M = {M ′}r
ek(a). Thenn occurs inPatφn(M ′).

• r ∈ Randadv. ThenM ′ ∈ φ by construction ofφ. Thusφ ⊢ M ′ and by
inductionφ ⊢ n.
• Otherwise, we must haveφ, n ⊢ dk(a). This impliesφ ⊢ dk(a) (this can

be shown using the fact thedk(a) can be obtained using only decomposition
rules). We deduce thatφ ⊢ M ′ thus we obtain again by induction hypothesis
φ ⊢ n.

– M = h(M ′). Thenn occurs inPatφn(M ′) and we must haveφ, n ⊢M ′.
• Eitherφ ⊢M ′ and applying the induction hypothesis we getφ ⊢ n.
• Or φ 6⊢ M ′. It means that there exists some contextC computable by the

adversary (that is, there is no agent encryption inC) and termsN1, . . . , Nk,
deducible subterms ofφ such thatC[N1, . . . , Nk, n] = M ′. (See for example
Proposition 7 of [1].) Letp be such thatM ′|p = n (p also position ofC).
∗ If there exists an adversary encryption alongp, that is, there exists a sub-

term {M ′′}rek(a) of M ′ with n occurring inPatφn(M ′′) thenM ′′ ∈ φ by

construction ofφ. Hence,φ ⊢ n by induction hypothesis.
∗ If there is no adversary encryption alongp, it means that there is no en-

cryption at all. Thus by hypothesis, there existsp′ < p such thatM |p′ =
h(M ′′) andφ, n 6⊢ M ′′. But M ′′ must be equal toC′[N1, . . . , Nk, n] for
someC′ sub-context ofC. Henceφ, n 6⊢M ′′, contradiction.

G Decidability of nonce secrecy preservation

This appendix is devoted to the proof of Theorem 2. NP-hardness comes from the same
construction than NP-hardness for deciding usual secrecy.The non-deterministic proce-
dure to decide nonce secrecy preservation works in two steps. First, arbitrary constraint
systems are reduced to solved constraint systems using non-deterministic transforma-
tion rules Second, we show how to decide nonce preservation for solved constraint
systems.

G.1 Reduction to solved forms

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we have called solved.

The simplification ruleswe consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We writeC  n

σ C′ if there areC1, . . . , Cn with n ≥ 1,
C′ = Cn, C  σ1

C1  σ2
· · ·  σn

Cn andσ = σ1σ2 . . . σn. We writeC  +
σ C′ if

C  n
σ C′ for somen ≥ 1.

The simplification rules are correct, complete and terminating in polynomial time.

Theorem 3. LetC be a constraint system,θ a substitution andn be a nonce.

1. (Correctness) IfC  +
σ C′ for some constraint systemC′ and some substitution

σ and if θ is a solution ofC′ such thatn occurs inPatn(lhs(C′)θ) thenσθ is a
solution ofC such thatn occurs inPatn(lhs(C)σθ).
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R1 C ∧ T 
 u  C ∧ T 
 tt if T ∪ {x | T ′

 x ∈ C, T ′ ( T} ⊢Randadv

u

R2 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t, u), t ∈ St(T ),
t 6= u, t, u not variables

R3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ),
t1 6= t2, t1, t2 not variables

R4 C ∧ T 
 u  ⊥ if var(T, u) = ∅ andT 6⊢Randadv
u

R〈,〉 C ∧ T 
 〈u1, u2〉  C ∧ T 
 u1 ∧ T 
 u2

Rh C ∧ T 
 h(u)  C ∧ T 
 u
R{} C ∧ T 
 {u1}

r
u2
 C ∧ T 
 u1 ∧ T 
 u2 r ∈ Randadv

Rkey C  σ Cσ if σ = {ek(a)/x}, ek(a) ∈ lhs(C),
x key variable in key position

St(T ) denotes the set of subterms of the terms inT .

Fig. 2. Simplification rules.

2. (Completeness) Ifθ is a solution ofC such thatn occurs inPatn(lhs(C)θ) and if
C is not in solved form, then there exist a constraint systemC′ and substitutions
σ, θ′ such thatθ = σθ′, C  +

σ C′ andθ′ is a solution ofC′ such thatn occurs in
Patn(lhs(C′)θ′).

3. (Termination) IfC  n
σ C′ for some constraint systemC′ and some substitutionσ

thenn is polynomially bounded in the size ofC.

The proof is a simple extension of the proof provided in [9] (without XOR). The ex-
tension to our nonce secrecy notion simply relies on the factthat wheneverC  +

σ C′

and thenlhs(C)(σθ) = (lhs(C)σ)θ = lhs(C′)θ for any substitutionθ solution ofC′.
The ruleRkey has been added for our decidability purposes but does not compromise
the correctness and completeness of the transformation rules.

