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Abstract

A time-bound hierarchical key assignment scheme is a method to assign time-dependent
encryption keys to a set of classes in a partially ordered hierarchy, in such a way that each
class can compute the keys of all classes lower down in the hierarchy, according to temporal
constraints.

In this paper we design and analyze time-bound hierarchical key assignment schemes which
are provably-secure and efficient. We consider both the unconditionally secure and the compu-
tationally secure settings and distinguish between two different goals: security with respect to
key indistinguishability and against key recovery.

• We first present definitions of security with respect to both goals in the unconditionally
secure setting and we show tight lower bounds on the size of the private information
distributed to each class.

• Then, we consider the computational setting and we further distinguish security against
static and adaptive adversarial behaviors. We explore the relations between all possible
combinations of security goals and adversarial behaviors and, in particular, we prove that
security against adaptive adversaries is (polynomially) equivalent to security against static
adversaries.

• Afterwards, we prove that a recently proposed scheme is insecure against key recovery.

• Finally, we propose two different constructions for time-bound key assignment schemes.
The first one is based on symmetric encryption schemes, whereas, the second one makes
use of bilinear maps. Both constructions support updates to the access hierarchy with
local changes to the public information and without requiring any private information to
be re-distributed. These appear to be the first constructions for time-bound hierarchical
key assignment schemes which are simultaneously practical and provably-secure.

Keywords: Access control, key assignment, provable security.

1 Introduction

The access control problem deals with the ability to ensure that only authorized users of a computer
system are given access to some sensitive resources. According to their competencies and respon-
sibilities, users are organized in a hierarchy formed by a certain number of disjoint classes, called

∗A preliminary version of this paper appears in the proceedings of ACM CCS 2006 [5].
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security classes. A hierarchy arises from the fact that some users have more access rights than
others. In the real world there are several examples of hierarchies where access control is required.
For example, within a hospital system, doctors can access data concerning their patients as diagno-
sis, medication prescriptions, and laboratory tests, whereas, researchers can be limited to consult
anonymous clinical information for studies. Similar cases abound in other areas, particularly in the
government and military.

A hierarchical key assignment scheme is a method to assign an encryption key and some private
information to each class in the hierarchy. The encryption key will be used by each class to
protect its data by means of a symmetric cryptosystem, whereas, the private information will be
used by each class to compute the keys assigned to all classes lower down in the hierarchy. This
assignment is carried out by a central authority, the Trusted Authority (TA), which is active only
at the distribution phase. Akl and Taylor [2] first proposed an elegant hierarchical key assignment
scheme. In their scheme each class is assigned a key that can be used, along with some public
parameters generated by the central authority, to compute the key assigned to any class lower down
in the hierarchy. Subsequently, many researchers have proposed schemes that either have better
performances or allow insertion and deletion of classes in the hierarchy (e.g., [3, 27, 30, 33, 34, 36,
39]). The problem of designing key assignment schemes for access control policies not satisfying
the anti-symmetric and transitive properties of a partially ordered hierarchy was considered in
[18, 35, 48]. Despite the large number of proposed schemes, many of them lack a formal security
proof and have been shown to be insecure against collusive attacks [14, 41, 48, 46]. A recent work
by Crampton et al. [17] provides a detailed classification of many schemes in the literature and
evaluates the respective merits of different types of scheme. The schemes are evaluated according
to several parameters, such as the amount of secret data that needs to be distributed to and stored
by users, the amount of data that needs to be made public, the complexity of key derivation, the
complexity of key updates and the resistance to collusive attacks.

Atallah et al. [3] first addressed the problem of formalizing security requirements for hierar-
chical key assignment schemes. A scheme is provably-secure under a complexity assumption if the
existence of an adversary A breaking the scheme is equivalent to the existence of an adversary
B breaking the computational assumption. The usual method of construction of B uses the ad-
versary A as a black-box. Atallah et al. [3] proposed a first provably-secure construction based
on pseudorandom functions and a second one requiring the use of a symmetric encryption scheme
secure against chosen-ciphertext attacks. Their constructions also manage with dynamic changes
to the access hierarchy. In particular updates do not require any private information held by users
to be redistributed. Atallah et al.[4] also considered the problem of improving the efficiency of
key derivation in their schemes. Recently, two constructions for provably-secure key assignment
schemes, improving those in [3], as well as new techniques for reducing key derivation time, have
been proposed [19]. In particular, one construction provides constant private information and pub-
lic information linear in the number of the classes, whereas, both constructions support dynamic
changes to the hierarchy.

