
Generalizations of the Karatsuba Algorithm for Efficient

Implementations

André Weimerskirch and Christof Paar

Communication Security Group

Department of Electrical Engineering & Information Sciences

Ruhr-Universität Bochum, Germany

email: {weika, cpaar}@crypto.rub.de

Abstract

In this work we generalize the classical Karatsuba Algorithm (KA) for polynomial multiplica-
tion to (i) polynomials of arbitrary degree and (ii) recursive use. We determine exact complexity
expressions for the KA and focus on how to use it with the least number of operations. We
develop a rule for the optimum order of steps if the KA is used recursively. We show how the
usage of dummy coefficients may improve performance. Finally we provide detailed information
on how to use the KA with least cost, and also provide tables that describe the best possible
usage of the KA for polynomials up to a degree of 127. Our results are especially useful for
efficient implementations of cryptographic and coding schemes over fixed-size fields like GF (pm).

Keywords: polynomial multiplication, Karatsuba Algorithm, finite fields,

cryptography, coding theory

1 Introduction

Multiplying two polynomials efficiently is an important issue in a variety of applications, including
signal processing, cryptography and coding theory. The present paper provides a generalization
and detailed analysis of the algorithm by Karatsuba [2] to multiply two polynomials which was
introduced in 1962. The Karatsuba Algorithm (KA) saves coefficient multiplications at the cost of
extra additions compared to the schoolbook or ordinary multiplication method. We consider the
KA to be efficient if the total cost of using it is less than the cost of the ordinary method. If we
assume that we know the cost ratio between one multiplication and one addition we can decide
which method is more efficient.

In order to simplify the problem we assume that the maximum degree of the two polynomials
which are multiplied is identical. Knuth [3] gives a brief introduction on how to multiply polyno-
mials in a fast way. He demonstrates an algorithm very similar to the KA which he calls “digital

method”, and achieves a complexity of O(n2
√

2 log n log n) for very large polynomials. Another well
known fast approach for polynomial multiplication is the Fast Fourier Transform (FFT). A theo-
retical upper bound for very large numbers can be shown as O(n log n log log n). A comprehensive
survey of different methods to multiply polynomials was given by Bernstein [1]. Assuming that the
polynomials represent elements of a Galois Field GF (pm) we could use the KA to multiply two ele-
ments of the finite field and reduce the resulting polynomial afterwards. Another approach is shown

1

by Lempel, Seroussi and Winograd in [4] and by Winograd in [7]. They demonstrate algorithms
which perform a modular multiplication and derive asymptotical lower bounds for these.

While many algorithms have lower asymptotic complexity than the KA the later one shows
better performance for polynomials of small degree as they are used in many applications. In this
paper we show in detail how to use the KA in an efficient way, both iteratively and recursively. We
provide methods and tables to ease this task, and give a detailed count of the numbers of elementary
additions and multiplications needed. We also show that for many polynomials using the KA needs
less multiplications and additions than the schoolbook method. The work is organized as follows.
Section 2 introduces the KA. Section 3 extends the KA for polynomials of arbitrary degree in one
iteration, and Section 4 enhances the KA to recursive use. Section 5 describes the complexity of
the KA when using it for squaring. Section 6 improves the KA by using dummy coefficients, and
Section 7 provides the conclusion.

2 Preliminaries: Karatsuba Algorithm

Let R be a ring. Let A(x) and B(x) be degree-d polynomials over R. The Karatsuba Algorithm
(KA) describes a method to multiply two polynomials with coefficients in R. There are two ways
to derive the KA: the Chinese Remainder Theorem [1] and simple algebraic transformations. The
KA can easily be applied recursively for polynomials which have 2i coefficients. But first we show
an example of the schoolbook method.

2.1 Schoolbook Method

The usual way to multiply two polynomials is often called the schoolbook method. Consider two
degree-d polynomials with n = d + 1 coefficients:

A(x) =
d∑

i=0

aix
i, B(x) =

d∑

i=0

bix
i

Then the product C(x) = A(x) B(x) is calculated as

C(x) =
d∑

i=0

xi ·



∑

s+t=i;s,t≥0

asbt



 =
d∑

i=0

d∑

j=0

aibjx
i+j (1)

The polynomial C(x) can be obtained with n2 multiplications and (n − 1)2 additions.

2.2 KA for Degree-1 Polynomials

The KA for degree-1 polynomials was introduced by Karatsuba in [2]. We will now develop the
KA through simple algebraic manipulations. Consider two degree-1 polynomials A(x) and B(x).

A(x) = a1x + a0, B(x) = b1x + b0

Let D0, D1, D0,1 be auxiliary variables with

D0 = a0b0, D1 = a1b1, D0,1 = (a0 + a1) (b0 + b1)

Then the polynomial C(x) = A(x) B(x) can be calculated in the following way:

C(x) = D1x
2 + (D0,1 − D0 − D1)x + D0

2

We need four additions and three multiplications to compute C(x). Using the schoolbook method
we need four multiplications and one addition, thus we save one multiplication and need three extra
additions.

For application in practice, e.g., multi-precision multiplication we are interested in the particular
value of the ratio between the cost of one multiplication and one addition for which the KA is
efficient. Let r be the ratio between the cost of one multiplication and one addition on a specific
implementation platform. Then r = tm/ta where tm and ta denote the cost of one multiplication
and one addition, respectively. The cost for the schoolbook method cs can be calculated as cs =
1ta + 4tm. The cost of the KA can be similarly obtained as ck = 4ta + 3tm. We want to know
the ratio r when the cost of the KA is less than for the schoolbook method. Therefore we obtain
ck < cs ⇔ 4ta + 3tm < 1ta + 4tm ⇔ 3 < r. If the ratio between the cost of one multiplication and
one addition is greater than three it is more efficient to use the KA.

2.3 Recursive KA for Polynomials of Degree 2i − 1

The KA can be applied in a recursive way as shown in Algorithm 1. This is straightforward for
polynomials whose number of coefficients n is a power of 2. To apply the algorithm both polynomials
are split into a lower and an upper half.

