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Abstract We present a computational analysis of ba-

sic Kerberos with and without its public-key extension

PKINIT in which we consider authentication and key
secrecy properties. Our proofs rely on the Dolev–Yao-

style model of Backes, Pfitzmann, and Waidner, which

allows for mapping results obtained symbolically within

this model to cryptographically sound proofs if certain
assumptions are met. This work was the first verifi-

cation at the computational level of such a complex

fragment of an industrial protocol. By considering a

recently fixed version of PKINIT, we extend symbolic

correctness results we previously attained in the Dolev–
Yao model to cryptographically sound results in the

computational model.
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1 Introduction

Cryptographic protocols have traditionally been veri-

fied in one of two ways: the first, known as the Dolev–

Yao or symbolic approach, abstracts cryptographic con-

cepts into an algebra of symbolic messages [33]; the
second, known as the computational or cryptographic

approach, retains the concrete view of messages as bit-

strings and cryptographic operations as algorithms on

bitstrings, while drawing security definitions from com-
plexity theory [16, 35, 36]. While proofs in the com-

putational approach (with its much more comprehen-

sive adversary model) entail stronger security guaran-

tees, conducting such proofs by hand is tedious and

error-prone even for simple protocols and impractical
for larger protocols. A first approach in mechanizing

proofs in this model has so far only been tested on one

commercial protocol [18]. On the other hand, verifica-

tion methods based on the Dolev–Yao abstraction have
become efficient and robust enough to tackle a wide

range of large commercial protocols, often even auto-

matically [1, 14, 15, 20, 21, 44].

Kerberos, a widely deployed protocol that allows

a user to authenticate herself to multiple end servers
based on a single login, constitutes one of the most

important examples that have been formally analyzed

within the Dolev–Yao approach so far. Kerberos 4, the

then prevalent version, was verified using the Isabelle

theorem prover [14,15]. The currently predominant ver-
sion, Kerberos 5 [50], has been extensively analyzed

using the Dolev–Yao approach. This analysis of Ker-

beros 5 showed: (a) the core protocol enjoys the ex-

pected authentication and secrecy properties except for
some relatively innocuous anomalies [20]; (b) “cross-

realm” authentication in Kerberos is correct when com-

pared against its specification but has weaknesses in



practice [27]; and (c) the then-current specification of

the public-key extension (PKINIT) of Kerberos was

susceptible to a serious attack [24–26]. The discovery of

the attack on PKINIT led to an immediate correction

of the specification and a security bulletin and patch
for Microsoft Windows [46].

The earlier security proofs for both Kerberos 5 and

the fixes to PKINIT were carried out in the Dolev–Yao

approach. Thus, despite the extensive research dedi-
cated to the Kerberos protocol, and despite its tremen-

dous importance in practice, at the time of our pre-

liminary report on this work [5] it remained an open

question whether an actual implementation of Kerberos

based on provably secure cryptographic primitives is se-
cure under cryptographic security definitions with its

much more comprehensive adversary. We closed this

gap (at least partially) in the preliminary version of

this paper [5] by providing the first security proofs of
the core aspects of the Kerberos protocol in the compu-

tational approach. More precisely, we showed in the pre-

liminary version of this paper [5] that core parts of Ker-

beros 5 are secure against arbitrary active attacks if the

Dolev–Yao-based abstraction of the employed cryptog-
raphy is implemented with actual cryptographic prim-

itives that satisfy the commonly accepted security no-

tions under active attacks, e.g., IND-CCA2 for public-

key encryption.

Obviously, establishing proofs in the computational
approach presupposes dealing with cryptographic de-

tails such as computational restrictions and error prob-

abilities, hence one naturally assumes that our proofs

heavily rely on complexity theory. However, our proofs
are not performed from scratch in the cryptographic

setting, but based on the Dolev–Yao-style framework

of Backes, Pfitzmann, and Waidner [8, 11, 12] (called

the BPW model henceforth), which provides computa-

tionally faithful symbolic abstractions of cryptographic
primitives. The symbolically proved security proper-

ties also hold computationally when the symbolic ab-

stractions are implemented with actual (secure) cryp-

tographic operations. Thus our proofs themselves are
symbolic in nature, but refer to primitives from the

BPW model. Kerberos is the largest and most complex

protocol whose cryptographic security has so far been

inferred from proofs in this approach. Earlier proofs in

this approach were conducted mainly for small exam-
ples of primarily academic interest [4,7,10]; some simi-

lar work had been done on industrial protocols, e.g., by

He and Mitchell [38], although none that were as com-

plex as Kerberos. (In Sec. 1.1, we note other analyses
of industrial protocols that appeared after the prelimi-

nary report on this work [5].) We furthermore analyze

the recently fixed version of PKINIT and derive compu-

tational guarantees for it from a symbolic proof based

on the BPW model. Finally, we also draw some lessons

learned in the process, which highlight areas where to

focus research in order to simplify the verification of

large commercial protocols with computational secu-
rity guarantees. In particular it would be desirable to

devise suitable proof techniques, based on the BPW

model, for splitting large protocols into smaller pieces

which can then be analyzed modularly while still re-
taining the strong link between the Dolev–Yao and the

computational approaches. We view this as a research

opportunity for the short-term future.

This paper extends work that has previously ap-

peared in abbreviated form [5]. Differently from that
presentation, here we present the full set of algorithms

formalizing Kerberos and PKINIT as well as more com-

plete proofs of our results. We have also changed our

formalization of certificates binding keys to principals.
Essentially, we now represent certificates using data

structures which have previously been studied in the

BPW model instead of defining new structures, which

would require separate analysis of those structures.

1.1 Related Work

Early work on linking Dolev–Yao models and cryptog-

raphy [2, 3, 37, 42] only considered passive attacks, and

therefore cannot make general statements about pro-
tocols. A cryptographic justification for a Dolev–Yao

model in the sense of simulatability [51], i.e., under ac-

tive attacks and within arbitrary surrounding interac-

tive protocols, was first given by Backes, Pfitzmann,
and Waidner in [11] with extensions in [8, 12]. Based

on that Dolev–Yao model, the well-known Needham-

Schroeder-Lowe, Otway-Rees, and Yahalom protocols

were proved secure in [4, 7, 10]. All these protocols are

considerably simpler than Kerberos, which we analyze
in this paper, and arguably of much more limited prac-

tical interest. Some work has been done on industrial

protocols, such as 802.11i [38], although Kerberos is still

a much more complex protocol.
Laud [43] has presented a cryptographic underpin-

ning for a Dolev–Yao model of symmetric encryption

under active attacks. His work is directly connected

with a formal proof tool, but it is specific to certain

confidentiality properties and protocol classes. Herzog
et al. [39] and Micciancio and Warinschi [45] have also

given a cryptographic underpinning under active at-

tacks. They consider slightly simpler real implemen-

tations than in [11], but their results are specific for
public-key encryption and certain protocol classes and

are thus narrower than those in [11]. Cortier and Warin-

schi [29] have shown that symbolically secret nonces are
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also computationally secret, i.e., indistinguishable from

a fresh random value given the view of a cryptographic

adversary. Backes and Pfitzmann [9] and Canetti and

Herzog [23] have established new symbolic criteria for

proving a key cryptographically secret. Unfortunately,
none of this work is comprehensive enough to provide

computational security guarantees for Kerberos based

on an existing symbolic proof; the work is missing suit-

able cryptographic primitives or it relies on slightly
changed symbolic abstractions, e.g., as in [11].

Subsequent to the first version of this work [5], var-

ious additional related work has appeared in the liter-
ature. Boldyreva and Kumar showed in [19] that the

encryption algorithm of the simplified profile of basic

Kerberos satisfies the cryptographic assumptions made

in [5] for symmetric encryption. They also showed that
the general profile encryption of basic Kerberos is weak,

and propose a corrected version of the general profile

encryption that satisfies these properties. Roy et al. [52]

also proved computational security of Kerberos. In [53],

Roy et al. proved computational security of the PKINIT
operation mode (“DH mode”) that we do not consider

here, as well as security of IKEv2. As another example

of cryptographic proofs of security of an industrial-scale

protocol, Gajek et al. [34] proved security properties of
TLS. In work with Blanchet [18], the last three authors

of this paper used the CryptoVerif tool [17] to mechan-

ically prove security properties of Kerberos in the com-

putational model. CryptoVerif relies on a probabilistic

polynomial-time process calculus [48].

There is also other work on formulating syntactic

calculi for dealing with probability and polynomial-time
considerations and encoding them into proof tools, in

particular [30,41,47]. This is orthogonal to the work of

justifying Dolev–Yao models, which offer a higher level

of abstractions and thus much simpler proofs where ap-

plicable, so that proofs of larger systems can be auto-
mated.

1.2 Structure of the Paper

We start in Section 2 with a review of Kerberos and
its public-key extension PKINIT. In Section 3, we re-

call the BPW model (e.g., [6,8,12,13]), and apply it to

the specification of Kerberos 5 and public-key Kerberos

(i.e., Kerberos with PKINIT). Section 4 proves security
results for these protocols and lifts them to the compu-

tational level. Finally, Section 5 summarizes this effort

and outlines areas of future work.

2 Kerberos 5 and its Public-Key Extension

The Kerberos protocol [49, 50] allows a legitimate user

to log on to her terminal once a day (typically) and

then transparently access all the networked resources
she needs for the rest of that day in her organization.

Each time she wants to, e.g., retrieve a file from a re-

mote server, a Kerberos client running on her behalf se-

curely handles the required authentication. The client
acts behind the scenes, without any user intervention.

The main Kerberos protocol comprises three ex-

changes: the initial round of authentication, in which
the client obtains log-in credentials that might be good

for a full day; the second round of authentication, in

which she presents her first credentials in order to ob-

tain a short-term credentials (five-minute lifetime) to
use a particular network service; and the client’s inter-

action with the network service, in which she presents

her short-term credentials in order to negotiate access

to the service.

In the core specification of Kerberos 5 [50], all three

exchanges solely use symmetric (shared-key) cryptog-

raphy. Since the initial specification of Kerberos 5, the
protocol has been extended by the definition of an al-

ternate first round which uses asymmetric (public-key)

cryptography. This alternative exchange, that is called

PKINIT, may be used in two modes: “public-key en-

cryption mode” and “Diffie–Hellman (DH) mode.” In
recent work [24–26], we showed that there was an attack

against the then-current draft specification of PKINIT

when the public-key encryption mode was used and

then symbolically proved the security of the specifica-
tion as it was revised in response to our attack. Here

we study both basic Kerberos (without PKINIT) and

the public-key mode of PKINIT as it was revised to

prevent our attack. The fix first appeared in revision

27 of the PKINIT specification [40]; subsequent drafts
have not changed this aspect of PKINIT. The fix is also

present in the current version of PKINIT [55], which is

now a RFC within the IETF [54] standards process.

In the rest of this section, we describe the operation
of both basic Kerberos and Kerberos with PKINIT in

public-key mode.

Kerberos Basics The client process—usually acting

for a human user—interacts with three additional types
of principals when using Kerberos 5 (with or without

PKINIT). The client’s goal is to be able to authenti-

cate herself to various application servers (e.g., email,

file, and print servers). This is done by obtaining a
“ticket-granting ticket” (TGT) from a “Kerberos Au-

thentication Server” (KAS) and then presenting this to

a “Ticket-Granting Server” (TGS) in order to obtain
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C KAS

• •✲C, T, n1
n1

•
❄
AK, tK

• ✛ C, TGT , {AK, n1, tK , T}kC

Fig. 1 Message Flow in the Traditional AS Exchange, where TGT = {AK, C, tK}kT
.

a “service ticket” (ST), the credentials that the client

uses to authenticate herself to the application server. A
TGT might be valid for a day, and may be used to ob-

tain several STs for many different application servers

from the TGS, while a single ST is valid for a few min-

utes (although it may be used repeatedly) and is used
for a single application server. The KAS and the TGS

are together known as the “Key Distribution Center”

(KDC).

The client’s interactions with the KAS, TGS, and

different application servers are called the Authentica-
tion Service (AS), Ticket-Granting (TG), and Client-

Server (CS) exchanges, respectively. We will describe

the AS exchange separately for basic and public-key

Kerberos; as PKINIT does not modify the other ex-
changes, we only need to describe them once.

The Traditional AS Exchange The abstract struc-

ture of the AS exchange is given in Figure 1. A client

C generates a fresh nonce n1 and sends it, together
with her own name and the name T of the TGS for

whom she desires a TGT, to the KAS K. This message

is called the AS REQ message [50]. The KAS responds

by generating a fresh authentication key AK for use be-
tween the client and the TGS and sending an AS REP

message to the client. Within this message, AK is sent

back to the client in the encrypted message component

{AK, n1, tK , T }kC
; this also contains the nonce n1 from

the AS REQ, the KAS’s local time tK , and the name of
the TGS for whom the TGT was generated. (The AK

and tK to the right of the figure illustrate that these

values are new between the two messages.) This com-

ponent is encrypted under a long-term key kC shared
between C and the KAS; this key is usually derived

from the user’s password. This is the only time that

kC is used in a standard Kerberos run because later

exchanges use freshly generated keys. AK is also in-

cluded in the ticket-granting ticket TGT sent alongside
the message encrypted for the client. The TGT consists

of AK, C, tK , where tK is K’s local time, encrypted un-

der a long-term key kT shared between the KAS and the

TGS named in the request. The computational model
we use here does not support timestamps, so we will

treat these as nonces; as shown in [28], this does not

alter the authentication and confidentiality properties

of a protocol such as Kerberos. These encrypted mes-

sages are accompanied by the client’s name—and other
data that we abstract away—sent in the clear. Once

the client has received this reply, she may undertake

the Ticket-Granting exchange.

It should be noted that the actual AS exchange,

as well as the other exchanges in Kerberos, is more

complex than the abstract view given here. We refer

the reader to [50] for the complete specification of Ker-
beros 5, [55] for the specification of PKINIT, and [20]

for a formalization of Kerberos at an intermediate level

of detail.

The AS Exchange with PKINIT PKINIT [40] is

an extension to Kerberos 5 that uses public key cryp-
tography to avoid shared secrets between a client and

KAS; it modifies the AS exchange but not other parts

of the basic Kerberos 5 protocol. The long-term shared

key (kC) in the traditional AS exchange is typically de-

rived from a password, which limits the strength of the
authentication to the user’s ability to choose and re-

member good passwords; PKINIT does not use kC and

thus avoids this problem. Furthermore, if a public key

infrastructure (PKI) is already in place, PKINIT allows
network administrators to use it rather than expending

additional effort to manage users’ long-term keys as in

traditional Kerberos. This protocol extension adds com-

plexity to Kerberos as it retains symmetric encryption

in the later rounds but relies on asymmetric encryption,
digital signatures, and corresponding certificates in the

first round.

In PKINIT, the client C and the KAS each possess

public/private key pairs, (pkC , skC) and (pkK , skK), re-

spectively. Certificate sets CertC and CertK issued by

a PKI independent from Kerberos are used to testify of

the binding between each principal and her purported
public key. This simplifies administration as authenti-

cation decisions can now be made based on the trust

the KDC holds in just a few known certification au-

thorities within the PKI, rather than keys individu-
ally shared with each client (local policies can, however,

still be installed for user-by-user authentication). Dic-

tionary attacks are defeated as user-chosen passwords
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C KAS

• •✲CertC , [tC , n2]skC
, C, T, n1n1,

n2, tC

•
❄

k, AK
tK

• ✛ {{CertK , [k, ck]skK
}}pkC

, C,TGT , {AK, n1, tK , T}k

Fig. 2 Message flow in the fixed version of PKINIT, where TGT = {AK, C, tK}kT
.

are replaced with automatically generated asymmetric

keys.1

As noted above, PKINIT can operate in two modes.

