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Abstract

Standards bodies have been addressingéyewrapproblem, a cryptographic goal that has never re-
ceived a provable-security treatment. In response, weiggaane, giving definitions, constructions, and
proofs. We suggest that key-wrap’s goal is security in theseefdeterministic authenticated-encryption
(DAE), a notion that we put forward. We also provide an aléive notion, gpseudorandom injectiofiPRI),
which we prove to be equivalent. We provide a DAE construct®lV, analyze its concrete security, de-
velop a blockcipher-based instantiation of it, and sugtiedtthe method makes a desirable alternative to the
schemes of the X9.102 draft standard. The constructiorrpocates a method to turn a PRF that operates
on a string into an equally efficient PRF that operates on tovef strings, a problem of independent inter-
est. Finally, we consider IV-based authenticated-en@yfAE) schemes that are maximally forgiving of
repeated IVs, a goal we formalize mésuse-resistant ABNVe show that a DAE scheme with a vector-valued
header, such as SlV, directly realizes this goal.
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1 Introduction

The American Standards Committee Working Group X9F1 has proposedkégunrapschemes in a draft
standard known as ANS X9.102, and NIST has promulgated a requesirfonents on the proposal [13]. The
S/MIME working group of the IEEE had earlier adopted a key-wrap s@hl7], and their discussions on this
topic go back to at least 1997 [37]. NIST is considering specifying avikgp mechanism in their own series
of recommendations [M. Dworkin, personal communications]. But desjithig, the key-wrap goal would
seem to be essentially unknown to the cryptographic community. No publisipea pnalyzes any key-wrap
scheme, and there is no formal definition for key wrap in the literature, leeamy proven-secure scheme.
Consequently, the goal of this paper is to put the key-wrap problem oopeip provable-security footing. In
the process, we will learn quite a bit that's new about authenticatedaramy(AE).

Before proceeding it may be useful to give a very informal descriptiche key-wrap goal, echoing the
wording in [13, p. 1]. A key-wrap scheme is a kind of shared-key yotasn scheme. It aims to provide
“privacy and integrity protection for specialized data such as cryppiigcdkeys,. . . without the use of nonces”
(meaning counters or random bits). So key-wrap’s raiséiréis to remove AE’s reliance on a nonce or random
bits. At least in the context of transporting cryptographic keys, a detetigischeme should be just as good
as a probabilistic one, anyway. Another goal of key wrap is to providednity protection. .. for cleartext
associated data, . which will typically contain control information about the wrapped key” [p31].

CONTRIBUTIONS. We begin with a critique of the X9.102 key-wrap schemes, identifying thie lchsirac-
teristics of each of the four algorithms. Overall, we find the proposed mérha somewhat disappointing in
terms of usage restrictions, efficiency, and foundations. That sailireed none of the four schemes, and we
owe this work to their existence. See Section 2 and Appendix A.

Guided by the proposed schemes, we offer a definition for what a kag-scheme should do. We call the
goaldeterministic authenticated-encryptiDAE). A thesis underlying our work is that the goal of a key-wrap
schemes DAE. In a DAE scheme, encryption deterministically turns a key, a headdraanessage into a
ciphertext. The header (which may be absent, a string, or even a véatings) is authenticated but not
encrypted. To define security, the adversary is presented either enmgption oracle and a real decryption
oracle (both are deterministic), or else a bogus encryption oracle thaiejushs random bits and a bogus
decryption oracle that always returns an indication of invalidity. For aldo8E scheme, the adversary should
be unable to distinguish these possibilities. See Section 3.

Next we provide a DAE construction, SIV. (The acronym standsSwnthetic IV wherelV stands for
Initialization Vector) The construction combines a conventional IV-based encryption scfegn€TR mode
[27]) and a special kind of pseudorandom function (PRF)—one thatsta vector of strings as input. To
encrypt, apply the PRF to the header and the message and use the rédseillasf the encryption scheme.
We prove that SIV is a good DAE, assuming its components are secur&egten 4.

In practice one would want to realize SIV from a blockcipher, and sohesvshow to turn a PRF that
operates on a single string into a PRFthat takes a vector of strings. Under our S2V construction, the cost of
computing the PRF* = S2V[f] on a vectortX = (X1, ..., X,,) is at most the total cost to compufeon each
componentX;, and it can be considerably less, as the contribution from a compdfiezdn be precomputed
if it is to be held constant. See Section 5.

For a concrete alternative to the X9.102 schemes, we suggest to instataisiisy modes CTR and
CMAC* = S2V[CMAC], where CTR is counter mode [27] and CMAC is an arbitrary-input-lengtramtof
the CBC MAC [28]. The specified mechanism removes unnecessarg ussigictions, improves efficiency,
and provides provable security. See Section 6.

Applications of DAEs go beyond the wrapping of keys. Many IV-basathyption schemes, such as CBC,
require an adversarially unpredictable IV. Experience has showmtp&menters and protocol designers often
supply an incorrect IV, such as a constant or counter.nisaise-resistarAE scheme the aim is to do as well as
possible with whatever IV is provided. We formalize this goal and show tBétta scheme that takes a vector-



DAE | Deterministic authenticated-encryptioSection 3. The main notion being investigated by this paper

PRI Pseudorandom injectiorSection 8. Like a strong PRP but injective instead of biyjectDAE-security and
PRI-security differ by an amount that vanishes expondmptialthe stretchof the scheme.

MRAE Misuse-resistant AESection 7. Strengthening of the usual definition of nonaseld AE to speak to what

happens when a nonce gets reused. Easily constructed frakk dHat handles vector-valued headers.

S|V Synthetic IV Section 4. Makes a DAE by first applying a PRF to the heademagsbage to get an IV. Alsp
our blockcipher-based mode of operation that instantihiesising CTR mode and S2V-applied-to-CMAC.
String to vector Section 5. Turns a PRF that takes a string as input into a R&Fakes a vector of strings

S2v . o .
as input. More efficient than an encoding-based approach.

PTE Pad-then-encipherAppendix D. Makes a DAE by padding the input and then encipbe Two versions,
depending on how headers are handled. Most natural appro&2hE, but less desirable than SIV.

Figure 1:Roadmap of the new notions and schemes. The first threesatdesecurity notions; the next three entries are
schemes. The section reference indicates where the dafiitihe notion or scheme can be found.

valued header provides an immediate solution: just regard the IV as oneonentpof the header. Adopting
this viewpoint, SIV can be regarded as an IV-based AE scheme, orfécaesne with respect to blockcipher
calls as conventional two-pass AE schemes like CCM [29] but more reditiéitmisuse. See Section 7.

Finally, we give an alternative characterization of DAEspgeudorandom injectio(PRI) is like a block-
cipher except that the ciphertext may be longer than the plaintext (alsmebsage space may be richer than
{0,1}" for some fixedr, and a header may be provided). We prove PRIs equivalent to DAEs,aiterm that
is negligible when the PRI is adequately length-increasing.

Our definition of DAE merges the traditionally separate privacy and autligntéguirements of an AE
scheme. Itis possible to split the definition into separate privacy and digibyegoals and require both. Doing
this yields an equivalent definition. Similarly, the separate privacy anekatitity requirements normally used
to define AE [6, 8, 19, 20, 31, 33] can be merged into a single, unified gba all-in-one approach for defining
AE seems to us simpler and more elegant than giving separate privacytmeiicity definitions and then
asking for both. See Appendix B.

A reason for doing key wrap (DAE) instead of conventional (probaim)ig\E is the intuition that, if the
plaintext carries a key, there shouldn’t be any need to inject additiandbmness into the encryption process.
One can formalize and prove this intuition, establishing, in effect, the semauaticity of DAE for the context
in which keys are embedded into plaintexts. A DAE scheme cannot by itsedvackemantic security because
itis deterministic—we are saying that a random enough message spacesaiegdor this, letting you recover
the equivalent of semantic security. See Appendix C.

Besides SIV we also provide a second construction, one that useeedifferimitives. Thepad-then-
encipherscheme, PTE, is based on an enciphering scheme (ie, a length-prgsamenyption scheme, like
CMC [16]). One pads the plaintext (eg, appending 0-bits) before badipy. We prove the security of PTE.
We investigate the pad-then-encipher is the paradigm because it seerntsonast natural approach to solving
the key-wrap problem, as well as the approach that underlies two of ti®X8chemes. See Appendix D.

RoADMAP. Given the number of new acronyms, definitions, and schemes introdutieid paper, the table
of Figure 1 may provide a helpful summary. For the security notions, loase labels (eg, dae) are used
as a superscript for advantage measuresAegv%ae) while their upper-case counterpart (eg, DAE) are used
in English prose. Our table omits mention of notions that are standard or wi@sgon is confined to the
appendices.

WHY THIS GOAL? There are two main reasons to prefer DAE over conventional (piligtigbor stateful)
AE. First, DAE saves one from having to introduce random bits or statentexts where these measures are
infeasible or unnecessary. Relatedly, DAE saves on bandwidth, sineente or random value need be sent.



That said, in many contexts where one would think to use key wrap;amese a conventional AE scheme,
instead. This does not make studying the key-wrap problem pointless.ittarifies the relationship between
key wrap and conventional AE. Second, DAE leads to misuse-resisBaramd methods that achieve this aim
make practical alternatives to conventional (not misuse-resistant) tegAf methods. Finally, practitioners
have already “voted” for key-wrap by way of protocol-design anddgadization efforts, and it is simply not
productive to say “use a conventional AE scheme” after this option hers fegected.

THE SIGNIFICANCE OF HEADERS We emphasize that our formalization of DAEs includes a header (also
called a tweak or associated-data). For cryptographic practice, all@iegder seems to be almost essential.
Network security protocols require sending packets only portions oftwdrie encrypted, but all of which must
be authenticated and bound together. Good security practice requyetokae bound to control information
such as expiration date and permitted usage, and the binding of keys toantobl information has strongly
informed security architecture (eg, IBM's cryptographic control vex{@5]). Regarding headers as vectors
facilitates both efficiency advantages and a cleaner abstraction bgundar

FURTHER RELATED WORK AE goals were formalized over a series of papers [6, 8, 20, 31, 33. idea of
binding the encryption process to unencrypted strings is folklore, witbntework in this direction includ-
ing [23, 31, 36]. Bellare and Rogaway [8] investigate the paradigm dingdrandomness or redundancy to a
plaintext and then enciphering it, an approach related to the ideas afid s@ippendices C and D. Rus-
sell and Wong [35] introduce a completely different approach for dealiith the encryption of low-entropy
messages, and Dodis and Smith [12] extend this entropy-based appi®aah and Pointcheval [30] study
relationships among security notions for conventional (length-preggaviill headerless) ciphers. The SIV
construction resembles the AE scheme EAX [9]. A less ambitious relaxatioW oequirements than that
formalized as misuse-resistant encryption is given in [32]. The prangedersion of this paper was published
as [34].

2 The Draft X9.102 Standard

Four key-wrap schemes are defined in the draft ANS X9.102 stanildjd The schemes are called AESKW
and TDKW (which are essentially the same scheme, the former using AES eutakeh using triple-DES),
AKW1, and AKW2. Scheme AESKW is based on a six-round, non-stah8arstel network. It was first
proposed by NIST and is pictured and specified in Figure 7. Scheme AKWlves two layers of CBC
encryption and one application of SHAL. It was developed by the S/MINEking group of the IETF [17]
and is pictured in Figure 8. Scheme AKW2 involves a CBC encryption laygraa@BC MAC layer. It was
designed to accommodate legacy financial-services devices and is pictéiigdre 9.

EXPLANATION OF SUMMARY TABLE. Here and in Figure 2 we summarize basic properties of the X9.102
schemes [13]; see Appendix A for further discussion. The columnmesept three of the four schemes (TDKW

is omitted because of its similarity to AESKW). Let us explain the meaning of the safole’s. Goal: This is

our understanding of the mechanism’s aim. Schemes AESKW and TDKW séemdéd to achieve DAE, the
focus of this paper. We don’t know if the schemes actually achieve thig\geaxpect that they do). Scheme
AKW!1 is described as a probabilistic scheme that aims to achieve (probab#iEjdhe original notion of AE

put forward in [6, 8, 20]. But we explain in Appendix A why we view AKVé% a peculiar approach for trying

to achieve probabilistic AE. Scheme AKW1 seems to reflect no single andaiseble cryptographic goal (this
sometimes happens in committee-based design). Scheme AKW2 achieves patyadized (not of general
interest) notion of deterministic privacy, along with a deterministic version tifeaicity-of-ciphertexts. The
combination of these aims is substantially weaker than the goal of being aNdédsage spaceThe message
space over which the scheme is definddader space:The space of headers (also called tweaks or associated
data) over which the scheme is definBait: Specifies any technical requirement about the relationship between



| AESKw AKW1 AKW2
Goal DAE see text see text
Message space X € {0,1}0-2% 64 X e (ByTE®)-2" X € (ByTE®)22'"]
Header space H € BYTES?® not supported H ¢ (BYTE®)™
But H+#corX #¢ nothing nothing
Ciphertext bits 64[(|H| + | X])/64] + 64 | X| + 128 | X'|+ Tlen whereTlen € [32..64]
Expansion |H| + 64to |H| + 127 128 32-64
Blockcipher AES (any key length) TDEA (two-key or three-key)| TDEA (two-key or three-key)
Forging prob 2763 964 2~ Tlen with Tlen € [32..64]
Maxqueries 2148 232 232
Overhead 12x 2x+3 (plus SHAL overhead) 2x on message, x on header
Key usage one blockcipher key one blockcipher key two blockcipher keys
Parallelizable? no no no
Preprocess header?|| no not applicable yes
Expedited auth? no no yes
Provably secure? no no no

Figure 2:Basic characteristics of key-wrap mechanisms AESKW, AKWiti AKW2 from the X9.102 draft. We omit
TDKW because of its similarity to AESKW. Explanations of rmare given in the body.

the message space and the header spaigmertext bits: Ciphertext length as a function of already-named
values. Expansion: How much longer the ciphertext is than the plainteflockcipher: The underlying
blockcipher. Forging prob: The target forging probability asserted by the spec. We are not agsértih
the scheme actually achieves this valldaxqueries: The maximum number of plaintext values that may
be encrypted in an implementation compliant with the spec. We are not assedirtalscheme is actually
secure up to this valueDverhead: The computational overhead, measured in blockcipher calls per block of
data (message or header). Scheme AKW1 incurs additional overheapiiging SHAL to the messagkey
usage: The number of blockcipher keys that key the blockcipher c&brallelizable? Can the computation-
time of the mechanism be arbitrarily sped up by adding additional hardwaegi?ocess headeran a fixed
header be cryptographically processed just once, as opposedlityde#h it for each and every message?
Expedited auth? Is it faster to see if a ciphertext is inauthentic than to fully decryptRtrevably secure?
Does the mechanism enjoy any provable-security guarantee? Thasis, pr@of of security been offered,
under standard or reasonable assumptions, that the mechanism asbieeesell-defined and desirable goal?

