
Decoding Interleaved Gabidulin Codes and

Ciphertext-Security for GPT variants
(preprint)

R. Overbeck

GK Electronic Commerce,
TU-Darmstadt,

Department of Computer Science,
Cryptography and Computer Algebra Group.
overbeck@cdc.informatik.tu-darmstadt.de

Abstract. In this paper we view interleaved Gabidulin codes and de-
scribe how to correct errors up to a rank equal to the amount of re-
dundancy of the code with high probability. We give a detailed proof
for our estimation of the probability of correct decoding. In a second
part, we view the application to variants of the GPT cryptosystem. For
GGPT this leads to an efficient attack on the remaining secure instances,
whereas it allows to derive at least partial information of the plaintext
in the case of RRC-GPT.
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1 Introduction

Decoding beyond minimum distance is an important issue in coding theory.
Recently it was shown, how to use interleaved codes to allow error correction
beyond minimum distance in the case of GRS codes with high probability [1],
[2]. This concept may be extended for interleaved Gabidulin codes [8], which are
rank distance codes. In the first part of this paper, we present one of the possible
decoding methods for (n, k) interleaved Gabidulin codes, which allows to correct
errors of rank up to r

r+1(n − k), where r is the amount of interleaving. Further,
we give an upper bound for the probability of correct decoding (1−4/qm, where
m ≥ n).

An application of this new decoding procedure is an attack on variants of
the GPT cryptosystems, which we present in the second part of the paper. The
GPT cryptosystem uses Gabidulin codes and is a variant of the cryptosystem
based on error correcting codes presented 1978 by McEliece. While McEliece’s
cryptosystem remains unbroken for large public key sizes, the GPT cryptosystem
was broken in 2005 [9]. Nevertheless, some variants of the GPT cryptosystem
like GGPT and RRC-GPT resisted the attack, although parameters had to be
modified. We show, that even for the modified parameter sets GGPT is insecure
against our new attack. Further, this new attack allows to reveal at least partial
information about the plaintext in the case of RRC-GPT.



2 Rank distance codes

Rank distance codes were presented by Gabidulin in 1985. They are linear codes
over the finite field Fqm for q (power of a) prime and m ∈ N. As their name
suggests they use a special concept of distance. In this section we recall the
basic facts and give the notation used in the following sections.

Definition 2.1. Let x = (x1, · · · , xn) ∈ F
n
qm and b1, · · · , bm a basis of Fqm over

Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq. The rank
norm ‖ · ‖r is defined as follows:

‖x‖r := rank
(

(xij)1≤i≤n, 1≤j≤m

)

.

The rank norm of a vector x ∈ F
n
qm is uniquely determined (independent

of the choice of basis) and induces a metric, called rank distance. Further, if
T ∈ F

n×n
q is an invertible matrix, then ‖x · T ‖r = ‖x‖r.

Definition 2.2. An (n, k)-code C over a finite field F is a k-dimensional sub-
vectorspace of the vector space F

n. We call the code C an (n, k, d) rank distance
code if d = minx,y∈C ‖x−y‖r. The matrix C ∈ F

k×n is a generator matrix for the
(n, k) code C over F, if the rows of C span C over F. The matrix H ∈ F

n×(n−k)

is called check matrix for the code C if it is the right kernel of C. The code
generated by H⊤ is called dual code of C and denoted by C⊥.

In [7] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O

(

(md−1
2 )3q(d−3)(k+1)/2

)

operations over Fq for (n, k, d)
rank distance codes over Fqm . A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [4]. We will
define these codes by their generator matrix. For ease of notation we introduce
the operator λf , which maps a matrix M = (mij) to a blockmatrix:

λf : F
m×n
qm → F

mf×n
qm

M 7→











M

M [q]

...

M [qf ]











,

where M [x] := (mx
ij).