G.2 Decidability of nonce secrecy for solved forms

Using the general approach presented in the previous section, verifying nonce secrecy
can be reduced in non deterministic polynomial time to deciding these properties on
constraint systems in solved form. Indeed, applying Theorem 3, we have that a con-
straint systemE preserves the nonce secrecy ofn if and only if there exists a con-
traint system in solved formE′ such thatE′ preserves the nonce secrecy ofn and
E  +

σ E′. By definition, a constraint systemE′ in solved form preserves the nonce
secrecy ofn if and only if there does not exist a solutionσ′ of E′ such thatn occurs
in Patn(lhs(C′)σ′). Since we only consider well-typed substitution,σ′(x) = ek(a) for
some agent identitya for any key variablex. We can thus assume that the ruleRkey has
been applied as much as possible.

Let E be a solved form andn be a nonce. We considerE′ the solved form defined
as follows:

E′ = {T ∪ var(T ) 
 u | T 
 u ∈ E}

Then it is easy to verify that:
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– σ is a solution ofE if and only if σ is a solution ofE′,
– n occurs inPatn(lhs(Eσ)) if and only if n occurs inPatn(lhs(E′σ)).

We can thus assume thatvar(T ) ⊆ T for anyT 
 u ∈ E. In that case, we say that
E contains its variables. In what follows, a solved form is redefined as a well-formed
constraint system in solved form that contains its variables and has no successor for the
Rkey rules. It is sufficient to decide nonce secrecy only on solvedforms.

GivenE in solved form, the decision procedure works as follows:

1. Check whetherE∪{lhs(E) 
 n} has a solution (this is decidable [15]). If yes then
E clearly does not preserve nonce secrecy.

2. If not, choose non-deterministically a successorE′ in solved form ofE, that is
E′ = E orE  +

σ E′ for someσ and check whethern occurs inPatlhs(E
′)

n (lhs(E′)).
If yes thenE clearly does not preserve nonce secrecy. If not thenE preserves nonce
secrecy ofn.

The completeness of the non-deterministic decision procedure relies on the follow-
ing property.

Proposition 2. Let E be a solved form andn be a nonce. AssumeE ∪ {lhs(E) 
 n}
has no solution. AssumeE does not preserve nonce secrecy ofn, that is, there exists a
solutionθ of E such thatn occurs inPatn(lhs(Eθ)). Then

– eithern occurs inPatn(lhs(E)),
– or there existsσ such thatE  +

σ E′ andE′ does not preserve nonce secrecy ofn.

Assuming Proposition 2, we get thatE does not preserve nonce secrecy ofn if and
only if E has a successorE′ in solved form such thatE  +

σ E′ and n occurs in
Patn(lhs(E′)), which proves the correctness of our decision procedure. Indeed, apply-
ing Proposition 2, ifE does not preserve nonce secrecy ofn then eithern occurs in
Patn(lhs(E)) or there existsσ such thatE  +

σ E′ andE′ does not preserve nonce se-
crecy ofn. We can assume thatE′ is in solved form otherwise we can apply Theorem 3
(possibly several times) and until we getE′′ in solved form andσ′ such thatE′

 
+
σ′ E′′

andE′′ does not preserve nonce secrecy ofn. Thus we can apply Proposition 2 again
until n occurs inPatn(lhs(E′)).

The remaining of the section is devoted to the proof of this proposition. We need
some intermediate lemmas and definitions.

We define public terms to be terms constructed by the adversary.

Definition 6. Public contextare terms with variables defined inductively as follows:

t, t1, t2 ::= public terms
| x variablex
| a agent identitya
| g garbageg
| {t}r

ek(a) adversary encryption,r ∈ Randadv

| h(t) hash
| 〈t1, t2〉 pairing
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A public contextis a linear public term (no variable appears twice). By convention, the
expressionC[t1, . . . , tn] denotes the termCσ where the exact set of variables ofC is
{x1, . . . , xn} andσ = {t1/x1, . . . .tn/xn}.

Lemma 4. Letn be a nonce,t be a term,E = {T1 
 al, . . . , Tl 
 al} with Ti ⊆ Ti+1

be a constraint system in solved form andσ be a solution ofE.

– If Tjσ, n ⊢Randadv
t then there exists a public contextC such thatt = C[t1σ, . . . , tkσ, n]

where eachti is a subterm ofTj such thatTj ⊢Randadv
ti andti is not a variable.

– If Tj ⊢Randadv
t then there exists a public contextC such thatt = C[t1, . . . , tk]

where eachti is a subterm ofTj such thatTj ⊢Randadv
ti andti is not a variable.

Proof. We prove the first part of Lemma 4, the second part is done similarly. We con-
sider a minimal proof ofTjσ, n ⊢Randadv

t in the sense that, at each step it uses the
smallest premises. More formally, for any sub-proofTjσ, n ⊢Randadv

u, let i be the
minimal index such that it is also a proof ofTiσ, n ⊢Randadv

u. If i ≥ 2, we must
haveTi−1σ, n 6⊢Randadv

u. The proof is done by inductionj and the length on the
proof of Tjσ, n ⊢Randadv

t (lexicographical order). If there existsi < j such that
Tiσ, n ⊢Randadv

t, we are done by induction hypothesis. Thus we can assume thatj
is actually the minimal index such thatTjσ, n ⊢Randadv

t.