All the above schemes would assign keys that never expire and new keys are generated only
after inserting or deleting classes in the hierarchy. However, in practice, it is likely that a user
may be assigned to a certain class for only a certain period of time. In such cases, users need
a different key for each time period which implies that the key derivation procedure should also
depend on the time period other than the hierarchy of the classes. Once a time period expires,
users in a class should not be able to access any subsequent keys if they are not authorized to do so.
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As pointed out by Tzeng [43], there are several applications requiring a time-based access control.
For example, a web-based electronic newspaper company could offer several types of subscription
packages, covering different topics. Each user may decide to subscribe to one package for a certain
period of time (e.g., a week, a month, or a year). Subscription packages could be structured to
form a partially ordered hierarchy where leaf nodes represent different topics. For each time period,
an encryption key is then assigned to each leaf node in the hierarchy. This key is then computed
by each user that subscribes to that package and for that period of time. A similar solution was
employed by Bertino et al. [8], who showed how to control access to an XML document according
to temporal constraints.

A basic and straightforward way to achieve a time-based access control is to require each user to
memorize encryption keys assigned to all classes lower down in the hierarchy for each time period
in which the user is allowed to access their data. Tzeng [43] first addressed the problem of reducing
the inherent complexity of such a solution and proposed a time-bound hierarchical key assignment
scheme that requires each user to store information whose size does not depend on the number
of keys that the user has access to or on the number of time periods. However, his scheme is
very costly since each user must perform expensive computations in order to compute a legitimate
key. Most importantly, Tzeng’s scheme has been shown to be insecure against collusive attacks,
whereby two or more users, assigned to some classes in distinct time periods, collude to compute a
key to which they are not entitled [50]. Subsequently, Chien [15] proposed an efficient time-bound
hierarchical key assignment scheme based on tamper-resistant devices. However, it was shown that
malicious users can collusively misuse their devices to gain unauthorized accesses in [20, 49], where
countermeasures were also proposed. Another time-bound hierarchical key assignment scheme was
proposed by Huang and Chang [29] and later shown to be insecure against collusive attacks [42]. An
RSA-based time-bound hierarchical key assignment scheme was proposed by Yeh [47], who claimed
his scheme to be secure against collusive attacks. Recently, Wang and Laih [45] and Tzeng [44]
showed how to construct a time-bound hierarchical key assignment scheme starting from the Akl-
Taylor scheme. However, since they did not formalize the definition of security and the adversarial
model, it is not clear under which assumption their schemes can be considered provably secure.

1.1 Our Results

In this paper we design and analyze time-bound hierarchical key assignment schemes which are
provably-secure and efficient. We consider two different security goals: security with respect to key
indistinguishability and security against key recovery. Security with respect to key indistinguisha-
bility formalizes the requirement that the adversary is not able to learn any information about a
key that it should not have access to, i.e., it is not able to distinguish it from a random string having
the same length. On the other hand, security against key recovery corresponds to the requirement
that an adversary is not able to compute a key that it should not have access to. The two above
security goals were first introduced by Atallah et al. [3] for hierarchical key assignment schemes.
We extend their definitions to include temporal constraints.

• We first consider an information-theoretic approach to time-bound hierarchical key assign-
ment schemes. In this setting, the key assigned to each class at a certain time period is
unconditionally secure, with respect to one of the above security goals, against an adversary
with unlimited computing power, controlling any coalition of classes not allowed to compute
such a key. We present definitions of security with respect to each goal in the unconditionally

3



secure setting and then we prove tight lower bounds on the size of the private information
distributed to each class.

• Then, we address the problem of formalizing security requirements for time-bound hierarchical
key assignment schemes in the computational setting and thus based on specific computational
assumptions. We consider both static and adaptive adversaries and characterize the four
security notions determined by all possible combinations of goals and adversarial behaviors,
by exploring the relations between the resulting definitions. In particular, we prove that
security against adaptive adversaries is (polynomially) equivalent to security against static
adversaries.

• Afterwards, we prove that a recently proposed scheme [47] is insecure against collusive attacks.

• Finally, we propose two different constructions for time-bound key assignment schemes. The
first one is based on symmetric encryption schemes, whereas, the second one makes use of
bilinear maps. Both constructions support updates to the access hierarchy with local changes
to the public information and without requiring any private information to be re-distributed.
These appear to be the first constructions for time-bound hierarchical key assignment schemes
which are simultaneously practical and provably-secure.