Definition 2.3. Let g ∈ F
n
qm be a vector s.t. the components gi, i = 1, · · · , n are

linearly independent over Fq. This implies that n ≤ m. The (n, k, d) Gabidulin
code G is the rank distance code with generator matrix

G = λk−1 (g) . (1)



An (n, k) Gabidulin code G corrects
⌊

n−k
2

⌋

errors and has a minimum dis-
tance of d = n − k + 1. The vector g is said to be a generator vector of the
Gabidulin code G (It is not unique, as all vectors ag with 0 6= a ∈ Fqm are
generator vectors of G). Further, if T ∈ F

n×n
q is an invertible matrix, then G · T

is the generator matrix of the Gabidulin code with generator vector gT . A error
correction algorithm based on the “right Euclidian division algorithm” runs in
O

(

d log2
2 d + dn

)

operations over Fqm for (n, k, d) Gabidulin codes [4]. Another
nice property of Gabidulin codes is, that the dual code of an (n, k) Gabidulin
code is a (n, n − k) Gabidulin code:

Lemma 2.1. Let G be an (n, k) Gabidulin code over Fqm with generator vector
g. Then G has a check matrix of the form

H = λn−k−1

(

h
1/qn−k−1

1 h
1/qn−k−1

2 · · · h
1/qn−k−1

n

)⊤

∈ F
n−k×n
qm .

Further, the vector h =
(

h1 h2 · · · hn

)

is uniquely determined by g (independent
from k) up to a scalar factor γ ∈ Fqm \ {0}. We will call h a check vector.

Proof. It is sufficient to prove, that if h̃ is in the dual space of the (n, k) Gabidulin
code Gk with generator vector g, then h̃[1/q] is in the dual space of the (n, k− 1)
Gabidulin code Gk−1 with generator vector g:

h̃ ∈ G⊥
k ⇔ ∀i∈{0,··· ,k−1}

n
∑

j=1

h̃jg
qi

j = 0 ⇒ ∀i∈{1,··· ,k−1}

n
∑

j=1

h̃
1/q
j gqi−1

j = 0.

If h[qn−k−1] is the check vector of G and F is a subfield of Fqm , then the F-
subcode of G has check matrix λn−k−1 ( hF ), where the matrix hF represents h
over F.

Throughout this paper we will use the following notation. We write G = 〈G〉
if the linear (n, k)-code G over the field F has the generator matrix G. If the rows
of a (n − k) × n matrix M span G⊥ we write G⊥ = M . With this notation M⊤

is a check matrix of G. We will identify x ∈ F
n with (x1, · · · , xn) , xi ∈ F for i =

1, · · · , n. For any (ordered) subset {j1, · · · jm} = J ⊆ {1, · · ·n} we denote the
vector (xj1 , · · · , xjm

) ∈ F
m with xJ . Similarly, we denote by M·J the submatrix

of a k × n matrix M consisting of the columns corresponding to the indices

of J and MJ′· =
((

M⊤
)

·J′

)⊤
for any (ordered) subset J ′ of {1, · · · , k}. Block

matrices will be given in brackets.

Remark 2.1. Let J be a selection of n′ > k columns of the generator matrix G
of an (n, k) Gabidulin code. Then G·J defines an (n′, k) Gabidulin code.

3 Interleaved Gabidulin Codes

In this section we introduce the general concept of interleaved codes. To do so,
we define the mapping

φ : Fqrm → F
r
qm .



Starting from a (n, k, d) code G over Fqm with generator matrix G, we build a
(n, k) code GI over Fqrm in the following way: The message (x1, · · · , xk) ∈ F

k
qrm

will be converted into r codewords of G:

yi = (φ(x1)i, φ(x2)i, · · · , φ(xk)i)G , i = 1, · · · , r

Then, these r codewords will be converted into a single one of length n over
Fqrm , where at the j-th position we put the entry

zj = φ−1 ((y1j, y2j , · · · , yrj)) .

The interleaved code GI is the code consisting of all vectors z ∈ F
n
qrm , which can

be generated in this way. Obviously, GI is an Fqm -linear (n, k, d) code over Fqrm .
The parameter r is called the amount of interleaving.

3.1 Standard error correction

For a simple error correction we re-transform the received word (z̃1, z̃2, · · · , z̃n)
into r codewords of G:

ỹi = (φ(z̃1)i, φ(z̃2)i, · · · , φ(z̃n)i) , i = 1, · · · , r

Now, one could use an error correction algorithm for G to correct the errors
in all codewords, to recover the original yi and obtain the partial messages
(φ(x1)i, φ(x2)i, · · · , φ(xk)i), which we re-transform into the original message x.

3.2 Correcting rank errors beyond minimum distance

In [8] the authors present two algorithms for correcting random rank errors
beyond minimum distance in interleaved Gabidulin codes. Here, we present the
probabilistic algorithm, the success probability of which depends on the input,
only.