– If t = n then we considerC = [ ].
– If t ∈ Tjσ, thent = t1σ with t1 ∈ Tj . If t1 is not a variable, we are done. Leti be

the minimal index such that it is also a proof ofTiσ, n ⊢Randadv
t. If t1 is a variable,

we havet1 ∈ Ti. By definition of constraint system, there existsl < i such that
Tl 
 t1 ∈ E. Sinceσ is a solution ofE, we haveTlσ ⊢Randadv

t1σ = t, which
contradicts the minimality ofj.

– If the last applied rule is a construction rule:t = f(t1, . . . , tk) with f ∈ {〈〉, enc, h}.
By induction there exist public contextCi such thatti = C[ti1σ, . . . , tiki

σ, n]. We
consider the public contextC = f(C1, . . . , Cn). Note that iff is an encryption, an
adversary randomness must have been used.

– If the last applied rule is a projection rule.

Tjσ, n ⊢Randadv
〈m1, m2〉

Tjσ, n ⊢Randadv
mi

By induction hypothesis, there exist a public contextC such that〈m1, m2〉 =
C[t1σ, . . . , tkσ, n] where eachti is a subterm ofTj such thatTj ⊢Randadv

ti and
ti is not a variable. IfC = 〈C1, C2〉 then the public contextCi satisfies the con-
ditions. Otherwise〈m1, m2〉 = t1σ some non variable deducible subterm ofTj.
Thust1 = 〈t′1, t

′
2〉. We haveTj ⊢Randadv

t′i andmi = t′iσ. If t′i is not a variable, we
are done. Ift′i is a variable, we must havet′i ∈ Tj and there existsl < j such that
Tlσ ⊢Randadv

mi, which contradicts the minimality ofj.
– If the last applied rule is a decryption rule.

Tjσ, n ⊢Randadv
{m}rek(b) Tjσ, n ⊢Randadv

dk(b)

Tjσ, n ⊢Randadv
m
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By induction hypothesis, there exist a public contextC such that{m}r
ek(b) =

C[t1σ, . . . , tkσ, n] where eachti is a subterm ofTj such thatTj ⊢Randadv
ti

and ti is not a variable. IfC = {C1}C2
then the public contextC1 satisfies

the conditions. Otherwise{m}r
ek(b) = t1σ some non variable deducible subterm

of Tj . Thust1 = {t′}rt′′ . t′′ is not a variable otherwise the ruleRkey would be
applicable, which contradicts thatE has no successor. Thust′′ = ek(b). Since
Tjσ, n ⊢Randadv

dk(b), by induction hypothesis, there exists a public contextC
such thatdk(b) = C[t1σ, . . . , tkσ, n] where eachti is a subterm ofTj such that
Tj ⊢Randadv

ti andti is not a variable. We must haveC = [ ] thusdk(b) = t1σ.
Sincet1 is not a variable, by well-formedness of the constraint system, we must
havet1 = dk(b) thusTj ⊢Randadv

dk(b). We deduce thatTj ⊢Randadv
t′. If t′ is not

a variable, we are done. Ift′ is a variable, we show again that this contradicts the
minimality of j.

Lemma 5. If lhs(E)σ, n ⊢Randadv
dk(a) thenlhs(E) ⊢Randadv

dk(a).

Proof. This a consequence of Lemma 4. Assumelhs(E)σ, n ⊢Randadv
dk(a). By Lemma 4,

there exists a public contextC such thatdk(a) = C[t1σ, . . . , tkσ, n] where eachti is
a subterm oflhs(E) such thatlhs(E) ⊢Randadv

ti and ti is not a variable. We must
haveC = [ ] thusdk(a) = t1σ. Sincet1 is not a variable, by well-formedness of the
constraint system, we must havet1 = dk(a) thuslhs(E) ⊢Randadv

dk(a).

Lemma 6. lhs(E)σ, n ⊢Randadv
t if and only if lhs(E)σ, n ⊢Randadv

t.

Proof. Sincelhs(E)σ ⊆ lhs(E)σ, lhs(E)σ, n ⊢Randadv
t implies lhs(E)σ, n ⊢Randadv

t.
Conversely, sinceE is well formedlhs(E) = lhs(E) thuslhs(E)σ = lhs(E)σ ∪

{{m}rk subterm ofσ | r ∈ Randadv}. Let us show that actually any term{m}rk, sub-
term ofσ such thatr ∈ Randadv, is deducible fromlhs(E)σ, n. By Lemma 4, there ex-
ists a public contextC such that{m}rk = C[t1σ, . . . , tkσ, n] where eachti is a subterm
of lhs(E) such thatlhs(E) ⊢Randadv

ti andti is not a variable. SinceE is well-formed,
r cannot appears in theti. Thus{m}rk = C[n] thuslhs(E)σ, n ⊢Randadv

{m}rk.

Lemma 7. LetE be a constraint system in solved form andσ be a solution ofE. Let t
be a term.

lhs(E)σ ⊢Randadv
t if and only if there exists a termt′ such thatlhs(E) ⊢Randadv

t′

andt = t′σ.