These resemble the basic AS exchange in that the KAS
generates a fresh key AK for the client and TGS to

use, and then the KAS transmits AK and the TGT to

the client. The modes of PKINIT provide two differ-

ent ways for the KAS to transmit this key using the

asymmetric key pairs rather than a key that is shared
between the client and KAS. In DH mode, the key pairs

(pkC , skC) and (pkK , skK) are used to provide digital

signature support for an authenticated Diffie-Hellman

key agreement which produces a key which is then used
to protect the fresh key AK. A variant of this mode al-

lows the reuse of previously generated shared secrets.

In public-key encryption mode, analyzed here, the key

pairs are used for both signature and encryption. The

latter is designed to (indirectly) protect the confiden-
tiality of AK, while the former ensures its integrity.

We will not discuss the DH mode any further; the
only support we are aware of for this mode is in the

PacketCable system [22], developed by CableLabs, a

cable television research consortium. As noted above,

DH mode has been analyzed by Roy et al. [53].

Figure 2 illustrates the AS exchange when the fixed

version (which defends against the attack of [24–26])

of PKINIT is used. Here we use [m]sk for the digital
signature of message m with secret key sk, {{m}}pk for

the encryption of m with the public key pk, and {m}k
for the encryption of m with the symmetric key k.

The first line of Fig. 2 shows our formalization of

the AS REQ message that a client C sends to a KAS

K when using PKINIT. The last part of the message —

C, T, n1 — is the message in the traditional AS REQ
message. The new data that is added by PKINIT con-

sists of the client’s certificates CertC and her signa-

ture (with her secret key skC) over a timestamp tC and

another nonce n2. (The nonces and timestamp at the

1 The login process changes as very few users would be able
to remember a random public/secret key pair. In Microsoft Win-
dows, keys and certificate chains are stored in a smartcard that
the user swipes in a reader at login time. A passphrase is generally
required as an additional security measure [32]. Other possibil-
ities include keeping these credentials on the user’s hard drive,
again protected by a passphrase.

left of this line indicate that these are generated by C

specifically for this request.)

The second line in Figure 2 shows our formaliza-

tion of K’s response, which is more complex than in

basic Kerberos. The last part of the message—C, TGT,
{AK, n1, tK , T }k—is very similar to K’s reply in ba-

sic Kerberos; the difference is that the symmetric key

k (which takes the place of kC in basic Kerberos) pro-

tecting AK is now freshly generated by K and is not

a long-term shared key. Because k is freshly generated
for the reply, it must be communicated to C before she

can learn AK. PKINIT does this by adding the mes-

sage {{CertK , [k, ck]skK
}}pkC

. This contains K’s certifi-

cates and his signature, using his secret key skK , over k
and a keyed hash ck (‘checksum’ in the language of [50])

taken over the entire request AS REQ from C using the

key k; all of this is encrypted under C’s public key pkC .

The keyed hash ck binds this response to the client’s

request and was added in response to the attack we
discovered and reported in [24–26].

The Later Exchanges After the client C has ob-

tained the key AK and the TGT, either through the ba-
sic AS exchange or the PKINIT AS exchange, she then

initiates the TGS exchange. This exchange is shown in

Fig. 3. The first line of this figure shows our formaliza-

tion of the client’s request, called a TGS REQ message;

it contains the TGT (which is opaque to the client), an
authenticator {C, tC}AK , the name of the server S for

which C desires a service ticket, and a nonce n3. Once

the TGS receives this message, he decrypts the TGT

to learn AK and uses this to decrypt the authentica-
tor. Assuming his local policies for granting a service

ticket are satisfied (while we do not model these here,

they might include checks such as whether the request

is sufficiently fresh), the TGS produces a fresh key SK

for C and S to share and sends this back to the client in
a TGS REP message. The form of this message is essen-

tially the same as the basic AS REP message from the

KAS to C: it contains a ticket (now the service ticket,

or ST, {SK, C, tT }kS
instead of the TGT) encrypted

for the next server (now S instead of T ) and encrypted

data for C (now encrypted under AK instead of kC or

k).
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C TGS

• •✲TGT , {C, tC}AK , S, n3
n3

•
❄
SK, tT

• ✛ C, ST , {SK,n3, tT , S}AK

Fig. 3 Message flow in the TGS exchange, where TGT = {AK,C, tK}kT
and ST = {SK,C, tT }kS

.

Finally, after using the AS exchange to obtain the

key SK and the ST, the client may use the CS ex-
change to authenticate herself to the end server. Fig-

ure 4 shows this exchange, including the optional reply

from the server that authenticates this server to the

client. As shown in the first line of the figure, C starts
by sending a message (AP REQ) that is similar to the

TGS REQ message of the previous round: in contains

the (service) ticket and an authenticator ({C, t′C}SK)

that is encrypted under the key contained in the ST.

As shown in the second line of the figure, the server
S simply responds with an AP REP message {t′C}SK

containing the timestamp from the authenticator en-

crypted under the key from the ST.

Attack on PKINIT The attack we found against

the then-current specification of PKINIT was reported

in [24–26]. This attack was possible because, at the

time, the reply from the KAS to the client contained

[k, n2]skK
in place of [k, ck]skK

. In particular, the KAS
did not sign any data that depended upon the client’s

name. This allowed an attacker who was herself a legit-

imate client to intercept a message from another client

C to the KAS, use this data in her own request to the
KAS, read the reply from the KAS, and then send this

reply to C as though it was generated by the KAS for

C (instead of for the attacker). The effect of this at-

tack was that the attacker could gain knowledge of all

new keys shared between the client and various servers.
It could do so either by translating messages as in the

AS exchange (collecting keys along the way), or by im-

personating these servers (and creating the keys in the

first place). In the former variation, the client would be
authenticated as the attacker and not as C.

Security Properties We now summarize the security

properties that we prove here at the symbolic level for

both basic Kerberos and Kerberos with PKINIT; the
implications on the computational level are discussed in

the subsequent sections. We have proved similar prop-

erties in symbolic terms using a formalization in MSR

for basic Kerberos [20, 21] and for the AS exchange
when PKINIT is used [24–26]. Our subsequent work

with CryptoVerif has given mechanized proofs of sim-

ilar properties in the computational model [18]. The

first property we prove here concerns the secrecy of

exchanged keys, a notion that is captured formally as
Definition 1 in Section 4. This property may be sum-

marized as follows.

Property 1 (Key secrecy) For any honest client C and

honest server S, if the TGS T generates a symmetric

key SK for C and S to use (in the CS exchange), then

the intruder does not learn the key SK.

The second property we study here concerns entity

authentication, formalized as Definition 2 in Section 4.

This property may be summarized as follows.

Property 2 (Authentication properties)

i. If a server S completes a run of Kerberos, apparently
with C, then earlier: (a) C started the protocol with

some KAS to get a ticket-granting ticket; and (b)

then requested a service ticket from some TGS.

ii. If a client C completes a run of Kerberos, apparently

with server S, then S sent a valid AP REP message
to C.

Theorem 1 below shows that these properties hold
for our symbolic formalizations of basic and public-key

Kerberos in the BPW model; Theorem 2 shows that

the authentication property holds as well for crypto-

graphic implementations of these protocols if provably

secure primitives are used; the standard cryptographic
definition of key secrecy however turns out not to hold

for cryptographic implementations of Kerberos. We will

return to this point below. Because authentication can

be shown to hold for Kerberos with PKINIT, it fol-
lows that at the level of cryptographic implementation,

the fixed specification of PKINIT does indeed defend

against the attack reported in [24–26].

3 The BPW Model

We will now abstractly review the BPW model and then
formalize Kerberos using it.

3.1 Review of the BPW Model

The BPW model introduced in [13] offers a determinis-

tic Dolev–Yao style formalism of cryptographic proto-
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C S

• •✲ST , {C, t′
C
}SK

•
❄

• ✛ {t′C}SK

Fig. 4 Message flow in the CS exchange, where ST = {SK, C, tT }kS
.

cols with commands for a vast range of cryptographic

operations such as public-key and symmetric-key en-
cryption/decryption, generation and verification of dig-

ital signatures as well as message authentication codes,

and nonce generation as well as the inclusion of pay-

loads (application data). Every protocol participant is
assigned a machine (an I/O automaton), which is con-

nected to the machines of other protocol participants

and which executes the protocol for its user by inter-

acting with the other machines (see Fig. 5). In this reac-

tive scenario, semantics is based on state, i.e., on who
already knows which terms. The state is here repre-

sented by an abstract “database” and handles to its

entries: Each entry (denoted D[j]) of the database has

a type (e.g., “signature”) and pointers to its arguments
(e.g., “private key” and “message”). This corresponds

to the way Dolev–Yao terms are represented. Further-

more, each entry in the abstract database also comes

with handles to participants who have access to that

entry. These handles determine the state. The BPW
model does not allow cheating: only if a participant has

a handle to the entry D[j] itself or to the right entries

that could produce a handle to D[j] can the participant

learn the term stored in D[j]. For instance, if the BPW
model receives a command, e.g., from a user machine,

to encrypt a message m with key k, then it makes a

new abstract database entry for the cyphertext with a

handle to the participant that sent the command and

pointers to the message and the key as arguments; only
if a participant has handles to the cyphertext and also

to the key can the participant ask for decryption. Fur-

thermore, if the BPW model receives the same encryp-

tion command a second time then it will generate a new
(different) entry for the cyphertext. This meets the fact

that secure encryption schemes are necessarily proba-

bilistic. Entries are made known to other participants

by a send command, which adds handles to the entry.

The BPW model is based on a detailed model of

asynchronous reactive systems introduced in [51] and

is represented as a deterministic machine THH (also

an I/O automaton), called trusted host, where H ⊂
{1, . . . , n} denotes the set of honest participants out

of all m participants. This machine executes the com-

mands from the user machines, in particular including

the commands for cryptographic operations. A system

consists of several possible structures. A structure con-
sists of a set M̂ of connected correct user machines and

a subset S of the free ports, i.e., S is the user interface of

honest users. In order to analyze the security of a struc-

ture (M̂, S), an arbitrary probabilistic polynomial-time
user machine H is connected to the user interface S and

a polynomial-time adversary machine A is connected

to all the other ports and H. This completes a struc-

ture into a configuration of the system (see Fig. 5).

The machine H represents all users. A configuration
is a runnable system, i.e., for each security parameter

k, which determines the input lengths (including the

key length), one gets a well-defined probability space

of runs. The BPW model maintains length functions
on the entries of the abstract database; to guarantee

that the system is polynomially bounded in the secu-

rity parameter, there are then bounds on the lengths

of messages, as well as bounds on the number of signa-

tures per key and the number of inputs per port [13].
The view of H in a run is the restriction to all inputs

and outputs that H sees at the ports it connects to, to-

gether with its internal states. Formally one defines the

view viewconf (H) of H for a configuration conf to be
a family of random variables Xk where k denotes the

security parameter. For a given security parameter k,

Xk maps runs of the configuration to a view of H.

Corresponding to the BPW model, there exists a
cryptographic implementation of the BPW model and

a computational system, in which honest participants

also operate via handles on cryptographic objects. How-

ever, the objects are now bitstrings representing real
cryptographic keys, cyphertexts, etc., acted upon by

interactive polynomial-time Turing machines (instead

of the symbolic machines and the trusted host). The

implementation of the commands now uses provably

secure cryptographic primitives according to standard
cryptographic definitions (with small additions like type

tagging and additional randomization). In [8, 11–13] it

was established that the cryptographic implementation

of the BPW model is at least as secure as the BPW
model (denoted by ≥, see Fig. 6), meaning that what-

ever an active adversary can do in the implementa-

tion can also be achieved by another adversary in the
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Fig. 5 Overview of the Kerberos symbolic system

BPW model, or the underlying cryptography can be
broken. More formally, a system Sys1 being at least

as secure as another system Sys2 means that for all

probabilistic polynomial-time user H, for all probabilis-

tic polynomial-time adversary A1 and for every com-
putational structure (M̂1, S) ∈ Sys1, there exists a po-

lynomial-time adversary A2 on a corresponding sym-

bolic structure (M̂2, S) ∈ Sys2 such that the view of H

is computationally indistinguishable in both configura-

tions (Fig. 6). This captures the cryptographic notion
of reactive simulatability.

3.2 Public-key Kerberos in the BPW Model

We now model the Kerberos protocol in the framework

of [13] using the BPW model. We write “:=” for deter-

ministic assignment, “=” for testing for equality and
“←” for probabilistic assignment.

The descriptions of the symbolic systems of Ker-

beros 5 and PKINIT are very similar, with the dif-
ference that the user machines follow different algo-

rithms for the two protocols. We denote Kerberos with

PKINIT by “PK,” and basic Kerberos by “K5.” If we

let Kerb∈{PK, K5} then, as described in Section 3.1,
for each user u ∈ {1, . . . , n} there is a protocol machine

MKerb
u which executes the protocol for u. There are also

protocol machines for the KAS K and the TGT T , de-

noted by MKerb
K and MKerb

T . Furthermore, if S1, . . . , Sl

are the servers in T ’s ‘realm’,2 then there are server ma-
chines MKerb

S for S ∈ {S1, . . . , Sl}. Each user machine is

connected to the user via ports: A port for outputs to

2 I.e., administrative domain; we do not consider cross-realm
authentication here, although it has been analyzed symbolically
in [27]

the user and a port for inputs from the user, labeled
KA outu! and KA inu?, respectively (“KA” for“Key

sharing and Authentication”). The ports for the server

machines are labeled similarly (see Fig. 5).

The behaviors of the protocol machines is described

in Algorithm 1 to 5 (Figs. 7–15). In the following, we

comment on two algorithms of PKINIT (Fig. 7 and

Fig. 8), the others are displayed in Appendix A. If, for
instance, a protocol machine MPK

u receives a message

(new prot, PK, K, T ) at KA inu? then it will execute

Algorithm 1A (Fig. 7) to start a protocol run. We give

a description below. The state of the protocol machine

MKerb
u consists of the bitstring u and the sets Nonceu,

Nonce2u, TGT icket, and Session KeysSu, in which

MKerb
u stores nonces, ticket-granting tickets, and the

session keys for server S, respectively. This is the in-

formation a client needs to remember during a protocol
run.

Only the machines of honest users u ∈ {1, . . . , n}
and honest servers S ∈ {S1, . . . , Sl} will be present in
the protocol run, in addition to the machines for K and

T . The others are subsumed in the adversary. We de-

note by H ⊂ {1, . . . , n, K, T, S1, . . . , Sl} the honest

participants, i.e., for v ∈ H the machine MKerb
v is guar-

anteed to run correctly. And we assume that KAS K
and TGS T are always honest, i.e., K, T ∈ H.

Furthermore, given a set H of honest participants,

with {K, T } ⊂ H ⊂ {1, . . . , n, K, T, S1, . . . , Sl} the
user interface of public-key Kerberos will be the set

SH := {KA outu!, KA inu? |u ∈ H\{K, T }}. The sym-

bolic system is the set SysKerb, symb := {(M̂H, SH)}.
Note that, because we are working in an asynchronous
system, we are replacing protocol timestamps by arbi-

trary messages that we assume are known to the par-

ticipants generating the timestamps (e.g. nonces). All
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algorithms should immediately abort if a command to

the BPW model yields an error, e.g., if a decryption

request fails.