Let GI be the interleaved code over Fqrm build from the (n, k, d) Gabidulin
code G over Fqm with generator vector g. Now, let z′ = z + e, where z ∈ GI and
e is of rank norm t ≤ n − k. For error correction we view

He :=

[

λn−t−2 (g)
λn−k−t−1 (φ(z′))

]⊥

=

[

λn−t−2 (g)
λn−k−t−1 (φ(e))

]⊥

∈ F
(n−t−1+(n−k−t)r)×n
qm .

If the lower part λn−k−t−1 (φ(e)) has rank t, then He has dimension 1 as all
the rows of λn−k−t−1 (φ(e)) are linearly independent of the rows of λn−t−2 (g).
It is easy to see, that the vector he, which spans He has rank norm n − t and
reveals the error pattern of e. Thus, from he we can derive an invertible matrix
T ∈ F

n×n
q , such that the n− t leftmost columns of eT are zero, which is sufficient

for error correction.



It remains to determine the rank of λn−k−t−1 (φ(e)). After [11] (compare
lemma 3.3) the rank of φ(e) is r with probability

r−1
∏

i=0

(

qmt − qmi
)

qmt
≥

(

qmt − qmr

qmt

)r

.

As we will see later (theorem 3.1) it follows, that with probability

≥

(

1 −
4

qm

) (

qmt − qmr

qmt

)r

(2)

the matrix λn−k−t−1 (φ(e)) has rank min {(n − t − k)r, t}. We conclude that if
(n − t − k)r ≥ t, error correction is possible almost always. It follows, that we
can correct errors of rank up to

t =
r

r + 1
(n − k)

with overwhelming probability if r ≪ (n − k). The complexity of this way of
error correction is O(n3).

An example parameter set would be q = 2, m = n = 24, k = 10 and r = 6.
In this setting, the correction of errors of rank 12 fails in less then one of 222

cases.

3.3 The probability of correct decoding

To determine the probability of correct decoding we need to determine a lower
bound for the probability, that the rank of λ⌊ t−1

s ⌋ (M) is smaller than t if M is

a random s × t matrix over Fqm with full rank over Fq.
For easier notation we write ‖M‖q if we refer to the rank of M over Fq, and

analogous ‖M‖qm for the rank of M over Fqm . Our goal is to prove the following
theorem:

Theorem 3.1. Let M be a random s× t matrix over Fqm with s ≤ t ≤ m. Then

Prob
(

‖λf (M)‖qm < t ‖M‖q = t
)

≤
4

qm
,

where f =
⌊

t−1
s

⌋

.

As a direct consequence, we can bound the following probability, too:

Lemma 3.2. Let M be a random s × t matrix over Fqm with s ≤ t ≤ m. Then
for all k

Prob
(

‖λk (M)‖qm < min {sk, t} ‖M‖q = t
)

≤
4

qm
.

Before we are going to prove the theorem, we would like to recall some facts
about the rank of random matrices (compare [11] and [3]):



Lemma 3.3. , Considering all m× n matrices over Fq, the fraction of the ma-
trices of rank k is

1

qmn

k−1
∏

i=0

(

qm − qi
) (

qn − qi
)

(qk − qi)
.

The fraction of all m × n matrices over Fq, which have full rank is larger than
0.288.

Unfortunately, we are not able to count the number of matrices M with
‖λf (M)‖qm < t directly. Thus, we have to rewrite the condition:

Lemma 3.4. For any s × t matrix M over Fqm with s ≤ t ≤ m and ‖M‖ = t,
the following two statements are equivalent:

‖λf (M)‖qm < t (3)

⇐⇒

∃h∈F
n
qm ,‖h‖q>f+1∀α∈F

×

qm

(

λf (αh) · M⊤ = 0
)

. (4)

Proof. The proof for (4) ⇒ (3) is quite simple and based on the following obser-
vation:

(

hm⊤ = 0 ∧ h[q]m⊤ = 0
)

⇒
(

h[q](m[q])⊤ = 0 ∧ h[q]m⊤ = 0
)

.