Proof. If there exists a termt′ such thatlhs(E) ⊢Randadv
t′ andt = t′σ then clearly

lhs(E)σ ⊢Randadv
t.

Conversely, assumelhs(E)σ ⊢Randadv
t. Applying Lemma 4 (with a noncen that

does not occur int), there exists a public contextC such that{m}rk = C[t1σ, . . . , tkσ]
where eachti is a subterm oflhs(E) such thatlhs(E) ⊢Randadv

ti and ti is not a
variable. We chooset′ = C[t1, . . . , tk]. We havet = t′σ. Moreoverlhs(E) ⊢Randadv

ti
andC public context implies thatlhs(E) ⊢Randadv

t′.

Lemma 8. Let n be a nonce,E be a constraint system in solved form andσ be a
solution ofE. AssumeE ∪ {lhs(E) 
 n} has no solution. Assume thatn does not
occur inPatlhs(E)

n (lhs(E)). Letσ be a solution ofE. Then

23



1. eithern does not occur inPatlhs(E)σ
n (t) for any termt such thatlhs(E)σ ⊢Randadv

t,
2. or there existsσ′ such thatE  +

σ′ E′, σ = σ′θ, θ′ is a solution ofE′ andn occurs

in Patlhs(E
′)θ

n (lhs(E′)θ).

Note that this lemma implies Proposition 2. Indeed, assumeE ∪ {lhs(E) 
 n} has no
solution. Assume there exists a solutionσ of E such thatn occurs inPatlhs(E)σ

n (lhs(E)σ).

– Eithern occurs inPatlhs(E)
n (lhs(E)),

– or, by Lemma 8, there is two possibilities
• eithern does not occur inPatlhs(E)σ

n (t) for any termt such thatlhs(E)σ ⊢Randadv

t. In that case, we know by Lemma 6 that, for any termt, Patlhs(E)σ
n (t) =

Patlhs(E)σ
n (t) sincelhs(E)σ, n ⊢Randadv

t′ if and only if lhs(E)σ, n ⊢Randadv

t′ for any termt′. Sincelhs(E)σ ⊢Randadv
t for any t ∈ lhs(E)σ, we deduce

thatn does not occur inPatn(lhs(E)σ) thus does not occur inPatn(lhs(E)σ),
contradiction.
• or there existsσ′ such thatE  +

σ′ E′, σ = σ′θ andn occurs inPatlhs(E
′)θ

n (lhs(E′)θ),
which means thatE′ does not preserve nonce secrecy ofn.

It is thus now sufficient to prove Lemma 8

Proof. Let n be a nonce,E be a constraint system in solved form andσ be a solution
of E. AssumeE ∪ {lhs(E) 
 n} has no solution. Assume thatn does not occur in
Patlhs(E)

n (lhs(E)).
Either there existsσ′ such thatE  +

σ′ E′, σ = σ′θ, θ′ is a solution ofE′ andn

occurs inPatlhs(E
′)θ

n (lhs(E′)θ) in which case we are done. Or we prove thatn does
not occur inPatlhs(E)σ

n (t) for any termt such thatlhs(E)σ ⊢Randadv
t. LetE = {T1 


a1, . . . , Tl 
 al}.
Assumelhs(E)σ ⊢Randadv

t. By Lemma 7, there exists a termt′ such thatlhs(E) ⊢Randadv

t′ andt = t′σ.
We first assume thatt′ is a subterm oflhs(E) and prove the following statement by

induction on(k, |t′|) (lexicographical ordering), where|t′| denotes the size oft′.

n does not occur inPatlhs(E)σ
n (t′σ) for any termt′ subterm ofTk such that

lhs(E) ⊢Randadv
t′.

Base case:k = 1 andt′ is atomic.

– If t′ is a nonce or a name,t′σ = t′. Thent′ 6= n sinceE ∪ {lhs(E) 
 n} has no
solution. Thusn does not occur inPatlhs(E)σ

n (t′σ).
– If t′ is a variable is excluded sincet′ is a subterm ofT1 andT1 contains no variables.

Induction step: t′ subterm ofTk such thatlhs(E) ⊢Randadv
t′.

– If t′ is a nonce or a name,t′σ = t′. Thent′ 6= n sinceE ∪ {lhs(E) 
 n} has no
solution. Thusn does not occur inPatlhs(E)σ

n (t′σ).
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– If t′ is a variable, then by definition of constraint systems, there existsk′ < k such
thatTk′ 
 t′ ∈ E. We deduce thatTk′σ ⊢Randadv

t′σ. Let t = t′σ. By applying
Lemma 4 to constraint system{T1 
 a1, . . . , Tk′ 
 ak′}, there existu1, . . . , un

subterms ofTk′ such thatt = C[u1, . . . , un]σ whereC is a public context. We
deduce thatPatlhs(E)σ

n (t) = C[Patlhs(E)σ
n (u1σ), . . . , Patlhs(E)σ

n (unσ)]. Applying
the induction hypothesis, we get thatn does not occur inPatlhs(E)σ

n (uiσ) thusn

does not occur inPatlhs(E)σ
n (t).