Notation The entries of the database D are all of

the form (ind, type, arg, hndu1
,. . . ,hndum

,hnda, len),

where H = {u1, . . . , um}. We denote by ↓ an error ele-
ment available to all ranges and domains of all functions

and algorithms. So, e.g., hnda =↓ means the adversary

does not have a handle to the entry. For entries x ∈ D,

the index x.ind ∈ INDS consecutively numbers all

entries in D. The set INDS is isomorphic to N and is
used to distinguish index arguments. We write D[i] for

the selection D[ind = i], i.e., it is used as a primary key

attribute of the database. The entry x.type ∈ typeset =

{auth, cert, enc, nonce, list, pke, pkse, sig, ske, skse}
identifies the type of x. Here ske/pke is a private/public

key pair and skse is a symmetric key which comes with a

‘public’ key pkse. This “public key identifier” pkse can-

not be used for any cryptographic operation but works

as a pointer to skse instead (see [7] for a more detailed
explanation). The entry x.arg = (a1, . . . , aj) is a pos-

sibly empty list of arguments. Many values ai are in

INDS. x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are

handles by which u knows this entry. We always use a
superscript “hnd” for handles. x.len ∈ N0 denotes the

“length” of the entry; it is computed by applying length

functions (mentioned in Sec. 3.1).

Initially, D is empty. THH has a counter size ∈
INDS for the current size of D. For the handle at-
tributes, it has counters currhndu initially 0. First we

need to add the symmetric keys shared exclusively by

K and T , S and T . Public-key Kerberos uses certifi-

cates; therefore, in this case all users need to know the
public key for certificate authorities and have their own

public-key certificates signed by a certificate authority.

For simplicity we use only one certificate authority CA.

Therefore, we add to D an entry for the public key of

CA with handles to all users (i.e., to all user machines).

And for every user we add an entry for the certificate
of that user signed by the certificate authority with a

handle to the user (machine). In the case of Kerberos 5,

we are adding entries for the key ku shared exclusively

by K and u, for all user u.

Note that, in contrast to the analysis of Kerberos
in MSR, the BPW model does not come with a type

for certificates. As certificates rely on signatures of a

certificate authority with the intend of binding a users

name and the user’s public key, here we formalize cer-
tificates as signature by an certificate authority over

a list consisting of a user’s name and the user’s pub-

lic key. Alternatively, one could extend the symbolic

BPW model by defining a type certificate and basic

commands for the ideal BPW model that, e.g., verify
the certificates and extract the public key of a user from

the certificate (the approach that we took in our initial

report [5]). One should then also construct correspond-

ing commands for the computational BPW model and
show that the soundness (which relies on the already

proved soundness of signatures) of the results showed

in the symbolic BPW model still holds when one rea-

sons about certificates; we expect that this would be

similar to the proof of soundness for signatures, and
that it would not pose a problem.

Example of Algorithms We are only going to exam-

ine PKINIT (Fig. 2) and explain the steps of its Algo-
rithms 1A and 2 (Fig. 7 and Fig. 8), which are more

complex than the algorithms in Kerberos 5. However,

with these explanations the remaining algorithms (Ap-

pendix A) should be easily understandable. For details
on the definition of the used commands see [8, 12, 13].

For readability of the figures, we note on the right (in

curly brackets) to which terms in the more commonly
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A) Input:(new prot, PK, K, T ) at KA inu? .

1. nu,1thnd
u ← gen nonce()

2. nhnd
u,2 ← gen nonce()

3. lhnd ← list(thnd
u , nhnd

u,2 ) {l ≈ (tC , n2)}

4. shnd ← sign(skehnd
u , lhnd) {s ≈ [tC , n2]skC

}

5. uhnd ← store(u)
6. T hnd ← store(T )
7. mhnd

1 ← list(certhnd
u , shnd, uhnd, T hnd, nhnd

u,1 )
{m1 ≈ CertC , [tC , n2]skC

, C, T, n1}

8. Nonceu := Nonceu ∪ {(nhnd
u,1 , mhnd

1 , K)}

9. send i(K, mhnd
1 )

B) Input:(continue prot, PK, T, S, AKhnd) at KS inu? for S ∈
{S1, ..., Sl}

1. if (∄ (TGT hnd, AKhnd, T ) ∈ TGTicketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u ) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}
6. nhnd

u,3 ← gen nonce()

7. Nonce2u := Nonce2u ∪ {nhnd
u,3 , T, S)}

8. mhnd
3 ← list(TGT hnd, authhnd, uhnd, Shnd, nhnd

u,3 )
{m3 ≈ TGT , {C, tC}AK , C, S, n3}

9. send i(T, mhnd
3 )

Fig. 7 Algorithm 1 of Public-key Kerberos: Evaluation of inputs
from the user (starting the AS and TG exchange).

used Dolev–Yao notation the terms in the algorithms

correspond (≈).

Protocol start of PKINIT. In order to start a new run

of PKINIT, user u inputs (new prot, PK, K, T ) at port

KA inu?. Upon such an input, MPK
u runs Algorithm 1A

(Fig. 7) which prepares and sends the AS REQ, i.e., the

first message in the AS exchange, to K using the BPW
model. MPK

u generates symbolic nonces in steps 1A.1

and 1A.2 by sending the command gen nonce(). In step

1A.3 the command list( , ) concatenates tu and nu,2

into a new list that is signed in step 1A.4 with u’s pri-
vate key. Because we are working in an asynchronous

system, the timestamp tu is approximated by some arbi-

trary message (e.g., by a nonce). The command store( )

in step 1A.5–6 makes entries in the database for the

names of u and T . Handles for the names u and T are
returned, which are added to a list in the next step.

MPK
u stores information in the set Nonceu, which it

will need later in the protocol to verify the message au-

thentication code sent by K. In step 1A.8 Nonceu is
updated. Finally, in step 1A.9 the AS REQ is sent over

an insecure (“i” for “insecure”) channel.

Behavior of the KAS K in PKINIT. Upon input (v, K,

i, mhnd) at port outK? with v ∈ {1, .., n}, the machine

MPK
K runs Algorithm 2 (Fig. 8), which first checks if

the message m is a valid AS REQ and then prepares

and sends the corresponding AS REP. In order to ver-

ify that the input is a possible AS REQ, the types of

Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, ...,5

2. typei ← get type(xhnd
i ) for i = 1, 2, 5
{x1 ≈ CertC , x2 ≈ [tC , n2]skC

, x5 ≈ n1}
3. xi ← retrieve(xhnd

i ) for i = 3, 4 {x3 ≈ C, x4 ≈ T}
4. if (type1 6= sig)∨(type2 6= sig)∨(type5 6= Nonce)∨(x3 6= v)∨

(x4 6= T ) then
5. Abort
6. end if
7. yhnd

2 ← msg of sig(xhnd
1 )

8. b← verify(xhnd
1 , pkehnd

CA , yhnd
2 )

9. if b = false then
10. Abort
11. end if
12. whnd

j ← list proj(yhnd
2 , i) for i = 1, 2

13. w1 ← retrieve(whnd
1 )

14. type6 ← get type(whnd
2 )

15. if (type6 6= pke ∨w1 6= v then
16. Abort
17. end if
18. yhnd

1 ← msg of sig(xhnd
2 ) {y1 ≈ tC , n2}

19. b← verify(xhnd
2 , whnd

2 , yhnd
1 ) {x2 ≈ [tC , n2]skC

}
20. if b = false then
21. Abort
22. end if
23. yhnd

1i ← list proj(yhnd
1 , i) for i = 1, 2 {y11 ≈ tC , y12 ≈ n2}

24. type12 ← get type(yhnd
12 )

25. if (type12 6= nonce) ∨ ((yhnd
12 , .) ∈ Nonce3K) then

26. Abort
27. end if
28. Nonce3K := Nonce3K ∪ {(y

hnd
12 , v)}

29. khnd
e ← gen symenc key()

30. khnd
a ← gen auth key()

31. AKhnd ← gen symenc key()
32. authhnd ← auth(khnd

a , mhnd) {auth ≈ ck}
33. zhnd

1 ← list(khnd
e , khnd

a , authhnd) {z1 ≈ ke, ka, ck}
34. shnd

2 ← sign(skehnd
K

, zhnd
1 ) {s2 ≈ [ke, ka, ck]skK

}
35. zhnd

2 ← list(certhnd
K

, shnd
2 ) {z2 ≈ CertK , [ke, ka, ck]skK

}
36. m21 ← encrypt(pkehnd

v , zhnd
2 )

{m21 ≈ {{CertK , [ke, ka, ck]skK
}}pkC

}
37. zhnd

3 ← list(AKhnd, xhnd
3 , thnd

K
) {z3 ≈ AK,C, tK , T}

38. TGT hnd ← sym encrypt(sksehnd
K,x4

, zhnd
3 )
{TGT ≈ {AK,C, tK}kT

}
39. zhnd

4 ← list(AKhnd, xhnd
5 , thnd

K
, xhnd

4 ) {z4 ≈ AK,n1, tK , T}
40. m24 ← sym encrypt(khnd

e , zhnd
4 ) m24 ≈ {Ak, n1, tK , T}ke

}
41. mhnd

2 ← list(mhnd
21 , xhnd

3 , TGT hnd, mhnd
24 )

{m2 ≈ {{CertK , [ke, ka, ck]skK
}}pkC

, C,TGT ,{Ak , n1,tK ,T}ke
}

42. send i(v, mhnd
2 )

Fig. 8 Algorithm 2 of Public-key Kerberos : Behavior of the
KAS

the input message m’s components are checked in steps

2.1–2.5. The command retrieve(xhnd
i ) in step 2.3 returns

the bitstring of the entry D[hndu = xhnd
i ]. Next the ma-

chine verifies the received certificate x1 of v by checking

the signature of the certificate authority CA (steps 2.6–

2.10). Then the machine extracts the public key w2 and

v’s name out of the certificate (steps 2.12–16) and uses
this public key to verify the signature x2 received in the

AS REQ (steps 2.18–2.21). In steps 2.23–2.26 the types

of the message components of the signed message y1
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are checked, as well as the freshness of the nonce y12 by

comparison to nonces stored in Nonce3K . If the nonce

is fresh then it will be stored in the set Nonce3K in

step 2.28 for freshness checks in future protocol runs.

Finally, in steps 2.29–2.42 MPK
K generates symmetric

keys ke, ka, and AK, composes the AS REP, and sends

it to v over an insecure channel.

Note: Unlike in the symbolic model, one cannot use

the same key for the use in two different cryptographic

primitives in the computational model, e.g., for sym-
metric encryption and within a message authentication

code. Otherwise the security guarantees of the crypto-

graphic primitives may no longer hold. This needs to be

considered when working with computationally sound
symbolic frameworks like the BPW model. Therefore

Algorithm 2 is generating a key pair, consisting of a

symmetric encryption key ke and an message authenti-

cation key ka, instead of a single symmetric key (which

is denoted by k in Fig. 2).

4 Formal Results

We will now prove that the fragments of Kerberos 5

discussed earlier possess the properties informally out-

lined in Section 2. We begin by formalizing the respec-
tive security properties and verify them properties in

the BPW model in Section 4.1. Then, in Section 4.2,

we make use of previous work to transfer the authen-

tication aspect of these results to the computational
setting, and we discuss the notion of computational se-

crecy.

4.1 Security in the Symbolic Setting

In order to use the BPW model to prove the com-
putational security of Kerberos, we first formalize the

respective security properties and verify them in the

BPW model. We prove that Kerberos keeps the sym-

metric key, which the TGS T generated for use between

user u and server S, symbolically secret from the adver-
sary. In order to prove this, we show that Kerberos also

keeps the keys generated by KAS K for the use between

u and the TGS T secret. Furthermore, we prove entity

authentication of the user u to a server S (and subse-
quently entity authentication of S to u). This form of

authentication is weaker than the authentication Ker-

beros offers, because we do not consider the purpose of

timestamps in Kerberos. Timestamps are currently not

modeled in the BPW model.

Secrecy and Authentication Requirements Next

we define the notion of key secrecy, which was infor-

mally captured already in Property 1 of Section 2, as

the following formal requirement in the language of the

BPW model.

Definition 1 (Key secrecy requirement)

For Kerb ∈{PK, K5} the secrecy requirement ReqSec
Kerb

is:

For all u ∈ H∩{1, . . . , n}, and S ∈ H∩{S1, . . . , Sl},
and t1, t2, t3 ∈ N:

(t1 : KA outS ! (ok, Kerb, u, SKhnd)

∨ t2 : KA outu! (ok, Kerb, S, SKhnd)

⇒ t3 : D[hndu = SKhnd].hnda =↓

where t : D denotes the contents of database D at

time t. Similarly t : p?m and t : p!m denotes that mes-
sage m occurs at input (respectively output) port p at

time t. As above, PK refers to Public-key Kerberos and

K5 to Kerberos 5. In the next section, Theorem 1 will

show that the symbolic Kerberos systems specified in

Section 3.2 satisfy this notion of secrecy, and therefore
Kerberos enjoys Property 1.

Next we define the notion of authentication in Prop-

erty 2 in the language of the BPW model.

Definition 2 (Authentication requirements) For

Kerb ∈ {PK, K5}:

i. The authentication requirement ReqAuth1
Kerb is: For all

v ∈ H∩{1, . . . , n}, for all S ∈ H∩{S1, . . . , Sl}, and

K, T :

∃ t3 ∈ N.t3 : KA outS ! (ok, Kerb, v, SKhnd)

⇒

∃ t1, t2 ∈ N with t1 < t2 < t3.

t2 : KA inv! (continue prot, Kerb,T, S, ·)

∧ t1 : KA inv! (new prot, Kerb, K, T )

ii. The authentication requirement ReqAuth2
Kerb is: For all

u ∈ H∩{1, . . . , n}, for all S ∈ H∩{S1, . . . , Sl}, and

K, T :

∃ t2 ∈ N.t2 : KA outu! (ok, Kerb, S, SKhnd)

⇒

∃ t1 ∈ N with t1 < t2.

t1 : KA outS ! (ok, Kerb, u, SKhnd)

iii. The overall authentication ReqAuth
Kerb for the protocol

Kerb is:

ReqAuth
Kerb := ReqAuth1

Kerb ∧ReqAuth2
Kerb

Theorem 1 will show that this notion of authentication

is satisfied by the symbolic Kerberos system. Therefore

Kerberos has Property 2.
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When proving that Kerberos has these properties,

we will use the notion of a system Sys perfectly fulfill-

ing a requirement Req, denoted Sys |=perf Req. This

means the property Req holds with probability 1 over

the probability space of runs for a fixed security param-
eter (as defined in Sect. 3.1). Later we will also need

the notion of a system Sys computationally fulfilling a

requirement Req, denoted Sys |=poly Req; this means

the property holds with negligible error probability for
all polynomially bounded users and adversaries (again,

over the probability space of all runs for a fixed secu-

rity parameter). In particular, perfect fulfillment im-

plies computational fulfillment.

In order to prove Theorem 1, we first need to prove
a number of auxiliary properties (previously called in-

variants in, e.g., [4,10]). Although these properties are

nearly identical for Kerberos 5 and Public-key Ker-

beros, their proofs had to be carried out separately.
We consider it interesting future work to augment the

BPW model with proof techniques that allow for conve-

niently analyzing security protocols in a more modular

manner. In fact, a higher degree of modularity would

simplify the proofs for each individual protocol as it
could exploit the highly modular structure of Kerberos;

moreover, it would also simplify the treatment of the

numerous optional behaviors of this protocol.

Some of the key properties needed in the proof of
Theorem 1, which formalizes Properties 1 and 2, make

authentication and confidentiality statements for the

first two rounds of Kerberos. These properties are de-

scribed in English below and formalized and proved in

Appendix B.

i) Authentication of KAS to client and Secrecy of AK:

If user u receives a valid AS REP message then this

message was indeed generated by K for u and an ad-

versary cannot learn the contained symmetric keys.
ii) TGS Authentication of the TGT: If TGS T receives

a TGT and an authenticator {v, tv}AK where the

key AK and the username v are contained in the

TGT, then the TGT was generated by K and the

authenticator was created by v.
iii) Authentication of TGS to client and Secrecy of SK:

If user u receives a valid TGS REP then it was gen-

erated by T for u and S. And an adversary cannot

learn the contained session key SK.
iv) Server Authentication of the ST: If server S receives

a ST and an authenticator {v, tv}SK where the key

SK and the name v are contained in the ST, then

the ST was generated by T and the authenticator

was created by v.