The paper is organized as follows: in Section 2 we give an informal description of what a time-bound
hierarchical key assignment scheme is, whereas, in Sections 3 and 4 we consider the unconditionally
and the computationally secure settings, respectively. In particular, in Section 4.1 we give formal
definitions of security for time-bound hierarchical key assignment schemes and explore the relations
between them. In Section 4.2 we show a security weakness of a recently proposed scheme. In
Sections 4.3 and 4.4 we describe our proposals for time-bound hierarchical key assignment schemes.
Section 5 concludes the paper.

2 Time-bound Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security classes. A security
class can represent a person, a department, or a user group in an organization. A binary relation
¹ that partially orders the set of classes V is defined in accordance with authority, position, or
power of each class in V . The poset (V,¹) is called a partially ordered hierarchy. For any two
classes u and v, the notation u ¹ v is used to indicate that the users in v can access u’s data.
Clearly, since v can access its own data, it holds that v ¹ v, for any v ∈ V . We denote by Av the
set {u ∈ V : u ¹ v}, for any v ∈ V . The partially ordered hierarchy (V,¹) can be represented by
the directed graph G∗ = (V, E∗), where each class corresponds to a vertex in the graph and there
is an edge from class v to class u if and only if u ¹ v. We denote by G = (V, E) the minimal
representation of the graph G∗, that is, the directed acyclic graph corresponding to the transitive
and reflexive reduction of the graph G∗ = (V, E∗). Such a graph G has the same transitive and
reflexive closure of G∗, i.e., there is a path (of length greater than or equal to zero) from v to u in
G if and only if there is the edge (v, u) in E∗. Aho et al. [1] showed that every directed graph has a
transitive reduction which can be computed in polynomial time and that such a reduction is unique
for directed acyclic graphs. In the following we denote by Γ a family of graphs corresponding to
partially ordered hierarchies. For example, Γ could be the family of the rooted trees, the family of
the d-dimensional graphs [4, 19, 39], etc.
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In this paper we consider the case where a user may be in a class for only a period of time. We
consider a sequence T = (t1, . . . , t|T |

) composed of distinct time periods. In the following we denote
by t ∈ T the fact that the time period t belongs to the sequence T . Each user may belong to a
class for a certain non-empty contiguous subsequence λ of T . Let P be the set of all nonempty
contiguous subsequences of T . Such a set is called the interval-set over T . A time-bound hierarchical
key assignment scheme is a method to assign a private information sv,λ to each class v ∈ V for each
time sequence λ ∈ P and an encryption key ku,t to each class u ∈ V for each time period t ∈ T .
The generation and distribution of the private information and keys is carried out by a trusted
third party, the TA, which is connected to each class by means of a secure channel. The encryption
key ku,t can be used by users belonging to class u in time period t to protect their sensitive data
by means of a symmetric cryptosystem, whereas, the private information sv,λ can be used by users
belonging to class v for the time sequence λ to compute the key ku,t for any class u ∈ Av and each
time period t ∈ λ. The key derivation process can be either direct or indirect. In the first case, each
class v can compute the key ku,t held by any class u ∈ Av in a time period t without computing
the keys of all classes along a path from v to u.

An ideal time-bound hierarchical key assignment scheme should have low storage requirements
and provide for efficient key derivation and key update procedures. In addition, unauthorized users
should not be able to compute keys to which they have no access right. More precisely, for each
class u ∈ V and each time period t ∈ T , the key ku,t should be protected against a coalition of users
belonging to each class v such that u 6∈ Av in all time periods, and users belonging to each class w
such that u ∈ Aw in all time periods but t. We denote by Fu,t the set {(v, λ) ∈ V × P : u 6∈ Av or
t 6∈ λ}, corresponding to all users which are not allowed to compute the key ku,t.

We refer to an unconditionally secure time-bound hierarchical key assignment scheme if its
security relies on the theoretical impossibility of breaking it, despite the computational power of
the coalition, whereas, we refer to a computationally secure time-bound hierarchical key assignment
scheme if its security relies on the computational infeasibility of breaking it, according to some
specific computational assumptions. We further distinguish two security goals: against key recovery
and with respect to key indistinguishability. In the key recovery case, the adversarial coalition is
not able to compute a key that should not be accessible by any user of the coalition, whereas, in
the key indistinguishability case, the adversarial coalition is not even able to distinguish such a key
from a random string of the same length. The two above security goals were first introduced by
Atallah et al. [3] for hierarchical key assignment schemes in the computational setting. We extend
their definitions to include temporal constraints.