– If t′ = 〈t1, t2〉. ThenPatlhs(E)σ
n (t′σ) = 〈Patlhs(E)σ

n (t1), Patlhs(E)σ
n (t2)〉. Since

lhs(E) ⊢Randadv
t′ implies lhs(E) ⊢Randadv

t1, t2 and t1 and t2 are subterms
of Tk, we can apply the induction hypothesis, we get thatn does not occur in
Patlhs(E)σ

n (t′σ).
– If t′ = {t1}rt2 and t2σ = ek(a). We must havet2 = ek(a) or t2 is a variable.

The caset2 variable is excluded by application of the transformation ruleRkey. We
assume nowt2 = ek(a).
The caser ∈ Randadv is excluded sincet′ is a subterm ofTk andE is well-formed.
Either lhs(E)σ, n 6⊢Randadv

dk(a), in that case,Patlhs(E)σ
n (t) = � andn does not

occur in�.
Or lhs(E)σ, n ⊢Randadv

dk(a). Then by Lemma 5,lhs(E) ⊢Randadv
dk(a). Thus

lhs(E) ⊢Randadv
t1 and t1 is a subterm ofTk thus we can apply our induction

hypothesis.
– If t′ = h(t′′σ). Either lhs(E)σ, n 6⊢Randadv

t′′σ, in that case,Patlhs(E)σ
n (t) = �

andn does not occur in�. Or lhs(E)σ, n ⊢Randadv
t′′σ. Applying Lemma 4, there

exists a public contextC such thatt′′σ = C[u1σ, . . . , ukσ, n] where eachui is a
subterm oflhs(E) such thatlhs(E) ⊢Randadv

ui andui is not a variable.
Either there exists a pathp of t′ such thatt′|p is not a variable andt′|p = uiσ for
somei andt′|p 6= ui. Sinceui is not a variable, the ruleR3 of the transformation
rules can be applied. Letσ′ = mgu(ui, t

′|p). We haveσ = σ′θ for someθ, E  σ′

Eσ′ andn occurs inPatn(lhs(E′)θ) sincelhs(E′)θ = lhs(E)σ′θ = lhs(E)σ,
contradiction.
Or t′′ = C′[n, x1, . . . , xk, ui1 , . . . , uil

]. Thenlhs(E) ⊢Randadv
t′′ sincevar(lhs(E)) ⊆

lhs(E) and theui are subterms oft′ thus ofTk thus we can apply the induction hy-
pothesis.

In the general case, applying Lemma 4,lhs(E)σ ⊢Randadv
t implies that there exists

a public contextC such thatt = C[t′1, . . . , t
′
k]σ where eacht′i is a subterm oflhs(E)

such thatlhs(E) ⊢Randadv
t′i andt′i is not a variable. SinceC is a public context,

Patlhs(E)σ
n (t) = C[Patlhs(E)σ

n (t′1σ), . . . , Patlhs(E)σ
n (t′kσ)]

Since thet′i are subterms oflhs(E), we have seen thatn does not occur inPatlhs(E)σ
n (t′i).

We conclude thatn does not occur inPatlhs(E)σ
n (t).

H Proofs for Results in Section 4

H.1 Proof of Proposition 1

Proof (Sketch).
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The proof is in two steps, which we briefly sketch before giving the details.
First, we associate to each computational trace of an arbitrary adversaryA a sym-

bolic trace by parsing each bit-string down to its most basiccomponents (keys, identi-
ties, nonces, randomness), and mapping each of these components to appropriate sym-
bolic constants. In parsing the messages we may freely use the decryption keys, which
are fixed by the randomness used in the trace.

In the second step, we show that the trace associated as aboveis a valid trace, with
overwhelming probability (over the coins used in the execution). The proof is based
on a characterization of non valid traces that identifies allways in which the messages
output by the adversary are invalid. Then, we construct an adversaryB that simulates
the execution of the protocol in the presence of the adversaryA. AdversaryB is against
the encryption scheme and uses its encryption oracles to simulate the execution of the
honest parties. Then, ifA with non-negligible probability outputs a non-Dolev-Yao
message, adversaryB breaks the security of the encryption scheme.

STEP I. For each concrete execution tracetc = Execc
Π(RΠ ),A(RA)(η) we construct

the symbolicts and the functionc by tracing the queries made by adversaryA and
translating them into symbolic queries. Notice that since we do not require thatc is
efficiently constructable, in its construction we may safely assume that all decryption
keys are known (notice that they are fixed byRΠ ).

For corrupt andnew queries the translation is straightforward (party identities
are mapped to appropriate symbols). The interesting party is how send queries are
treated. Each bitstringm that occurs in asend query is translated to a symbolic term
c(m) as follows. Agent identities, cryptographic keys, randomness used for encryption
by honest parties, and random nonces (all quantities that are uniquely determined by
RΠ ) are canonically mapped to symbolic representations: for example the bit-string
representing the encryption key of partyai is mapped toek(ai). Ciphertexts created by
the adversary are decrypted with the appropriate key (recall that all decryption keys are
available while defining the mapping).