We can now capture the security of Kerberos in the

BPW model in the following theorem, which says that

Properties 1 and 2 hold symbolically for Kerberos. We

show a proof excerpt in the case of Public-key Kerberos

(the outline is analogous for Kerberos 5). The full proofs

can be found in Appendix B.4 and B.6.

Theorem 1 (Security of the Kerberos Protocol based
on the BPW Model)

– Let SysK5, symb be the symbolic Kerberos 5 system

defined in Section 3.2, and let ReqSec
K5and ReqAuth

K5 be

the secrecy and authentication requirements defined
above. Then

SysK5, symb |=perf ReqSec
K5 ∧ReqAuth

K5 .

– Let SysPK, symb be the symbolic Public-key Kerberos
system, and let ReqSec

PK and ReqAuth
PK be the secrecy

and authentication requirements defined above. Then

SysPK, symb |=perf ReqSec
PK ∧ReqAuth

PK .

Proof (sketch) We assume that all parties are honest.
If user u successfully terminates a session run with a

server S, i.e., there was an output (ok, PK, S, khnd) at

KA outu!, then we know that the key k was stored in

the set Session KeysSu. This implies that the key was
generated by T and sent to u in a valid TGS REP. By

auxiliary property iv) mentioned above, an adversary

cannot learn k. A similar argument holds for the case

that S successfully terminates a session run. This shows

the key secrecy property ReqSec
PK . As for the authenti-

cation property ReqAuth1
PK , if server S successfully termi-

nates a session with u, i.e., there was an output (ok,

PK, u, khnd) at KA outS !, then S must have received a

ticket generated by T (for S and u) and also a matching
authenticator generated by user u (by auxiliary prop-

erty iv)). But the ticket will only be generated if u sends

the appropriate request to T , i.e., there was an input

(continue prot, PK, T , S, AKhnd) at KA inu?. The re-

quest, on the other hand, contains a TGT that was gen-
erated by K for u (by auxiliary property ii)), therefore

u must have sent an request to K. In particular, there

had been an input (new prot, PK, K, T ) at KA inu?.

As for the authentication property ReqAuth2
PK , if the user

u successfully terminates a session with server S, i.e.,

there was an output (ok, PK, S, khnd) at KA outu!, then

it must have received a message encrypted under k that

does not contain u’s name. The key k was contained in

a valid TGS REP and was therefore generated by T , by
auxiliary property iii). Only T , u, or S could know the

key k, but only S uses this key to encrypt and send a

message that u received. On the other hand, S follows

sending such a message immediately by an output (ok,
PK, u, khnd) at KA outS !. ⊓⊔

This proof shares similarities with the Dolev–Yao style

proofs of analogous results attained for Kerberos 5 and
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PKINIT using the MSR framework [20,21,24–26]. The

two approaches are similar in the sense that both re-

construct a necessary trace backward from an end state,

and in that they rely on some form of induction (based

on rank/co-rank functions in MSR). An intriguing prob-
lem for future work is a formal comparison between

these two Dolev–Yao encodings of a protocol and be-

tween the proof techniques they support.

4.2 Security in the Cryptographic Setting

The results of [13] allow us to take the authentica-
tion results in Theorem 1 and derive a corresponding

authentication results for a cryptographic implemen-

tation of Kerberos. Just as Property 2 holds symboli-

cally for Kerberos, this shows that it holds in a cryp-
tographic implementation as well. In particular, entity

authentication between a user and a server in Kerberos

holds with overwhelming probability (over the proba-

bility space of runs). However, symbolic results on key

secrecy can only be carried over to cryptographic im-
plementations if the protocol satisfies certain additional

conditions. Kerberos unfortunately does not fulfill these

definitions, and it can easily be shown that crypto-

graphic implementations of Kerberos do not fulfill the
standard notion of cryptographic key secrecy, see be-

low. With regard to authentication, the following does

hold.

Theorem 2 (Computational security of the Kerberos
protocol)

– Let SysK5, comp denote the computational basic Ker-

beros system implemented with provably secure cryp-

tographic primitives. Then

SysK5, comp |=poly ReqAuth
K5 .

– Let SysPK, comp denote the computational Public-

key Kerberos system implemented with provably se-

cure cryptographic primitives. Then

SysPK, comp |=poly ReqAuth
PK .

Proof (Sketch for Public-key Kerberos) By Theorem 1,
we know that SysPK, id |=perf ReqAuth

PK . And, as we

mentioned earlier, the cryptographic implementation of

the BPW model (using provably secure cryptographic

primitives) is at least as secure as the BPW model,
Syscry, comp ≥poly

sec Syscry, id.

The requirements ReqAuth
K5 and ReqAuth

PK , which are
defined above, are integrity properties as defined in Def-

inition 2 of [6]. Because of the polynomial bounds on

message length and number of inputs, it is decidable

in polynomial time whether a run satisfies these re-

quirements. Thus, we may prove that SysK5, comp |=poly

ReqAuth
K5 and that SysPK, comp |=poly ReqAuth

PK by apply-

ing Theorem 1 (Conservation of Integrity Properties)

of [6] to our Theorem 1 above, so long as these proto-
cols do not have the “Commitment Problem.”

The Commitment Problem occurs when keys that

have been used for cryptographic work while being at

that time only known to honest users are revealed to the
adversary later in the protocol. If the simulator in [13]

(with which one can simulate a computational adver-

sary attack on the symbolic system) learns in some ab-

stract way that, e.g., a cyphertext was sent, the sim-

ulator generates a distinguishable cyphertext without
knowing the symmetric key nor the plaintext. If the

symmetric key is revealed later in the protocol then the

trouble for the simulator will be to generate a suitable

symmetric key that decrypts the cyphertext into the
correct plaintext. This is typically an impossible task.

In order for the simulation with the BPW model to

work, one thus needs to check that the Commitment

Problem does not occur in the protocol (and for Ker-

beros, it fortunately doesn’t; see Lemma 1 of App. B.1).

We may thus invoke the Conservation of Integrity

Properties (Theorem 1 of [6]) to obtain Theorem 2. ⊓⊔

As far as key secrecy is concerned, it can be proven
that the adversary attacking the cryptographic imple-

mentation does not learn the secret key string as a

whole. However, it does not necessarily rule out that

an adversary will be able to distinguish the key from

other fresh random keys, as required by the definition
of cryptographic key secrecy. This definition of secrecy

says that an adversary cannot learn any partial infor-

mation about such a key and is hence considerably

stronger than requiring that an adversary cannot ob-
tain the whole key. For Kerberos we can show that the

key SK does not satisfy cryptographic key secrecy after

the last round of Kerberos, i.e., SK is distinguishable

from other fresh random keys. It should also be noted

that this key SK is still indistinguishable from random
after the second round but before the start of the third

round of Kerberos. We have the following proposition

Proposition 1 a) Kerberos does not provide crypto-

graphic key secrecy for the key SK generated by the

TGS T for the use between client C and server S after
the start of the last round of Kerberos.

b) After the TGS exchange and before the start of

the CS exchange is the key SK generated by the TGS T

still cryptographically secret.

Proof a) To see that Kerberos does not offer crypto-

graphic key secrecy for SK after the start of the third

13



round, note that the key SK is used in the protocol

for symmetric encryption. As symmetric encryption al-

ways provides partial information to an adversary if the

adversary also knows the message that was encrypted.

An adversary can exploit this to distinguish the key SK
as follows: the adversary first completes a regular Ker-

beros execution between C and S learning the message

{C, t′}SK encrypted under the unknown key SK. The

adversary will also learn a bounded time period TP (of
a few seconds) in which the timestamp t′ was generated.

Next a bit b is flipped and the adversary receives a key

k, where k = SK for b = 0 and k is a fresh random

key for b = 1. The adversary now attempts to decrypt

{C, t′}SK with k yielding a message m. If m 6= C, t
for a timestamp t then the adversary guesses b = 1. If

m = C, t for a timestamp t, then the adversary checks

whether t ∈ TP or not. If t /∈ TP then the adversary

guesses b = 1, otherwise the adversary guesses b = 0.
The probability of the adversary guessing correctly is

then 1 − ǫ, where ǫ is the probability that for random

keys k, SK the cyphertext {C, t′}SK decrypted with k

is C, t with t ∈ TP . Clearly, ǫ is negligible (since the

length of the time period TP does not depend on the
security parameter). Hence, SK is distinguishable and

cryptographic key secrecy does not hold.

b) However, before the third round has been started
the key SK is not only unknown to the adversary but,

in particular, SK has not been used for symmetric en-

cryption yet. We can therefore invoke the key secrecy

preservation theorem of [9], which states that a key

that is symbolically secret and symbolically unused is
also cryptographically secret. This allows us to conclude

that SK is cryptographically secret from the adversary.

For similar reasons, we also have the next proposition

Proposition 2 a) Kerberos does not provide crypto-

graphic key secrecy for the key AK generated by the
KAS K for the use between client C and TGS T after

the start of the second round of Kerberos.

b) After the AS exchange and before the start of the
TGS exchange is the key AK generated by the KAS K

still cryptographic secret.

Optional Sub-Session Key Kerberos may allow the

client or the server to generate a sub-session key. This

optional key can then be used for the encryption of fur-
ther communication between the two parties. To send

the optional sub-session key to the other party, the gen-

erator of this optional key (C or S) includes the key as

part of the message which is encrypted using the ses-
sion key SK. For instance, server S may generate the

optional key k and send {t′, k}SK as the AP REP. It

is easy to see that, due to the key secrecy of SK, an

adversary cannot learn the optional key (i.e., in the lan-

guage of the BPW model, an adversary does not get a

handle to this key). Since the optional key is not used in

the protocol, we may invoke Theorem IV.1 of [9]. This

theorem says that unused keys, which the adversary
cannot learn, are kept cryptographically secret by the

protocol. This approach is illustrated for the Yahalom

protocol in [10].

Corollary 1 (Computational security of the optional

sub-session) Let Kerb ∈ {PK, K5} be fixed. Then the

symbolic Kerberos system SysKerb, id from Section 3.2
keeps the optional sub-session key symbolically secret,

and all polynomial-time configurations of the compu-

tational Public-key Kerberos system SysKerb, comp keep

the optional sub-session key cryptographically secret.

5 Conclusions and Future Work

In this paper, we have exploited the Dolev–Yao style
model of Backes, Pfitzmann, and Waidner [8, 11, 12]

to obtain the first computational proof of authentica-

tion for the core exchanges of the Kerberos protocol

and its extension to public keys (PKINIT). Although

the proofs sketched here are conducted symbolically,
grounding the analysis on the BPW model automati-

cally lifts the results to the computational level, assum-

ing that all cryptography is implemented using provably

secure primitives. We could establish cryptographic key
secrecy (in the sense of indistinguishability of the ex-

changed key from a random key) only for the optional

sub-key exchanged in Kerberos; for the actually ex-

changed key, we could not prove cryptographic key se-

crecy.

Concerning future work, we plan to investigate if
the algorithms that are supported by PKINIT [55] sat-

isfy the cryptographic assumptions of our proofs. For

the symmetric encryption scheme, which is also used in

basic Keberos, this has been done in [19]. It remains

an open question whether the supported public-key en-
cryption schemes, the digital signature schemes and the

checksum algorithms meet the cryptographic assump-

tions we make in this work.

Furthermore, it seems promising to augment the

BPW model with specialized proof techniques that al-

low for conveniently performing proofs in a modular
manner. Such techniques would provide a simple and el-

egant way to integrate the numerous optional behaviors

supported by Kerberos and nearly all commercial pro-

tocols; for example, this would facilitate the analysis of
DH mode in PKINIT which is part of our ongoing work.

We intend to tackle the invention of such proof tech-

niques that are specifically tailored towards the BPW
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model, e.g., by exploiting recent ideas from [31]. An-

other potential improvement is to augment the BPW

model with timestamps; this would in particular allow

us to establish authentication properties that go beyond

entity authentication [20,21,24–27]. An additional item
on our research agenda is to fully understand the rela-

tion between the symbolic correctness proof for Ker-

beros 5 presented here and the corresponding results

achieved in the MSR framework [20, 21, 24–26].
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A Additional Algorithms

For completeness, this appendix collects the algorithms omitted
from the main body of this paper. The algorithms for public-key
Kerberos are in Figures 7–12. The algorithms for Kerberos 5 are
in Figures 11–15. Note that the algorithms for the TGS T and a
server S (i.e., Algorithms 4 and 5 in Fig. 11 and 12) are identical
for Public-key Kerberos and Kerberos 5.

B Additional Proofs

B.1 Absence of the Commitment Problem

For the proof of Theorem 2 we need to show that the Commit-
ment Problem does not occur for SysPK, id or SysK5, id . As
in [8], let NoComm be the following property: “If there exists an
input from an honest user that causes a symmetric encryption to
be generated such that the corresponding key is not known to the
adversary, then future inputs may only cause this key to be sent
within an encryption that cannot be decrypted by the adversary”.

Lemma 1 Absence of the Commitment Problem The ideal Ker-
beros SysKerb, id, for Kerb ∈ {PK,K5}, perfectly fulfills the
property NoComm, i.e., SysKerb, id |=perf NoComm.

Proof Note first that the long-term symmetric keys shared be-
tween KAS and TGS, TGS and server, and, in the case of basic
Kerberos, between user and KAS will never be sent if the user,
the TGS and the server are honest. Therefore, we are left to ver-
ify that the Commitment Problem does not occur for the keys
generated during a protocol run. In the case of Public-key Ker-
beros: Say i ≤ size, D[j].type = skse such that D[i] was created
in steps 2.29, 2.30, 2.31 or 4.18. In both Algorithms 2 and 4,
the keys are generated for v ∈ {1, . . . , n} by MPK

K , respectively
MPK

T . If v and K, respectively v and T , are dishonest, then the
adversary would get a handle to D[i] right after the execution
of MPK

K , respectively MPK
T , since the adversary knows the keys

shared between dishonest parties. Note that the message sent at
the end of the execution of MPK

K , respectively MPK
T also contains

a part that is encrypted using a handle to D[i]. However, this will
not cause the simulator to encrypt with a arbitrary random key
since it parses all messages completely before constructing the
computational version bottom-up (as described in [8, 13]), i.e.,
the simulator will get a handle to D[i] before constructing the
cyphertext under D[i]. If u, K, T and S are honest, then the Key
Secrecy property (Lemma 3, respectively Lemma 9) implies that
for the keys created in steps 2.29, 2.30, 2.31 and 4.18, respectively
in steps 2.9 and 4.18, one has D[j].hnda = ↓ for all time t. The
argument for basic Kerberos is analogous.

B.2 Conventions

In the subsequent proofs we will use following convention for the
algorithms:

Convention 1 Let Kerb ∈ {PK,K5}. For all w ∈ {1, . . . , n} ∪
{S1, . . . , Sl}∪{K, T} the following holds. If MKerb

w enters a com-
mand at port inw! and receives ↓ at port outw? as the immediate
answer from THH, then MKerb

w aborts the execution of the cur-
rent algorithm, except if the command was of the form list proj

or send i.
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Input: (v, u, i, mhnd) at outu?