3 The Unconditionally Secure Setting

In this section, we formally define unconditionally secure time-bound hierarchical key assignment
schemes by using the entropy function (we refer the reader to [16] for a complete treatment of Infor-
mation Theory), mainly because this leads to a compact and simple description of the schemes and
because the entropy approach takes into account all probability distributions on the keys assigned
to the classes. The same approach has been used in [22] to analyze key assignment schemes with-
out temporal constraints, whose security is guaranteed with respect to the key indistinguishability
requirement.

For any class u ∈ V and any time sequence λ ∈ P, we denote by Su,λ and Ku,t the sets
of all possible values that su,λ and ku,t can assume, respectively. Given a set of pairs X =
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{(u1, λ1), · · · , (uℓ, λℓ)} ⊆ V ×P, we denote by S
X

the set Su1,λ1 ×· · ·×Suℓ,λℓ
. In the following, with

a boldface capital letter, say Y, we denote a random variable taking values on a set, denoted by
the corresponding capital letter Y , according to some probability distribution {Pr

Y
(y)}y∈Y . The

values such a random variable can take are denoted by the corresponding lower case letter. Given a
random variable Y, we denote by H(Y) the Shannon entropy of {Pr

Y
(y)}y∈Y . An unconditionally

secure time-bound hierarchical key assignment scheme for a family Γ of graphs, corresponding to
partially ordered hierarchies, is defined as follows.

Definition 3.1 Let G = (V, E) be a graph in Γ, let T be a sequence of distinct time periods, let P
be the interval-set over T , and let 0 ≤ α ≤ 1. An α-unconditionally secure time-bound hierarchical
key assignment scheme for Γ is a method to assign a private information su,λ to each class u ∈ V ,
for each time sequence λ ∈ P, and an encryption key ku,t to each class u ∈ V , for each time period
t ∈ T , in such a way that the following two properties are satisfied:

Correctness Each user can compute the key held by any class lower down in the hierarchy for
each time period in which it belongs to its class.
Formally, for each class v ∈ V , each class u ∈ Av, each time sequence λ ∈ P, and each time
period t ∈ λ, it holds that H(Ku,t|Sv,λ) = 0.

Security Any coalition of users cannot compute / have absolutely no information about any key
the coalition is not entitled to obtain.
Formally, for each class u ∈ V , each time period t ∈ T , and each coalition of users X ⊆ Fu,t,
it holds that H(Ku,t|SX

) ≥ α · H(Ku,t).

Notice that the correctness requirement is equivalent to saying that the values of the private
information sv,λ held by each user belonging to a class v ∈ V for a time sequence λ ∈ P correspond
to a unique value of the key ku,t, for each class u ∈ Av and each time period t ∈ λ. Moreover, the
security requirement has different meanings, depending on the value of the parameter α. Indeed, if
α = 1, the requirement formalizes security with respect to key indistinguishability and is equivalent
to saying that the probability that the unauthorized key is equal to ku,t, given the values of the
private information s

X
held by the users in the coalition, is the same as the a priori probability that

the key is ku,t, i.e., the random variables Ku,t and S
X

are statistically independent. On the other
hand, if 0 < α < 1, the requirement formalizes security against key recovery and is equivalent to
saying that the coalition is not able to compute the unauthorized key ku,t, but could obtain some
partial information about it, for example, it could be able to compute part of the key. Clearly, if
α = 0, Definition 3.1 does not formalize any security requirement, since the conditional entropy of
Ku,t given S

X
is always greater than or equal to zero.

In the following we show a tight lower bound on the size of the private information distributed
to each user in any α-unconditionally secure time-bound hierarchical key assignment scheme. We
will use the next definition.

Definition 3.2 Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G =
(V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-set over T ,
and let 0 ≤ α ≤ 1. In any α-unconditionally secure time-bound hierarchical key assignment scheme
for Γ, a sequence of pairs ((u1, r1), . . . , (uℓ, rℓ)) ∈ V × T is called well ordered if either ℓ = 1, or
ℓ > 1 and for each j = 2, . . . , ℓ, it holds that {(ui, ri) ∈ V × T : 1 ≤ i ≤ j − 1} ⊆ Fuj ,rj

.
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The next lemma will be a useful tool to prove our results.