INTERPRETATION Given Figure 2 and the associated discussion in Appendix A, our cgionlis that none of
the X9.102 algorithms are mature. Most severely, none has been pemars-and, prior to this paper, there
was not even a clear target for a security proof. Each scheme has mpitplems from among the following:
a restricted message space; an inability to handle an associated heagigricted header space; ciphertext
lengths that grow with the header length (even though the header is onnéotiied); a large number of
blockcipher calls; mysterious aspects of the construction (eg, the bygeseds or xoring-in counters); and
use of cryptographic primitives beyond a blockcipher. For a moderryption scheme one might reasonably
hope for a formally defined and provably achieved security goal, ahet&sconstruction coming out of an
enunciated paradigm, message headers being supported and the rspasagand header space being large
and natural sets, message expansion of some fixed value, one or twoiphar calls per block, and further
efficiency characteristics (like being able to cheaply handle static hgaders

That said, we do not mean to be overly negative about the X9.102 schéfadmve not broken any of them,
and the six-round Feistel-network of AESKW/TDKW could have beyointhtday-phenomenon security. The
standardization effort has engendered our own work, and it is \eng to design a correct key-wrap scheme
prior to having supporting definitions and results. Finally, it is hard to desigorrect key-wrap scheme if the



abstraction boundary one is thinking in terms of is a blockcipher, too low-keteol to make a convenient
conceptual starting point.

3 DAE Security

NOTATION. For a distributionS let S <= S mean thatS is selected randomly fron§ (if S is a finite set the
assumed distribution is uniform). All strings are binary strings. WheandY are strings we writeX ||V

for their concatenation. WheR € {0,1}" is a string|X]| is its length and, ifl <i < j < |X]|, thenX[i..j]

is the substring running from 8" to j*" characters, or the empty stringotherwise. By a vector we mean

a sequence of zero or more strings, and we wWitel }** for the space of all vectors. We write a vector as
X = (Xi,...,X,)wheren = | X|is its number of components. ¥ = (X1,...,X,,) andY = (Y1,...,Y,,)

are vectors therX, Y is the vector( X,..., X,,Y1,..., Y, ). In pseudocode, Boolean variables are silently
initialized to false, sets are initialized to the empty set, and partial functions are initialized to elergw
undefined (set tandef). An adversaryis an algorithm with access to one or more oracles, which we write as
superscripts. By 1© = 1 we mean the event that adversatyrunning with its oracle?, outputs 1. When an
adversary has an oracle with an expressed domaime understand that the oracle returns the distinguished
value L, read asnvalid, if the adversary asks a query outside/af

SYNTAX. A scheme fordeterministic authenticated-encryptioor DAE, is a tuplell = (K, &, D). Thekey
spacek is a set of strings or infinite strings endowed with a distribution. For a prastteme there must be
a probabilistic algorithm that samples frofh) and we identify this algorithm with the distribution it induces.
The encryption algorithm& and decryption algorithmD are deterministic algorithms that take an input in
K x {0,1}* x {0,1}* and return either a string or the distinguished valueNe write £ (X) or Ex (H, X)
for £(K, H, X) andDIL(Y) or D (H,Y) for D(K, H,Y'). We assume there are setsC {0, 1}, theheader
spaceandX’ C {0,1}", themessage spacsuch that®Z(X) € {0,1}"iff H € H andX € X. We assume
thatX € X = {0,1}‘X| C X. Theciphertext spacés Y = {£Z(X): K € K, H € H, X € X}. We
requireDE(Y) = X if £2(X) =Y, andDI(Y) = L if there is no suchX. It will be our convention that
EH(L) =DH(L)= Lforall K € KandH € H. ForanyK € K, H € H, andX € X, we assume that
IEH(X)| = |X| + e(H, X) for a functione: {0,1}* x {0,1}* — N wheree(H, X) depends only on the
number of components df, the length of each of these components, and the leng#h. ofhe functione is
called theexpansion functioof the DAE scheme. Often we are concerned with the minimum expansion that
might arise, and so define the numbet mingcy, xex{e(H, X)} as thestretchof the scheme.

Among what is formalized above: (1) encryption and decryption arendiyealgorithms, not just functions;
(2) trying to encrypt something outside of the header space or message rgpurnsL; (3) trying to decrypt
something that isn’t the encryption of anything returns(4) if you can encrypt a string of some length you
can encrypt all strings of that length; and (5) the length of a cipheri®dezls the length of the plaintext by an
amount that depends on, at most, the length of the plaintext and the lengéhaafitiponents of the header.

A DAE is length-preservingf e(H, X) = O forall H € H, X € X. An enciphering schemis a length-
preserving DAE. Atweakable blockciphes an enciphering scheme where the plaintext spadeds {0,1}"
for somen > 1. A blockcipheris a tweakable blockcipher where the header sgéce {<} is a singleton set;
as such, we omit mention of it and wrife: 1€ x {0,1}" — {0,1}".

SECURITY. We now give our formalization for DAE security.
Definition 1 LetII = (K, &, D) be a DAE scheme with header spade message spacE, and expansion
functione. TheDAE-advantageof adversaryA in breakinglII is defined as

Adviie(4) = Pr[K & [C: ASKCPRED ) o pr[aSC0 L) 5] o



On queryH € H, X € X, the adversary’sandom-bitsoracle$(-, -) returns a random string of lengt | +
e(H, X). As always, oracle queries outside the specified domain retufifhe L (-, -) oracle returns. on every
input. We assume that the adversary does not 86R") of its right (ie, second) oracle if some previous left
(ie, first) oracle queryH, X ) returnedY’; does not askH, X) of its left oracle if some previous right-oracle
query(H,Y') returnedX; does not ask left queries outside&fx X’; and does not repeat a query. The last
two assumptions are without loss of generality, as an adversary that dialayeof these constraints could be
replaced by a more efficient and equally effective adversary (imtﬂe%ae-sense) that did not. The first two
assumptions are to prevent trivial wins.

DiscussioN The DAE-notion of security directly captures the amalgamation of privack aauthenticity.
Assume thatA dvia©( A) is insignificantly small for any reasonable adversary. Then, for gyjuae know that
any sequence of distinélx-queries results in a distribution on outputs resembling a distribution on outputs
that depends only on the length of each query (in fact, the outputs lookalildom strings of the appropriate
lengths). For authenticity we have that, despite the ability to perform a ctpdaenext attack (as provided by
the £ oracle), we are unable to come up with a new quérfpr which DI (Y) # L.

It is possible to disentangle the privacy and authenticity notions iDth& definition, defining separate
notions for deterministic privacy and deterministic authenticity. We do this in AgipeB, and explain why
asking for both of these conditions is equivalenDXAE. While the traditional approach for defining AE has
been to split the goal into two separate properties, the unified definition deermsicer and more succinct.

We point out that the DAE notion does not formalize the idea that the partptbdtices a valid ciphertext
(a value that decrypts to something other tigmecessarilknowsthe underlying key<. One could formalize
this, but it would not coincide with DAE. Sometimes the key-wrap goal has Hescribed in these terms. We
suspect that when security-designers speak of having to know thie &eger to produce a valid ciphertext what
they typically mean is not a proof of knowledge, but just the inability for dypiar produce a valid ciphertext
in the absence of the key. It is the latter notion that is well captured by ol @&finition.

4 Building a DAE Scheme: The SIV Construction

CONVENTIONAL IV-BASED ENCRYPTION SCHEMES Encryption modes like CBC and CTR are what we call
conventionalV-based encryption schemes. Such a schBme (K, £, D) is syntactically similar to a DAE but
in this context the header spakgis a set of strings and is renamed thespace 7). We expect only privacy
in a conventional IV-based encryption scheme, and demand a randdri$vnakes the security notion rather
weak, but sufficient for our purposes. The following definition cagdithe desired notion.

Fix a conventional IV-based encryption schefhe- (IC, £, D) with IV-spaceZV = {0, 1}". For simplicity,
assumdl is length-preserving. Lef® be the probabilistic algorithm defined frofithat, on inputk” € K and
M € {0,1}*, chooses aV < {0,1}", compute” — EL (M) and returndV || C. Then we define the
advantage of adversagyin violating the privacy oflI by

AdVPS(4) = Pr|KE K ATKO = 1} _Pr [A$(') N 1}

where the$(-) oracle, on input\/, returns a random string of length+ |M|. We assume that the adversary
never asks a query/ outside of the message spateof II.

ARBITRARY-INPUT PSEUDORANDOM FUNCTIONS Fix nonempty set& and.X’, the first being finite or oth-
erwise endowed with a distribution and the second being finite or countabiténfA pseudorandom function
(PRF) isamap: K x X — {0,1}" for somen > 1. We write Fx(X) for F(K, X). Let Func(X,)) be
the set of all functions froni to ) and letFunc(X’, n) = Func(X, {0,1}"). Regarding a function as the key,
we can consideFunc(X, n) to be a PRF; to each € X associate a random string {0, 1}". Let A be an
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Algorithm gKLKg(H, X) Algorithm YSKLKQ(H, Y)

IV «— Fgi1(H, X) if Y| < nthenreturn L

C — &N (X) IVe—Y[l.n], C—Y[n+1.|Y|
retun Y — IV || C X « DIV(0)

IV — Fg1(H, X)
if IV =TIV’ then return X else return L

Figure 3:The SIV construction. The left side illustrates and definesrgption, the right side, decryption. The header
isH = (Hy,...,H,,), the plaintext isX, the key is(K'1, K2), and the ciphertext i¥ = IV || C. FunctionF: Ky x
{0,1}" — {0,1}" is a PRF andK, £, D) is an IV-based encryption scheme, such as CTR mode.

adversary. The advantage 4fin violating the pseudorandomnessiofs
AQVE(4) = Pr [K Kt A" 1] = Pr [p & Fune(a,n): 420 1]

It is tacitly assumed that the adversary has a mechanism of naming poiitlyirstrings; if X' C {0, 1} then
a string names itself, but it’ is not a set of strings then points &fare encoded as strings in some natural way.
Our definition of PRFs is unusual for allowing the inpXitto be arbitrary (possibly not a string).

THE SIV CONSTRUCTION Let F: K1 x {0,1}* — {0,1}" be a PRF. Lell = (K.,&,D) be a conven-
tional 1V-based encryption scheme with 1V-lengthand message spade. We write Fi(H, M) instead of
Fy ((H,M)). We construct fron(F,1I) a DAEII = SIV[F,II] = (K, £, D) with header spac¢0, 1}"* and
message spac® where/C = K; x K9 and the encryption and decryption algorithms are as illustrated and
defined in Figure 3. Recall that[n + 1..|Y|] = ¢ if |Y| < n. N

We will now show that ifF" is PRF-secure an is IND$-secure thefil = SIV[F, IT] is DAE-secure. The
intuition behind the proof is this. If any bit of the head@ror plaintext X is new then the stringV" will
look like a random string and 6/ || C will be difficult to distinguish from random bits. On decryption, the
adversary must create a né#, Y) whereY = IV || C. Let's imagine giving the adversary the corresponding
plaintextX for free. Now(H, X) is new becauséH, X) determineg H, Y') and the adversary is not allowed
to decipher values that it trivially knows the decipherment of. BytHf X) is new thenlV’ is adversarially
unpredictable and so its chance of being equdlas only abou2—".

In the following result we writél'imer; (1), wherell = (K, £, D) is an IV-based encryption scheme and

1 > 0is an integer, for the sum of the worst-case times: to sdleet K, to compute€?” on inputs of total
length, and to computé)fy on inputs of total lengthw. Here, by convention, “time” means actual running



time plus program size, all relative to some fixed RAM model of computation.

Theorem 2 Let F: K1 x {0,1}™ — {0,1}" be a PRF and lelil = (K, &, D) be a conventional IV-based
encryption scheme with message spatand IV-lengthn. LetII = SIV[F,II]. Let A be an adversary (for
attackingﬁ) that runs in timet and asks; queries, these of total lenggh Then there exists adversarigs
andD such that

AdeHriv$(B) + AdV%ﬂf(D) > Adv%ae(A) - Q/Zn :

What is more,B and D run in time at most’ = ¢ + Timer (1) + cu for some absolute constanand ask at
mostq queries, these of total length |

Proof: The proof proceeds in two stages. First we consider the DAE scliemeSIV[Func({0,1}™, n), II]
(replacing the functiorf'x with a random functionp € Func({0,1}**,n)). Then we extend this to account
for the insecurity of the PRF'.

Denote the forward and reverse algorithms associat€d as G, i2 andG;}Q, with (p, K2) being the key.

Letd = Adv%ﬁe(A) andq = ¢, + qr andp = puy, + pgr Whereq,, andqgy are the number of left and right oracle
queries, these totaling, anduy bits, respectively. With the obvious simplifications in notation we have

§ = Pr [AGP’KZ("')’ Gpial) = 1} —Pr [A$(w)7 L() = 1}
= (Pr [AG"’KQ("')’ Gpra() = 1} —Pr [AGp,m(v'), L6) = 1})
+ (Pr {AGp’KQ("')’ L) o 1} —Pr {A$('“)’ L6 = 1}) = p1+Dp2

wherep; andp, represent the corresponding parenthesized expressions; it reaim&iosnd these quantities.
For po we construct fromA an adversanB? for attacking the priv$-security ofII. Let B run A. When A
asks its left-oracle a queryfd, X), let B askg(M) and return the result tal. When A asks a right-oracle
query haveB return L. When A halts with output bith, let B outputb. Notice that ifg = Ef; then B
properly simulatess, k- (-,-), L(-, ) oracles forA (here we need the assumption tHatever repeats a query).