1. if v = K then {AS REP is input}
2. chnd

i ← list proj(mhnd, i) for i = 1, 2, 3, 4
{c1 ≈ {{CertK , [ke, ka, ck]skK

}}pkC
, c2 ≈ C, c3 ≈ TGT, c4 ≈

{AK, n1, tK , T}ke
}

3. c2 ← retrieve(chnd
2 )

4. if c2 6= u then
5. Abort
6. end if
7. lhnd

1 ← decrypt(skehnd
u , chnd

1 ) {l1 ≈ CertK , [ke, ka, ck]skK
}

8. lhnd
1.i ← list proj(lhnd

1 , i) for i = 1, 2
{l1.1 ≈ CertK , l1.2 ≈ [ke, ka, ck]skK

}
9. zhnd

1 ← msg of sig(lhnd
1.1 )

10. b← verify(lhnd
1.1 , pkehnd

CA , zhnd
1 )

11. if b = false then
12. Abort
13. end if
14. whnd

j ← list proj(zhnd
1 , i) for i = 1, 2 {w2 ≈ pkK}

15. w1 ← retrieve(whnd
1 )

16. type8 ← get type(whnd
2 )

17. if (type8 6= pke) ∨ (w1 6= K) then
18. Abort
19. end if
20. zhnd

1.2 ← msg of sig(l1.2) {z1.2 ≈ ke, ka, ck}
21. b← verify(lhnd

1.2 , whnd
2 , zhnd

1.2 )
22. if b = false then
23. Abort
24. end if
25. xhnd

i ← list proj(z1.2, i) for i = 1, 2, 3
{x1 ≈ ke, x2 ≈ ka, x3 ≈ ck}

26. typei ← get type(xhnd
i ) for i = 1, 2, 3

27. if (type1 6= skse) ∨ (type2 6= ska) ∨ (type3 6= auth) then
28. Abort
29. end if
30. lhnd

4 ← sym decrypt(xhnd
1 , chnd

4 )
{x1 ≈ ke, c4 ≈ {AK, n1, tK , T}ke

}
31. yhnd

i ← list proj(lhnd
4 ), i for i = 1, 2, 4

{y1 ≈ AK, y2 ≈ n1, y4 ≈ T}
32. type4 ← get type(yhnd

1 )
33. type5 ← get type(yhnd

2 )
34. y4 ← retrieve(yhnd

4 )
35. if (type4 6= skse) ∨ (type5 6= nonce) ∨ (y4 6= T ) ∨ (∄! m̃hnd :

(yhnd
2 , m̃hnd) ∈ Nonceu) then

36. Abort
37. end if
38. b← auth test(xhnd

3 , xhnd
2 , m̃hnd) {x3 ≈ ck = Hk(m̃)}

39. if b = false then
40. Abort
41. end if
42. TGTicketu := TGTicketu ∪ {(chnd

3 , yhnd
1 , T )}
{c3 ≈ TGT, y1 ≈ AK}

43. output (ok, KAS exchange PK, K, T, yhnd
1 , chnd

3 ) at KA outu!
44. else if v = T then {TGS REP is input}
45. dhnd

i ← list proj(mhnd , i) for i = 1, 2, 3
{d1 ≈ C, d2 ≈ ST, d3 ≈ {SK, n3, tT , S}AK}

46. d1 ← retrieve(dhnd
1 )

47. if (d1 6= u)
∨ (∄! (., AKhnd, T ) ∈ TGTicketu :
sym decrypt(AKhnd, dhnd

3 ) 6=↓) then
48. Abort
49. end if

50. lhnd
2 ← sym decrypt(AKhnd, dhnd

3 ) {l2 ≈ SK, n3, tT , S}

Fig. 9 Algorithm 3 of Public-key Kerberos, part 1: Behavior of
user in after initialization

51. xhnd
2.i ← list proj(lhnd

2 , i) for i = 1, 2, 4
{x2.1 ≈ SK, x2.2 ≈ n3, x2.4 ≈ S}

52. type6 ← get type(xhnd
2.1 )

53. type7 ← get type(xhnd
2.2 )

54. S ← retrieve(xhnd
2.4 )

55. if (type6 6= skse) ∨ (type7 6= nonce) ∨ ((xhnd
2.2 , T, S) /∈

Nonce2u) then
56. Abort
57. end if
58. xhnd

5 ← list(uhnd, t′hnd
u ) {x5 ≈ C, t′C}

59. mhnd
5.2 ← sym encrypt(xhnd

2.1 , xhnd
5 ) {m5.2 ≈ {C, t′C}SK}

60. mhnd
5 ← list(dhnd

2 , mhnd
5.2 ) {m5 ≈ ST, {C, t′C}SK}

61. Session KeysSu := Session KeysSu ∪ {(S, xhnd
2.1 )}
{x2.1 ≈ SK}

62. send i(S, mhnd
5 )

63. else if v = S ∈ {S1, ..., Sl} then {AP REP is input}
64. if (∄!(S, SKhnd) ∈ Session KeysSu:

sym decrypt(SKhnd , mhnd) 6=↓) then
65. Abort
66. end if
67. lhnd

3 ← sym decrypt(SKhnd, mhnd) {m ≈ {t′C}SK}
68. xhnd

3.1 ← list proj(lhnd
3 , 1) {x3.1 ≈ t′C}

69. x3.1 ← retrieve(xhnd
3.1 )

70. if x3.1 = u then
71. Abort
72. end if
73. output (ok,PK, S, SKhnd) at KA outu!

Fig. 10 Algorithm 3 of Public-key Kerberos, part 2: Behavior of
user after initialization

Input: (v, T, i, mhnd) at outT ? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, 2, 3, 4, 5
{x1 ≈ TGT, x2 ≈ {C, tC}AK , x3 ≈ C, x4 ≈ S, x5 ≈ n3 }

2. yhnd
1 ← sym decrypt(sksehnd

KT , xhnd
1 ) {y1 ≈ AK, C, tK}

3. yhnd
1.i ← list proj(yhnd

1 , i) for i = 1, 2 {y1.1 ≈ AK, y1.2 ≈ C}
4. type1 ← get type(yhnd

1.1 )
5. type2 ← get type(xhnd

5 )
6. xi ← retrieve(xhnd

i ) for i = 3, 4
7. y1.2 ← retrieve(yhnd

1.2 )
8. if (type1 6= skse)∨ (type2 6= nonce)∨ ((xhnd

5 , v) ∈ NonceT )∨
(x3 6= v) ∨ (x4 = S /∈ {S1, ..., Sl}) ∨ (y1.2 6= v)then

9. Abort
10. end if
11. Nonce4T := Nonce4T ∪ {(x

hnd
5 , v)}

12. zhnd ← sym decrypt(yhnd
1.1 , xhnd

2 ) {z ≈ C, tC}
13. zhnd

1 ← list proj(zhnd, 1) {z1 ≈ C}
14. z1 ← retrieve(zhnd

1 )
15. if (z1 6= v) then
16. Abort
17. end if
18. SKhnd ← gen symenc key()
19. lhnd ← list(SKhnd, zhnd

1 , thnd
T

) {l ≈ SK, C, tT }
20. ST hnd ← sym encrypt(sksehnd

TS
, lhnd)

{ST ≈ {SK, C, tT }kS
}

21. l̃hnd ← list(SKhnd, xhnd
5 , thnd

T
, xhnd

4 ) {l̃ ≈ SK,n3, tT , S}

22. mhnd
4.3 ← sym encrypt(yhnd

1.1 , l̃hnd)
{m4.3 ≈ {SK,n3, tT , S}AK}

23. mhnd
4 ← list(zhnd

1 , ST hnd, mhnd
4.3 )
{m4 ≈ C, ST, {SK,n3, tT , S}AK}

24. send i(v, mhnd
4 )

Fig. 11 Algorithm 4: Behavior of TGS
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Input: (v, S, i, mhnd) at outS? with v ∈ {1, ..., n}.

1. mhnd
5.i ← list proj(mhnd, i) for i = 1, 2

{m5.1 ≈ ST, m5.2 ≈ {C, t′C}SK}
2. xhnd ← sym decrypt(sksehnd

TS , mhnd
5.1 )

3. xhnd
i ← list proj(xhnd, i) for i = 1, 2 {x1 ≈ SK, x2 ≈ C}

4. x2 ← retrieve(xhnd
2 )

5. type1 ← get type(xhnd
1 )

6. if (type1 6= skse) ∨ (x2 6= v) then
7. Abort
8. end if
9. yhnd ← sym decrypt(xhnd

1 , mhnd
5.2 ) {y ≈ C, t′C}

10. yhnd
i ← list proj(yhnd , i) for i = 1, 2 {y1 ≈ C, y2 ≈ t′C}

11. y1 ← retrieve(yhnd
1 )

12. if (y1 6= v) then
13. Abort
14. end if
15. mhnd

6 ← sym encrypt(xhnd
1 , yhnd

2 ) {m6 ≈ {t′C}SK}
16. send i(S, mhnd

6 )
17. output (ok,PK, v, xhnd

1 ) at KA outS !

Fig. 12 Algorithm 5: Behavior of server

A) Input:(new prot, K5, K, T ) at KA inu? .

1. nhnd
u,1 ← gen nonce()

2. uhnd ← store(u)
3. T hnd ← store(T )
4. mhnd

1 ← list(uhnd, T hnd, nhnd
u,1 ) {m1 ≈ C, T, n1}

5. Nonceu := Nonceu ∪ {(nhnd
u,1 , K)}

6. send i(K, mhnd
1 )

B) Input:(continue prot, K5, T, S, AKhnd) at KS inu? for S ∈
{S1, ..., Sl}

1. if (∄ (TGT hnd, AKhnd, T ) ∈ TGTicketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u ) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}

6. nhnd
u,3 ← gen nonce()

7. Nonce2u := Nonce2u ∪ {nhnd
u,3 , T, S)}

8. mhnd
3 ← list(TGT hnd, authhnd, uhnd, Shnd, nhnd

u,3 )
{m3 ≈ TGT, {C, tC}AK , C, S, n3}

9. send i(T, mhnd
3 )

Fig. 13 Algorithm 1 of Kerberos 5: Evaluation of inputs from
the user (starting the AS and TG exchange).

B.3 Auxiliary Properties for Public-key Kerberos

Next we will consider the auxiliary properties from Section 4.1 for
Public-key Kerberos. We will again informally state the property,
formalize it as a lemma in the language of the BPW model, and
prove it:

Handles contained in the sets Nonceu and Nonce2u are in-
deed handles of u to nonces.

Lemma 2 (Correct Nonce Owner) For all u ∈ H, if (xhnd,
. . .) ∈ Nonceu or (xhnd, . . .) ∈ Nonce2u, then D[hndu = xhnd]
6=↓ and D[hndu = xhnd].type = nonce.

Proof Let (xhnd, . . .) ∈ Nonceu. By construction, this entry has
been added to Nonceu by MPK

u in step 1A.8. xhnd has been
generated through the input of the command gen nonce() at some
time t at port inu? of THH. Convention 1 implies xhnd 6=↓, as
MPK

u would abort otherwise and not add the entry to Nonceu.
By definition of gen nonce() and using Lemma 5.2 of [4] one gets
that D[hndu = xhnd] 6=↓ and D[hndu = xhnd].type = nonce
holds (the proof of the statement for Nonce2u is analogous). �

Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, 2, 3

{x1 ≈ C, x2 ≈ T, x3 ≈ n1}
2. type1 ← get type(xhnd

3 )
3. xi ← retrieve(xhnd

i ) for i = 1, 2
4. if (type1 6= nonce) ∨ ((x3, .) ∈ Nonce3K) ∨ (x1 6= v)∨

(x2 6= T ) then
5. Abort
6. end if
7. vhnd ← store(v)
8. Nonce3K := Nonce3K ∪ {(x

hnd
3 , v)}

9. AKhnd ← gen symenc key()
10. zhnd

1 ← list(AKhnd, vhnd, thnd
K ) {z1 ≈ AK, C, tK}

11. TGT hnd ← sym encrypt(sksehnd
K,x2

, zhnd
1 )
{TGT ≈ {AK,C, tK}kT

}
12. zhnd

2 ← list(AKhnd, xhnd
3 , thnd

K
, xhnd

2 ) {z2 ≈ AK,n1, tK , T}
13. m23 ← sym encrypt(khnd

v , zhnd
2 )

{m23 ≈ {AK,n1, tK , T}kC
}

14. mhnd
2 ← list(vhnd , TGT hnd, mhnd

23 )
{m2 ≈ C, TGT, {AK,n1, tK , T}kC

}
15. send i(v, mhnd

2 )

Fig. 14 Algorithm 2 of Kerberos 5: Behavior of the KAS

If K generated a symmetric key k or AK for honest v (i.e.,
on receiving a AS REQ from v) and w has a handle to k or AK
then w must either be v or K. And if T generated a symmetric
key SK for honest v and server S and w has a handle to SK,
then w must be either v, T or S.

Lemma 3 (Key Secrecy) For all v ∈ H, honest K, T, and
S ∈ {S1, . . . , Sl}, and for all j ≤ size with D[j].type = skse:

a) If D[j] was created by MPK
K in step 2.29 or step 2.30 then

(with the notation of Algorithm 2 (Fig. 8))

D[j].hndw 6= ↓ implies w ∈ {v, K}.

b) If D[j] was created by MPK
K in step 2.31 then (with the no-

tation of Algorithm 2 (Fig. 8))

D[j].hndw 6= ↓ implies w ∈ {v, K, T}.

c) If D[j] was created by MPK
T in step 4.18 then (with the no-

tation of Algorithm 4 in Fig. 11)

D[j].hndw 6= ↓ implies w ∈ {v, T, S}

where with the notation of Algorithm 4, S = x4.

Proof a) Say j ≤ size, D[j].type = skse such that D[j] was cre-
ated by MPK

K in step 2.29 at time t (the case where D[j] was
generated in step 2.30 is analogous). The message m2 (in the no-
tation of Algorithm 2), to which a handle is sent out in step 2.42,
contains D[j] encrypted under v’s public key. More precisely, a
handle to D[j] is part of the input to the command list creating
zhnd
1 in step 2.33. The list z1 is then signed in step 2.34 creating

s2, and the list z2 is created in step 2.35 using a handle to s2;
finally z2 is encrypted in step 2.36 under v’s public key creating
mhnd

21 , where m21 = m2.arg[1]. Note that one can obtain a han-
dle to D[j] from mhnd

21 if one has v’s private key (by applying
the basic commands decrypt, list proj, msg of sig); but the other
components of m2 do not contain any handle to D[j], at most
they only contain the index D[j − 1].ind (i.e., the index to the
public identifier of the secret key D[j], e.g. see mhnd

24 created in
step 2.40). Since, by assumption, handles to private keys are not
allowed to be sent around, only v can decrypt m21 and obtain
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Input: (v, u, i, mhnd) at outu?