A(x) = Au(x)xn/2 + Al(x), B(x) = Bu(x)xn/2 + Bl(x)

These halfs are used as before, i.e., as if they were coefficients. The algorithm becomes recursive
if it is applied again to multiply these polynomial halfs. The next iteration step splits these
polynomials again in half. The algorithm eventually terminates after t steps. In the final step
the polynomials degenerate into single coefficients. Since every step exactly halves the number
of coefficients, the algorithm terminates after t = log2 n steps. Let #MUL and #ADD be the
number of multiplications and additions in the underlying ring. Then the complexity to multiply
two polynomials with n coefficients is as follows [6]:

#MUL = nlog2 3

#ADD ≤ 6nlog2 3 − 8n + 2

Algorithm 1 Recursive KA, C = KA(A, B)
INPUT: Polynomials A(x) and B(x)
OUTPUT: C(x) = A(x) B(x)
N = max(degree(A), degree(B)) + 1
if N == 1 return A · B
Let A(x) = Au(x) xN/2 + Al(x)
and B(x) = Bu(x) xN/2 + Bl(x)
D0 = KA(Al, Bl)
D1 = KA(Au, Bu)
D0,1 = KA(Al + Au, Bl + Bu)
return D1x

N + (D0,1 − D0 − D1)x
N/2 + D0

3 One-Iteration KA for Polynomials of Arbitrary Degree

As mentioned above it is straightforward to apply the KA to polynomials which have 2i, i positive
integer, coefficients (if i > 1, we apply the KA recursively). However, it is not obvious how to apply

3

the KA to polynomials with a number of coefficients which has the form 2j n, with j a non-negative
integer and n an odd integer, n > 1. Even though the original trick can be applied j times, the
problem of multiplying polynomials with n coefficients remains. In particular if j = 0, i.e., if the
number of coefficients is odd, the classical KA cannot be applied in a straight forward manner. We
start by giving a simple example. Then a general algorithm is provided, followed by a complexity
analysis.

3.1 KA for Degree-2 Polynomials

Consider two degree-2 polynomials:

A(x) = a2x
2 + a1x + a0, B(x) = b2x

2 + b1x + b0

with the auxiliary variables

D0 = a0b0, D1 = a1b1, D2 = a2b2

D0,1 = (a0 + a1)(b0 + b1), D0,2 = (a0 + a2)(b0 + b2), D1,2 = (a1 + a2)(b1 + b2)

C(x) = A(x) B(x) is computed with an extended version of the KA

C(x) = D2x
4 + (D1,2 − D1 − D2)x

3 + (D0,2 − D2 − D0 + D1)x
2 + (D0,1 − D1 − D0)x + D0

We need 13 additions and 6 multiplications. Using the schoolbook method we needs 4 additions
and 9 multiplications. Let us take a look at the ratio r. We obtain ck < cs ⇔ 13ta + 6tm <
4ta + 9tm ⇔ 3 < r. If r > 3 it is more efficient to use the KA for degree-2 polynomials.

3.2 KA for Polynomials of Arbitrary Degree

The following algorithm describes a method to multiply two arbitrary polynomials with n coeffi-
cients using a one-iteration KA.

Algorithm 2 Consider two degree-d polynomials with n = d + 1 coefficients

A(x) =
d∑

i=0

aix
i, B(x) =

d∑

i=0

bix
i

Compute for each i = 0, . . . , n − 1
Di := aibi (2)

Calculate for each i = 1, . . . , 2n − 3 and for all s and t with s + t = i and t > s ≥ 0

Ds,t := (as + at) (bs + bt) (3)

Then C(x) = A(x) B(x) =
∑2n−2

i=0 cix
i can be computed as

c0 = D0 (4)

c2n−2 = Dn−1 (5)

ci =

{ ∑

s+t=i;t>s≥0 Ds,t −
∑

s+t=i;n>t>s≥0 (Ds + Dt) for odd i, 0 < i < 2n − 2
∑

s+t=i;t>s≥0 Ds,t −
∑

s+t=i;n>t>s≥0 (Ds + Dt) + Di/2 for even i, 0 < i < 2n − 2
(6)

4

Correctness of the algorithm First we prove (6) for odd i and then for even i. Using (1) we
obtain

ci =
∑

s+t=i;s,t≥0

asbt

Now consider some Ds,t. Each Ds,t is calculated as (as + at) (bs + bt) = asbs + asbt + atbs + atbt

with s + t = i and t > s ≥ 0. The sum
∑

j Ds,t consists of all combinations of coefficients asbt with
s + t = i and s 6= t, and all asbs and atbt where s, t are summands of i = s + t. We must subtract
all of the latter products, which were denoted by Ds.

∑

j

Ds,t =
∑

s+t=i;t>s≥0

(asbs + asbt + atbs + atbt) =
∑

s+t=i;t>s≥0

(asbt + atbs) +
∑

s+t=i;t>s≥0

(asbs + atbt)

This can be re-written as

∑

j

Ds,t =
∑

s+t=i;t>s≥0

asbt +
∑

s+t=i;t>s≥0

asbs = ci +
∑

s+t=i;t>s≥0

Ds

with s 6= t for odd i. For even i there are two products asbs for s = t = i/2 in the sum Ds,t, such
that we have to take care of the extra product:

∑

j

Ds,t =
∑

s+t=i;t>s≥0

asbt +
∑

s+t=i;t>s≥0

asbs = (ci − Di/2) +
∑

s+t=i;t>s≥0

Ds

These equations can easily be transformed to (6). Equations (4) and (5) are special cases of (6) for
even i, which ends the proof. ✷

3.3 Complexity of KA for Arbitrary Polynomials

In order to determine the number of additions and multiplications we first analyze the number of
auxiliary variables Di and Ds,t, denoted by #Di and #Ds,t.

Lemma 1 Let A(x), B(x) and C(x) be defined as in Algorithm 1, and the variables Di and Ds,t

as defined in (2) and (3), respectively. The numbers of auxiliary variables is then given as:

#Di = n

#Ds,t =
1

2
n2 − 1

2
n

#D = #Di + #Ds,t =
1

2
n2 +

1

2
n

Proof We calculate for each i = 0, . . . , n−1 an auxiliary variable Di, therefore we need n variables
Di. The number of variables Ds,t can be determined as follows. Each Ds,t describes one pair of
coefficients as, at. Each possible pair occurs once. Therefore the number of possible pairs out of n
elements is

(n
2

)
and we obtain Ds,t =

(n
2

)
= 1

2n2 − 1
2n. ✷

Corollary 1 Let #MUL and #ADD be the number of multiplications and additions, respectively,
needed to multiply two polynomials with n coefficients using the KA. Then using the extended KA
we need one multiplication for determining each variable Di and Ds,t, which results in

#MUL =
1

2
n2 +

1

2
n

5

KA schoolbook

n #MUL #ADD #MUL #ADD r

2 3 4 4 1 3

3 6 13 9 4 3

5 15 46 25 16 3

7 28 99 49 36 3

11 66 265 121 100 3

Table 1: Comparison of the KA and the schoolbook method for small primes.

multiplications.
We need two additions to obtain an auxiliary variable Ds,t resulting in 2 #Ds,t additions.

Furthermore, we need 2 additions to determine cn−2, cn−3, c1 and c2, 5 additions for cn−4, cn−5,
c3 and c4 and so on. So we need 4 · (3i − 1) additions for determining all ci (one term must be
removed for i = n

2). For each even i we need a further addition. This results in

#ADD = 2#Ds,t + 4

(n−1)/2
∑

i=1

(3i − 1) − (3
n − 1

2
− 1) + (n − 1) − 1 =

5

2
n2 − 7

2
n + 1

For large n, the one-iteration KA approaches 0.5 n2 coefficient multiplications, which is about
half as many as the schoolbook method. The number of additions approaches 2.5 n2, which is more
than the n2 of the schoolbook method. Note that KA is efficient if the ratio between multiplication
and addition on a given platform is larger than 3. This is due to the fact that

ck < cs ⇔ (1/2n2 + 1/2n)tm + (5/2n2 − 7/2n + 1)ta < n2tm + (n − 1)2ta ⇔ r > 3

Since r = 3 for n = 2 this is a sharp bound.
For short polynomials, especially for those with a prime number of coefficients (where a recursive

application of the basic KA is not straightforward), the method can yield complexities which are
relevant in applications. Table 1 shows a few expected values.