Similarly, if g = $ thenB simulates$(-, -), L (-, -) oracles forA. Hencep, < AdvE"*(B).

To boundp; consider giving the keys2 to the adversary and then asking it to carry out its distinguishing task.
As this can only make the task easier we may assume

po= Pr[aferet) Gl 5] - pr[AGnalo L) o 4]
< Pr [A(K2)G”’K2("')’ Cpacal) = 1} —Pr [A(m)Gﬂ’K?("‘% ) = 1] '

We can assume without loss of generality tiabalts and outputs 1 as soon as a right-oracle query returns
something other than.. Under this assumption, encryption queries are useless for distinguisbingen
these two oracle pairs, as prior to the right oracle returdihg# L both pairs behave &S, x2(-,-), L(-, ).
Hencep; is bounded by the probability that asks a right-oracle queiy, Y) such thalG;}Q(H, Y) # L.
Examining the algorithm foG;}K2 we see that this occurs only whetH, X) = IV, whereX = DIV (O)
(with Y having been parsed infd” andC). Since the adversary is given the k&, it can computeDY, (C)
for any stringsIV, C' of its choosing. In particular, when it asks a right-oracle quéfyY’) it knows what is
the input to the random functiomand what is the target outpliv’. But under our assumption that never
queries its right oracléH, Y') when some left-oracle quety, X ) returnedY’, either the input H, X) is new,
or the targetl V' is new. Thus, the probability tha{ H#, X') = IV is at mostl /2" for each right-oracle query,
and we conclude that; < ¢z /2". Sincegr < g we haves < Adv%riV$(B) +q/2m.



For the second part of the proof note that

AQVER() = 54 Br [ ATt Pkt 5 1] pp [A%xs)Grka 1]

wherell = (K1 x k2, &, D) and we have suppressed the random selecfiohs™ K; and K2 < K. Let D9

be an adversary for attackirfgas a PRF, and let it operate as follows. Adverdanyicks K 2 £ Ky and runs.
When A asks a left oracle query, X ), B answers by settingV’ « g(H, X), computingC' « 1, (X) and
returning toA the stringZ/V || C. On a right oracle queryH,Y), adversaryD parseslV = Y[l..n], C =
Yn+ 1..]Y|], computesX — DL, (C) and tests il V = g((H, X)), returningX to A if so and_L otherwise.
When A halts with output bib, let D outputb. Clearly D correctly simulate€s; xo(-, -), D1 x2(-, -) when
its oracleg = Fi; for some random key<1, andG k1 x2(-, -),G;}Lm(-, -) if insteadg = p for a random

p € Func(M, n). SO,Adv%ae(A) <0+ Adv‘;ff(D) and rearranging gives the resuk.

5 Enriching a PRF to take Vectors of Strings as Input: The S2V Construdbn

THE GOAL. Traditionally, a pseudorandom function (PRF) takes a single string at inpder the control of
a key K, a PRFf maps a string{ € {0,1}" into a stringfx(X). But SIV uses a non-traditional PRF—a
function F' that, under the control of a kel¢, maps a vector of string& = (X1,...,X,,) € {0,1}™ into a
string Fix (X). Let us call a PRF that takes a string as input an sPRF (string-input &R PRF that takes
a vector of strings as input a vVPRF (vector-input PRF). This sectionostadificient ways to turn an sPRF
into a vVPRFf*.

At first glance it might seem like there'd be little to say about sSPRF-to-vRRFearsion: there’s an obvious
approach for solving the problem, and it's obviously correct. Namelyp@ma@any vector of stringX =
(X1,...,Xm) into a single string X') and apply the sPRF to thaf;. (X) = fx((X)). By encodewe mean
any reversible, easily-computed map of a vector of strings into a singlesape,

whereN; = | X;|¢4 is the length ofX; encoded into 64 bits (assume that;| < 24 for all i). The problem
with making a VPRF in such a way is a diminution of efficiency. First, compufjpgX ) may take longer than
the total time to computgx (X;) for each componenk; since we have addetlim bits for length annotation.
(As an example, iff = CMAC-AES then we are doubling the time to MAG = (X;) whereX; is 16-
bytes. CMAC was designed to avoid any unnecessary blockcipher callg# seems a shame to squander
this effort with sloppy sPRF-to-vPRF conversion.) Second, even if stomgonents oX stay fixed (sayX»

is constant), we must still re-process the entire encoded string each timemnyaut /7. at a new value.
Third, the mechanism is not parallelizable; one cannot pro&gssitil one is done processing;_;. Fourth,
the assumption that;| < 24, while reasonable in practice, is artificial and potentially wasteful, yet use
of a stingier encoding will lead to greater complexity. Finally, the given eimgpdisrupts word alignment:
if, for example, the first argument is one byte and all subsequent argaraee multiples of eight bytes, an
implementation will now be dealing with non-word-aligned data. Fixing this prolidgra smarter encoding
will lead to increased complexity. We aim to do sPRF-to-vPRF conversion iayatlnat fixes the problems
above.

NOTATION. Fix a valuen > 2. Leto = 0" and1 = 0" '1 and2 = 0"~210. These are regarded as points
in finite field Fo» represented using a primitive polynomial in the customary way. §ar {0,1}" let 2.5
mean then-bit string representing the product®tndS. This can be computed with a left shift Sffollowed
by a conditional xor. By2’S we mean to do this multiplication by a total ofi times. By N @eg X (“XOr-
into-the-end”) we mean to xor thebit string NV into the end of the string(, which will have at least bits;
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Algorithm f5(Xq,..., X) The S2V Constructiorf,* = S2V|[f]

10 if m =0thenreturn fx(1)

12 fori—1tom—1doS — 25 fx(X;)

13 if | X,| > nthenT — S @eng X, €lseT — 25 ® X,,,10*
14 return Z «— fx(T)

Figure 4: The S2V construction makes a PRE: K x {0,1}*" — {0,1}" from a PRFf: K x {0,1}" — {0,1}".
Bottom: Definition of S2V. StringsXy, ..., X,, € {0,1}" andm > 0 are arbitrary.Top: lllustration of it, computing
Z = (X1, X2, X3, X4). The left side shows the case fdf,| > n, the right side fo1 X,| < n

N @ea X = (0*""N)@® X wherex = | X|. By X10* we meanX 10’ wherei > 0 is the least number such
that| X| + 1 + i is divisible byn.

THE S2V CONSTRUCTION Let f: £ x {0,1}" — {0,1}" be an sPRF. We construct from it the vVPRF
1 =8S2V|[f] wheref*: K x {0,1}** — {0,1}" is specified and illustrated in Figure 4. The special treatment
of the last component of inpuly,,,, is to handle the case whe[&,,| < n. The construction has the desired
efficiency characteristics. The time to compyfife(X) is essentially the sum of the times to compyite( X;)

on each component; in particular, whgn= CMAC, say, the number of blockcipher calls to compyifg X')

is the sum of the number of blockcipher calls to compute eaehX;). Also, one can preprocess invariant
components so that the time to compfife(.X') will not significantly depend on them. The computationf6f

is on-line (assuming thaf itself is on-line); in particular, the component lengths need not be knowd-in a
vance. Word alignment is not disrupted. And the scheme is parallelizabileredit arguments can be acted on
simultaneously, s¢* will be parallelizable iff is.

In a related effort we have proven the following result. The complexitgstic analog of Theorem 3
follows in the usual way. We only prove security when queries are resdrio vectors witm — 1 or fewer
components. In practice > 64 well exceeds the number of components in a vector of associated datagmakin
the restriction irrelevant. The proof appears in Appendix E.

Theorem 3 Let f = Func({0,1}*,n) and f* = S2V|[f]. Let A be an adversary that asks at mgst 3
vector-valued queries havingcomponents in all, and each vector having fewer thascomponents. Then
AdvPi(A) < pg/2n. 1

The complexity-theoretic statement for the securityfdffollows from the information-theoretic statement in
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the standard way, so we omit a proof of the following:

Corollary 4 Let f: £ x {0,1}" — {0,1}" be a PRF and lef* = S2V|[f]. Let A be an adversary that runs in
time ¢ and askg > 3 vector-valued queries, thequeries having a total gf components angd bits and each
vector having fewer than components. Then there exists an advergawhere

Adv?(B) > Adv(A) — pg/2"

and B asksq queries having a total gf components angd bits andB runs in timet + ¢(u + p + ¢) for some
absolute constarnt 1

PRACTICAL USES OFS2V. In the next section we will use the S2V construction for sSPRF-toFv&iversion
to make a DAE scheme. But we point out that real-world security protoé@ady employ, implicitly, PRFs
that operate on vectors of strings. They usually do this in a complex arictieef manner. A good illustration
is the TLS protocol; they define a PRF that operates on 2-vectors, thel€REd in a complex and feedback-
dependent way from HMAC-MD5 and HMAC-SHA1. Then, wanting to lggbe PRF to vectors with more
than two components, they concatenate logically-separate strings to forsedbed component. Similarly,
IEEE 802.11r does key derivation by applying a PRF to input that incliasgsconstants (host and user names)
that remain fixed across many derivations. We suggest that when @g@catocol wants to apply a PRF to
what is logically a vector of strings the protocol should realize this with just sun abstraction. Concatenation
should be avoided in achieving that abstraction (because it is, in gelnetfainefficient and wrong). The vPRF
primitive should be realized in the protocol as a higher-level abstractioe finach an sSPRF.

6 The SIV Mode of Operation

SIV MODE. Forn > 64, fix an n-bit blockcipherE. LetII = CTR be counter mode [27] oveF. For
concreteness and implementation convenience, let the increment funaidfousCTR mode be the addition
of one modul®”™. Before any increments, again for implementation convenience (see béows zero-out
the leftmost bit in each of the last two 32-bit words of the counter. (Thedbsso bits of a random IV has
inconsequential impact on the priv$-security of CTR mode.)f.et CMAC* = S2V[CMAC] be the result of
applying the S2V construction to CMAC [28], with an underlying blockcipbieE. (Recall that CMAC [28]

is a NIST-recommended CBC MAC variant with message sgace}*.) Consider the scheme SI¥, I1]. By
combining Theorems 2 and 3 and known results about CMAC and CTR mptig][3he suggested mechanism
is a provably secure DAE scheme assumihig a secure PRP. The proven security falls off, as usuaf’ jn"
whereo is the total number of blocks asked about. We overload the name SIV artieatiode of operation
just described SIV mode. See Figure 5 for the specification. The addjienration shown there has the natural
interpretation, modul@™, while B & C denotes the bitwise-and of equal-length stridgggand C. The only
thing left unspecified in the definition of SIV mode is the underlying blockcighewhich would typically be
AES.

CoOMMENTS. Comparing SIV-AES and the X9.102 scheme AESKW, say, we note that, WtABS, (1) the
message space and header space are{fipl} ™ instead of unusual sets; (2) message expansion is now inde-
pendent of header length and message length; (3) the number of bloekchglls is reduced by a factor of at
least six; (4) vector-valued headers can now be handled, and tibation of any component can be pre-
processed if it is to be held fixed; (5) one now has a provable-securitsagtee, falling off inr? /2", whereo
is the total number of message blocks acted on. On the other hand, theedfisctime attack on SIV if one can
ask this many message blocks, while we do not know if this is true for AESKW.

In the instantiation of SIV we could have used, in place of CMAC, the compasitia universal hash
function that gives:-bit outputs with am-bit blockcipher. This demonstrates that the DAE goal can be achieved
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Algorithm &515:5™ (X) Algorithm CMAC}(X1,..., X,n)
IV « CMAC}, (Hq, ..., H;, X) S «— CMACKk(0) Il precompute
C «— CTRko(IV, X) for i«—1tom—1do S+ 25®CMACk(X;)
retunY — IV || C if | Xm|>n
then return CMACk (S ®eng Xom)
Algorithm D1 He(y) else return CMAC (25 @ X,,,10%)
if Y| <nthenreturn L _
IV—Y[l.n], C—[n+1.|Y] Algorithm CTRg(IV, X)
X « CTRy(IV, C) Ctr — IV & 1764 013! 013!
IV' «— CMAC', (H1,..., H;, X) Pad « Er(Ctr) | Ex(Ctr+1) || Ex(Ctr+2) | ---
if IV=IV' then return X else return L | return ¢ < X & Pad [1..|X]]

Figure 5:The SIV mode of operation. The mechanism is the generic Shérse instantiated using CMAGind CTR
modes, each of these based on a blockcigheiC x {0,1}" — {0,1}".

by a single “cryptographic” pass over the plaintext, plus a universstHfianction computation over the header
and plaintext. Similarly, a parallelizable MAC like PMAC [10] could have beeeadum place of CMAC,
illustrating that DAE can be achieved by a parallelizable scheme. And if allagesgo be encrypted were of
one length, that length being a positive multiple of the blocksize, then the ra@vNI&C could have replaced
CMAC.

Our earlier descriptions of SIV mode used a different incrementing fumetithin CTR mode, multiplying
by two in the finite field with2” points. We made this choice for reasons of economy of techniques: dgublin
in the finite field was already used within S2V, as well as in CMAC. But, in saftwaspecially when coding
in a high-level programming language, finite-field doubling is a little bit expent be doing with every
n-bit word of plaintext. So we have switched to mod@lo increment, but where one first clears the most
significant bit in each of the last two 32-bit words of the counter. Thisingrout ensures that jfi\/| < n23!
bits (ie, 32 GBytes fon = 128) there can be no carry-out of the last 32-bit word, making an increwfent
Ctr (modulo2™) equivalent to incrementing just its last 32-bit word (mod2id). Similarly, if [M| < n263
bits (as it invariably will be), an increment @ftr (modulo2™) is equivalent to incrementing its final 64 bits
(modulo2%4). Of course from a provable-security point of view, all of these detaisirrelevant, since all
reasonable instantiations of CTR mode will achieve essentially the samesgausity.