1. if v = K then {AS REP is input}
2. chnd

i ← list proj(mhnd, i) for i = 1, 2, 3
{c1 ≈ C, c2 ≈ TGT, c3 ≈ {AK, n1, tK , T}kC

}
3. c1 ← retrieve(chnd

1 )
4. if (c1 6= u) then
5. Abort
6. end if
7. typei ← get type(chnd

i ) for i = 2, 3
8. if (type2 6= skse) ∨ (type3 6= auth) then
9. Abort

10. end if
11. lhnd

3 ← sym decrypt(sksehnd
uK , chnd

3 ) {l3 ≈ AK,n1, tK , T}
12. yhnd

i ← list proj(lhnd
3 ), i for i = 1, 2, 4

{y1 ≈ AK, y2 ≈ n1, y4 ≈ T}
13. type4 ← get type(yhnd

1 )
14. type5 ← get type(yhnd

2 )
15. y4 ← retrieve(yhnd

4 )
16. if (type3 6= skse) ∨ (type4 6= nonce) ∨ (y4 6= T ) ∨

(∄! (ñhnd, K) /∈ Nonceu) then
17. Abort
18. end if
19. TGTicketu := TGTicketu ∪ {(chnd

2 , yhnd
1 , T )}

20. output (ok,KAS exchange K5, K, T, yhnd
1 , chnd

2 ) at KA outu!
21. else if v = T then {TGS REP is input}
22. dhnd

i ← list proj(mhnd , i) for i = 1, 2, 3
{ d1 ≈ C, d2 ≈ ST, d3 ≈ {SK,n3, tT , S}AK }

23. d1 ← retrieve(dhnd
1 )

24. if (d1 6= u)
∨ (∄! (., AKhnd, T ) ∈ TGTicketu) :
sym decrypt(AKhnd, dhnd

3 ) 6=↓) then
25. Abort
26. end if
27. lhnd

2 ← sym decrypt(AKhnd, dhnd
3 ) {l2 ≈ SK, n3, tT , S}

28. xhnd
2.i ← list proj(lhnd

2 , i) for i = 1, 2, 4
{x2.1 ≈ SKey, x2.2 ≈ n3, x2.4 ≈ S}

29. type5 ← get type(xhnd
2.1 )

30. type6 ← get type(xhnd
2.2 )

31. S ← retrieve(xhnd
2.4 )

32. if (type5 6= skse) ∨ (type6 6= nonce) ∨
((xhnd

2.2 , T, S) /∈ Nonce2u) then
33. Abort
34. end if
35. xhnd

5 ← list(uhnd, t′hnd
u ) {x5 ≈ C, t′C}

36. mhnd
5.2 ← sym encrypt(xhnd

2.1 , xhnd
5 ) {m5.2 ≈ {C, t′u}SK}

37. mhnd
5 ← list(dhnd

2 , mhnd
5.2 ) {m5 ≈ ST, {C, t′u}SK}

38. Session KeysSu := Session KeysSu ∪ {(S, xhnd
2.1 )}

39. send i(S, mhnd
5 )

40. else if v = S ∈ {S1, ..., Sl} then {AP REP is input}
41. if (∄!(S, SKhnd) ∈ Session KeysSu:

sym decrypt(SKhnd, mhnd) 6=↓) then
42. Abort
43. end if
44. lhnd

3 ← sym decrypt(SKhnd, mhnd) {m ≈ {t′C}SK}
45. xhnd

3.1 ← list proj(lhnd
3 , 1) {x3.1 ≈ t′C}

46. x3.1 ← retrieve(xhnd
3.1 )

47. if x3.1 = u then
48. Abort
49. end if
50. output (ok,K5, S, SKhnd) at KA outu!

Fig. 15 Algorithm 3 of Kerberos 5: Behavior of user after ini-
tialization

a handle to D[j] after mhnd
2 is sent in step 2.42. And since v is

honest, MPK
v never sends any message from which a handle to

D[j] can be obtained for time t′ > t (by Algorithms 1 and 3).

One immediately gets D[j].hnda =↓ for all t′ > t.
b) Let j ≤ size, D[j].type = skse such that D[j] was created

by MPK
K in step 2.31 at time t. The message m2 (in the notation of

Algorithm 2), to which a handle is sent out in step 2.42, contains
D[j] encrypted under the symmetric key ke created by MPK

K in
step 2.29 (more precisely, D[m24.ind = m2.arg[4]] is created by
applying the command sym encrypt taking as arguments a handle
to ke and a handle to the list z4 where z4.arg[1] = D[j].ind). By
Key Secrecy a) and since v is honest, only v or K can decrypt m24.
The message m2 further contains D[j] encrypted under a sym-
metric key skseK,T shared exclusively between K and T (more
precisely, D[TGT.ind = m2.arg[3]] is created in step 2.38 by ap-
plying the command sym encrypt taking as arguments a handle to
skseK,T and a handle to the list z3, where z3.arg[1] = D[j].ind).
By construction of Algorithm 4 (Fig. 11) and since T is honest,
one sees that MPK

T never sends anything from which a handle to
D[j] can be obtained as part of a new list for time t′ > t. Also, by
construction of Algorithms 1 and 3 (Figs. 7, 9, and 10) and since
v and K are honest, one sees that v and K do not send out any
list from which a handle to D[j] can be obtained for time t′ > t.

c) Let j ≤ size, D[j].type = skse such that D[j] was cre-
ated by MPK

T in step 4.18 at time t. The list m4 (in the nota-
tion of Algorithm 4), to which a handle is sent out in step 4.24,
contains D[j] in ST which is a symmetric encryption under a
symmetric key skseTS shared exclusively between T and S (i.e.,
m4.arg[2] = ST.ind, ST.arg[1] = D[j].ind), and m4 also con-
tains D[j] in a list m4.3 (where m4.3.ind = m4.arg[3]), which
is a symmetric encryption under a key y1.1. T gets a handle to
the key y1.1 in step 4.3, i.e., after decryption with the symmetric
key shared exclusively between T and K (i.e., sksehnd

KT ; see step
4.1), otherwise there would be an abort, by Convention 1. Since,
by construction, MPK

T does not use the key skseKT for encryp-
tion, MPK

K must have created the cyphertext containing a handle
to the key y1.1. From Algorithm 2 one can now infer that MPK

K

must have created the key y1.1. Key Secrecy b) and the honesty
of v, K and T imply that only v, T, K have handles to this key. T
and K do not use this second key for decryption, therefore only
v can get a handle to D[j] through decryption with the key y1.1.
Also, only MPK

S uses sksehnd
TS for decryption (in step 5.2). But,

by construction, neither MPK
S nor MPK

v send out any message,
from which a handle to D[j] can be obtained for time t′ > t. �

If honest user u receives what appears to u to be a valid
AS REP message then this message (disregarding the TGT ) was
indeed generated by K for u and an adversary cannot learn the
contained symmetric keys.

Lemma 4 (Authentication of KAS to client and Secrecy
of AK) For all u ∈ H, honest KAS K and TGS T , and for all
j ≤ size with D[j].type = list and jhnd := D[j].hndu 6= ↓:
If li := D[j].arg[i] for i = 1, 4
with D[l1].type = enc and D[l4].type = symenc,
x1 := D[l1].arg[2] with D[x1].type = list,

{≈ certK , [ke, ka, ck]skK
}

x1.1 := D[x1].arg[1] with D[x1.1].type = sig, {≈ certK}
x1.2 := D[x1].arg[2] with D[x1.2].type = sig, {≈ [ke, ka, ck]skK

}
z1 := D[x1.1].arg[2] with D[z1].type = list, {≈ K,pkK}
y1.1 := D[z1].arg[2] with D[y1.1].type = pke, {≈ pkK}
y1.2 := D[x1.2].arg[2] with D[y1.2].type = list, {≈ ke, ka, ck}
s1 := D[y1.2].arg[1] with D[s1].type = skse, {≈ ke}
s2 := D[y1.2].arg[2] with D[s2].type = ska, {≈ ka}
r1 := D[y1.2].arg[3] with D[r1].type = auth, {≈ ck}
q1 := D[r1].arg[1] with D[q1].type = list, {≈ m1}
p1 := D[r1].arg[2] with D[p1].type = pka, {≈ ka}
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x4 := D[l4].arg[1] with D[x4].type = list, {≈ AK, n1, tk, T}
y4 := D[x4].arg[2] with D[y4].type = nonce, {≈ n1}
and if furthermore

a) for pke := D[l1].arg[1] one has D[pke− 1].hndu 6= ↓
b) y1.1 = D[x1.2].arg[1] and D[z1.arg[1]] = K
c) p1 = s2 + 1 and D[l4].arg[2] = s1 + 1

d) (D[y4].hndu, D[q1].hndu, K) ∈ Nonceu

then D[l1] was created by MPK
K in step 2.32 and D[l4] was created

by MPK
K in step 2.36 and both their indices are arguments of a list

created by MPK
K in step 2.41 and sent to u in step 2.42. Further-

more, D[s1].hnda =↓ and therefore also D[x4 .arg[1]].hnda =↓.

Proof By hypothesis on the structure of D[j], the entry D[x1.2]
is a list signed using a private key corresponding to the public key
D[y1.1], i.e., the index of the private key is y1.1 − 1. By hypoth-
esis b) and since handles to private keys are never sent around
by honest K, THH must have generated D[x1.2] when receiving
the command sign from MPK

K in step 2.34 using K’s private key.
This occurs only if there was an input (v, K, i, mhnd) at outK?.
By construction of Algorithm 2, K signs a list in step 2.34 con-
sisting of the indices of a symmetric key generated in step 2.29,
a message authentication code key generated in step 2.30, and a
message authentication code created in step 2.32, over m using
the symmetric key generated in step 2.30; i.e., s1 is the index for
this symmetric key, s2 is the index for the MAC key, and q1 is the
index of m. In steps 2.34 and 2.35 MPK

K then creates a list of the
signed message and its certificate and encrypts this list with v’s
public key. By the structure of D[j] and by hypothesis c), one can
see that D[x1] is such a list. Since by hypothesis d) (D[y4].hndu,
D[q1].hndu, K) ∈ Nonceu, Correct Nonce Owner implies that
this element was stored there by MPK

u while running Algorithm
1A; in particular, by construction of Algorithm 1, MPK

u must, in
step 1A.9, have sent a handle to the list of index q1 to K, which
contained the nonce indexed by y4. Since u’s name is contained
in that message (by Algorithm 1A step 1A.7, q1.arg[3] = u), this
implies that v must equal u, as checked in step 2.4, otherwise
Algorithm 2 would have aborted by Convention 1. This, on the
other hand, implies that MPK

K used u’s public key for encryption.
Hypothesis a) now gives that D[l1] was generated by MPK

K in
step 2.36. Moreover, we assumed that u is honest and therefore,
Key Secrecy gives that only u or K can use the key from D[s1]
for encryption. Inspection of Algorithm 1 and Algorithm 2 show

that u does not use this key for encryption and that K uses this
key for encryption of a list containing the nonce indexed y4 in
step 2.340, i.e., D[l4] was generated by MPK

K in step 2.41. Finally,
in step 2.42, MPK

K sends a handle to the list m2 to v = u, where
m2.arg[1] = D[l1].ind and m2.arg[4] = D[l4]. Furthermore, Key
Secrecy implies that D[s1].hnda =↓. �

If TGS T receives a TGT and an authenticator {u, tu}AK

where the key AK and the username of an honest user u are
contained in the TGT, then the TGT was generated by K and
the authenticator was created by u.

Lemma 5 (TGS Authentication of the TGT) For all u ∈
H, honest KAS K and TGS T and for all j ≤ size with D[j].type
=list and jhnd := D[j].hndT 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symenc, {≈ TGT}
l2 := D[j].arg[2] with D[l2].type =symenc, {≈ {u, tu}AK}
x1 := D[l1].arg[1] with D[x1].type =pkse, {≈ kT }
x2 := D[l1].arg[2] with D[x2].type =list, {≈ AK,u, tK}
x2.1 := D[x2].arg[1] with D[x1.1].type =skse, {≈ AK}
y1 := D[l2].arg[1] with D[x1].type =pkse, {≈ AK}
y2 := D[l2].arg[2] with D[y2].type =list, {≈ u, tu}
and if furthermore

a) D[x1 + 1] = skseKT

b) D[x2.1 − 1] = D[y1]
c) D[x2].arg[2] = D[y2].arg[1] = u

then entry D[l1] was generated by MPK
K in step 2.38 at a time

t and entry D[l2] was generated by MPK
u in step 1B.5 at a time

t′ > t.

Proof By hypothesis a), D[x2] is encrypted under the symmet-
ric key skseKT shared between K and T . It is assumed that
only MPK

K and MPK
T have handles to the key skseKT . Since

by construction of Algorithm 4 (Fig. 11), MPK
T does not use

skseKT for encryption, MPK
K must have created D[l1] in step 2.38.

This step is only executed if there was an input (v, K, i, mhnd)
at outK?. In step 2.38 MPK

K encrypts a list z3 (in the nota-
tion of Algorithm 2) created in step 2.37 using a handle to the
name of user v and a handle to a symmetric key AK that was
freshly generated by THH earlier, when receiving the command
gen sym key from MPK

K in step 2.31 (more precisely, z3.arg[2] = v,
z3.arg[1] = AK.ind). Hypothesis c) now implies that u = v. Since
u is assumed to be honest, we can use Key Secrecy to infer that
only u, K or T can have handles to the key AK. Hypotheses b)
and c) together imply that this key was used for encryption of
a list containing u’s name. By construction, only MPK

u uses this
key for encryption of a list containing u’s name, that is to say in
step 1B.5, i.e., MPK

u generated D[l2] in step 1B.5. It is obvious
that this encryption happened after MPK

K created D[l1], since
MPK

K generates the symmetric encryption key AK and creates
D[l1] before sending out a handle to a list from which another
user can obtain a handle to this key. �

If honest user u receives what appears to u to be a valid
TGS REP, then the part of that message that is verifiable by u,
encrypted under the symmetric key AK, was generated by T for
u and S. And an adversary cannot learn the contained session
key SK.

Lemma 6 (Authentication of TGS to client and Secrecy
of SK) For all u ∈ H, honest KAS K and TGS T and for all
j ≤ size with D[j].type =symenc and jhnd := D[j].hndu 6= ↓:
p1 := D[j].arg[1] with D[p1].type =pkse, {≈ AK}
p2 := D[j].arg[2] with D[p2].type =list, {≈ SK,n3, tT , S}
p2.1 := D[p2].arg[1] with D[p2.1].type =skse, {≈ SK}
p2.2 := D[p2].arg[2] with D[p2.2].type =nonce, {≈ n3}
and if furthermore

a) (., shnd
1 , T ) ∈ TGTicketu for s1 := p1 + 1

b) (phnd
2.2 , T, D[p2].arg[4]) ∈ Nonce2u

then D[j] was created by MPK
T in step 4.22.

Furthermore, D[p2.1].hnda =↓.

Proof Hypothesis a) guarantees that MPK
u has a handle to the

symmetric key s1 needed to decrypt the message in D[j]. El-
ements in TGTicketu are stored there by MPK

u in step 3.42,
which only occurs if there was an input (v′, u, i, m′hnd) at outv?.
By construction of Algorithm 3, a handle to s1 was received by
MPK

u in step 3.31, otherwise the algorithm would have aborted.
Steps 3.30, 3.25, 3.20 and 3.7 show that a handle to s1 was ob-
tained from the list m′ satisfying the hypotheses of Lemma 4
for honest user u (e.g., D[m′.arg[1]] has the structure of D[l1]
from Lemma 4 and D[m′.arg[4]] has the structure of D[l4]).
Therefore an adversary cannot obtain a handle to s1. But MPK

u

does not create a list of the form of D[j], neither does MPK
K . So

MPK
T must have created D[j] in step 4.22. Hypothesis b) confirms

that D[j] has indeed the structure of the database entry created
in step 4.20 by MPK

T , i.e., phnd
2.2 is a nonce generated by MPK

u
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and D[p2].arg[4] ∈ {S1, ..., Sl}. In order for MPK
T to run Algo-

rithm 4, there must have been an input (v, T, i, mhnd) at outT ?.
Steps 4.12–4.16 ensure that the element x2 (in the notation of

Algorithm 4) has the same structure as the element in D[l2] in
Lemma 5. Since the encryption is under the key s1, v must be
honest and therefore equal to u. Key Secrecy now implies that
only T and u can have handles to the key generated by MPK

T in
step 4.18, i.e., D[p2.1].hnda =↓. �

If server S receives a ST and an authenticator {u, tv}SK

where the key SK and the name u are contained in the ST, then
the ST was generated by T and the authenticator was created by
u.