4 Recursive Application of the KA

We can use the KA in a recursive way to decrease the number of operations. First we show the
complexity of a simple extension to the basic recursive KA. Then we show how two polynomials
with n ·m coefficients can be multiplied using a simple one-step recursion of the KA. We will divide
the polynomial into m polynomials each with n coefficients and use the KA for m polynomials,
i.e., we consider the original polynomial to have m coefficients. To multiply these, the KA for n
coefficients is used in the recursive step. We will write “KA for n ·m” coefficients to mean that the
KA for m coefficients was used on polynomials with n coefficients. These n coefficient polynomials,
in turn, are multiplied using the KA for n coefficients. Furthermore we will determine a method
to multiply polynomials with

∏j
i=1 ni coefficients by recursion.

4.1 Recursive KA for Arbitrary Polynomials

If the number of coefficients n is no power of 2 Algorithm 1 is slightly altered by splitting the
polynomials into a lower part of ⌈N/2⌉ coefficients and and upper part of ⌊N/2⌋ coefficients. We call

6

this the simple recursive KA. In this case the KA is less efficient than for powers of 2. A lower bound
for the number of operations is given by the complexity of the KA for n = 2i coefficients as described
in Section 2.3. Thus the lower bound for the number of multiplications is #MULlow = nlog2 3

whereas the lower bound for the number of additions is #ADDlow = 6nlog23 − 8n + 2. We obtain
the upper bound by empirical tests as #MULup = 1.39 nlog2 3. When applying the one-iteration
KA for two and three coefficients as basis of the recursion, i.e. when applying the KA for two
and three coefficients as final recursion step by adding the recursion basis #MUL3 = 6, the upper
bound improves to #MULup = 1.24 nlog2 3. When applying the one-iteration KA for two, three,
and nine coefficients as basis of the recursion, the upper bound further improves to

#MULup = 1.20 nlog2 3.

The number of additions in the worst case, i.e., the upper bound can be obtained in a similar
fashion.

#ADD1 = 0, #ADD2 = 4

#ADDn = 2 #ADD⌈n/2⌉ + #ADD⌊n/2⌋
︸ ︷︷ ︸

recursive application of KA

+ 2 ⌊n/2⌋
︸ ︷︷ ︸

calculation of Ds,t

+ 2 ⌊n/2⌋ + 2⌈n/2⌉ − 2
︸ ︷︷ ︸

addition of auxiliary variables

+ 2 ⌈n/2⌉ − 2
︸ ︷︷ ︸

overlaps

= 2 #ADD⌈n/2⌉ + #ADD⌊n/2⌋ + 4(n − 1)

When applying the one-iteration KA for two and three coefficients as basis of the recursion, the
anchor #ADD3 = 13 is included. An upper bound of additions is then obtained as

#ADDup = 7 nlog2 3.

4.2 KA for Degree-5 Polynomials

Consider the two polynomials

A(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

B(x) = b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0

Then A(x) and B(x) can be written as

A(x) = A1(x)x3 + A0, B(x) = B1(x)x3 + B0

with
A1(x) = a5x

2 + a4x + a3, A0(x) = a2x
2 + a1x + a0

B1(x) = b5x
2 + b4x + b3, B0(x) = b2x

2 + b1x + b0

Now we apply the KA for degree-1 polynomials. Notice that the coefficients of the polynomials
Ai(x) and Bi(x) are themselves polynomials and the multiplications of these coefficients result in
further applications of the KA for degree-2 polynomials. In the following, we drop the notation
′′(x)′′ for convenience.

D0 = A0B0, D1 = A1B1, D0,1 = (A0 + A1) (B0 + B1)

7

Method Multiplications #MUL Additions #ADD

KA for 3 · 2 18 59

KA for 2 · 3 18 61

Table 2: Costs for multiplying degree-5 polynomials.

Thus, we obtain
C(x) = D1x

6 + (D0,1 − D0 − D1)x
3 + D0

The KA for degree-1 polynomials needs four additions and three multiplications of degree-2 poly-
nomials. Each multiplication is solved by the KA for degree-2 polynomials for which we need 13
additions and 6 multiplications. The number of additions must be carefully analyzed. In order to
determine the auxiliary variables Ds,t we need two additions of degree-3 polynomials. Two degree-d
polynomials can be added by adding all n = d + 1 coefficients. Furthermore two degree-5 polyno-
mials have to be added. Notice that there are some overlaps resulting in four further additions. As
an example for the overlaps look at D0 and (D0,1 −D0 −D1)x

3. The first polynomial has degree-4,
the second one degree-7. To determine c3 and c4 we have to add coefficients from the first and
second polynomial. Overall we need 18 multiplications and 59 additions.

For polynomials with 6 coefficients the KA is not unique. Above, we first applied the KA for
2 and then for 3 coefficients. One can also first use the KA for 3 and then for 2 coefficients. The
needed operations can be calculated with similar arguments as above. The number of operations
for both possibilities are depicted in Table 2. The first example is for the KA for 3 ·2, meaning that
first the KA for 2 polynomials where the coefficients themselves are polynomials with 3 coefficients
is used. The second example is the KA for 2 · 3 in which case the KA is used for polynomials for 3
polynomials where the coefficients themselves are polynomials with 2 coefficients. Notice that the
number of multiplications is the same for both approaches. We will see that this is always true.
We will also show that it is always more efficient to apply the KA for n ·m than for m ·n if n > m.

4.3 KA for Polynomials with n · m Coefficients

This section analyzes the complexity of the KA with a single step recursion. Let A(x) =
∑nm−1

i=0 aix
i.