From that, it follows immediately, that if a h exists, such that (4) is fulfilled,

then h[qk] is in the dual space of λk (M) for all 0 ≤ k ≤ f .
To proof (4) ⇐ (3), we observe first, that it follows from (3), that there exists
an h ∈ F

n
qm in the dual space of λf (M). Consequently all αh with α ∈ F

×
qm are

in that space, too. Using the fact, that
(

mh⊤ = 0 ∧ m[q]h⊤ = 0
)

⇒
(

mh⊤ = 0 ∧ h[1/q]m⊤ = 0
)

,

we conclude, that

(3) ⇒ ∃h∈Fqm∀α∈F
×

qm

(

λf (αh) · M⊤ = 0
)

.

It remains to show, that such an h has norm ‖h‖q > f + 1. If ‖h‖q = r ≤ f + 1,

then there exists an invertible matrix T ∈ F
t×t
q , such that the matrix λf (h) has

non-zero entries in the r rightmost columns, only. Since the submatrix of λf (h)
consisting of the r rightmost columns has full rank, the r rightmost columns
of T−1M⊤ have only zero entries, which is a contradiction to the premise that
‖M‖q = t. We conclude, that h has rank norm > f +1, which proves the lemma.

With this modified statement, we are able to give an upper bound of the
number of matrices M , where ‖λf (M)‖qm < t. By this, we can finally prove the
theorem above:



Proof. (Theorem 3.1) First, we determine the probability, that for a fixed h ∈
F

n
qm with ‖h‖q > f + 1, we have

(

λf (αh) · M⊤ = 0
)

.

for a random s × t matrix M with ‖M‖q = t. As the rank of λf (h) over Fqm is
exact f +1, there exist at most (qm)s(t−f−1) possibilities to choose M , such that
the condition above is fulfilled. After lemma 3.3, there are more than 1

4 · (qm)st

possibilities to choose a random s × t matrix M with ‖M‖q = t. Thus, for a
fixed h, the probability, that the condition above is fulfilled for a random s × t
matrix M of full rank over Fq is smaller than

4 · (qm)−s(f+1).

Now we determine the number of different vector spaces defined by λf (h), where
the norm of h is not to small. This number is smaller than

(qmt − 1)/(qm − 1) ≈ qm(t−1),

as h 6= 0 and all αh with α ∈ F
×
qm define the same vector space. Thus, the

probability, that the condition (4) is fulfilled for a random matrix M is smaller
than the sum of the probabilities for the fixed h over the possible different vector
spaces they define. As by lemma 3.4 we have (4) ⇔ (3), we get the following
bound:

Prob
(

‖λf (M)‖qm < t ‖M‖q = t
)

≤ qm(t−1) · 4 · (qm)−s(f+1).

≤ 4 · q−m,

which proves the theorem.

Note, that theorem 3.1 gives an estimation of the number of subspace sub-
codes of (n, k) Gabidulin codes over Fqm , which do not have minimal dimension.
For n = m it was already proven in [5], that this number is 0.

Lemma 3.5. Let G be an (n, k) Gabidulin code over Fqm , where m = rs >
n. Then, the probability that the Fqs -subcode of G has dimension greater than
min {0, n− r(n − k)} is smaller than 4/qm.

Proof. The Fqs-subcode of G has a check matrix of the form λn−k−1 (M), where
the i-th column of M ∈ F

r×n
qs represents the i-th entry of the generator vector

of G over Fqs . Thus, the lemma follows directly from theorem 3.1.

4 Application to variants of the GPT cryptosystem

The GPT cryptosystem was first presented in 1991 by Gabidulin, Paramonov
and Tretjakov. Here we present a more general version (GGPT, see [10]), which
may be used to describe the original GPT cryptosystem as well as the variant
with column scrambler (CS-GPT) from 2003 [10].



– System Parameters: q, k < n ≤ m, t < n − k − 1 and s ≤ min {t, k} ∈ N

– Key Generation: First generate the following matrices :

G ∈ F
k×n
qm generator matrix of an (n, k, d) Gabidulin code,

X ∈ F
k×t
qm random matrix of rank s over Fqm and rank t over Fq,

S ∈ F
k×k
qm random, non-singular matrix (the row scrambler) and

T ∈ F
n×n
q random, non-singular matrix (the column scrambler).

Then compute the k × n matrix

G′ = S
([

X 0
]

+ G
)

T

= S
[

G·{1,··· ,t} + X G·{t+1,··· ,n}

]

T ∈ F
k×n
qm ,

(5)

where 0 denotes the k× (n− t) zero matrix. Choose 1 ≤ e ≤ n−k−t
2 . Further

let DG be an efficient decoding algorithm for the Gabidulin code G generated
by the matrix G·{t+1,··· ,n}.