7 Misuse-Resistant AE

This section gives an application of DAEs motivated not by the key-wraplem but by the goal of construct-
ing symmetric encryption schemes that are resistant to misuse. We are sfigafocerned with IV-misuse,
meaning that the IV is used in a way other than the way mandated by the scloemeqriple, using a counter
when the scheme requires a random value, or repeating an IV wherhén@ecequires it to be a nonce. Ex-
perience has shown that IVs are frequently mishandled. An encryptfen®e robust against misuse should
at least be an AE scheme (as programmers, protocol designers,embaaks often assume that encryption
provides for authenticity) and so we will treat IV-misuse within the contexuthenticated encryption and not
privacy-only encryption. The notion is applicable to the latter context, too.

Designing an IV-based AE scheme that is secure when its IV is an arbitcarge—not just when it is
a random value—is a first move in the direction of making schemes robusisadj@misuse. The current
section takes this a step further; we aim for an AE scheme in which if this B/nonce then one achieves
the usual notion for nonce-based AE; and if theddesget repeated then authenticity remains and privacy is
compromised only to the extent that some minimal amount of information may bdedyéae information
being if this plaintext is equal to a prior one, and even that is revealed ohbtlifthe message and its header
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have been used with this particular V. Our formalization will capture this intent.

REVISED SYNTAX FOR AN IV-BASED ENCRYPTION SCHEME Let us update the syntax of a conventional
IV-based encryption scheme to accommodate an associated headerchséhan IV-based encryption scheme
is a tuplell = (K, &, D) where everything is as before except that the encryption algorithm ecrgmtion
algorithm take an extra argument: now they are deterministic algorithms thatma0, 1} x {0,1}" x
{0,1}*t0 {0,1}* U{ L}. We writeEx (H, IV, X) or "V (X) in place of€ (K, H, IV, X ) andDk (H, IV, C)

or DIXV(v) in place of D(K, H,1V,Y). There must be sed, 7V, andX such thatt;"" (X) € {0,1}*

iff H € HandIV € ZVandX € X. We callZV the IV spaceof II. We require thaD"V (v) = X if
EFV(X) =Y andDj"Y (V) = L if there is no suchX .

MISUSERESISTANT AE SECURITY. To measure the AE-security of an encryption schéine- (K, &, D)

in the face of possible IV-reuse, imagine an adversary that may askeanogisce of encryption queries, even
those that repeat IVs, and any sequence of decryption queries) wiaig likewise repeat IVs. We want the
encryption oracle to return bits that look random except when this is impessin a repeated triple of (header,
IV, message)—and the decryption oracle should retuexcept when the triple is already known to have a valid
decryption. For simplicity, assume as before that our IV-based encnyptizeme is length-preserving.

Definition 5 LetII = (K, &, D) be an IV-based encryption scheme that can handle an associated &edde
let A be an adversary. Then tMRAE-advantage of A in attackingll is

AdV%raC(A) = PI' [K (i ’C: A(C/‘K('v'f)v DK(':"') = ]_i| _ PI' |:A$(,,), J_(-,-,-) = 1

The adversary may not repeat a left-query and may not ask a righi-gtelV, Y') if some previous left-query
(H,IV, X) returnedY. |

Of course the€k oracle return€x (H, IV, X) on input(H, IV, X) and Dy returnsDg (H,IV,Y’) on input
(H,IV,Y). As before$(H, IV, X) returns a random string of length+ | X | and_L(-, -, -) always returnsL.

The MRAE-notion of security trivially implies nonce-based AE-scheme rdigcuthe latter is the special
case where the adversary is not allowed to repedbato any left query. Note that all proposed AE schemes
to date [19, 21, 26, 29, 33] do fail should an IV get repeated: existiagéhemes are not MRAE-secure.

BUILDING A MISUSE-RESISTANTAE SCcHEME. We can turn a DAE schenié = (K, £, D) with header space
{0,1}"* and message spadgéinto a misuse-resistant AE schetiie= (K, g, 25) by regarding the IV as one of
the components, say the last component, of the header. In particulam@&l¥ can be regarded as an MRAE
scheme by asserting that one of the header components, say the lgs¢cified, is an IV.

CORRECTNESS Correctness of the MRAE scheme described above is nearly immediatn &iadversary

for breaking the misuse-resistant AE scheme (it distinguisi€s -, -), D (-, -, ) from$(-,-,-), L(-,-,-)) we
get a comparably good adversadyfor breaking the DAE, distinguishing (-, -), Dx(+,-) from$(-,-), L(-,-):

adversanB runsA and maps left querigdd, IV, X) to querieg (H,IV), X ), and maps right queri¢g7, IV, Y")
to queries((H,IV),Y’). The syntax and DAE-security notion for a PRI have been designed ttchnoi@” so
that there is nothing to do.

COMMENTS. Since all we have done in the construction is to hijack a component of thethaadn 1V, it
seems as though nothing has actually been done. Yet the MRAE goal isptoalty different from the DAE
goal, the former employing an IV and gaining for this a stronger notion air#ggc The header and the IV
are conceptually different, the one being user-supplied data that thevases authenticated, the other being a
mechanism-supplied value needed to obtain a strong notion of security.

In retrospect, it is easy to construct an MRAE scheme by a sequeniteésteps. One can achieve this
goal in a trivial way from a DAE scheme that takes a vector-valued me&deh a DAE scheme is easily built
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from a vector-input PRF and an IND$-secure conventional encrygtitheme. At least if one is unconcerned
with optimizing efficiency, a vector-input PRF is easily made from a stringtiliRF. String-input PRFs and
IND$-secure conventional encryption schemes can be built from ilplc&rs by well-known means. So each
step along our path is easy or well-known. Still, the direct construction ®RAE or DAE scheme from a
blockcipher is not a simple matter, as evidenced by the long history of bugagroque AE schemes Perhaps
simple is how things seeastter finding the right abstraction boundaries.

8 The PRI Characterization of DAE Security

A secure pseudorandom injection (PRI) resembles a random injectiatido with the desired amount of
length-expansion. We allow a chosen-ciphertext attack in our definitia ighwe focus on a “strong” PRI,
analogous to a strong PRP [24]), giving the adversary both the fdravad backward direction of the function.
We allow the PRI to be tweakable [23], so that the scheme can be used totastecan associated header.
We allow the domain to be fairly arbitrary—in particular, we consider mesgagees that contain strings of
various lengths.

Formally, letll = (K, £, D) be a DAE with header spaé¢ and message spagé Imagine an adversany
given access to two oracles—one tbrand one forD. We want to say that this pair looks just like a random
injection f and its inversg’—!, the random injectiorf having the same signature &sFore: H x X — N let
Inj7t(X,Y) be the set of all injective functionsfrom H x X to Y such thalf(H, X)| = | X| + e(H, X).

Definition 6 LetIl = (K, &, D) be a DAE with header spade, message spac¥, and expansiom. The
PRI-advantageof adversaryA in breakinglIl is

Adv%ri(A) = Pr|K &K AP0 P o 1} —Pr {f S, ) AG), ) =1 |

The f~! oracle above, on inputH, Y) returns the poinfX such thatf(H, X) = Y, if there is no such point
then it returns the distinguished value Recall that oracle queries outside the domain of the oracle raturn
As before, we may assume without loss of generality that the adversasyndd repeat a query, that it does not
ask(H,Y) of its right oracle if some previous left oracle quéiy, X) returnedY’, that it does not askH, X)
of its left oracle if some previous right-oracle quet, Y) returnedX, and that it does not ask any query
(H, X) outside of{ x X. When a PRI is length-preserving we call it anciphering schemand use the
notationAdv;""?(A) or Advi;”®(A) according to whether or not it accommodates a nontrivial tweak space.
Assuming a reasonable amount of stretch, the PRI and DAE notions aofitgeate very close, as the
following theorem shows.

Theorem 7 Let II = (K,&,D) be a DAE with header spack, message spac&, and stretchs, and let
7 = minxex{|X|} be the length of a shortest plaintext. L&be an adversary that asks at m@steft-oracle
queriesgy right-oracle queries, for a total gf= ¢;, + gr queries. Then

AdvP(A) — AdviEe(A)| < @?/25tT T 4 dg /2.

In other words, as the stretehgrows, the DAE and PRI notions converge. The quantitative differéeece
tween the measures is small if the stretch is, say 128 bits. Among other reasons, it is to achieve this
equivalence with PRIs that our definition for them used indistinguishability)frandom bits rather than, say,
indistinguishability from the encryption of random bits.

Proof: Let A be an adversary that has access to two oracles. Let i agkeries of its left oracle ang, queries
of its right oracle, and lej = ¢;, + ¢qr. With the obvious notational simplifications we have

Advpnri(A) - Adv%ae(A)‘ = ‘Pr {Af(”')’ I = 1} —Pr {A$("')’ L6 o 1} ‘
= [Pr[A% = 1] - Pr[A®0 = 1]|
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On query left(H, X):

10 ¢ |X|+e(H,X)

11 Y £{0,1}°

12 if Y € Image(f(H,-)) U Invalid” then

13 bad— true ,Y < {0,1}¢ — Image(f(H,-)) — Invalid”

14 return f(H,X) <Y

On query right(H,Y):

20 ¢ |Y]

21 EligibleX «— {X € {0,1}~% |X| + e(H, X) = |Y| andf(H, X) = undef}
22 EligibleY — {0,1}° — Image(f(H,-)) — Invalid”

23 x < [1..|EligibleY|]

24 if x € [1..|EligibleX|] then

25  bad« true , X « thexz'™ string of EligibleX, f(H, X) « Y, return X

26 Invalid? — Invalid” U {Y'}
27 return L

Figure 6:Games used in the proof of Theorem 7. Gdliieis the complete code; gani& omits the shaded statements.

for the games GO and G1 defined in Figure 6. Recall that booleans are indiatifalse, sets are initial-
ized to empty, and partial functions are initialized to everywhere undefinigdtie symbolundef. The set
Image(f(H,-)) contains all pointy” # undef such thatf(H,X) = Y for someX € X. Set difference is
indicated with a minus sign. Look first at gar®. Much of the code (lines 12-13 and 20-26) is irrelevant to
what the adversary sees. Each quefy( H, X) returns a random string ¢X | + e(H, X) bits and each query
right(H,Y") returnsL. Thus gaméz0’s (left, right) oracles faithfully simulate a pair of oraclés, L) and we
have thatPr[AS0 = 1] = Pr[AS+ = 1].

GameG1 is more subtle. We claim that it$eft, right) oracles are simply a lazy evaluation of a pair of oracles
(f, £~1) with the desired domain and range. To see this, understand first thatrtiaé fpaction f (H, -) main-
tains the correspondenéé — f(H, X)) for those domain points that we have already assigned values to, while
the setlnvalid” maintains the set of point$ that have become ineligible to f¢ H, X) values, for anyX, by
virtue of having been askeadht(H, Y') and having returned, effectively asserting that~!(H,Y) = 1 and
soY is outside the image of(H, -). Now, starting ateft(H, X ) queries, we begin at line 10 by calculating the
lengthc of the ciphertext that we must return. The code at lines 11-14 retugrsdam stringy” of lengthc
subject to the constraint th&t is outside of the image of(H, -) and not ineligible to be ayfi( H, X ) value by
virtue of having asserted that there is no preimagéfavith tweak . Looking next atright(H,Y") queries,
we calculate at line 21 the sélligibleX of valuesX that could possibly map t& using tweakH, and we
calculate at line 22 the set of stringysthat could, at this moment be paired with stringsiligibleX. By our
conventions on the adversary making no “pointless” queries, the $trindl necessarily be among the strings
in EligibleY. Since we aim to randomly and injectively pair pointshHhigibleX with points in EligibleY,

the chance that a given poilit in EligibleY has a preimage ititligibleX is just|EligibleX|/|EligibleY|.
Lines 23 and 24 effectively flip a coin with this bias, deciding if the stihg EligibleY should or should not
be given a (random) preimagelitiigibleX. If itis not given a preimage, we record this decision by augmenting
Invalid™ at line 26. If it is given a preimage, it is given a random one by lines 23t25choice is recorded,
and the random preimage is returned. We have thus provided a pénfetatson of an(f, f~') oracle, and so
Pr[AS! = 1) = Pr[A/ /' = 1),

To bound| Pr[AG1 = 1] — Pr[AGO = 1]| we can now invoke the fundamental lemma of game-playing [7],
since gamess1 and GO have been defined to be identical apart from the sequel of stateiahts true.
The lemma assures us th@r[AS! = 1] — Pr[A%° = 1]| < Pr[A%Y setsbad].
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Let BAD be the event that ©° causesadto get set tacrue. We must bound the probability &AD. Remem-
ber that the shaded statements have been expunged from the game. BA&F tmcurring, each left-query
adds a single point to a s&hage(f(H,-)) but has no impact on any sétvalid’?, while each right-query
adds a single point to a sétvalid” but has no impact on any skhage(f(H,-)). If the i*" query is left-
query then the sdimage(f(H,-)) U Invalid” will have at mosti — 1 points and the chance thaadwill get
set at line 13 will be at mosti — 1)/25*"™ and so, overall, the probability théitadgets set at line 13 is at
most> 79, (i — 1)/2577 < ¢?/2577FL If the i*h query is a right-query thebadwill be set with probability
|EligibleX|/|EligibleY| for the current set&ligibleX andEligibleY . How big can|EligibleX| be? Asked a
queryY of lengthe, even ifeverystring of length at most—s (the maximal possible length) is iligible X, still
we will have that EligibleX | < 2¢7'1~#. Conversely, how small cditligibleY | be? On the'" query we know
that| EligibleY| > 2¢—i. So on the*" query we have thdEligibleX |/|EligibleY | < 2¢+175/(2¢ —i) < 22~%
assuming < 2¢~! or, more strongly, assuming< 2°*7~!. Summing over ali;; right-queries we have that the
probability thatbadgets set at line 25 is at mosiy /2°. Since the result becomes vacuous when 25471,
we may now drop that technical condition and conclude the theollem.
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A Critique of the Draft X9.102 Standard

Review of the X9.102 proposal [13] motivated the current paper. dhewing summary comments on that
proposal address the models/definitions it describes, and then eachafétses.