This can be written as A(x) =
∑m−1

s=0 As(x) xns where As(x) are degree-(n− 1) polynomials. B(x)
can be written in the same way. The KA is applied to the polynomials A(x) and B(x) that are
considered to have m coefficients. In the recursive step the KA is applied to the polynomials with n
coefficients and merged at the end. The number of additions needed for the KA for polynomials with
n coefficients is denoted by #ADDn, the number of multiplications with #MULn. Let #(Ds,t)n be
the number of auxiliary variables Ds,t needed for the KA for n coefficients. When applying the KA
for m coefficients, we need #MULm multiplications. Each one of these m multiplications requires
#MULn multiplications. This results in

#MULn·m = #MULm · #MULn =

(
1

2
m2 +

1

2
m

)

·
(

1

2
n2 +

1

2
n

)

Notice that the order of the recursion does not make any difference thus far.
The number of additions is achieved from the recursive application of the KA: the number of

additions to build the variables Ds,t, the additions of the variables Di and Ds,t and the number of
overlaps. For each recursive application of the KA we need #ADDn additions, overall #MULm ·
#ADDn additions. We need two additions for polynomials with n coefficients to build a variable
Ds,t, altogether 2n · (#Ds,t)m additions. Furthermore (#ADDm − 2(#Ds,t)m) additions of the

8

variables Ds,t are needed, each of it having (2n − 1) coefficients. Finally we have to consider the
overlaps resulting in ((2m − 1) · (2n − 1) − (2nm − 1)) additions. Overall we obtain

#ADDn·m = #MULm · #ADDn
︸ ︷︷ ︸

recursive application of KA

+ 2n · (#Ds,t)m
︸ ︷︷ ︸

calculation of Ds,t

+ (2n − 1) · (#ADDm − 2(#Ds,t)m))
︸ ︷︷ ︸

addition of auxiliary variables

+ ((2m − 1) · (2n − 1) − (2nm − 1))
︸ ︷︷ ︸

overlaps

This results in

#ADDn·m =
5

4
m2n2 +

5

4
mn2 +

9

4
m2n − 23

4
mn − m2 + m + 1 (7)

Now we will prove that it is more efficient to use the KA for n · m with n ≥ m. Since the number
of multiplications is identical we only have to prove that this holds for the number of additions.

Lemma 2 Let n ≥ m and n, m ≥ 2. The number of additions for the KA for n · m is not greater
than the number of additions for the KA for m · n, i.e., #ADDn·m ≤ #ADDm·n.

Proof Let n ≥ m ≥ 2. Assume that #ADDm·n < #ADDn·m. Then

5

4
m2n2 +

5

4
nm2 +

9

4
n2m − 23

4
nm − n2 + n + 1

<
5

4
m2n2 +

5

4
mn2 +

9

4
m2n − 23

4
nm − m2 + m + 1

⇒ 5

4
nm2 +

9

4
m2m − n2 + n + 1 <

5

4
mn2 +

9

4
m2n − m2 + m + 1

⇒ n2(m − 1) − n(m − 1)(m + 1) < (m − 1)(−m)

⇒ (1 − n) · (m − n) < 0 ⇒ m − n > 0 ⇒ n < m

This is a contradiction and hence #ADDn·m ≤ #ADDm·n for n ≥ m. ✷

4.4 KA for Polynomials with
∏j

i=1 ni Coefficients

We will determine the number of additions and multiplications needed when using the KA re-
cursively for arbitrary polynomials with

∏j
i=1 ni coefficients. We call this KA version the gen-

eral recursive KA. To be exact, we consider polynomials with a maximum degree of
∏j

i=1 ni − 1.

Consider two such polynomials A(x) and B(x) with
∏j

i=1 ni coefficients. First we write A(x) =
∑nj−1

s=0 Asx
s·
∏j−1

i=1
ni as polynomial with nj coefficients Ai and do the same for B(x). Each of these

“coefficients” is itself a polynomial with
∏j−1

i=1 ni coefficients. Then we use the KA for nj . To obtain
the number of multiplications we repeatedly apply the KA. The method introduced in Section 4.3
for n · m coefficients is a special case of this one.

In each application of the KA there are #MULni
multiplications needed

#MUL∏j

i=1
ni

=
j
∏

i=1

(
1

2
n2

i +
1

2
ni) = (

1

2
)j

j
∏

i=1

ni(ni + 1) (8)

Again, the number of multiplications is independent of the order of the recursion. The number
of additions can be developed as follows. We introduce a term wl, l = 1 . . . j, where j is the recursion
depth, which describes the number of additions for one recursive application. This includes the

9

additions to build Ds,t, to add all auxiliary variables, and it takes into account the overlaps. We
comprise the last three points to

wl = w
(
∏l−1

i=1
ni)nl

= 2
l−1∏

i=1

ni · (#Ds,t)nl

︸ ︷︷ ︸

calculation of Ds,t

+ (2
l−1∏

i=1

ni − 1) · (#ADDnl
− 2(#Ds,t)nl

))

︸ ︷︷ ︸

addition of auxiliary variables

+ ((2nl − 1) · (2
l−1∏

i=1

ni − 1) − (2
l∏

i=1

ni − 1))

︸ ︷︷ ︸

overlaps

describing the number of additions for the KA for nl polynomials with
∏l−1

i=1 ni coefficients without
looking at the recursion. This can be simplified to

wl = 4 ·
l∏

i=1

ni · (nl − 1) − 3

2
n2

l +
1

2
nl + 1

Moreover we need to look at the additions required for the recursion and define the number of
additions recursively

#ADD∏j

i=1
ni

= wj + #MULnj
· #ADD∏j−1

i=1
ni

with initial condition

#ADDn1 =
5

2
n1

2 − 7

2
n1 + 1.

Using (7) this recursion can be transformed to

#ADD∏j

i=1
ni

=
j
∏

i=3

#MULni
· #ADDn1·n2 +

j−1
∑

l=3

(
j
∏

i=l+1

#MULni
· wl) + wj

or

#ADD∏j

i=1
ni

=
j
∏

i=2

#MULni
· #ADDn1 +

j−1
∑

l=2

(
j
∏

i=l+1

#MULni
· wl) + wj (9)

Theorem 1 Let ni be integer values with ni ≥ 2. Then the application of the KA for
∏j

i=1 ni is
most efficient (i.e., it needs the least number of additions and multiplications) for a permutation of
(ni)i∈{1,...,j} with ni ≥ ni+1 for 1 ≤ i ≤ j − 1.

Proof The number of multiplications is independent of the order of the recursion steps and needs
not to be considered. Let n1, . . . , nj be a sequence n with ni ≤ ni+1 for i = 1, . . . , j − 1. Let
t = s + 1 and n′

1, . . . , n
′
j be another sequence n′ with n′

s = nt, n
′
t = ns and n′

i = ni otherwise. We
will show that the recursive KA for the sequence n′ needs at least the same number of additions as
the recursive KA for the sequence n. Since each sequence can be determined by changing adjacent
elements, i.e., elements which are next to each other, the recursive KA for the original sequence n
is most efficient. We only look at j ≥ 3. For j = 2 see Lemma 2.

Let w′
i be the value w

(
∏i−1

j=1
n′

j
)n′

i

. To compare the number of additions we only look at the values

that differ in the two sequences. Then w′
s ≤ ws, ws ≤ wt, wt ≤ w′

t, w′
t ≤ w′

s and wi = w′
i otherwise.