The rest of the messages are interpreted as they occur: each messagem sent by the
adversary is parsed (notice that all decryption keys neededfor parsing are known, since
they are fixed by the randomness used in the experiment).

STEP II. In the second step of the proof we show that the tracets constructed as above
is Dolev-Yao with overwhelming probability. The proof relies on the following lemma
that characterizes non Dolev-Yao adversaries. In what follows, ag(i) ∈ Randag and
adv(i) ∈ Randadv.

Lemma 9. LetM1, . . . , Mk, M be ground terms such that

– M1, . . . , Mk 6⊢M ;
– names(M) ⊆

⋃
1≤i≤k names(Mi);

– if {M ′}
ag(i)
ek(a) is a subterm ofM then{M ′}

ag(i)
ek(a) is a subterm of someMi.

There exists a non deducible termT , subterm ofM , that isM1, . . . , Mk 6⊢ T and there
is a positionp such thatM |p = T and

1. for any pathp′ ≤ p, M |p′ is non deducible fromM1, . . . , Mk,
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2. for any pathp′ < p such thatM |p′ = {M ′}
ag(i)
ek(a) or M |p′ = h(M ′), M |p′ is not a

subterm of theMi’s,
3. – T is a decryption keydk(a),

– or T is subterm of someMi and is either a nonce or an encrypted message of
the form{M ′}

ag(i)
ek(a) or a hashh(M ′).

We say thatT is under attack.

Proof. We prove the lemma by induction on the size ofM .
Base case:M is a nonce, an agent identity, a key or, a garbage symbol. Since M

is non deducible, by construction of the deduction system,M must be a nonce or a
decryption keydk(a) of some honest agent. IfM is a decryption key,T := M satisfies
Lemma 9. IfM is a nonce then by hypothesis,M ∈

⋃
1≤i≤k names(Mi). ThusM is a

subterm of someMi. We then takeT := M which satisfies the lemma.
The induction step:M is a composed term.

– EitherM = h(M ′). If M is a subterm of someMi thenT := M satisfies the condi-
tions of Lemma 9. OtherwiseM is not a subterm of anyMi. ThenM ′ must be non
deducible. OtherwiseM would be deducible. We apply the induction hypothesis
onM ′ and findT satisfying Lemma 9 forM1, . . . , Mk andM ′.

– Or M = {M ′}
adv(i)
ek(a) . ThenM ′ must be non deducible otherwiseM would be

deducible. We apply the induction hypothesis onM ′ and findT satisfying Lemma 9
for M1, . . . , Mk andM ′.

– OrM = 〈M1, M2〉. ThenM1 orM2, sayM j , must be non deducible otherwiseM
would be deducible. We apply the induction hypothesis onM j and findT satisfying
Lemma 9 forM1, . . . , Mk andM j .

– Or M = {M ′}
ag(i)
ek(a). By hypothesis, this implies thatM is a subterm of someMi,

thusT := M satisfies Lemma 9.

In the three first cases, it is easy to verify thatT also satisfies Lemma 9 forM1, . . . , Mk

andM sinceM is non deducible andM is not a subterm of someMi (or M is a pair).

For our proofs, it is important to also show that ifM1, M2, . . . , Mn are the output
of honest parties in a symbolic execution of a protocol, thenthe termT (which occurs
in someMi) is in fact constructed by the honest parties, and not by the adversary.

This can be seen as follows. LetM1, . . . , Mk be messages sent (in this order) during
the execution of a protocolΠ . Therefore, eachMi is of the formMi = rji

θi where
lji
→ rji

is a edge of a role ofΠ and for each variable of the domain ofθi, θi(x)
is either a subterm ofM1, . . . , Mi−1 or a deducible term fromM1, . . . , Mi−1. Let T
satisfy Lemma 9. SinceT is non deducible it must occur as a non trivial subterm of
somerji

, that is there existsi, j and a non variable positionp of rj such thatT = rj |pθi,
which shows thatT is computed by an honest party.

The main (and final) step of the proof is to show that if there exists an adversaryA
for which the associated symbolic traces are non-Dolev-Yaowith non-negligible prob-
ability, then we can construct an adversaryB that breaks encryption.

The adversaryB that we construct uses its access to left-right encryption oracle
and to the corresponding decryption oracles to simulate theparties against whichA is
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normally executed, and also simulates the random oracle. Ingeneral,B intercepts and
answers all queries that are made byA as follows.

– WhenA sends itscorrupt(a1, a2, . . . , al) request adversaryB generates private
and public keys for partiesa1, a2, . . . , al and sends them to the adversary.

– WhenA wants to initiate a new sessionnew(i, a1, . . . , ak), if agentsai are new,
B requests new users corresponding to these agents in the multi-party setting for
public-key encryption. ThenB generates all the honest nonces corresponding of
agentsai in that new session.

– WhenA makes asend(s, m) request,B parses the message possibly using the
decryption oracle and the records of the hashes already generated when simulating
the random oracle and answers according to the protocol (encrypting the message
by himself).

– WhenA makes ahash(m) request, eitherB has already generated a hash value
h for m and simply returnsh or B generates a new hash value, memorizes the
association and returns the value toA.