MODELS AND DEFINITIONS. The specification document outlines an attack model and goal [13, Setfmm 2
the four key-wrap schemes. This is more then specs usually do, butsbiegdien is not very precise.

> The stated security goals for AESKW, TDKW, and AKW1 are indistinguiditglof ciphertexts [3, 15] under
an adaptive chosen-ciphertext attack (IND-CCAZ2), and unfoijgabf ciphertexts [8, 20] under an adaptive
chosen-ciphertext attack. In effect, the goal would then be to provitleaticated-encryption [6, 8, 20]. But
indistinguishability—at least as it is traditionally defined and understood-atape achieved by schemes
AESKW and TDKW because they are deterministic and stateless; the usmal&tion of indistinguishability
demands that one conceal in a sequence of ciphertexts whether ogenglaintext was encrypted twice.
While deterministic encryption schemes have been considered in the liteteguadly going under the name of
a blockcipher or an enciphering scheme, security is typically understdeelitothe sense of a pseudorandom
permutation (PRP) [5, 24] and the scheme must therefore be lengthmpngse

> It is unnecessary to ask for indistinguishability and unforgeability undelaseneiphertextattack. Un-
forgeability under a chosen-plaintext attack implies unforgeability undéioaen-ciphertext attack, since the
decryption oracle will only return a valid plaintext if it is asked a valid ciphdrtehich is then a forgery. More-
over, a scheme that provides indistinguishability and unforgeability undeosen-plaintext will automatically
provide indistinguishability under a chosen-ciphertext attack [6, 20].

> The model section limits the number of key-wrapping oracle querig€ttor AESKW and23? for the other
schemes. Where do these numbers come from? No limitis placed on the totaslefhaftilgueries (beyond that
which can be inferred by using maximal-length messages), but one expactssecurity proof, if it existed,
would show a dependency on that.
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Algorithm AESKW .Encryptic " 7 (X)

i <2%% 64 <255
10 if X £{0,1} or H ¢ BYTE=*>or H =X =cor|ICV|+#48thenreturn L
11 s« 64— (|H|+|X|) mod 64

12 P ---P,—ICV | [s]ls || |H|/8s | H || X Il eachP; of length 64. Necessarily > 2
13 fort«— 0to5do

14 fori—1ton—1do

15 P, || Piy1 < AES(Pi11 || P;) ®[6t + i]128 Il eachP; of length 64

16 (Pl,P27P3,"' ,Pn)<—(Pn,P1,P2,"- ,Pnfl)

17 return P, --- P,

Figure 7:Top: lllustration of AESKW encryption, one of the four key-wrajgarithms in the X9.102 draft standard.
Wires carry 64 bits and each block represents an AES calldkeyth the underlying encryption key. On the left side of
each block the input block’s most significant 64 bits are qn tehile on the right side of each block, the output block’s
most significant 64 bits are on bottom. The odd conventionesddr fewer wire crossingBottom: Definition of the
AESKW encryption algorithm. Decryption works in the nalusay, verifying ICV, H, and the validity of the encoding.

o> The definitional suggestions for AKW2 in [13, Section 2.4] are weak im$ggy on random plaintexts. It
would seem that a definition only needs to make the first block of the messagadom, and even this block
does not need to be hidden from the adversary. to this scheme.

In summary, a more precise definition would be desirable. For AESKW, TDd\Wa deterministic version
of AKW1, we advocate a PRI as the desired notion. For AKW2, a spedialinion of security is required.
We sketch one following our subsequent comments on AKW?2.

THE AESKW AND TDKW ScHEMES Encryption under AESKW is a deterministic function that maps a
key K, a bit string X, an octet stringd, and a six-byte integrity check vectd€'V into a ciphertext a little
longer than the sum of the lengths|df| and|H|. The mechanism uses an apparently new six-round Feistel-
network variant; see Figure 7. We comment:

>> The description of AESKW/TDKW in [13] is very awkward. The specificatdoes not indicate the en-
cryption and decryption signature; the length restriction on idpuis not clearly stated (restrictions are stated
on derived strings); plaintext formatting is viewed as a separate mech&woisnencryption rather than a part
of it; integrity-checking is viewed as a separate mechanism from decryyattber than a part of it; integrity
checking is described before the encryption method is described; thetlagspecification repeatedly re-
names variables; and the provided picture does little to illustrate the algorithiua atructure. Extracting the
definition and drawing of Figure 7 took much work.

> The message space is unnatural; one can encrypt bit strings 2# to 64 bits? Algorithms should be
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designed to work on “natural” message spaces. Similarly, the restrictiorithat X is nonempty orH is
nonempty is unnatural; what's allowed for header should be indepentiemiat’s allowed for a message.

>> The length of the ciphertext increases with the length of the header. This against the notion of a
header, which should be authenticated mottencrypted. It would be preferable if the ciphertext length were
independent of the header length. In addition, the length of the ciphantzriises by at least eight bytes and
at most 16 bytes minus one bit. It would be preferable if the length incrégseractly eight bytes regardless
of the length of the message.

> Itis not clear what is the intended semantics of “prerequisites”—ig@Hé under the adversary’s control or
not? We interpret that thBCV should be treated definitionally just like the header.

o> There is a mixture of bit-orientation and byte-orientation in the spec. It sesferable to make everything
bit strings or make everything byte strings.

> The xoring of the countest + i into the blockcipher output is not explained; why is this done?

> The mechanism would be more natural if it reversed the most-significabit$4nd the least-significant
64-bits in each AES call; that is, replaeeES(P;+1 || F;) at line 15 of Figure 7 byAES(P; || Pi4+1) or,
alternatively, replace’;, || P41 by P41 || P;. The current convention looks odd in the pseudocode and
seems to make it impossible to draw a picture of the mechanism with a small numhiee of®gsings without
establishing peculiar conventions.

> The stringX will be “misaligned” (not fall on a word boundary) i is of non-word length. This would
cause unnecessary inefficiency in typical implementations. It seemsagblefé mechanisms don't disrupt the
alignment ofH and X in doing internal work.

> The number of blockcipher calls seems large: roughly 12 per block oftthetdame price paid foX or H).
This is six times more than that used for AKW1.

> Even if the headef  is held fixed, one must spend time (as well as bits) to re-authenticate it with each
message that is encrypted or decrypted.

> There is no proof of security, and the mechanism is so complex that prgwedie would be difficult.

The above criticism notwithstanding, we find it likely that the mechanism is corfdamely, the modified
Feistel network illustrated in Figure 7 is, we conjecture, a secure enaighezheme (in the sense of a strong,
variable-input-length PRP). Scheme AESKW is then seen as an instan@& Rt Ehparadigm, except that the
header is folded into the plaintext instead of used to tweak the enciphehagec

Our comments on AESKW apply equally to TDKW. But for TDKW we appreciateubke of a multiround
Feistel network more, for it is more important to go beyond mechanisms thaskeaurity degrading in? /2",
wherey is the blockcipher blocksize andis the total number of blocks acted on. The modified Feistel network
used here probably does have security (as a strong PRP) better’tf2din but it would be hard to prove.

THE AKW1 scHEME We recreate an illustration of the AKW1 scheme in Figure 8. High-level cortsnen
about the mechanism are as follows.

> Whereas AESKW and TDKW are deterministic and stateless, and therefeeenilbachance to achieve
semantic security [3, 15], algorithm AKW1 is probabilistic and can achievegbal; it would seem to be a
probabilistic AE scheme [6, 8, 20].

>> But as a probabilistic AE scheme, AKW1 is highly atypical. It does not empémegc composition, nor is
it obtained by optimizing a generic-composition scheme, nor does it employigeesmassociated to one-pass
AE. Furthermore, it is straightforward to achieve AE using two blockciladis per block, but AKW1 uses,
beyond that, an application of SHAL1. Why did the designers choose suntichkand comparatively expensive
design? Perhaps the scheme wasn’t actually meant to be “just” an AE sahneytee it should work even if the
random-number generator used to make the |V fails (cf. [13, page 3, femd& if one regards the IV as part
of the header and looks to see if the resulting algorithm is a secure DABRschige answer iso; for an attack,
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Figure 8: Encryption under AKW1. The boxes are TDEA, all keyed by theartying encryption key, and the ovals
reverse the bytes of their eight-byte inputs. The valast = Ox4adda22c79e82105 is a fixed eight-byte string. The
string IV is a random eight-byte string. The valll8V = Hash(X; X2 X3X4) is the first 64 bits o0BHA1(X; X2 X35X4).

find 64-bit stringsA and B such thatHash(A) = Hash(B) (this takes abowu2*? time) and then notice that the
encryption of(A, A) and (B, B) will have the same first block;, which violates the goal of a DAE scheme.
Perhaps the scheme is intended to function as a deterministic AE scheméWvhkefi”, say. Probably the best
explanation for the odd structure of AKW1 is that there is no explanatiagrding to a participant, and as
revealed by the S/IMIME working group’s mail log, the scheme grew byegicar, with different people having

their own goals and ideas, with no underlying design rationale.

> The constraint that the input to the algorithm must be a positive multiple of 64 d®tms an unfortunate
limitation for a general-purpose algorithm.

> The lack of a header/associated-data is a significant limitation for a ggneradse PRI or AE scheme.
> The byte-reversal operations seem gratuitous; what is their purpose?
> There is no provable security result associated to AKW1.

> The AKW1 mechanism resembles CMC [16], which is a tweakable, progeunrs, wide-blocksize blockci-
pher. The paradigm of adding redundancy (even 0-bits) to a widédikeblockcipher and then enciphering is
the PTE construction of this paper. This suggests one way to eliminate th&uhatbn and obtain a provable-
secure construction at the same time.

THE AKW2 scHEME We recreate an illustration of the AKW2 scheme in Figure 9.

> The AKW2 mechanism is deterministic, but the goal cannot be that of aes&Ril; or even deterministic
indistinguishabilitydetPriv, since encryption of plaintext blockdoes not impact any prior ciphertext block.
As a consequence, ciphertexts leak equality of prefixes: the encrygitioH, P) and (H’, P’) reveals the
length of the longest block-aligned prefix Bfand P’, assuming the first blocks ¢f and H' agree.

> There is no provable-security claim associated to the mode, and the pasagen method used in AKW2
precludes the possibility of proving security relative to a standard assumpRoovable security could be
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Figure 9:Encryption under AKW2. The headeri§, H, Hs and the message 13 P, P3 P,. The boxes are TDEA, where
the first row is keyed by the confidentiality subké&y = K & 0x4545454545454545 and the second row is keyed by
authentication subkel” = K @ 0x4d4d4d4d4d4d4d4d, whereK is the underlying key. The ciphertexti§ CoC3CyT.

pursued by regarding the key &3 || K", oritis easy to describe a (nonstandard) assumption under which the
style of key separation used by the mode works.

> The SIV construction of this paper is an alternative design approacéhdsinilar efficiency characteristics
and that does achieve PRI-security.

Let us consider how to define security for this mode. Begin with privaoy.bF¢ {0,1} the adversary
is given an oracle Erg that behaves as follows: on receipt(df, My, M), where|My| = | M|, the oracle
chooses a randor <= {0,1}", wheren = 64, and returng R, £Z(R || M,)). The adversary’s goal for
violating privacy is to ascertain if it has a “left oracley £ 0) or a “right oracle” § = 1). One can measure
the adversary’s effectiveness Bydvictt'ivi(4) = Pr[AFnc = 1] — Pr[AB"¢lo = 1]. This is a weakening
of the detPriv-notion that is defined in Appendix B. The adversary’s goal for violatinthenticity would be
the det Auth-notion of authenticity from Appendix B: given a pair of oracleg, Ff}l the adversary aims to
make a right-oracle call ofH, C') whereC' was not the return value to a prior left-qugtif, M) and where
F'(H,C) # L. The goal for AKW2 would then béetPrivl + detAuth.

Let us assume that AKW2 actually achieves security inddt®riv1+auth sense. Then one can distill out
a simple and concrete usage restriction that could be stated in the mechamisorisethtationthe first block
of plaintextP; should be randomThis may be a reasonable restriction for a key-wrapping mechanism.

B All-in-One vs. Two-Requirement Notions for AE

An alternative approach for defining DAE-security is to specify a not@rdeterministic privacydetPriv, a
notion for deterministic authenticitdet Auth, and demand both. This “two-requirement” approach is the one
that has been taken in all prior work on AE. In this section we specify therégairement definition for DAE
and show where it leads: to a notion equivalent to our “all-in-one” defimitie go on to recall prior variants
for AE security and explain that, in each case, the two-requirement ddfingiequivalent to the all-in-one
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definition.

DETERMINISTIC PRIVACY. We adapt the indistinguishability-from-random-bits notion of privacy [@2jhe
setting where the encryption scheme takes an header. Fix a DAE s@hem@C, £, D) with header spacg(
and message spadé Then, forA an adversary, define itketPriv-advantage in attacking as

Adv3etPriv(4) = pr [K SR ARG o 1} ~Pr [A$<'f> = 1]

where we assume that does not repeat a query. Informally, adversdris trying to determine if its oracle is
enciphering its queries or returning random bits, and the trivial way to rieiteletermination is barred.

DETERMINISTIC AUTHENTICITY. The usual notion of integrity of ciphertexts [6, 8, 20] must be adapted to
the deterministic setting (the difference is just a matter of syntax)IlLet (IC, £, D) be a DAE with header
space and message spacg, and consider an adversary with access to oracles f&fx and Dg. We
defineA’s detAuth-advantagein attackingII as

Above, when we say that forgesit means that it asks a right-quef¥/, Y') and gets a response other than
and A did not earlier ask a left-queryH, X ) that returnedy’. We assume without loss of generality that
never asks a right-quey7, Y') having already asked a left-que¥f, X ) that returned.