Furthermore n′
s = nt, n′

t = ns, n′
s ≤ n′

t and nt ≤ ns. We want to prove by applying (9) that

#ADD∏j

i=1
ni

≤ #ADD∏j

i=1
n′

i

10

Since most of the values in the sequence are identical we only have to prove that

w′
s #MULnj

#MULnj−1 · . . . · #MULn′

s+1
+ w′

t#MULnj
#MULnj−1 · . . . · #MULn′

t+1

≥ ws #MULnj
#MULnj−1 · . . . · #MULns+1 + wt#MULnj

#MULnj−1 · . . . · #MULnt+1

We note that n′
s+1 = n′

t and n′
t+1 = nt+1. We simplify this to

w′
s · #MULn′

t
≥ ws · #MULnt

and obtain

(4(n1 · n2 · . . . · ns−1 · n′
s) · (n′

s − 1) − 3

2
n′

s
2
+

1

2
n′

s + 1) · (1
2
n′

t
2
+

1

2
nt)

≥ (4(n1 · n2 · . . . · ns−1 · ns) · (ns − 1) − 3

2
ns

2 +
1

2
ns + 1) · (1

2
nt

2 +
1

2
nt)

⇔
(4(n1 · n2 · . . . · ns−1 · nt) · (nt − 1) − 3

2
nt

2 +
1

2
nt + 1) · (1

2
ns

2 +
1

2
ns)

≥ (4(n1 · n2 · . . . · ns−1 · ns) · (ns − 1) − 3

2
ns

2 +
1

2
ns + 1) · (1

2
nt

2 +
1

2
nt)

This can be simplified to

ns · nt · (
1

4
ns −

3

4
nt) − ns

2 + ns ≥ nt · ns · (
1

4
nt −

3

4
ns) − nt

2 + nt

⇔ ns
2nt − nt

2ns + nt
2 − ns

2 − ns − nt ≥ 0

⇔ (ns − nt) · (nsnt + 1 − nt − ns) ≥ 0

Since ns ≥ nt ≥ 2 and nsnt > nt + ns for ns, nt ≥ 2 this is always true. ✷

4.5 How to Apply KA with the Least Cost

It was shown above that for a sequence ni the KA for
∏

i ni coefficients is most efficient when
ni ≥ ni+1. We will now show that it is more efficient to apply the KA recursively than only
once. Let k be the non-prime number of coefficients. Since k is not prime it can be written as
k = n · m and n, m 6= k. We compare using the KA for k and for n · m coefficients. Since we use
the KA recursively proving that the one-step recursion is more efficient than no recursion results
immediately in the law to use the KA for the factorization of k with multiple prime factors.

Theorem 2 Let k =
∏

i pi
ei with pi prime. Then the general recursive KA for

∏

i

∏ei

j=1 pi with
pi ≥ pi+1 results in the least number of operations.

Proof Let n ≥ m ≥ 2. First we compare the number of multiplications of the KA for k and
n · m = k coefficients.

#MULk =
1

2
(nm)2 +

1

2
nm

#MULn·m =
1

4
(n2 + n)(m2 + m)

We will show that #MULn·m ≤ #MULk

1

4
n2m2 +

1

4
nm2 +

1

4
n2m +

1

4
nm ≤ 1

2
n2m2 +

1

2
nm

11

⇔ 1

4
nm2 +

1

4
n2m ≤ 1

4
n2m2 +

1

4
nm ⇔ m + n ≤ nm + 1

Since m + n ≤ mn for n, m ≥ 2 this is true. Now we compare the number of additions.

#ADDk =
5

2
n2m2 − 7

2
nm + 1

#ADDn·m =
5

4
n2m2 +

5

4
n2m +

9

4
m2n − 23

4
mn − m2 + m + 1

Then
#ADDn·m ≤ #ADDk ⇔ 5n2 + 9mn − 4m + 4 ≤ 5n2m + 9n

This can be proven by induction on n with arbitrary m.
Basis n = 2, m ≤ n implies m = 2:

5 · 4 + 9 · 2m − 4m + 4 = 24 + 14m = 52 ≤ 58 = 20m + 18 = 5 · 4m + 18

Assume the assertion holds for k ≤ n. Then we prove it for n + 1

5(n+1)2 +9m(n+1)− 4m+4 = 5n2 +9mn− 4m+4+10n+5+9m ≤ 5n2m+9n+10n+5+9m

≤ 5n2m + 9n + 9 + 10(n + m) + m ≤ 5n2m + 9n + 9 + 10nm + m ≤ 5(n + 1)2m + 9(n + 1)

✷

This results in a simple rule on how to use the general recursive KA: use the factorization of
a number k with multiple prime factors combined with an increasing sequence of steps, i.e., KA
for k =

∏j
i=1 ni with ni ≥ ni+1, e.g., 2 · 2 · 3 · 5 for polynomials with 60 coefficients. However, a

number of intermediate results has to be stored due to the recursive nature. This might reduce the
efficiency for small-sized polynomials. As we showed in Section 3.3 the threshold value r for the KA
to be efficient is always 3 for the one-iteration KA. Since we proved that the recursive KA is more
efficient than the one-iteration KA it is obvious that r ≤ 3 always holds. Appendix A displays the
least number of operations needed to multiply two polynomials with the KA for polynomials with
n ∈ [2, 128] coefficients. There are two sections. The first one displays numbers for the general
recursive KA as described in Section 4.4 while the second one describes numbers for the simple
recursive KA as introduced in Section 4.1. The first column “n” displays the number of coefficients
of the polynomials. The second column “distribution” displays how to use the KA for n coefficients
(as mentioned above these are the prime factors in declining order). The next columns denote the
number of multiplications and additions. The following column gives the ratio

r =
#ADD − (n − 1)2

n2 − #MUL
.

If the time ratio r′ between a multiplication and an addition on a given platform is larger than this r,
then the KA is efficient. Note that very small values occur for values of n which largest prime factor
is still small, while negative values for r occur if the KA needs less multiplications and additions
than the schoolbook method. The very last column “opt(r)” describes which KA version results in
a better value r, i.e., has smaller r. We use this as an indicator for a better performance. One can
see that the simple recursive KA often outperforms the general recursive KA, especially when n
has not only small prime factors. When the number of coefficients is unknown at implementation
time or changes permanently it is wise to use the simple recursive KA since it is more efficient in
most cases and easier to implement. There are more variants of the KA that might be considered
for a fixed-size polynomial multiplication. For example, instead of using the one-iteration KA for

12

p #ADD

2 6nlog2 3 − 8n + 2
3 29

5 nlog3 6 − 8n + 11
5

5 39
7 nlog5 15 − 8n + 17

7
7 49

9 nlog7 28 − 8n + 23
9

Table 3: Values #MULn for n = pj .

n = 31 coefficients you can use the recursive KA and split the 31 coefficient polynomial into two
polynomials of 15 and 16 coefficients, respectively. Alternatively you could split the 31 coefficient
polynomial into three parts of 10, 10, and 11 coefficients, respectively. In the next recursion step
the polynomials are again split in two or three parts, and so on.