– Public Key: (G′, e)

– Private Key: (DG , S, T ) or (G, S, T ) where G is of the form in (1).

– Encryption: To encode a plaintext x ∈ F
k
qm choose a vector z ∈ F

n
qm of

rank norm e at random and compute the ciphertext c as follows:

c = xG′ + z .

– Decryption: To decode a ciphertext c apply the decoding algorithm DG for
G to c′ =

(

cT−1
)

{t+1,··· ,n}
. As T is a invertible matrix over Fq, the rank

norm of a vector does not change if it is multiplied with T−1. Thus c′ has
at most rank distance n−k−t

2 to G and we obtain the codeword

xSG{t+1,··· ,n} = DG (c′) .

Now, we can compute the plaintext x.

The distortion matrix X is essential to mask the structure of G. If t <
(n− k− t− 1)s there exist polynomial time attacks on the private key [9]. In all
examples we will choose n = m and q = 2. Some parameter sets may be found
in table 4.1.

Parameters size public key WF best of WF general
m k t s in bytes Gibson’s attacks decoding

64 8 40 1 3, 584 2111 287

156 8 132 7 or 8 23, 088 21150 291

Table 4.1. Previously proposed parameters for GGPT



4.1 Attacking ciphertexts of GGPT

In this section we describe, how to attack a received ciphertext y = mG′ + z,
where z =

[

Z 0
]

TZ is of rank norm e with Z ∈ F
k×e
qm and TZ ∈ F

n×n
q invertible.

The main idea is, to use the previously presented method for decoding interleaved
codes beyond minimum distance. Here, of course, the interleaving degree is r = 1.
In the decoding procedure we view the space

Hz =

[

λn−k−t−e−1 (G′)
λn−k−t−e−1 (y)

]⊥

=

[

λn−k−t−e−1 (G′)
λn−k−t−e−1 (z)

]⊥

.

Obviously, λn−k−t−e−1 (z) has rank e ≤ n − t − k − e, and thus for all vectors
hz ∈ Hz:

(

hzT
⊤
Z

)

{1,··· ,e}
= 0.

Let Hz be the matrix generating Hz, then by theorem 4.2 it has rank p over Fq,
where n − e ≥ p ≥ k. Let T̄ ∈ F

n×n
q be a matrix such that only the p rightmost

columns of HzT̄
⊤ contain non-zero entries. Such a T̄ is easy to recover from Hz

(compare [9]). It follows that the p rightmost positions of yT̄−1 are error-free
positions of (y − z)T̄−1 in the code G′T̄−1. This is sufficient for identifying z
since the p rightmost positions of G′T̄−1 contain at least one information set
(i.e. the rank of (G′T̄−1){n−p+1,··· ,n} is k).

Theorem 4.2. With the notations above: There exists at least one vector of
rank norm ≥ k in Hz.

Proof. As the error vector
(

zT−1
)

{t+1,··· ,n}

which has to be corrected by the legitimate user is of rank norm ≤ e, there exists
an invertible matrix T̄ ∈ F

n×n
q , such that

[

X 0
]

T T̄−1 =
[

X 0
]

and
(

zT̄−1
)

J
= 0,

where J = {t + e + 1, · · · , n}. Let hJ be the check-vector of the (n − t − e, k)
Gabidulin code

(

GT T̄−1
)

·J
, then

(

0 hJ

)

(T̄−1)⊤ is in Hz and has rank norm
n − t − e = k + e ≥ k.

Note, that the attack runs in time O
(

n3
)

and is applicable even in the case,
where the column scrambler S is not of quadratic form like it was proposed for
some variants (compare e.g. [9]).

4.2 Attacking ciphertexts of RRC-GPT

Most variants of the original GPT cryptosystem were proposed in order to avoid
early exponential attacks on the private key. In [6], the authors proposed to sub-
stitute the underlying code by a reducible rank code build from several Gabidulin
codes.



Definition 4.4. Let Gi = 〈Gi〉, i = 1, · · · , w be a family of linear error cor-
recting codes over Fqm where Gi is an (ni, ki, di) code. Then the (linear) code G
given by the generator matrix of the form

G =











G1 0 · · · 0
Y21 G2 · · · 0
...

. . .
...