EQUIVALENCE OF DETPRIV+DETAUTH-SECURITY AND DAE-SECURITY. Here we show that our all-in-one
notion of DAE security is equivalent to the two-part notion that requike®riv anddet Auth.

Proposition 8 [detPriv+detAuth implies DAE] LetII = (K, £, D) be a DAE with header spad¢ and mes-
sage spacé’. Let A be an adversary with access to two oracles. Supdasms in timet and askg;, queries
to its left oracle, these totaling;, bits, and askgyr queries to its right oracle, these totaling bits. Then there
exist adversarie® and F' such that

AdV%ae<A) < AdV%EtPriV(D) +qr AdV%etAUth(F)

whereD runs in timet + O(uz, + nr) and askg,, queries totaling.y, bits, andF runs in timet + O(ur + pur),
asking at most,, left-queries and one right-query, these totaling at mst- ur bits. |

Proof: Let DY operate by runningi, answering left oracle querié$/, X) with g(H, X), and responding to
all right oracle queries with.. When A halts with output bib, let D returnb. Then

AdV%ae(A) = PI‘[ASK('V)7DK("') = 1} _ Pr[A$(-,-),J_(-,-) = 1]
= Pr[ASK()P() o 1] - Pr{ASK()L0) 5]
+ Pr[Afx ()L o 1] — Pr[ASC) L0 5
= Pr[ASK()Px() o q] - pr{ASK()L0) 5]
+ Pr[Dfx ()
[ )

4
-
!
.
—
S
2
4
=

whereK < K throughout. Let = Pr[A8x () Px () = 1] — Pr[A€x():L(+) = 1]; it remains to bound this
quantity. LetE be the event thatl asks at least one valid right-oracle quéfy,Y') (ie, D (H,Y) # L1). We
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can write
5 = (Pr[AgK("')DK('?‘) = 1 AE] + Pr[ASx(:)Pr() o g /\E])
- (Pr[AgK("')’l("') = 1 AE] + Pr[A%x 000 o 1 A E])
- (Pr[AffK('v')vDK('v) = 1 AE] = Pr[Afx ()0 1 A E])
+ (Pr[AgK("')DK("') = 1AE] — Pr[A®x (A0 o 1 A E])
= (Pr[ATKCIPRE) 1 pE) — Pr{AK () =1 0]

where the last equality holds since Fifdoes not occur, all right-oracle queries are answered lyhetherA
had been provided withB (-, -) oracle or aL (-, -) oracle. Conditioning on eveiitwe obtain

5§ = (Pr[A‘SK("')’DK("') = 1| E] — Pr[AfxC) L) = 1| E]) Pr[E]
< Pr[E]

Forj € [1..qr] let E; be the event thaE occurs on theg'! right-oracle query. Theé < Pr[E] < Y% Pr[E;].

It must be the case thatr[E;] > §/qr for some;. Fix this value ofj and letF" be the following forging
adversary. Adversary’ runs A, answering all ofd’s left-oracle queries with its owéix oracle, and answering
the firstj — 1 of A’s right-oracle queries with_. When A asks its;j*" right oracle query(H,Y), adversaryF’
asksDr (H,Y). ThenAdvietAuth(F) > Pr(E;] > 6/qr = S00 < qr Adv{* "2 (4) and we are donel

Proposition 9 [DAE implies detPriv+detAuth] LetII = (K, £, D) be a DAE with header spad¢ and mes-
sage spacg’. Let D be a detPriv-adversary that runs in timand askg queries to its oracle, these totaling
bits. LetF be a detAuth-adversary that runs in titteand asks;’ queries totaling:” bits. Then there exists
adversariesi and A’ such that

Advie(A)
Advie(A)

AdV%etPriV (D)

>
Z AdV%etAuth(F)

where A runs in timet and asks at most queries totaling. bits, and whered’ runs in timet’ and asks at
mostq’ queries totaling:’ bits. |

Proof: The first result is trivial, so we do not bother with it. The second is also sinygtied run F', answering
left-oracle queries with its left oracle (eithék(-,-) or $(-,-)) and right-oracle queries with its right oracle
(eitherDg (-, -) or L(-,)). Ifany right oracle query returns a value other thathen letA output 1; otherwise, it
outputs 0. Notice thar[A%x () Px () = 1] = Pr[Féx ()P () forges], and thaPr[AS()+() = 1] = 0,
since in the latter case the right oracle always returnd

ALL-IN-ONE AND TWO-REQUIREMENT NOTIONS FORAE ARE INVARIABLY EQUIVALENT . There are now
several variants of AE: the encryption scheme may be probabilistic, Auas®d, deterministic, or misuse-
resistant; the privacy requirement can be indistinguishability from raritsror conventional indistinguisha-
bility; and message headers may be present or absent, strings or vEotoasy of these variants one can give
a two-requirement definition or an all-in-one definition. In all cases thdteesome out as above, showing that
the all-in-one definition and the two-requirement definition are equivalent.

As a first example, the indistinguishability-from-random-bits notion of psivae selected for detPriv and
within DAE can be relaxed to conventional indistinguishability, formalized, bgyindistinguishability from
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the encryption of random bits. Each oraéle, -) gets changed to & (-, $!'!) oracle that encrypts as many
random bits as the message-portion of its query is long. The all-in-one ancetwirements definitions will
again be equivalent, with a proof just as before.

As a second example, consider probabilistic AE, no headers, privdbg sense of conventional indistin-
guishability. The usual two-requirement definition [6, 8, 20] would specif

Adv%riv(A) = Pr[KﬁIC: AfK() = 1] — Pr[K S AS($H) = 1]
Adviith(4) = Pr[K <K A0 forges

and a good AE scheme would have to be secure in both of these senseallfin-one definition would define
Advie(A) = Pr[K &K ASKOPRO) o 1] - pr[K &Ko ASKEDLO

where the adversary may not ask a right-querg’'ddfter this is returned by a left-query. It is again simple to
show that the all-in-one definition and the two-requirement one are dguiavhere, as before, the all-in-one
notion will have quantitatively tighter authenticity).

In general, we prefer the all-in-one definitions for authenticated-@tiory, finding them more aesthetic
and concise.

AE AS A FORM OF CHOSENCIPHERTEXT SECURITY All-in-one definitions for AE resemble the definition
for chosen-ciphertext-attack (CCA2) security [3, 4]: in the definitiot gigen, say, change the(-) oracle to
aDk(-) oracle to recover the CCA2 notion for the same setting. The definition of AEgtrangthens CCA2
security in a simple and natural way. Perhaps it is only “historical accideat’our community came to think
of AE as privacy+authenticity and not as “CCAS3 security.”

C DAEs Achieve Semantic Security when Plaintexts Carry a Key

A folklore justification for using a key-wrap scheme instead of a probabiliséimantically secure encryption
scheme is that, in the key-wrap setting, one expects the plaintext to camga@nmecryptographic key, and so
a probabilistic encryption scheme ought not be needed. In this sectiomowielg a result that validates this
intuition. We show that encoding a random key into the plaintext (the key maydpped into the message in
any fashion) and then applying a DAE will achieve what amounts to prob#b#E—in particular, it achieves
what amounts to semantic security. We begin with some definitions.

KEY INSERTION. A key-insertion schemig a pair of algorithmsp = (InsertKey, ExtractKey). The first
algorithm is used to insert a key into a plaintext and the second algorithmdsausgtract it. For the remainder,
fix a constant;, the length of the key to be inserted. AlgoritinzertKey, on input ofX € {0,1}", chooses a
randomR <> {0, 1}* and, depending opX |, returns eithef/ < InsertKey(X) € {0, 1}* or the distinguished
value L. An equivalent viewpoint is thdihsertKey is a deterministic function that takes as input a sttlge
{0,1}* and a random string € {0, 1}"; then we writeM «+ InsertKey(X, R). The set of all strings( such
thatM < InsertKey(X) is a string is called thenessage spac# . We insist that ifA/ = InsertKey(X, R)

is a string therjM| = | X| + e(|X|) for some fixedexpansion functiom. (Recall that we have fixed the key
lengthx and so, implicitly, the expansion depends-os: | R| as well as onX|.) Algorithm ExtractKey takes
astringM € {0,1}" and, depending ofV/|, returns eitherL or the encoding of a pair of strinds(, R) with
|R| = k. The set of stringd/ such thatM/ = InsertKey (X, R) for someR is called themage M, of &. We
insist that if M/ = InsertKey (X, R) # L thenExtractKey(M) = (X, R), andExtractKey(M) = L for all
M ¢ M. To simplify the subsequent theorem statement and capture the intehtdhaiKey andExtractKey
are simple mappings, we require that they be computable in linear time.
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INSERTKEY-THEN-DAE ENCRYPTION. Let® = (InsertKey, ExtractKey) be a key-insertion scheme with
message spack, imageM, and key length:. Letll = (K, £, D) be a DAE with header spadé and message
spaceM. We define from® andII the probabilistic encryption schenie= (K, £, D) = InsKey[®, IT] by

Algorithm Ex (H, X) Algorithm Dy (H,Y)

RE{0,1}" M « Dg(H,Y)
M — InsertKey(X, R) | if M = Lthenreturn L
if M = 1 return L return ExtractKey (M)

return Ex (H, M)

The encryption scheniéd is nonstandard insofar as decryption of a cipher¥éxeturns not only the underlying
plaintext X but also the random bit® that were inserted (algorithfxtractKey returns such a pair). The
formalization should not be interpreted as meaning that the encrypting pattgdas not “know”’R—indeed

if it follows the algorithm above then it choosé&sand therefore knows it. The return value from encrypt does
not include R because the ciphertext that is to be sent to the receiver already inat@pda. On the other
hand, the decryption algorithm does retutnas this value is conceptually a part of the plaintext. We must
correspondingly strengthen the notion of security, providing the rarfdtsn to the attacker. To do this, we
must adapt the definition of AE. Consider an encryption oréglé-, -) that behaves exactly as the encryption
algorithm inIL, above, but returns the random striRgas part of the ciphertext. Specifically, on ingit, X ),
whereH € HandX € X, it computes:R < {0,1}", M « InsertKey(X, R), Y « Ex(H, M), and then
returns an encoded strin@?, Y). Let oracle$(,-), on input(H, X), whereH € H andX € X, operate
identically toEx(-,-) but return|(R,Y’)| random bits. Finally, consider a decryption oraflg (-, -) that,

on input(H,Y) whereH € H, computesM «— Dg(H,Y); then if M # L then it computegR, X) «—
ExtractKey (M) and returng R, X'), while otherwise it returns.. Define

AdvE*(A) = Pr[K <K ABGHPrl) o q] - Pr(K & K AS) 00 =]

Basically, when the adversary asks for the encryptioXofve embellish the string t¢X, R) for a random
key R, inform the adversary of the random key that was inserted, and ghadiversary the resulting ciphertext.
We are saying that this looks like random bits, even in the presence ofrgptlen oracle. As usual, the
adversary may not ask a right-quéy, C') following a left-query(H, M) that returned”.

We emphasize that the KIAE-notion is in effect the usual notion for pritibab AE as it must be interpreted
for a key-insertion scheme; some change is essential because, if netb@ghe syntax of a scheme has
changed. But we have given the adversary all the abilities it would norrhallg in the probabilistic AE
setting, and have taken away nothing. The adversary cannot spexifistitted key—that it does not control—
but it learns the inserted key and it is otherwise in full control of the plaiatex

INSERTKEY-THEN-DAE ACHIEVES KIAE. We now show that as long as the inserted key is “long enough” the
Insertkey-then-DAE scheme achieves the version of probabilistic atithesd-encryption we have defined.

Theorem 10 Let ® = (InsertKey, ExtractKey) be a key-insertion scheme with message spetand im-
ageX, and lefll = (K, £, D) be a DAE scheme with message spateDefinell = (K, £, D) = InsKey[®, I1]
and letB be an adversary (for attacklﬂ@). Suppose thaB runs in timet and askg; queries totaling: bits.
Then there exists an adversaty(for attackingll) where

AdvE*(B) < Advi{*(A) + ¢*/2""
whereA runs intime at most = ¢+O(y1), and asks at mogt = ¢ queries of total length at mogt = p+0(q).
|
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Proof: Leto = Advlﬁiae(B) and letE% (-, -) be an oracle that behaves exactlyFasexcept that it never uses
the same random string twice. Now, suppressing obvious notation, we have

§ = Pr[BEk(IPR() o 4] PR g
= Pr[BEKCIPKCD) o 1) - pr[BER (PR o ]
+ Pr[BEk()PK () 5 q] P00 o)
< /28 + Pr[BEKCI)PR() o ) — pr[BRCA0) o 1)
= /2" +p
where the inequality holds because the observable behavibaodE* differs only when the former uses twice
some randomly chosen strirfgy and this happens with probability at mgsy2~ (by the sum bound).

To bound the probability, we construct a DAE adversa@?-" that will run B and faithfully simulate either
the pair of oracle®’., Dk (if ¢ = Ex andh = D), or the pair$, L (if ¢ = $ andh = L). Specifically,
let R be initialized to the empty set and ldtrun B. When B asks a left-oracle queryH, X ), adversaryA
choosesR <& {0,1}". If R € R, A outputs 0 and halts. Otherwise, it compufds — InsertKey(X, R),
Y «— g(H, M), setsR — R U{R}, and returngR,Y") to B. WhenB asks a right-oracle queryd,Y), let A
computeM «— h(H,Y). If M = L thenAreturnsl to B; otherwised computes R, X) < ExtractKey(M)
and returng R, X) to B. WhenB halts with bitb, let A outputb.

Advie(4) = Pr[A®xG)PrG) o g — pr[A8C)L0) o]
= Pr[A®x()Pr() = 1|BAD] Pr[BAD] + Pr[A°x(+)-Px () = 1|BAD] Pr[BAD]
— Pr[A%(+)L0) = 1|BAD] Pr[BAD] — Pr[A%(+)+(+) = 1/BAD] Pr[BAD]

- (Pr[A‘SK("')’DK("') = 1|BAD] — Pr[AS()L () o 1]BAD]> Pr[BAD]

- (Pr[BE%'%DK(w) = 1] - Pr[BY)L0) o 1]) Pr[BAD]

= p Pr[BAD]

= p—p Pr[BAD]
> p— Pr[BAD]
> p—q°/2"

where, as before, we have bounded the probability ofzanepeat (ieBAD) by ¢?/2%. Rearranging tg <
Advif©(A) + ¢*/2%, and putting it all together, we havedvi*®(B) < Advif*(A) + ¢*/25 .