Note that it might be more efficient to use a combination of the KA and the schoolbook method.
For example, take a look at n = 8 with the distribution [2 2 2] in Appendix A. Let us consider a
platform with r′ = 2. Since r′ > r = 1.38 it is more efficient to use the KA. However the threshold
value for n = [2 2] is r = 2.14. Therefore it is most efficient to first use the KA for polynomials
with 2 coefficients where the coefficients themselves are polynomials with 4 coefficients. These
polynomials are then multiplied by the schoolbook method, and not by the recursive KA.

4.6 Complexity of KA

In this section we will analyze the asymptotic complexity of the KA. To simplify this we assume
that the number of coefficients n is a power of some integer number, i.e., n = pj . The number of
multiplications can be determined by

#MULn = (
1

2
p2 +

1

2
p)j = (

1

2
p2 +

1

2
p)logp n = nlogp(1

2
p2+ 1

2
p) (10)

For very large p this converges to (1/2)j n2, for small p, especially p = 2 we derive a complexity
of nlog2 3. As shown in Section 4.1 an upper bound of the simple recursive KA for arbitrary n is
1.20log2 3.

The number of additions is not as easily obtained. The number can be obtained by (9). Table 3
shows the number of additions needed for some values of p. We obtain for #ADD a complex
formula

#ADDn =
(

1/2 p2 + 1/2 p
)j−1 (

5/2 p2 − 7/2 p + 1
)

+ 4 pj (p − 1)− 3/2 p2 + 1/2 p + 1 + 1/2 (p + 1)

·
(

1/2 p2 + 1/2 p
)j
(

3 p2
(

2
1

p (p + 1)

)j

+ 2

(

2
1

p (p + 1)

)j

p − 8 p
(

2 (p + 1)−1
)j

− 16
(

2 (p + 1)−1
)j
)

·(p + 2)−1 − 1/2 (p + 1)
(

1/2 p2 + 1/2 p
)j
(

−52 (p + 1)−2 + 8
1

p (p + 1)2
− 32

p

(p + 1)2

)

(p + 2)−1

This expression can be written as

#ADDn = a · nlogp(1
2
p2+ 1

2
p) − 8n + b (11)

with a and b some positive number smaller than n (actually a ≤ 6 and b ≤ 3). For very large p
(11) converges to

lim
p→∞

#ADDn = lim
p→∞

5nlogp(1
2
p2+ 1

2
p) − 8n + 3 = 5n2 − 8n + 3

13

Note that for small p and large j the number of multiplications and additions is smaller compared
to the schoolbook method that requires (n − 1)2 additions. For large integer numbers of p (10)
converges to a complexity of n2.

5 Squaring with KA

The KA can be applied to squaring polynomials by simply replacing all the coefficient multiplica-
tions by coefficient squarings while keeping the additions. Although there is no special form of a
squaring KA there still might be a performance gain compared to the ordinary squaring method
which requires n squarings, n(n− 1)/2 multiplications and (n− 1)2 additions. However, this varies
for different platforms and depends on the ratio in time between a squaring and a multiplication.
Let ta, ts and tm be the time for an addition, a squaring and a multiplication, respectively. Let
r = tm/ta be the ratio between a multiplication and an addition as before, and let ck and cs be the
cost of the KA and schoolbook method, respectively. For the comparison we use the upper bound
complexity of the KA as stated in Section 4.1. We obtain

ck < cs ⇔ 1.20nlog2 3ts + 7nlog2 3ta < nts + n(n − 1)/2tm + (n − 1)2ta

We want to present the two extreme scenarios. In the first one a squaring comes for free, e.g., as
it almost is the case for binary fields. Thus ts = 0 such that we obtain

r >
7nlog2 3 − n2 + 2n − 1

(n2 − n)/2

Let r′ be the right side term. If r > r′ then it is efficient to use KA instead of the schoolbook
squaring method. For r = 10, i.e. a multiplication takes as long as 10 additions, the Squaring KA
outperforms the schoolbook squaring method for n >= 4 if a squaring is for free and a multiplication
does not perform faster than an addition. For r = 2, the Squaring KA outperforms the schoolbook
method for n >= 24.

The second scenario is the case when a squaring takes as long as a multiplication, i.e., ts = tm.
Then we obtain

r >
7nlog2 3 − n2 + 2n − 1

n/2(n + 1) − 1.20nlog2 3

Again let r′ be the right side term. In this case, for n >= 3 the KA Squaring outperforms the
schoolbook method if r = 10, and for n >= 21 it outperforms the schoolbook method if r = 2. If
r = 1, i.e. a multiplication takes as long as an addition, then the KA Squaring outperforms the
schoolbook squaring method for n >= 44.

Clearly, if ts = a tm with 0 < a < 1 then the range where KA Squaring outperforms the
schoolbook method are in a similar range as above. Hence, one needs first to consider the ratio r
in order to estimate the superior squaring method.

6 Improvement by Using Dummy Coefficients

To improve the KA we can use dummy coefficients, i.e. prefix zero coefficients, to reduce the number
of operations. In Appendix A we observe that the general recursive KA for 11 coefficients needs
more operations than the one for 12. Assume A(x) and B(x) are polynomials with 11 coefficients,
i.e., of degree 10. Just by adding a dummy coefficient a11 and b11 with a11 = b11 = 0 we can reduce
the total number of operations from 331 to 275. Furthermore it can be observed that the added

14

coefficients imply that there are some computations in the algorithm which do not need to be done.
Whenever a11 or b11 occurs in the computation we do not need to compute the result. We will
show this for an example for polynomials with 11 coefficients.

Let A(x) =
∑10

i=0 ai · xi and B(x) =
∑10

i=0 bi · xi be two degree-10 polynomials. Then A′(x) =
∑11

i=0 ai · xi and B′(x) =
∑11

i=0 bi · xi with a11 = b11 = 0 are two degree-11 polynomials with
A(x) · B(x) = A′(x) · B′(x). We will apply the KA recursively for polynomials with 12 coefficients
(in the sequence 3 - 2 - 2). First we rewrite the polynomials:

A′(x) = A1
(1) · x6 + A0

(1), B′(x) = B1
(1) · x6 + B0

(1)

and use the KA for degree-1 polynomials:

D0
(1) = A0

(1) · B0
(1), D1

(1) = A1
(1) · B1

(1), D0,1
(1) = (A0

(1) + A1
(1)) · (B0

(1) + B1
(1))

D0
(1) and D0,1

(1) are computed as usual and only the computation of D1
(1) saves some operations

(note that D1
(1) has 10 and not 12 coefficients). Now we compute D1

(1).