The critical part of the proof is how adversaryA uses the non-Dolev Yao message
T (described in Lemma 1) to break encryption. We treat separately the case whenT is
a decryption key of an honest agent, and the case whenT is a nonce or an encrypted
message of the form{M ′}

ag(i)
ek(a) or a hashh(M ′) andT is a subterm of some previously

sent messages. We start with the latter case which is more complex.
The first step ofB is to guess whenT occurs in the execution of honest parties for

the first time. SinceT is created by some honest party (see the remark after Lemma 1),
this can be done by guessing a session number, in which instruction (li, ri), and on
which position ofri, T occurs. The key idea is to construct two different bit-string
interpretationst0 andt1 for T , and uses the left-right encryption oracles in such a way
that the view simulated forA is such that the bit-string associated toT is precisely
tb, whereb is the selection bit of the encryption oracles. Then, whenA makes its first
non-Dolev Yao queryB recoverstb using the decryption oracles, and thereforeb.

WhenB needs to produce the bit-string representation of the first messageMi that
containsT , it proceeds as follows. IfT is a nonce,B generates two noncest0 andt1, and
if T is an encryption,B generates two versionst0 andt1 of the encryption (by calling
the encryption algorithm twice, with different random coins); if T is a hash,B generates
two random valuest0 andt1. Then,B constructs the bitstringMi[T 7→ tb] whereb is
the bit used by the left-right encryption oracle. Notice that sinceT is non-deducible it
occurs either under an encryption or under a hash. In either case, we compute the bit-
string associated to the inner-most “protection” oftb, which is either a honest encryption
or a hash, by using either the left-right oracle (if it is an encryption application), or by
a random value (if it is a hash). In the last case we say thatB does acheating hash. We
give examples for the two cases below.

Example 1.If Mi[T ] is of the form{h(M ′[T ])}
ag(i)
ek(a), andT is deducible fromM ′[T ]

by projections (thus is “unprotected” inM ′), thenB computes the concrete counterparts
m0 andm1 for M [t0] andM [t1], respectively and generates a cheating hashh which is

associated to the couple(m0, m1). Then, the representation of{h(M ′[T ])}
ag(i)
ek(a), is an

encryption ofh, computed byB himself.
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If Mi[T ] is of the formh({M ′[T ]}
ag(i)
ek(a)) andT is deducible fromM ′[Tb] by projec-

tion thenB computes concrete counterpartsm0 andm1 for M [t0] andM [t1] and then
uses the left-right oracle to compute{mb}ek(a). The final value is computed byB who
generates a hash valueh for h({mb}ek(a)).

Now we argue thatB is able to proceed simulating the rest of the protocol, namely,
to provide the concrete counterpart ofMj [tb] whereb is the bit used by the left-right
encryption oracle. The problematic cases are whenB receives hash and send requests
send(s, m) or hash(m). In that cases,B first parsesm to make sure that it does not
recovertb in clear, that ism is a non Dolev-Yao message.

– WhenB receives a hash queryhash(m), there are two cases. EitherB has already
generated a hash valueh for m, thenB simply answers byh; or B has generated
a cheating hash value form which means thatm is equal to somemb thusm is
already a non Dolev-Yao message; contradiction. IfB has never generated a hash
value form, B simply generates a new value, gives it toA, and remembers the
association.

– WhenB receives a send requestsend(sid, m), sinceB simulates the protocol it
knows the values off(sid) = (σ, j, p). Let ((l1, r1), . . . , (lk, rk)) be the outcoming
edges of the nodep of Π(j). B tries recursively to find a substitutionθ compatible
with σ such thatm = liσθ. Assume he finds one. If, when parsingm adversaryB
finds a cheating hash or an encryption that was obtained from the left-right oracle,
adversaryB recovers the two possibles valuesm0 and m1 for which we know
that the secret valuet0 or t1 is deducible by projection. Sincetb is non-deducible,
tb must be re-encrypted or hashed inriσθ. As before,B replaces the inner-most
“protection” of Tb, either a honest encryption or a hash, by using either the left-
right oracle or by replacing it by a random value (cheating hash).

Next, we explain howB recoversb out of the first non Dolev-Yao output ofA.
We abuse notation and occasionally writeM for both a symbolic representation of a
message, and for its bit-string representation. Which is the case can always be deduced
from the context.

This message occurs in either a send query, or in a hash request. Let M be the
symbolic representation of the first non-Dolev Yao query ofA, and letp by the path
from the characterization ofM given by Lemma 1. We claim thatB can parseM to
recovertb associated toT , following the pathp. We reason inductively on the structure
of M .

– if M = 〈M1[T ], M2[T ]〉 andp = i · p′, B opensM i following the pathp′.
– if M = {M ′[T ]}l

ek(a) andp = 1 · p′, then by Lemma 9,M does not occur as
subterm of theMi’s, and in particular it has not been obtained using the encryption
oracle. ThusB may submitM to the decryption oracle and recoversM ′[tb]. Then,
tb is recovered following the pathp′.