Lemma 7 (Server Authentication of the ST) For all u ∈
H, honest S ∈ {S1, ..., Sl}, KAS K and TGS T and for all j ≤
size with D[j].type =list and jhnd := D[j].hndS 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symenc, {≈ ST}
l2 := D[j].arg[2] with D[l2].type =symenc, {≈ {u, t′u}SK}
p1 := D[l1].arg[1] with D[p1].type =pkse, {≈ kS}
p2 := D[l1].arg[1] with D[p2].type =list, {≈ SK,u, tT }
p2.1 := D[p2].arg[1] with D[p2.1].type =skse, {≈ SK}
r1 := D[l2].arg[1] with D[r1].type =pkse, {≈ SK}
r2 := D[l2].arg[2] with D[r2].type =list, {≈ u, t′u}
and if furthermore

a) D[p1 + 1] = skseTS

b) D[p2.1] = D[r1 − 1]
c) D[p2].arg[2] = D[r2].arg[1] = u

then D[l1] was created by MPK
T in step 4.20 at time t and D[l2]

was created by MPK
u in step 3.59 at time t′ > t.

Proof By assumption, only T and S have handles to the long-
term shared key skseTS, which was used here for encryption, as
stated by hypothesis a). But since by construction of Algorithm 5
(Fig. 12), MPK

S does not use the key skseTS for encryption, MPK
T

must have used it in step 4.20. This step only occurs after there
was an input (v, T, i, mhnd) at outT ?. In step 4.20 MPK

T encrypts
a list which includes indices of a symmetric key generated in
step 4.18 and also of v’s name. Using hypothesis c) one obtains
that v = u and that the generated key is D[p2.1]. Hence, D[l1] was

created by MPK
T in step 4.20. We assumed u and S to be honest,

and therefore Key Secrecy implies that only v, T or S can have a
handle to the symmetric key in D[p2.1]. From hypotheses b) and
c) one can infer that the symmetric key in D[p2.1] was used for
encryption of a list containing u’s name in order to create D[l2].
Since neither T nor S use that symmetric key to encrypt such
a list, MPK

u must have generated D[l2] in step 3.59. Obviously,
this happened after D[l1] was generated by MPK

T in step 4.20 at
time t, since a handle to D[p2.1] was encrypted in step 4.20 before
MPK

T sends out any list from which a handle to D[p2.1] can be
obtained. �

B.4 Proof of Theorem 1, Public-key Kerberos part

Now we present the proof of Theorem 1 regarding public-key
Kerberos:

Proof (of Thm. 1) First we prove the Secrecy Property: Say there
was an output (ok,PK, S, SKhnd) at KA outu!. Examining Algo-
rithm 3 (Fig. 9, 10) we see that the handle SKhnd and the server
name S form an element (S, SKhnd) of the set Session KeysSu

(see steps 3.64, 3.65). By the definition of Session KeysSu (see
step 3.61), MPK

u obtained the handle SKhnd in step 3.51 and
steps 3.55 & 3.56 guarantee that SKhnd is indeed a handle to
symmetric keys. By Algorithm 3 (steps 3.50–3.56), SKhnd, the

name of server S and a handle to a nonce x2.2 were obtained from
a list l2 (in the notation of Algorithm 3) to which MPK

u obtained
a handle in step 3.50 after decrypting d3 with a symmetric key

AK; i.e., l2.arg[1] = SK.ind, l2.arg[2] = x2.1.ind, l2.arg[4] = S,
d3.type = symenc, D[d3.arg[2]].type = pkse and d3.arg[2] =
AK.ind− 1, by the definition of the command sym decrypt. Here
l2.hndu, d3.hndu, AK.hndu 6=↓, otherwise the algorithm would
abort by Convention 1; i.e., MPK

u has handles to d3 and to the
key AK. Steps 3.47 & 3.48 imply that (., AKhnd, T ) is an element
of the set TGTicketu. Furthermore, (xhnd

2.2 , T, S) is an element in
Nonce2u, otherwise there would be an abort in step 3.56. Hence,
D[d3] (in the notation of Algorithm 3) satisfies the hypotheses of
Lemma 6 for the element D[j]. In particular, this means that an
adversary cannot get a handle to the key SK.

Now say there was an output (ok, PK, u, SKhnd) at KA outS !.
This only occurs if there was an input (u, S, i, mhnd) at outS?
at a past time for some list m. By Algorithm 5, the handle to
SK was contained in a list x (in the notation of Algorithm 5),
to which MPK

S obtained a handle in step 5.2 after decryption
of m5.1 = m.arg[1] using the long-term shared key skseTS. Here
m5.1.hndS , x.hndS 6=↓ since otherwise the algorithm would abort
by Convention 1. Steps 5.6 and 5.7 ensure that the index of
x1 = SK really points to a symmetric key. Also, all other steps of
Algorithm 5 must have been executed by MPK

S without abort be-
fore the output (ok,PK, u, khnd). Therefore we see that steps 5.2–
5.7 and the definitions of the basic command sym decrypt guar-
antee that m5.1 from Algorithm 5 must have the same structure
as l1 from Lemma 7. Furthermore, steps 5.9–5.13 show that u’s
name was included in a list y to which S gets a handle in step 5.9
after decryption of m5.2 using the key x1 = SK. Therefore, m5.2

from Algorithm 5 has the same structure as l2 from Lemma 7.
Since it is easy to verify that hypotheses a), b) and c) are also sat-
isfied by the corresponding indices contained in m5.1 and m5.2,
and since u is honest, we can use Lemma 7 to infer that an adver-
sary cannot get a handle to the key SK. This proves the Secrecy
Property.

Next we prove the Authentication Property: i) Say there was
an output (ok, PK, v, xhnd

1 ) at KA outS ! at a time t3 ∈ N.
By construction of Algorithm 5, there must have been an input
(v, S, i, mhnd) at outS? at a past time. In order for there not to
be any abort during the execution of Algorithm 5 at some point
between the input (v, S, i, mhnd) at outS? and the output (ok,
PK, v, xhnd

1 ) at KA outS !, we see, just as above, that m’s com-
ponents m5.1 = m.arg[1] and m5.2 = m.arg[2] must satisfy the

hypotheses for Lemma 7. And since v is honest, Lemma 7 im-
plies that m5.2, which consists of a list that contains v’s name
and that is encrypted under the symmetric key SK, must have
been created by MPK

v in step 3.59. By construction of Algo-
rithm 3, there must have been an input (T, v, i, m̃hnd) at outv?
at a past time and an output (ok, PK, S′, SKhnd) at KA outv!
at some later time. Furthermore, (S′, SK) is an element of the
set Session KeysSu. By the definition of this set in step 3.61,
MPK

v received a handle to SK in step 3.51 after decryption of
d3 = D[m̃].arg[3] using a symmetric key AK (in the notation
of Algorithm 3, i.e., d3.arg[2] + 1 = AK.ind) in step 3.50. In
fact, steps 3.47–3.56 and the definitions of the basic commands
sym decrypt and list proj ensure that D[d3] has the same structure
as D[j] from Lemma 6 and satisfies the hypotheses of Lemma 6.
Therefore, by Lemma 6, D[d3] was created by MPK

T in step 4.22,
i.e., the key SK must have been generated by MPK

T step 4.18 for
v and S′. Key Secrecy implies that an adversary cannot get a
handle to SK. One immediately gets that S′ = S. Algorithm 4
is only executed by MPK

T if there was an input (v, T, i, m̂hnd)
at outT ?, and handles to an in step 4.18 created element can
only be obtained by other users if there was no abort during that
run of Algorithm 4. This implies that D[m̂.arg[1]] must have the
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same structure as D[l1] from Lemma 5, as ensured by steps 4.2–
4.9, and D[m̂.arg[2]] must have the same structure as D[l1] from
Lemma 5, as ensured by steps 4.11–4.16 and the definitions of

the basic commands sym decrypt and list proj. It is obvious that
all hypotheses of Lemma 5 are satisfied and so one gets, by
Lemma 5, that D[m̂.arg[1]] was created by MPK

K in step 2.38
and D[m̂.arg[2]] was created by MPK

v in step 1B.5. The latter
implies that there was an input (continue prot PK, T, S, AKhnd)
at KA inv! at a past time t2 < t3. On the other hand, by the defi-
nition of TGTicketu in step 3.42 and by steps 1B.1 & 1B.2, there
must have been an output in step 3.43 that contained a handle to
the same symmetric key as in the input to Algorithm 1B, namely
the key AK. Otherwise there would be an abort in step 1B.2, i.e.,
there was an output (ok,KAS exchange PK, K,T, (., ., ., AKhnd))
at KA outv!. Since the execution of Algorithm 3 did not produce
an error, one can use Lemma 4 to infer that MPK

K must have run
Algorithm 2 and generated AK for v. Finally, by construction of
Algorithm 2 and by definition of the command verify, one gets
that v must have run Algorithm 1 with the input (new prot,PK,
K, T )) at KA inv! at a time t1 < t2.
ii) Now say that there was on output (ok,PK, S, SKhnd) at port
KA outu! at time t2. By construction of Algorithm 3, this only
happens after u received an input (S, u, i, mhnd) at outu? and
without there being any abort during the execution of Algo-
rithm 3 between the input and the output (steps 3.63–3.73). By
steps 3.64 and 3.65, m was encrypted using a symmetric key SK
(i.e., m.type = symenc and m.arg[2] = SK.ind − 1) for which
(S, SKhnd) ∈ Session KeysSu. Steps 3.68–3.71 ensure that u’s
name was not the first argument of the list l3 (in the notation of
Algorithm 3) to which MPK

u obtains a handle after decryption of
m using SK (i.e., u 6= l3.arg[1]). Here l3.hndu 6=↓ otherwise there
would be an abort of Algorithm 3, by Convention 1. On the other
hand, the element (S, SKhnd) ∈ Session KeysSu was added in
step 3.61 after the key SK was used for encryption in step 3.59 of
a list x5 (in the notation of Algorithm 3) which does contain u’s
name as its first argument (i.e., u = x5.arg[1]). By construction of
Algorithm 3, step 3.59 is the only time that a symmetric key SK,
for which (S, SKhnd) ∈ Session KeysSu, is used for encryption
by MPK

u . Therefore, since the list l3 in m does not contain u’s
name as its first argument, MPK

u did not create D[m]. In order for
(S, SKhnd) to be added to Session KeysSu in step 3.61, there
must have been an input (T, u, i, m̃hnd) at outu? in the past and
there could not have be any abort in the steps 3.44–3.61. But
these steps, together with the definitions of the basic commands
sym decrypt and list proj, guarantee that the m̃ component d3 (in
the notation of Algorithm 3) satisfies the hypotheses of Lemma 6
(where SK = D[d3.arg[1]].arg[1] and S = D[d3.arg[1]].arg[4]).
Using Lemma 6 we see that only T , u and S can have handles to
SK. Hence, MPK

S must have used the handle to the key SK for

encryption at a time t1 < t2. This can only happen in step 5.15
after receiving an input (v′, S, i, m̃hnd) at outS?, where v′ = u
as guaranteed by step 5.9–5.13. The encryption that MPK

S gener-
ated using the key SK must have been sent for others to obtain
a handle for it, so there was no abort in step 5.16, and therefore
there must have been an output (ok,PK, u, SKhnd) at KA outS !
at some time t1 < t2. �

B.5 Auxiliary Properties for Basic Kerberos

In the following we will consider the auxiliary properties for Ba-
sic Kerberos, i.e., in particular, ‘Algorithm 1’, ‘Algorithm 2’ and
‘Algorithm 3’ will here refer to the algorithm in Figures 13, 14,
and 15. The remaining algorithms for the TGS T and for a server
S are valid for both Public-key and Basic Kerberos (i.e., for MK5

T ,
MK5

S just like for MPK
T , MPK

S ).

Handles contained in the sets Nonceu and Nonce2u are in-
deed handles of u to nonces.

Lemma 8 (Correct Nonce Owner) For all u ∈ H, and all
(xhnd, . . .) ∈ Nonceu or (xhnd, . . .) ∈ Nonce2u, it holds that
D[hndu = xhnd] 6=↓ and D[hndu = xhnd].type = nonce.

Proof Let (xhnd, . . .) ∈ Nonceu. By construction, this entry has
been added to Nonceu by MK5

u in step 1A.5. xhnd has been
generated through the input of the command gen nonce() at some
time t at port inu? of THH. Convention 1 implies xhnd 6=↓, as
MK5

u would abort otherwise and not add the entry to Nonceu.

By definition of gen nonce() and using Lemma 5.2 of [4] one gets
that D[hndu = xhnd] 6=↓ and D[hndu = xhnd].type = nonce
holds (the proof of the statement for Nonce2u is analogous). �

If K generated a symmetric key k or AK for v (i.e., on re-
ceiving a AS REQ from v) and w has a handle to k or AK, then
w must either be v or K. And if T generated a symmetric key
SK for v and server S and w has a handle to SK, then w must
be either v, T , or S.

Lemma 9 (Key Secrecy) For all u, v ∈ H, honest K, T, and
S ∈ {S1, . . . , Sl}, and for all j ≤ size with D[j].type = skse:

a) If D[j] was created by MK5
K in step 2.9 then (with the notation

of Algorithm 2 (Fig. 14))

D[j].hndw 6= ↓ implies w ∈ {v, K, T}.

b) If D[j] was created by MK5
T in step 4.18 then (with the no-

tation of Algorithm 4 (Fig. 11))

D[j].hndw 6= ↓ implies w ∈ {v, T, S}

where with the notation of Algorithm 4, S = x4.

Proof a) Let j ≤ size, D[j].type = skse such that D[j] was cre-
ated by MK5

K in step 2.9 at time t. The message m2 (in the nota-
tion of Algorithm 2), to which a handle is sent out in step 2.15,
contains D[j] encrypted under the encrypted under a symmetric
key kv shared exclusively between K and v (khnd

v , see step 2.13).
More precisely, D[m23.ind = m2.arg[3]] is created by applying
the command sym encrypt taking as arguments a handle to k and
a handle to the list z2 where z2.arg[1] = D[j].ind. By the as-
sumption on the long-term key kv, only v or K can decrypt m23.
The message m2 further contains D[j] encrypted under a sym-
metric key skseKT shared exclusively between K and T (more
precisely, D[TGT.ind = m2.arg[2]] is created in step 2.11 by ap-
plying the command sym encrypt taking as arguments a handle to
skseK,T and a handle to the list z1 where z1.arg[1] = D[j].ind).
By construction of Algorithm 4 (Fig. 11) and since T is honest,
one sees that MK5

T never sends any message from which a handle

to D[j] for time t′ > t. Also, by construction of Algorithms 1 and
3 (Figs. 13 and 15)and since v and K are honest, one sees that v
and K do not send out any list from which a handle to D[j] can
be obtained for time t′ > t.

b) Let j ≤ size, D[j].type = skse such that D[j] was created
by MK5

T in step 4.18 at time t. The message m4 (in the nota-
tion of Algorithm 4), to which a handle is sent out in step 4.24,
contains D[j] in ST which is a symmetric encryption under a
symmetric key skseTS shared exclusively between T and S (i.e.,
m4.arg[2] = ST.ind, ST.arg[1] = D[j].ind) and m4 also con-
tains D[j] in a list m4.3 (where m4.3.ind = m4.arg[3]) which
is a symmetric encryption under a key y1.1. T gets a handle to
the key y1.1 in step 4.3, i.e., after decryption with the symmetric
key shared exclusively between T and K (i.e., sksehnd

KT ; see step
4.1), otherwise there would be an abort, by Convention 1. Since,
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by construction, MK5
T does not use the key skseKT for encryp-

tion, MK5
K must have created the cyphertext containing a handle

to the key y1.1. From Algorithm 2 one can now infer that MK5
K

must have created the key y1.1. Key Secrecy a) and the honesty
of v, K and T imply that only v, T, K have handles to this key. T
and K do not use this second key for decryption, therefore only
v can get a handle to D[j] through decryption with the key y1.1.
Also, only MK5

S uses sksehnd
TS for decryption (in step 5.2). But, by

construction, neither MK5
S nor MK5

v send out any message, from
which a handle to D[j] can be obtainedfor time t′ > t. �

If honest user u receives what appears to u to be a valid
AS REP message then this message (disregarding the TGT ) was
indeed generated by K for u and an adversary cannot learn the
contained symmetric keys.