Noting that thensertKey is computed in linear time (necessary for the time botinthe theorem follows.

D Building a DAE Scheme: The PTE Constructions

A folklore approach for achieving authenticity is to add redundancy agmleéincrypt, an approach investigated
in works like [1, 8]. One pads the plaintext (for example, by appendingricplar number of zero-bits) and
then applies a length-preserving enciphering scheme (that is, a widestadedlockcipher, like CMC [16]).
We call this thepad-then-enciphefPTE) approach.

To accommodate an associated header under this paradigm either (adsisewteak for the enciphering
scheme, or (b) incorporate it into the plaintext before enciphering. dimer will be more efficient in terms
of the length of the resulting ciphertext, but it requires the underlying @ecipg scheme to be tweakable.
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Three of the four X9.102 key-wrap schemes (AESKW, TDKW, and AK\&4n be seen as instances of pad-
then-encipher (although they use enciphering schemes for which tagiteelen offered no proof of security).
In this section we formalize and prove security for pad-then-enciptiebdth options (a) and (b).

PADDING SCHEMES A padding schemés a pair of deterministic algorithmé = (Pad, Unpad) where
Pad, Unpad: {0,1}" — {0,1}* U {L}. The sett = {X € {0,1}": Pad(X) € {0,1}"} is thedomain
of ® and M = {Pad(X): X € X’} is therangeof ®. Our convention is thaPad(L) = Unpad(Ll) =

1. We insist thatUnpad(Pad(X)) = X for all X € X, thatUnpad(M) = L for all M ¢ M, that
|[Pad(X)| = |X| + e(]X]) for someexpansion functiom, thatPad andUnpad are linear-time computable,
and thatX € & = {0, 1}|X| C X. Calls = minxex{e(|X])} thestretchof &. We emphasize that unpadding
not only extracts the padding but, equally important, it returribthe presented point is not a properly padded
domain point. If a padding function has stretch 1 then a fraction at mof* of the points inM will unpad

to give strings, while the remainder will unpad to give

ENCODING SCHEMES We have already spoken of encoding schemes as reversible ancceagiytable map-
pings from tuples of vectors to strings. Here we will be more formaleAcoding schems a pair of determin-
istic algorithmsA = (Encode, Decode) whereEncode: {0,1} — {0,1}" U {L} andDecode: {0,1}" —
{0,1}** U {L}. Thedomainof A is the set of tupley) = {Y € {0,1}*": Encode(Y) € {0,1}"}.

We assume this to be a cross-product of sets of strings, and insist tHatif) thenY’ € ) when
|Y'| = |Y'| and the corresponding componentsYofandY”’ have equal lengths. Thangeof A is the set
of stringsM = {Encode(Y): Y € Y}. We insist thatDecode(Encode(Y)) = Y for all Y € Y, that
Decode(M) = L if M ¢ M, and thattncode(L) = Decode(L) = L. We assume thdincode andDecode
are linear-time computable.

THE PTEL1CONSTRUCTION The PTEL construction builds a DAE out of an enciphering scheme hinmad
the input message prior to enciphering, and by using the header diretily beader (or tweak) of the under-
lying enciphering scheme. (We recall that an enciphering scheme is a-eraghrving DAE.) Fix a padding
schemed = (Pad, Unpad) with domainx’ and rangeM, and an enciphering scherme= (K, £, D) with
header spacgl and message spade. Then we define the DAE scherie= (K, £, D) with header spacg/
and message spadg writtenII = PTE1[®, I1], as

Algorithm Ex (H, X) | Algorithm Dy (H,Y)
M — Pad(X) M «— D (H,Y)
return Ex (H, M) return X « Unpad(M)

Theorem 11 tells us that ifl is a an enciphering scheme that is secure in the PRI senselltien secure
length-increasing DAE. In the proof, we will make use of the notaffenm’(M) to mean the space of all
mapsr: H x M — M such thain(H, M)| = |M| andr(H,-) is a permutation; ie., the space of all length-
preserving injections frorfi{ x M to M. Also, recall our notational convention is to uAelvﬁf’ﬁ’ in place of
Adv%]fi whenll is an enciphering scheme with a nontrivial header (tweak) space.

Theorem 11 Let & = (Pad, Unpad) be a padding scheme with domalfy range M, expansion functiom,
stretchs, and letr = minxcx{|X|}. LetIl = (K, &, D) be an enciphering scheme with header sggand
message spackl. LetIl = (K, &£, D) = PTEL[®, E]. Let B be a DAE-adversary that runs in timeasksg,,
left-queries, these of total length, bits, and asksy, right-queries, these of total length bits. Letq = ¢, +¢qr
andyp = uy, + pur. Then there exists an adversatysuch that

Advi™(4) > AdvE(B) - (¢/2°7H 4 4gn/2°)

whereA runs in timet + O(u) and askg queries of total lengtiy + O(q). |
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Proof: We construct an adversarf:” for attacking the PRI-security di as follows. LetA run B answering
left-oracle querie$H, X') by computingM < Pad(X) and returning;(H, M) to B. To answer right-oracle
queries(H,Y"), adversaryA asksM «— h(H,Y) returnsL to B if M = 1, and otherwise returns t8 the
result ofUnpad (). WhenB halts with output bib, let A outputb as well.

Recall thatA’s oracles are instantiated either@s= £x,h = Dg for arandomK € K, orasg = w,h =

~! for a random element < Perm’*(M). In the former cased perfectly simulates fo3 a left oracle
EK and right oracleDg. In the latter cased simulates forB a left oracle&, that computes‘: but with
the underlying enciphering algorithé replaced byr, and a right oracle, that compute® but with the
underlying deciphering algorith® replaced byr—!. Now,

Advi"P(4) = Pr|ATKC)PRC) o] = pr 47670 S
~ Pr [BgK } Pr [Bg" Ww(*);w]
— Pr [BSK("')’DK( 1} Pr [B$("')’L("'):>1]

- (Pr [BE =) D) o 1] Pr [B$("')7L("') = 1})

= Adv¥*(B)-a

wherea = Pr [Bgﬂ(‘v‘)v Dr(r) = 1] — Pr [B%¢): L0) = 1] and, throughouti & K andr « Perm™ (M)
are understood. It remains to bound the information-theoretic quantity

It is easy to see that, for a randame Perm™(M), &, is a random element frotin)] t(x, M). To see this,
notice that&;(H, X) = n(H,Pad(X)) wherePad(X) deterministically and reversible maps € X into a
string inM € M. Thus we can appeal directly to Theorem 7, and concludenthat? /25471 4 445 /25, 1

THE PTE2CONSTRUCTION The PTE2 construction builds a DAE from an enciphering scheme bydergo
the header and the plaintext into a string, padding that string, and thernerinigpthe result. Fix an encoding
scheme\ = (Encode, Decode) with domainH x X and rangeM. Fix a padding schem@ = (Pad, Unpad)
with domainM and rangeM*. Fix an enciphering schenlé = (K, £, D) with message spack(* and no
tweak space (ie, a singleton set, which is ignored). Then we define thesEfAdNd] = (K, & D) with header
spaceH and message spagdé writtenIT = PTE2[A, ®,11], as

Algorithm Ex (H, X) | Algorithm Dy (H,Y)

M «— Encode(H,X) | M* «— Dg(Y)

M* — Pad(M) M «— Unpad(M™)

return Ex (M™) if Decode(M) = L then return L
(H', X) « Decode(M)

if H' = H then return X

return L

We point out that the header and message spacﬁsamé determined by the domain of the encoding scheme.
The following theorem tells us that I is an enciphering scheme secure in the PRI sense lihisra secure
length-increasing DAE. Since we consider enciphering schemes with a& space, we uséerm (M) instead

of Perm{=} (M), and useAdv""™ in place ofAdv¥)".

Theorem 12 Let A = (Encode, Decode) be an encoding scheme with domd&ihix X, rangeM, and let
T = minxey | X|. Let® = (Pad, Unpad) be a padding scheme with domair, rangeM*, and stretcls. Let

29



I = (K, &, D) be an enciphering scheme with header spd@nd message spade*. LetIl = (K, E,D) =
PTE2[A, ®,TI]. Let B be a DAE-adversary that runs in timeasksg, < 2°~! left queries of total lengtiy,,
bits, andqy right queries of total lengthu bits. Letq = ¢, + gr andp = pur, + pr. Then there exists an
adversaryd such thatAdv;”P(4) > Adv¥*(B) — (2g:/2° + ¢?/2°77+!) whereA runs in timet + O(u)
and askg queries of total length + O(q). |

Proof: We construct an adversarf:” for attacking the PRI-security di as follows. LetA run B answering
left-oracle querie$H, X') by computingl/ < Encode(H, X ), M* «— Pad(X) and returning;(M*) to B. To
answer right-oracle querid$/, Y'), adversaryA: asksM < h(Y); computesM « Unpad(M™*); computes
Decode(M), returning_L to B if this results inL, and otherwise assignindl’, X) < Decode(M); returnsX
to B if H = H, and_L if not. WhenB halts with output bib, let A outputb as well.

Recall thatA’s oracles are instantiated either@s- £, h = Dk for arandomK € K, orasg = 7, h = a~t
for a random element € Perm(M). In the former cased perfectly simulates fo3 a left oracle€x and
right oracleDg. In the latter cased simulates forB a left oraclef, that compute§ but with the underlying
enciphering algorithm replaced ly and a right oracl®, that compute@ but with the underlying deciphering
algorithm replaced by —!. Now,

AQVEPP(A) = e [ASRCD PG 1]y [t 0 o 1]
= Pr[BEC)Pu) o 1] - pr [BE ) Prl) 5 1]
— Pr | B Pl 1} Pr [BS0) 10 o 1]
_<Pr [Bé,r(-,.), (,);31] Pr [B$(-,-),J_(-,-):>1})
= Adv¥*(B)-a

wherea = Pr [ng('f)vﬁﬂ"') = 1} — Pr[B5(:): 1) = 1] and, throughout <> K andm « Perm(M)
are understood. It remains to bound the information-theoretic quantity

Claim: o < 25 /2° + ¢?/25+7 !

Proof: Write &« = a1 + a5 where

a1 = Pr|BE Pl o] o pr [ pE ) 0 5
qy = Pr[BECO ) ] o pr BSOS

We will show thatay < 2¢r /2% andasy < ¢2/2577F1, establishing the claim.

For boundinga; we can assume that adversabyhalts and outputs 1 as soon as some right-oracle query
returns a valid string. LeBAD be the eventB asks a right-oracle query that returns a striig Condi-
tioning probabilities orBAD leads toa; < Pr[BAD]. Notice thatD,(H,Y) returns a string if and only if
Unpad(M*) = M # 1 andDecode(M) = (H',X) # L andH' = H. Moreover, ifUnpad(M*) = L,

then by our conventions the other two conjuncts must be false. Lditing the event that some right-query
causednpad to return a string, we haver[BAD] < Pr[U]. LetU; be the event thai occurs on the'" query,

i € [1..qr]. We will now boundPr[U] by boundingPr[U,].

Fix ann > 0 such that{0,1}" ¢ M* and let

V(n) =|{M* € {0,1}" : Unpad(M) # L}| .
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On query left(H, X):
10 M « Encode(H,X); M* «— Pad(M)
11 if M* = L thenreturn L

12 ¢ |M*|; Y 40,1}
13 if Y € Image(m) then

14  bad— true ,Y < {0,1}¢ — Image(n)
14 return 7(M*) « Y

On query right(H,Y):

27 return L

Figure 10:Games used to boung, in the proof of Theorem 12. Game G1 is the complete code; gathendts the
shaded statement.

Since the padding scheme has stretctve know thatV(n)/2" < 27° for all n. At the time of theit" right
oracle query, adversar can know at most;, valid encipherings undef,. Since B is forbidden to ask
(H,Y) of its right oracle if some left-oracle que(y, X) returnedY’, the probability that); occurs is at most
V(n)/(2" — qu). If V(n) = 0 this probability is zero (which is certainly less than the claimed upperbound),
so assume that(n) > 1. ThenPr[U;] < V(n)/(2" — ¢.) < (2")(27°)/(2" — ¢1.). Now, we have assumed
thatq, < 2°7!; by substitution for2*~! and sinceV(n) > 1, we haveg, < 2"/2V(n) < 2"~!. Hence
PriU;] < (2)(27%)/2"1 = 2(27¢) and, finally,Pr[U] < > Pr[U;] < ¢a/2°"!. Putting it all together
yields the claimed bound; < 2¢5/2°.

For ay, a simple game playing argument shows that < ¢2/25*7*!. Consider the games G1 and GO
in Figure 10. Recall that booleans are initialized 83 se, sets are initialized to empty, and partial functions are
initialized to everywhere undefined with the symhelef. The sefimage(r) contains all pointy” # undef
such thatr(M*) = Y for someM € M. Set difference is indicated with a minus sign. Both games G1 and
GO simulate al_ oracle on the right. We claim that game G1 faithfully simulate€anracle on the left, while
game GO faithfully simulates ahleft oracle. Let’'s examine what happens when a left quUéfyX) is made.
The result ofPad(Encode(H, X)) is assigned td/*, and if M* = L, then_ L is returned. Since oracles are
always defined to return. when queried outside of their domains, this is consistent with Botand$. A
random string ot: = |M*| bits is then selected and assignedtolf Y is in Image(n), then the flaghadis

set totrue; here is where the games begin to behave differently. In game G1, torelikerpermutivity ofr,

a new point is selected from among the unuedit strings, and this is subsequently assigned td/*) and
returned. Game GO, on the other hand, continues on with the uniform Yalukimately returning it.