Yw1 Yw2 · · · Gw











∈ F

P

ki×
P

ni

qm

for some matrices Yij ∈ F
ki×nj

qm is called reducible code. Further, G has length
n =

∑w
i=1 ni, dimension k =

∑w
i=1 ki and minimum distance d = min1≤i≤w (di).

Error correction may be done in sections, starting from the right. If all codes Gi

are rank distance codes, we call G a reducible rank code.

Using reducible rank codes for the McEliece cryptosystem is quite a natural
extension (RRC-GPT). In the examples from [6] the authors propose to take two
Gabidulin codes G1 and G2 over Fqm (with length ni and dimension ki, i = 1, 2)

and a random matrix Y = Y21 ∈ F
k2×n1

qm to build a reducible rank code G. As
public generator matrix they choose

G′ = S
[

X G
]

T ∈ F
k×n+t
qm , (6)

where S ∈ F
k×k
qm and T ∈ F

n+t×n+t
q are non-singular and the rank of X ∈ F

k×t
qm

over Fq is t. The error correcting radius e of the code generated by G′ is the one
of G.

Analogous to GGPT, a ciphertext has the form y = mG + z, where z =
[

Z 0
]

TZ is of rank norm e with Z ∈ F
k×e
qm and TZ ∈ F

e×(n+t)
q invertible. To

recover the message, an attacker can view the space

Hz =

[

λn2−k2−e−1 (G′)
λn2−k2−e−1 (y)

]⊥

=

[

λn2−k2−e−1 (G′)
λn2−k2−e−1 (z)

]⊥

.

Again, for all vectors hz ∈ Hz :

(TZhz){1,··· ,e} = 0.

In the further analysis, we will concentrate on the case, where t = 0. In this case
we are able to show, that the message m may be recovered from y in polynomial
time:

Theorem 4.3. With the notations above: Let t = 0, then one of the following
statements holds:

(i) ∀hz∈Hz

(

hz(T
−1)⊤

)

{1,··· ,n1}
= 0 or

(ii) ∃hz∈Hz

(

hz(T
−1)⊤

)

{1,··· ,n1}
6= 0.

It follows, that we can recover m from Hz.



Proof. Analogous to theorem 4.2, one can show, that there always exists a
hz ∈ Hz of rank norm k2 + e, such that

(

hz(T
−1)⊤

)

{1,··· ,n1+t}
= 0 (even if

t 6= 0). Thus, in the first case one can recover a matrix T̄ ∈ F
(n+t)×(n+t)
q , such

that the last k2 + e columns from G′T̄−1 have no influence from the columns
corresponding to G1 and thus allow to recover S. Thus, it is easy to recover an
alternative row and column scrambler in that case, which is sufficient to recover
m.
In the second case,

(

hz(T
−1)⊤

)

{1,··· ,n1}
is in the dual of λk1+(n2−k2−e−1) (g1),

where g1 is the generator vector of G1. Thus, hz has rank norm ≥ k1 + e. Com-
bining this with the previous observations we conclude that a matrix generating
Hz has to have rank ≥ k1 + k2 + 2e over Fq, which reveals m.

If t 6= 0, the security analysis is quite complicated and does not lead to
simple criteria for secure parameter sets. However, even in the case where we
can not recover m completely, Hz reveals lot of information about m and z. (The
plaintext is then known to be in a subvectorspace V ⊆ F

k1+k2

qm of dimension at
most k1 − e.) This information obviously can be used in combination with the
already existing attacks on RRC-GPT. Further, we would like to remark, that
in the case where the reducible rank code is build from more than two Gabidulin
codes, the same considerations hold.

5 Conclusion

We have shown how to correct rank errors beyond minimum distance for in-
terleaved Gabidulin codes with high probability. Asymptotically we are able to
correct errors of rank equal to the amount of the redundancy of the code in
polynomial time with overwhelming probability.

The presented decoding method may be applied to attack all proposed vari-
ants of the GPT cryptosystem. An analysis of the resulting attack showed, that
ciphertexts of GPT, CS-GPT and GGPT may be attacked in polynomial time.
The same holds for certain parameter sets of the RRC-GPT, but not for all.
However, we were not able to name a parameter set for RRC-GPT, which can
be proven to resist the presented attack. However, even if a parameter set resists
the attack, information about the plaintext is leaked. We conclude that RRC-
GPT is a very weak cryptosystem, which should not be used for cryptographic
applications.
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