Lemma 10 (Authentication of KAS to client and Secrecy
of AK) For all u ∈ H, honest KAS K and TGS T , and for all
j ≤ size with D[j].type = list and jhnd := D[j].hndu 6= ↓:
If l3 := D[j].arg[3] with D[l3].type = symenc,

{≈ {AK, n1, tK , T}ku
}

x1 := D[l3].arg[1] with D[x1].type = list, {≈ AK,n1, tK , T}
y2 := D[x1].arg[2] with D[y2].type = nonce, {≈ n1}
and if furthermore

a) D[D[l3].arg[2]].ind + 1 = D[ku].ind, i.e., D[l3].arg[2] is the
public identifier of the long-term key ku shared between K
and u

then D[l3] was created by MK5
K in step 2.13 and its index is an

argument in a list sent to u in step 2.15.
Furthermore, D[x1.arg[1]].hnda =↓.

Proof By hypothesis a), D[l3] is encrypted using the long-term
key ku shared between K and u. By assumption on this key and
since u is honest, only MK5

K and MK5
u have handles to ku. Since,

by construction, MK5
u does not use this key for encryption, MK5

K

must have used it for encryption. This occurs only in step 2.13 af-
ter there was an input (v, K, i, mhnd) at outK?. By Algorithm 2,
one has v = u. Furthermore, the key contained in l3 with index
x1.arg[1] was created in step 2.9. Since u is honest, Key Secrecy
implies that an adversary cannot obtain a handle to this key. For
any user, including u, to be able to obtain a handle to that key,
MK5

u must send it first. This happens in step 2.15, where MK5
u

sends a list m2 (in the notation of Algorithm 2) to v = u, where
m2.arg[3] = D[l3].ind. Furthermore, Key Secrecy implies that
D[x1.arg[1]].hnda =↓. �

If TGS T receives a TGT and an authenticator {u, tu}AK

where the key AK and the username of an honest user u are
contained in the TGT, then the TGT was generated by K and
the authenticator was created by u.

Lemma 11 (TGS Authentication of the TGT) For all u ∈
H, honest KAS K and TGS T and for all j ≤ size with D[j].type
=list and jhnd := D[j].hndT 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symenc, {≈ TGT}
l2 := D[j].arg[2] with D[l2].type =symenc, {≈ {u, tu}AK}
x1 := D[l1].arg[1] with D[x1].type =pkse, {≈ kKT }
x2 := D[l1].arg[2] with D[x2].type =list, {≈ AK,u, tK}
x2.1 := D[x2].arg[1] with D[x1.1].type =skse, {≈ AK}
y1 := D[l2].arg[1] with D[x1].type =pkse, {≈ AK}
y2 := D[l2].arg[2] with D[y2].type =list, {≈ u, tu}
and if furthermore

a) D[x1 + 1] = skseKT

b) D[x2.1 − 1] = D[y1]
c) D[x2].arg[2] = D[y2].arg[1] = u

then entry D[l1] was created by MK5
K in step 2.11 at a time t and

entry D[l2] was generated by MK5
u in step 1B.5 at a time t′ > t.

Proof By hypothesis a), D[x2] is encrypted under the long-term
key shared between K and T . It is assumed that only MK5

K and
MK5

T have handles to the long-term key skseKT . Since by con-
struction of Algorithm 4 (Fig. 11), MK5

T does not use this key for
encryption, MK5

K must have created D[l1] in step 2.11. This step
is only executed if there was an input (v, K, i, mhnd) at outK?. In
step 2.11 MK5

K encrypts a list z1 (in the notation of Algorithm 2)
created in step 2.10 using a handle to the name of user v and
a handle to a symmetric key AK that was freshly generated by
THH earlier, after receiving the command gen sym key from MK5

K

in step 2.9 (more precisely, z1.arg[2] = v, z1.arg[1] = AK.ind).
Hypothesis c) now implies that u = v. Since u is assumed to be
honest, we can use Key Secrecy to infer that only u, K or T can
have handles to the key AK. Hypotheses b) and c) state that
this key was used for encryption of a list containing u’s name. By
construction, only MK5

u uses this key for encryption of a list con-
taining u’s name, that is to say in step 1B.5, i.e., MK5

u generated
D[l2] in step 1B.5. It is obvious that this encryption happened
after MK5

K created D[l1], since MK5
K generates the symmetric en-

cryption key AK and creates D[l1] before sending out a handle
to a list from which another user can obtain a handle to this key.

�

If honest user u receives what appears to u to be a valid
TGS REP then the for u verifiable part of that message, en-
crypted under the symmetric key AK, was generated by T for u
and S. And an adversary cannot learn the contained session key
SK.

Lemma 12 (Authentication of TGS to client and Secrecy
of SK) For all u ∈ H, honest KAS K and TGS T and for all
j ≤ size with D[j].type =symenc and jhnd := D[j].hndu 6= ↓:
p1 := D[j].arg[1] with D[p1].type =pkse, {≈ AK}
p2 := D[j].arg[2] with D[p2].type =list, {≈ SK,n3, tT , S}
p2.1 := D[p2].arg[1] with D[p2.1].type =skse, {≈ SK}
p2.2 := D[p2].arg[2] with D[p2.2].type =nonce, {≈ n3}
and if furthermore

a) (., shnd
1 , T ) ∈ TGTicketu for s1 := p1 + 1

b) (phnd
2.2 , T, D[p2].arg[4]) ∈ Nonce2u

then D[j] was created by MK5
T in step 4.22.

Furthermore, D[p2.1].hnda =↓.

Proof Analogous to the proof of Lemma 6.

If server S receives a ST and an authenticator {u, tv}SK

where the key SK and the name of honest user u are contained
in the ST, then the ST was generated by T and the authenticator
was created by u.

Lemma 13 (Server Authentication of the ST) For all u ∈
H, honest S ∈ {S1, ..., Sl}, KAS K and TGS T and for all j ≤
size with D[j].type =list and jhnd := D[j].hndS 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symenc, {≈ ST}
l2 := D[j].arg[2] with D[l2].type =symenc, {≈ {u, t′u}SK}
p1 := D[l1].arg[1] with D[p1].type =pkse, {≈ kTS}
p2 := D[l1].arg[1] with D[p2].type =list, {≈ SK,u, tT }
p2.1 := D[p2].arg[1] with D[p2.1].type =skse, {≈ SK}
r1 := D[l2].arg[1] with D[r1].type =pkse, {≈ SK}
r2 := D[l2].arg[2] with D[r2].type =list, {≈ u, t′u}
and if furthermore

a) D[p1 + 1] = skseTS
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b) D[p2.1] = D[r1 − 1]
c) D[p2].arg[2] = D[r2].arg[1] = u

then D[l1] was created by MK5
T in step 4.20 at time t and D[l2]

was created by MK5
u in step 3.36 at time t′ > t.

Proof Analogous to the proof of Lemma 7.

B.6 Proof of Theorem 1, Basic Kerberos part

Now we present the proof of Thm. 1 regarding basic Kerberos:

Proof (of Thm. 1) First we prove the Secrecy Property: Say there
was an output (ok,K5, S, SKhnd) at KA outu!. Examining Algo-
rithm 3 (Fig. 15) we see that the handle SKhnd and the server
name S form an element (S, SKhnd) of the set Session KeysSu

(see steps 3.41, 3.42). By the definition of Session KeysSu (see

step 3.38), MK5
u obtained the handle SKhnd in step 3.28, and

steps 3.32 and 3.33 guarantee that SKhnd is indeed a handle to
symmetric keys. By Algorithm 3 (steps 3.27–3.33), SKhnd, the
name of server S and a handle to a nonce x2.2 were obtained from
a list l2 (in the notation of Algorithm 3) to which MK5

u obtained
a handle in step 3.27 after decrypting d3 with a symmetric key
AK; i.e., l2.arg[1] = SK.ind, l2.arg[2] = x2.1.ind, l2.arg[4] = S,
d3.type = symenc, D[d3.arg[2]].type = pkse and d3.arg[2] =
AK.ind− 1, by the definition of the command sym decrypt. Here
l2.hndu, d3.hndu, AK.hndu 6=↓, otherwise the algorithm would
abort by Convention 1; i.e., MK5

u has handles to d3 and to the key
AK. Steps 3.24 and 3.25 imply that (., AKhnd, T ) is an element
of the set TGTicketu. Furthermore, (xhnd

2.2 , T, S) is an element in
Nonce2u, otherwise there would be an abort in step 3.33. Hence,
D[d3] (in the notation of Algorithm 3) satisfies the hypotheses of
Lemma 12 for the element D[j]. In particular, this means that an
adversary cannot get a handle to the key SK.
Now say there was an output (ok,K5, u, SKhnd) at KA outS !.
This only occurs if there was an input (u, S, i, mhnd) at outS?
at a past time for some list m. By Algorithm 5, the handle to
SK was contained in a list x (in the notation of Algorithm 5),
to which MK5

S obtained a handle in step 5.2 after decryption
of m5.1 = m.arg[1] using the long-term shared key skseTS . Here
m5.1.hndS , x.hndS 6=↓ since otherwise the algorithm would abort
by Convention 1. Steps 5.6 and 5.7 ensure that the index of
x1 = SK really points to a symmetric key. Also, all other steps of
Algorithm 5 must have been executed by MK5

S without abort be-
fore the output (ok,K5, u, khnd). Therefore we see that steps 5.2–
5.7 and the definitions of the basic command sym decrypt guar-
antee that m5.1 from Algorithm 5 must have the same structure
as l1 from Lemma 13. Furthermore, steps 5.9–5.13 show that u’s
name was included in a list y to which S gets a handle in step 5.9
after decryption of m5.2 using the key x1 = SK. Therefore, m5.2

from Algorithm 5 has the same structure as l2 from Lemma 13.
Since it is easy to verify that hypotheses a), b) and c) are also sat-
isfied by the corresponding indices contained in m5.1 and m5.2,
and since u is honest, we can use Lemma 13 to infer that an
adversary cannot get a handle to the key SK. This proves the
Secrecy Property.

Next we prove the Authentication Property: i) Say there was
an output (ok, K5, v, xhnd

1 ) at KA outS ! at a time t3 ∈ N.
By construction of Algorithm 5, there must have been an input
(v, S, i, mhnd) at outS? at a past time. In order for there not to be
any abort during the execution of Algorithm 5 at some point be-
tween the input (v, S, i, mhnd) at outS? and the output (ok, K5,
v, xhnd

1 ) at KA outS !, we see, just as above, that m’s components
m5.1 = m.arg[1] and m5.2 = m.arg[2] must satisfy the hypothe-
ses for Lemma 7. And since v is honest, Lemma 13 implies that
m5.2, which consists of a list that contains v’s name and that is

encrypted under the symmetric key SK, must have been created
by MK5

v in step 3.36. By construction of Algorithm 3, there must
have been an input (T, v, i, m̃hnd) at outv? at a past time and

an output (ok, K5, S′, SKhnd) at KA outv! at some later time.
Furthermore, (S′, SK) is an element of the set Session KeysSu.
By the definition of this set in step 3.38, MK5

v received a han-
dle to SK in step 3.28 after decryption of d3 = D[m̃].arg[3]
using a symmetric key AK (in the notation of Algorithm 3,
i.e., d3.arg[2] + 1 = AK.ind) in step 3.27. In fact, steps 3.24–
3.33 and the definitions of the basic commands sym decrypt and
list proj ensure that D[d3] has the same structure as D[j] from
Lemma 12 and satisfies the hypotheses of Lemma 12. Therefore,
D[d3] was created by MK5

T in step 4.22, i.e., the key SK must
have been generated by MK5

T step 4.18 for v and S′. Key Se-
crecy implies that an adversary cannot get a handle to SK. One
immediately gets that S′ = S. Algorithm 4 is only executed by
MK5

T if there was an input (v, T, i, m̂hnd) at outT ?, and handles
to an in step 4.18 created element can only be obtained by other
users if there was no abort during that run of Algorithm 4. This
means that D[m̂.arg[1]] must have the same structure as D[l1]
from Lemma 11, as ensured by steps 4.2–4.9, and D[m̂.arg[2]]
must have the same structure as D[l1] from Lemma 11, as en-
sured by steps 4.11–4.16 and the definitions of the basic com-
mands sym decrypt and list proj. It is obvious that all hypothe-
ses of Lemma 11 are satisfied and so one gets that D[m̂.arg[1]]
was created by MK5

K in step 2.11 and D[m̂.arg[2]] was created
by MK5

v in step 1B.5. The latter implies that there was an in-
put (continue prot K5, T, S, AKhnd) at KA inv! at a past time
t2 < t3. On the other hand, by the definition of TGTicketu in
step 3.19 and by steps 1B.1 and 1B.2, there must have been
an output in step 3.20 that contained a handle to the same
symmetric key as in the input to Algorithm 1B, namely the
key AK. Otherwise there would be an abort in step 1B.2, i.e.,
there was an output (ok,KAS exchange K5, K,T, (., ., ., AKhnd))
at KA outv!. Since the execution of Algorithm 3 did not pro-
duce an error, one can use Lemma 10 to infer that MK5

K must
have run Algorithm 2 and generated AK for v. Finally, by con-
struction of Algorithm 2 and by definition of the command ver-
ify, one gets that v must have run Algorithm 1 with the input
(new prot, K5, K, T )) at KA inv! at a time t1 < t2.

ii) Now say that there was on output (ok, K5, S, SKhnd) at port
KA outu! at time t2. By construction of Algorithm 3, this only
happens after u received an input (S, u, i, mhnd) at outu? and

without there being any abort during the execution of Algo-
rithm 3 between the input and the output (steps 3.40–3.50). By
steps 3.41 and 3.42, m was encrypted using a symmetric key SK
(i.e., m.type = symenc and m.arg[2] = SK.ind − 1) for which
(S, SKhnd) ∈ Session KeysSu. Steps 3.45–3.48 ensure that u’s
name was not the first argument of the list l3 (in the notation
of Algorithm 3) to which MK5

u obtains a handle after decryption
of m using SK (i.e., u 6= l3.arg[1]). Here l3.hndu 6=↓, otherwise
there would be an abort of Algorithm 3 by Convention 1. On
the other hand, the element (S, SKhnd) ∈ Session KeysSu was
added in step 3.56 after the key SK was used for encryption in
step 3.36 of a list x5 (in the notation of Algorithm 3) which does
contain u’s name as its first argument (i.e., u = x5.arg[1]). By
construction of Algorithm 3, step 3.36 is the only time that a
symmetric key SK, for which (S, SKhnd) ∈ Session KeysSu, is
used for encryption by MK5

u . Therefore, since the list l3 in m does
not contain u’s name as its first argument, MK5

u did not create
D[m]. In order for (S, SKhnd) to be added to Session KeysSu

in step 3.38, there must have been an input (T, u, i, m̃hnd) at
outu? in the past and there could not have be any abort in the
steps 3.21–3.38. But these steps, together with the definitions of
the basic commands sym decrypt and list proj, guarantee that the
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m̃ components d3 (in the notation of Algorithm 3) satisfies the
hypotheses of Lemma 12 (where SK = D[d3.arg[1]].arg[1] and
S = D[d3.arg[1]].arg[4]). Therefore, only T , u and S can have

handles to SK. Hence, MK5
S must have used the handle to the

key SK for encryption at a time t1 < t2. This can only happen in
step 5.15 after receiving an input (v′, S, i, m̃hnd) at outS?, where
v′ = u as guaranteed by step 5.9–5.13. The encryption that MK5

S

generated using the key SK must have been sent for others to
obtain a handle for it, so there was no abort in step 5.16, and
therefore there must have been an output (ok,K5, u, SKhnd) at
KA outS ! at some time t1 < t2. �

25