D1
(1) = A1

(1) · B1
(1)

For the second iteration we divide the polynomials once more

A1
(1) = A1

(2) · x3 + A0
(2), B1

(1) = B1
(2) · x3 + B0

(2)

and obtain the auxiliary variables:

D0
(2) = A0

(2) · B0
(2), D1

(2) = A1
(2) · B1

(2), D0,1
(2) = (A0

(2) + A1
(2)) · (B0

(2) + B1
(2))

As above, D0
(2) and D0,1

(2) do not change compared to the usual computation. To compute D1
(2)

we need the KA for 2 coefficients instead of 3. Furthermore we save 2 additions to compute each
D0,1

(1) and D0,1
(2) because A1

(1) and B1
(1) have only 5 coefficients, A1

(2) and B1
(2) only 2. To

obtain the result we have to compute

D1
(1) = A1

(1) · B1
(1) = D1

(2) · x6 + (D0,1
(2) − D0

(2) − D1
(2)) · x3 + D0

(2)

Since D1
(2) has only 4 coefficients instead of 6 we save another 2 additions. To obtain the desired

result we compute

A′(x) · B′(x) = D1
(1) · x12 + (D0,1

(1) − D0
(1) − D1

(1)) · x6 + D0
(1)

We save another 2 additions because D1
(1) has only 10 coefficients instead of 12. So altogether we

derive

#MUL′
11 = #MUL12 − #MUL3 + #MUL2 = 54 − 6 + 3 = 51

#ADD′
11 = #ADD12 − #ADD3 + #ADD2 − 4 · 2 = 221 − 13 + 4 − 8 = 204

and
#MUL′

11 + #ADD′
11 = 51 + 204 = 255

compared to
#MUL11 + #ADD11 = 331

for the general recursive KA.

15

Note that computing D1
(1) by using the KA for 5 coefficients requires the same amount of

operations. This simple approach can be enhanced by adding one or more dummy coefficients and
using this approach recursively.

Now observe that the number of multiplications is exactly the same as it is for the simple
recursive KA for 11 coefficients while the number of additions is slightly less. Without a formal
proof we can state that the usage of dummy coefficients combined with the general recursive KA
only results in a slight performance gain compared to the simple recursive KA. This is due to the
fact that the simple recursive KA for n coefficients always needs less operations than the KA for
n + 1 coefficients because of the algorithm’s construction. Since the simple recursive KA is more
efficient than the general recursive KA we can only expect a slight performance gain.

7 Concluding Remarks

In this article we demonstrated several recursive algorithms to multiply two arbitrary polynomials
by means of the Karatsuba Algorithm. We analyzed the complexity of these algorithms and de-
scribed how to apply them most efficiently. In most cases the simple recursive KA yields the most
efficient computation. By adding dummy coefficients the complexity might be slightly decreased.

References

[1] D. J. Bernstein. Multidigit Multiplication for Mathematicians. Advances in Applied Mathemat-
ics, to appear.

[2] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Soviet Physics
- Doklady, 7 (1963), 595-596.

[3] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Massachusetts, 3rd edition, 1997.

[4] A. Lempel, G. Seroussi and S. Winograd. On the Complexity of Multiplication in Finite Fields.
Theoretical Computer Science, 22 (1983), 285-296.

[5] H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, 2nd Edition. Springer-
Verlag, Berlin, Heidelberg, New York, 1982.

[6] C. Paar. Efficient VLSI Architecture for Bit Parallel Computation in Galois Fields. PhD Thesis,
Institute for Experimental Mathematics, University of Essen, Germany, 1994.

[7] S. Winograd. Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of
Constants. Mathematical Systems Theory, 10 (1977), 169-180.

A Complexity of KA

16

n General Recursive KA Simple Recursive KA opt(r) n General Recursive KA Simple Recursive KA opt(r)
distribution #MUL #ADD r #MUL #ADD r distribution #MUL #ADD r #MUL #ADD r opt(r)