Under our convention that adversaries not repeat queries, it isthistar, = Pr[BGl = 1] — Pr[BGO = 1].
Moreover, since these games are identical umidlis set, we can invoke the fundamental lemma of game-
playing [7] and state that, < Pr[BGO setsbad. Now, prior tobadbeing set in game GO, each left query adds
a single point tdmage(7). Accordingly, the probability thabadis set on the'" query is at mosti — 1) /2577,

so the probability that it is ever set is at mg$f2°+™+! and we are donel

E Proof of Security for S2V

Proof: Consider the game SO defined in Figure 11. The game is a faithful simulatir=0f*. The intuition
underlying this formulation of” is as follows. We grow a random functigrto computep(X3), ..., p(X;n-1)

for each query X;, ..., X,,), and we grow a separate random functidfor the final callp(7"). But whenever

we need a valug(I) we force it to take on the valy€([) if the latter has already been defined, and whenever
we need a valug’(I) we force it to take on the valug(1) if the latter has already been defined, but if either
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Initialize Game SO0 (as written) and S1 (without the highlighted stateg)

100

Onquery F(Xy,...,Xm)

p(0) < {0,1}", p(1) < {0,1}"

[$*]

100 if m = O thenreturn p(1)

101 S« p(0)

112 for i — 1tom —1do

113 if X; € Domain(p’) then bad— true, p(X;) < p/(X;)

114 if X; ¢ Domain(p) then p(X;) < {0,1}"

115 S — 25 @ p(X;)

116 if | X,,| > nthenT — S @eng X,y €lseT — 25 & X,,,10*

117 if T € Domain(p) then bad— true, return p'(T) — p(T)

118 if T € Domain(p’) then bad« true, return p/(T)

119 return p/(T) < {0,1}"

200 p(0) < {0,1}", p(1) —C Game S
201 fort« 1togdo

202 S — p(0)

203 for i« 1tom; —1do

204 if X! € Domain(p’) then bad« true

205 if X! ¢ Domain(p) then p(X?) < {0,1}"

206 S — 25 p(X})

207 if | X[,| >nthenT" — S @eq X/, elseT" — 2S¢ X} 10

208 if T* € Domain(p) then bad« true

209 if T* € Domain(p’) then bad« true

210 p'(T') = arbitrary

300 for I € {0,1}" dop(I) < {0,1}* od, p(1) —C Game S3
301 fort« 1toqdo

302 S — p(0)

303 fori—1tom; —1doS « 25® p(X})

304 if | X],| >nthenT" — S @eq X/, elseT" — 25 ¢ X! 10

305 if [3r,s,t,4] [(T"=X])or (T*=0)or (T* =1)or (T* =T%) | then bad— true

400 for I € {0,1} dop(I) < {0,1}" od, p(1) — C Game S4
401 fort« 1toqdo

402 if | X],[>n

403 thenT" — [2™71p(0) 2™ 2p(X]) © 2™ Pp(X3) & -+ ©2p(X,, o) @ (X}, _1)] Bena X,
404 elseT’ — [2™p(0) & 2™ 'p(X}) @ 2™ Zp(X§) & -+ B2%p(XL, ) ®2p(XL, )| @ XL, 107
405 if [3r,s,t,4] [(T" = X])or (T* =0)or (T* = 1) or (T* = T*) | then bad«— true

|

Figure 11:Games used in the proof of security for S2V.

happens we give up in the analysis by settiagl Sincep andp’ are grown by adding uniform random values
and kept in sync, their joint effect is the same as choosing a single rahduntion p for both purposes. We

have thaPr[f < Func({0,1}*,n): AT"0) = 1] = Pr[4%° = 1].
Game Sl is a faithful simulation of a random function fréf 1}** to {0,1}" (recall that the adversary may

not repeat a queryPr[R < Func({0,1}**,n): AR0) = 1] = Pr[AS! = 1]. Furthermore, games S1 and SO
differ only by the sequels of statements that set the flagy So by the fundamental lemma of game-playing,
the advantage we wish to bound is at mBstA>! setsbad.

To bound this assume for a moment that the adversary never asks tmgumeeat query o = 0) and so
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all values returned to the adversary are returned at line 119.ndtfiestrings, call thenZy, ..., Z,, that are
returned to the adversary and placed into the range lséive no impact on the running of the game—they are
never even referred to—what matters is the domaijsi,afot its range. Thus one could let the adversary choose
whatever return values it likes &, ..., Z, and it would not matter in the setting éfad Now as for the
no-argument query, we let the adversary choose the V@lae f (1) that is best for it, along with an optimal
sequence of queriey, . .., X, (each quenX; = (X1,..., ant) € {0,1}*) for the adversary to ask having
total length of at mosi bits. Fixing all of these values, Game S1 has now been reduced to theteoactive
Game S2 that is specified in Figure 11.

Examining game S2, notice that points are added into the domairooly at line 200, where gets defined
at0and1l, and at line 205, whep gets defined aKf. Points are added into the domaingfonly at line 210,
wheny' is defined aff™. Thusbadgets set tazrue in exactly the following situations: at line 204, when &
value is equal to som&* value for somes < t; at line 208, when & value is equal to arX; value for
somer < tandl < i < m,; at line 208, when & value is equal t® or 1; and at line 209, when &’ value

is equal to & value for somes < t. Recalling thap is the assumed total number of vector components, we
see that, all in all, there are a total ¢fy — ¢)q pairs(7*, X!') which, if equal, sebad ¢ pairs (7", 0) which,

if equal, setbad ¢ pairs(T"*, 1) which, if equal, sebad and(g) pairs(Tt,T¢), for s < t, which, if equal, set
bad In a moment we will show that for each of these pairs the probability thatrdteafid second components
are equal is at mo&t ™. Given this, we can conclude that the probability thatigets set is in game S2 at most
((p—q)g+2q+ (§)) - 27" This value is at mosq for ¢ > 3, the result we want.

Now, to show that each of the specified pairs collide with probability at ro%twe first rewrite game S2 as
game S3, which makes its random choices up front and checks for dooibsioos (ie., whenbadbegin set
to true in game s2) at the end. Then, in game S4, we unroll the loop to more explicitifiysfié. Now our
job is to show that, for any valid, s, ¢, i, each of the four equalities at line 405, namely, (Casg'l} X! and
(Case 2)I'"* = 0and (Case 3)"* = 1 and (Case 4)" = T*, the equality holds with probability at moat™.
The implicit quantification for a “valid™, s, t,4 at lines 305 and 405 ig,s,t € [l..¢], r < t, s < t, and

i € [l.m, — 1]. Fixavalidr, s, t,1.

Case 1 First we show thaPr[T* = X!] < 2™, Keep clear that all of th& values are constants. There are
two subcases to consider, depending &, |.

Case 1.0 Assume first thatX}, | > n. In this case we are looking to bound
Pr (2™ p(0) @ 2™ 2p(X]) @ 2™ Pp(X5) @ - @ 2p(X}p,_0) © p(X),, 1)) Bena X7, = X[ ] .

If | X7| # | X[, | then the above probability is zero and we are done. So asgkifie= | X7, |. If X and X/,

differ in some bit before their last bits then the above probability is again zero (because of the behavior of
@ens ) @and we are done. Hence there is no loss of generality to assum&fhat | X/, | = n; just strip away

the leading, irrelevant prefix. The probability we wish to bound is then

Pr [2™7p(0) © 2™ 2p(X}) @27 Pp(X5) @ - ©2p(XL,, ) @ p(XLy, 1) @ XL, = X]] .

In this formula, various pairs of th&! values may coincide. Whenever this happens, combine the multipliers
of the coinciding quantities by xoring them. This will never form the zero multifdesrause each coefficient is

of the form2’ wherej € [0..n — 1]. Combine all terms wher&! = 1 and collect them into a single constant,
together with the constant, to make the single constait. (ThusB contains all of the quantities in the
formula that the adversary controlled.) Rename variables and coeffitbegs$ an expression

Prlcg p(0) @1 p(Ch) @ -+ ® ey p(Cu) = B
for someu > 0 and where’y, ..., C, are distinct strings different frothand where eacty # 0. As everyp(I)

value is random with the exception pfl), the above probability is at most™.
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Case 1.1Assume instead thak! | < n . We are looking to bound
Pr [(27p(0) @ 2™ p(X]) @ 2™ 2p(X5) @ - - @ 2°p(X],, o) D 2p(X},, 1)) ® X, 107 = X .

Showing that this is at mo&t™" is done in a manner directly analogous to Case 1.0, so details are omitted.

Case 2andCase 3 We immediately have thatr[T* = 0] < 27" andPr[T" = 1] < 27", since these are just
specializations of Case 1.0 wheXg¢ = Oor X = 1.

Case 4thatPr[T" = T*] < 27". There are four subcases, depending on whether eaklj,obnd X3, are or
are not longer than bits.

Case 4.0Suppose first that botlX, | > n and| X3, | > n. Then we must show that

Pr (271 p(0) @ 2™ ?p(X]) © 2™ Pp(X5) @ - - ©2p(Xn,—2) B p(Xn,—1) Bena X, ) =
(27 p(0) @22 p(XF) @ 2™ Pp(X3) @ -+ @ 2p(Xy,—0) D p(X 5, 1) Dena Xy, )] < 277

If | X7,,| # |X;,.| then the above probability is zero and we are done. Likewis& jf and X, differ in bits
before their final: bits. So we can assume that!,, | = | X}, | = n (again by stripping away the irrelevant
prefix) and the xor-at-the-end becomes an ordinary xor. Leffing X/, & X3, , we are thus aiming to bound
the probability

Pr [2m71p(0) @ 2™ 2 p(X1) @ 2™ Fp(XD) & -+ ©20(Xm,—2) @ p( X}y, 1) =
2" p(0) @2 P p(XT) @ 2™ P p(X5) & -+ @ 2p(Xom,—2) B (X, 1) B Z] .

Since the adversary may not repeat a quéeif, ..., X/ Xt )= (X},..., X5 5, X5, ) implies

My —20 Y my g
Z # 0and so the probability above is zero in this case. Consequently, we mapetisat X!, . .., X},”_Q) #+
(X%,..., X, 1) Collect all terms as before to get an expression

Prlco p(Co) ® 1 p(C1) @ -+ ® ey p(Cy) = B

for someu > 0 and whereCy, C1, ..., C, are distinct strings different frort (all p(1) terms are included
in B) and where each; # 0. The probability of this event is at mo3t™.

Case 4.1Suppose next thak!, | > n and| X3, | < n. Then we must show that
Pr[(2™ ' p(0) @ 2™ ?p(X]) @ 2™ P p(X5) @ -+ ©2p(X,,_0) B p(Xpy,_1)) Bena Xy, =
(2™ p(0) 2™ p(X7) 2™ Pp(XS5) @ - D 22p(X5, o) B 2p(X5, 1)) © X5, 107] < 277

If | X},,| # |X5,_10*| = n then the probability above is zero, so assytig, | = » and the xor-at-then-end
becomes an ordinary xor. We are now considering

Pr (2™ 1p(0)d 2™ ?p(X]) @ 2™ P p(X5) @ - @2p(XL, o) B p(X), 1)) @ XL, =
(27 p(0) @ 2™ L p(X}) B 2™ 2p(X3) @ - @ 22p(X, o) B2p(X5,, 1)) @ X5 107] < 277

We must separately examine the subcasesithat ms+ 1 andm; = ms+ 1. In the former subcase, we again
gather together terms that coincide and write the probability as

Prleo p(0) @1 p(C1) @ -+ @ ey p(Cy) = Bl
whereC1, ..., C, are distinct strings different frorh (all p(1) terms are included ii3). We must argue that

one of thec; # 0; in particular, we will show that, # 0. To see this, notice that the xor of coefficients that
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describes contains2™s and2™:~! #£ 2 and that one of these is a term of greatest degree. The inequality
holds because we have restricted bethandm; to be less tham. Hence the string, contains at least one
nonzero bit, and it follows that

Prlco p(0) = c1 p(C1) @ - @ ey p(Cy) @Bl <27
On the other hand, assume that = m, + 1. Then we have

Pr[(27p(0) ® 2™ Ip(X]) 2™ 2p(X) @ - ®2p(X),. 1)) @20p(XL )@ XL, =
(2™ p(0) @ 2™ p(XT) @ 2™ ?p(X3) @ -+ ®2p(Xp, 1)) © Xpy, 107].

Once more, gather together terms that coincide and write the probability as
Prco p(Co) @ 1 p(C1) @ -+ @ ey p(Cum1) ® ey p(Xy,,) = B

whereCy,...,Cy_1, ans are distinct strings different frorh. In this case, notice that the xor of coefficients
that describes, contains2° (ie, ¢, p(X}, ) contains an unshifted copy pf X!, ). Since we have restricted
both m; andm, to be less tham, there can be no wrap-around of the coefficiezitsand so the string,,

contains at least one nonzero bit. It follows that the probability in questi®n’is

Case 4.2 The case in whichX$, | > n and|X], | < nis the same as Case 4.1 after a renaming of variables.
Case 4.3 The case in whichX}, | < n and|X3, | < nis just like Case 4.0 and is therefore omitted. This
completes the proofl

F KeyRap

Mihir Bellare has asked whiey wrapneeds that apparently superfluausnspiring this appendix.
Yo! We’'z gonna’ take them keys ~ Now NIST and X9 After wrappin’ them keys
an’ whatever you pleaze and their friends at the fort gonna’ help out some losers
We gonna’ wrap 'em all up suggest that you stick it chronic IV abusers
looks like some ran’om gup in a six-layer torte don’t read no directions
Make somethin’ gnarly and funky S/MIME has a scheme risk a deadly infection
won't fool no half-wit junkie there’s even one more If a rusty IV’s drippin’ into yo’ veins
So the game’s like AE So many ways and ya never do manage
but there’s one major hitch that it's hard to keep score to get it exchanged
No coins can be pitched And maybe they work Then we got ya somethin’
there’s no state to enrich and maybe they're fine and it comes at low cost
the IV’s in a ditch but | want some proofs When you screw up again
dead drunk on cheap wine for spendin’ my time not all "ill be lost

! The contents of this appendix also appear intbernal of Craptologyolume 3, November 2006.
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