– if M = h(M ′[T ]) andp = 1 · p′. Eitherh(M ′[mb]) has been obtained using the
random oracle, thusB knows its form, i.e.M ′[mb], and opens it following the path
p′. Alternatively,h(M ′[Mb]) has been obtained by doing acheating hash, i.e.B has
generated a nonce by himself. In this case,h(M ′[mb]) is a subterm of someMi,
which contradicts Lemma 9.
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We conclude thatB is able to retrieveTb thusb, therefore breaking encryption.

H.2 Proof of Lemma 2

Proof. Given an adversaryA for which the above function is non-negligible, we show
how to construct a successful adversaryB against the encryption schemeEnc. Recall
thatB has access to polynomially many left-right encryption oracles, and to the corre-
sponding decryption oracles. We write(pki, ski) (for i = 1, 2, ...) for the encryption
and decryption keys that parametrize the oracle. AdversaryB executesA as a subrou-
tine and simulates forA its environment (that is, the experiment defining secrecy of
nonces) by playing the role of the honest parties whose public keys are set to be keys in
{pk1, pk2, . . .}.

Notice that althoughB does not know the secret keys that correspond to the encryp-
tion keys of the parties that it simulates, it can still parsethe messages sent byA by
using the decryption oracles.

The difference between the normal execution and the execution that is simulated by
B is that the encryptions that the honest parties need to compute are computed using
the left right encryption oracles as follows. Whenever somehonest partyi needs to
encrypt a messagem under the public key of partyj, and the messagem is sufficiently
long (that is, longer than the security parameter), adversary B selects a random message
rm of equal length. The encryption is set to becm, the result obtained by submitting
(m, rm) to the left-right oracle under the public keypkj . AdversaryB maintains a table
of all pairs(m, cm). Whenever a party needs to decrypt a ciphertextcm obtained from
the left-right oracle,B sets the underlying plaintext to bem. In rest, the simulation of
the parties byB is precisely as in the normal execution. The output ofB is whatever
adversaryA outputs. Notice that if the bitb that parametrizes the left-right oracles is0,
then the simulation thatB offers toA is precisely as in the executionExecA,Π whereas
if the bit b is 0 then the simulation thatB offers toA is as inExeco

A,Π . We therefore
have that:

Advindcca
B,Enc (η) = Pr

[
Expindcca0

B,Enc (η) = 1
]
− Pr

[
Expindcca1

B,Enc (η) = 1
]

= Pr [ ExecA,Π(η) = 1 ]− Pr
[
Execo

A,Π(η) = 1
]

SinceEnc is IND-CCA secure, the conclusion of the lemma follows.

H.3 Proof of Lemma 3

Proof. The proof is similar to that of Lemma 2. We show that if there exists a com-
putational adversaryA for which the induced symbolic traces of its oracle execution
are not Dolev-Yao, then, we construct an adversaryB that breaksAE . AdversaryB
executes adversaryA as a subroutine and emulates the environment thatA expects by
simulating the honest parties. AdversaryB intercepts all queries and answers precisely
as adversaryB in the proof of Lemma 2 does. Recall that each time an honest party
needs to encrypt some messagem, adversaryB obtains the corresponding ciphertext by
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submitting(m, rm) to its left-right encryption oracle. Here,rm is selected uniformly at
random among the string of length equal to that ofm.

In addition, adversaryB keeps track of the symbolic trace that corresponds to the
execution trace, simply by parsing all messages that are sent by the adversary and the
honest parties, and constructing (during the execution) the mappingc. Each time adver-
saryA sends a messagem to one of the parties,B verifies if the symbolic representation
of m can be obtained using Dolev-Yao operations from the symbolic representations of
the messages that the adversary had priorly seen. It is knownthat for closed terms the
verification procedure can be done in polynomial time. If at any point the message out-
put byA is not Dolev-Yao, thenB stops its execution and outputs1. Otherwise, whenA
finishes its execution, adversaryB outputs0. Notice that if the bit of the left-right oracle
is 0, thenB simulates perfectly the environment ofExecA,Π(η) whereas ifb = 1, then
the simulation is as inExeco

A,Π(η). Let NDY(ExecA,Π(η)) denote the event that the
executionExecA,Π(η) is not Dolev Yao. Similarly, letNDY(Execo

A,Π(η)) denote the
event that the executionExeco

A,Π(η) is not Dolev Yao. Then, we obtain that:

Advindcca
B,Enc (η) = Pr

[
Expindcca0

B,Enc (η) = 1
]
− Pr

[
Expindcca1

B,Enc (η) = 1
]

= Pr [ NDY(ExecA,Π(η)) ]− Pr
[
NDY(Execo

A,Π(η))
]

SincePr [ NDY(ExecA,Π(η)) ] is negligible (Proposition 1) andAdvindcca
B,Enc (η) is also

negligible (AE is IND-CCA secure), we obtain that

Pr
[
NDY(Execo

A,Π(η))
]

= Pr [ NDY(ExecA,Π(η)) ]−Advindcca
B,Enc (η)

is also negligible. We conclude that inExeco
A,Π the computational execution traces are

valid Dolev-Yao traces.
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