2 [2] 3 4 3.00 3 4 3.00 equal 66 [11 3 2] 1188 5789 0.49 873 4484 0.07 simple rec
3 [3] 6 13 3.00 6 13 3.00 equal 67 [67] 2278 10989 3.00 921 4696 0.10 simple rec
4 [2 2] 9 24 2.14 9 24 2.14 equal 68 [17 2 2] 1377 6640 0.66 945 4804 0.09 simple rec
5 [5] 15 46 3.00 15 46 3.00 equal 69 [23 3] 1656 7999 1.09 993 5024 0.11 simple rec
6 [3 2] 18 59 1.89 18 59 1.89 equal 70 [7 5 2] 1260 6309 0.43 1017 5136 0.10 simple rec
7 [7] 28 99 3.00 24 85 1.96 simple rec 71 [71] 2556 12355 3.00 1041 5252 0.09 simple rec
8 [2 2 2] 27 100 1.38 27 100 1.38 equal 72 [3 3 2 2 2] 972 5069 0.01 1053 5312 0.07 general rec
9 [3 3] 36 139 1.67 39 148 2.00 general rec 73 [73] 2701 13068 3.00 1101 5548 0.09 simple rec
10 [5 2] 45 174 1.69 45 174 1.69 equal 74 [37 2] 2109 10174 1.44 1125 5668 0.08 simple rec
11 [11] 66 265 3.00 51 204 1.49 simple rec 75 [5 5 3] 1350 6925 0.34 1149 5792 0.07 simple rec
12 [3 2 2] 54 221 1.11 54 221 1.11 equal 76 [19 2 2] 1710 8277 0.65 1161 5856 0.05 simple rec
13 [13] 91 378 3.00 66 277 1.29 simple rec 77 [11 7] 1848 9199 0.84 1185 5988 0.04 simple rec
14 [7 2] 84 349 1.61 72 307 1.11 simple rec 78 [13 3 2] 1638 8015 0.47 1197 6056 0.03 simple rec
15 [5 3] 90 385 1.40 78 341 0.99 simple rec 79 [79] 3160 15327 3.00 1209 6128 0.01 simple rec
16 [2 2 2 2] 81 360 0.77 81 360 0.77 equal 80 [5 2 2 2 2] 1215 6166 -0.01 1215 6166 -0.01 equal
17 [17] 153 664 3.00 105 460 1.11 simple rec 81 [3 3 3 3] 1296 6871 0.09 1263 6434 0.01 simple rec
18 [3 3 2] 108 485 0.91 117 512 1.08 general rec 82 [41 2] 2583 12504 1.44 1287 6570 0.00 simple rec
19 [19] 190 837 3.00 129 568 1.05 simple rec 83 [83] 3486 16933 3.00 1311 6710 0.00 simple rec
20 [5 2 2] 135 598 0.89 135 598 0.89 equal 84 [7 3 2 2] 1512 7583 0.13 1323 6782 -0.02 simple rec
21 [7 3] 168 751 1.29 147 662 0.89 simple rec 85 [17 5] 2295 11286 0.86 1347 6930 -0.02 simple rec
22 [11 2] 198 879 1.53 153 696 0.77 simple rec 86 [43 2] 2838 13759 1.43 1359 7006 -0.04 simple rec
23 [23] 276 1243 3.00 159 734 0.68 simple rec 87 [29 3] 2610 12697 1.07 1371 7086 -0.05 simple rec
24 [3 2 2 2] 162 755 0.55 162 755 0.55 equal 88 [11 2 2 2] 1782 8775 0.20 1377 7128 -0.07 simple rec
25 [5 5] 225 1056 1.20 186 871 0.67 simple rec 89 [89] 4005 19492 3.00 1401 7292 -0.07 simple rec
26 [13 2] 273 1234 1.51 198 931 0.64 simple rec 90 [5 3 3 2] 1620 8333 0.06 1413 7376 -0.08 simple rec
27 [3 3 3] 216 1039 0.71 210 995 0.61 simple rec 91 [13 7] 2548 12699 0.80 1425 7464 -0.09 simple rec
28 [7 2 2] 252 1155 0.80 216 1029 0.53 simple rec 92 [23 2 2] 2484 12091 0.64 1431 7510 -0.11 simple rec
29 [29] 435 2002 3.00 228 1101 0.52 simple rec 93 [31 3] 2976 14503 1.06 1443 7606 -0.12 simple rec
30 [5 3 2] 270 1271 0.68 234 1139 0.45 simple rec 94 [47 2] 3384 16449 1.43 1449 7656 -0.13 simple rec
31 [31] 496 2295 3.00 240 1181 0.39 simple rec 95 [19 5] 2850 14041 0.84 1455 7710 -0.15 simple rec
32 [2 2 2 2 2] 243 1204 0.31 243 1204 0.31 equal 96 [3 2 2 2 2 2] 1458 7739 -0.17 1458 7739 -0.17 equal
33 [11 3] 396 1843 1.18 291 1408 0.48 simple rec 97 [97] 4753 23184 3.00 1554 8215 -0.13 simple rec
34 [17 2] 459 2124 1.48 315 1512 0.50 simple rec 98 [7 7 2] 2352 12025 0.36 1602 8455 -0.12 simple rec
35 [7 5] 420 2011 1.06 339 1620 0.52 simple rec 99 [11 3 3] 2376 11839 0.30 1650 8699 -0.11 simple rec
36 [3 3 2 2] 324 1595 0.38 351 1676 0.48 general rec 100 [5 5 2 2] 2025 10488 0.09 1674 8823 -0.12 simple rec
37 [37] 703 3294 3.00 375 1792 0.50 simple rec 101 [101] 5151 25150 3.00 1722 9075 -0.11 simple rec
38 [19 2] 570 2659 1.48 387 1852 0.46 simple rec 102 [17 3 2] 2754 13547 0.44 1746 9203 -0.12 simple rec
39 [13 3] 546 2569 1.15 399 1916 0.42 simple rec 103 [103] 5356 26163 3.00 1770 9335 -0.12 simple rec
40 [5 2 2 2] 405 1950 0.36 405 1950 0.36 equal 104 [13 2 2 2] 2457 12130 0.18 1782 9403 -0.13 simple rec
41 [41] 861 4060 3.00 429 2082 0.38 simple rec 105 [7 5 3] 2520 12895 0.24 1830 9671 -0.12 simple rec
42 [7 3 2] 504 2417 0.58 441 2150 0.35 simple rec 106 [53 2] 4293 20934 1.43 1854 9807 -0.13 simple rec
43 [43] 946 4473 3.00 453 2222 0.33 simple rec 107 [107] 5778 28249 3.00 1878 9947 -0.13 simple rec
44 [11 2 2] 594 2809 0.72 459 2260 0.28 simple rec 108 [3 3 3 2 2] 1944 10415 -0.11 1890 10019 -0.15 simple rec
45 [5 3 3] 540 2659 0.49 471 2340 0.26 simple rec 109 [109] 5995 29322 3.00 1914 10167 -0.15 simple rec
46 [23 2] 828 3909 1.46 477 2382 0.22 simple rec 110 [11 5 2] 2970 14899 0.33 1926 10243 -0.16 simple rec
47 [47] 1128 5359 3.00 483 2428 0.18 simple rec 111 [37 3] 4218 20641 1.05 1938 10323 -0.17 simple rec
48 [3 2 2 2 2] 486 2453 0.13 486 2453 0.13 equal 112 [7 2 2 2 2] 2268 11499 -0.08 1944 10365 -0.18 simple rec
49 [7 7] 784 3879 0.97 534 2689 0.21 simple rec 113 [113] 6441 31528 3.00 1992 10665 -0.17 simple rec
50 [5 5 2] 675 3364 0.53 558 2809 0.21 simple rec 114 [19 3 2] 3420 16853 0.43 2016 10817 -0.18 simple rec
51 [17 3] 918 4381 1.12 582 2933 0.21 simple rec 115 [23 5] 4140 20451 0.82 2040 10973 -0.18 simple rec
52 [13 2 2] 819 3906 0.69 594 2997 0.19 simple rec 116 [29 2 2] 3915 19162 0.62 2052 11053 -0.19 simple rec
53 [53] 1431 6838 3.00 618 3129 0.19 simple rec 117 [13 3 3] 3276 16339 0.28 2076 11217 -0.19 simple rec
54 [3 3 3 2] 648 3329 0.23 630 3197 0.17 simple rec 118 [59 2] 5310 25959 1.42 2088 11301 -0.20 simple rec
55 [11 5] 990 4821 0.94 642 3269 0.15 simple rec 119 [17 7] 4284 21379 0.75 2100 11389 -0.21 simple rec
56 [7 2 2 2] 756 3685 0.28 648 3307 0.11 simple rec 120 [5 3 2 2 2] 2430 12623 -0.13 2106 11435 -0.22 simple rec
57 [19 3] 1140 5467 1.11 672 3455 0.12 simple rec 121 [11 11] 4356 22155 0.75 2130 11615 -0.22 simple rec
58 [29 2] 1305 6234 1.45 684 3531 0.11 simple rec 122 [61 2] 5673 27754 1.42 2142 11707 -0.23 simple rec
59 [59] 1770 8497 3.00 696 3611 0.09 simple rec 123 [41 3] 5166 25333 1.05 2154 11803 -0.24 simple rec
60 [5 3 2 2] 810 4049 0.20 702 3653 0.06 simple rec 124 [31 2 2] 4464 21879 0.62 2160 11853 -0.25 simple rec
61 [61] 1891 9090 3.00 714 3741 0.05 simple rec 125 [5 5 5] 3375 17806 0.20 2172 11957 -0.25 simple rec
62 [31 2] 1488 7129 1.45 720 3787 0.02 simple rec 126 [7 3 3 2] 3024 15497 -0.01 2178 12011 -0.26 simple rec
63 [7 3 3] 1008 4999 0.39 726 3837 0.00 simple rec 127 [127] 8128 39879 3.00 2184 12069 -0.27 simple rec
64 [2 2 2 2 2 2] 729 3864 -0.03 729 3864 -0.03 equal 128 [2 2 2 2 2 2 2] 2187 12100 -0.28 2187 12100 -0.28 equal
65 [13 5] 1365 6676 0.90 825 4276 0.05 simple rec

17