Lemma 3.3 Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G =
(V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-set over T ,
and let 0 ≤ α ≤ 1. In any α-unconditionally secure time-bound hierarchical key assignment scheme
for Γ, if ((u1, r1), . . . , (uℓ, rℓ)) is a well ordered sequence of pairs in V × T , then it holds that

H(Ku1,r1 . . .Kuℓ,rℓ
) ≥ H(Ku1,r1) + α ·

ℓ∑

j=2

H(Kuj ,rj
).

Proof. Let Xj = {(ui, ri) ∈ V ×T : 1 ≤ i ≤ j−1}, for any j = 2, . . . , ℓ. Since ((u1, r1), . . . , (uℓ, rℓ))
is a well ordered sequence of pairs in V ×T , from Definition 3.2 we have that, Xj ⊆ Fuj ,rj

. Therefore,
from the security requirement of Definition 3.1 it holds that

H(Kuj ,rj
|S

Xj
) ≥ α · H(Kuj ,rj

). (1)

From the correctness requirement of Definition 3.1 it holds that H(Kui,ri
|Sui,ri

) = 0 and from (13)
we have that

H(Ku1,r1 . . .Kuj−1,rj−1 |SXj
) ≤

j−1∑

i=1

H(Kui,ri
|S

Xj
) ≤

j−1∑

i=1

H(Kui,ri
|Sui,ri

) = 0.

Hence, from (12) it follows that

H(Ku1,r1 . . .Kuj−1,rj−1 |Kuj ,rj
S

Xj
) ≤ H(Ku1,r1 . . .Kuj−1,rj−1 |SXj

) = 0. (2)

Consider the mutual information I(Kuj ,rj
;Ku1,r1 . . .Kuj−1,rj−1 |SXj

). From (11) it holds that

H(Kuj ,rj
|S

Xj
) − H(Kuj ,rj

|Ku1,r1 . . .Kuj−1,rj−1SXj
) =

H(Ku1,r1 . . .Kuj−1,rj−1 |SXj
) − H(Ku1,r1 . . .Kuj−1,rj−1 |Kuj ,rj

S
Xj

). (3)

Hence, from (2) and (3) it follows that

H(Kuj ,rj
|Ku1,r1 . . .Kuj−1,rj−1SXj

) = H(Kuj ,rj
|S

Xj
). (4)

Therefore, from (8) it holds that

H(Ku1,r1 . . .Kuℓ,rℓ
) = H(Ku1,r1) +

ℓ∑

j=2

H(Kuj ,rj
|Ku1,r1 . . .Kuj−1,rj−1)

≥ H(Ku1,r1) +
ℓ∑

j=2

H(Kuj ,rj
|Ku1,r1 . . .Kuj−1,rj−1SXj

)(from (12))

= H(Ku1,r1) +
ℓ∑

j=2

H(Kuj ,rj
|S

Xj
)(from (4))

≥ H(Ku1,r1) + α ·
ℓ∑

j=2

H(Kuj ,rj
)(from (1)).
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The next theorem shows a lower bound on the size of the private information distributed to
each user. Such a result applies to the general case of arbitrary entropies of keys, but, for the sake
of simplicity, we consider the case when all entropies of keys are equal. We denote this common
entropy by H(K).

Theorem 3.4 Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G =
(V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-set over T ,
and let 0 ≤ α ≤ 1. In any α-unconditionally secure time-bound hierarchical key assignment scheme
for Γ, for any pair (u, λ) ∈ V × P, it holds that

H(Su,λ) ≥ (1 − α + α · |Au| · |λ|) · H(K),

where |λ| denotes the number of time periods in the time sequence λ.

Proof. Let u be a class and consider the directed acyclic graph G′ = (V ′, E′) induced by
G and involving all the classes in Au. Moreover, let (u|Au|, . . . , u1) be the sequence of classes
output by the topological sorting on G′. This sequence has the property that for each pair of
classes ui, uj ∈ Au such that (uj , ui) ∈ E′, the class uj appears before that ui in the order-
ing. Let λ = (r1, . . . , r|λ|) be a time sequence. It is easy to see that the sequence of pairs
((u1, r1), . . . (u1, r|λ|), . . . , (u|Au|, r1), . . . , (u|Au|, r|λ|)) is well ordered. Therefore, from (13) and from
the correctness requirement of Definition 3.1, we have that

H(Ku1,r1 . . .Ku|Au|,r|λ|
|Su,λ) ≤

|Au|∑

i=1

|λ|∑

j=1

H(Kui,rj
|Su,λ)

≤
|Au|∑

i=1

|λ|∑

j=1

H(Kui,rj
|Sui,rj

)

= 0. (5)

Consider the mutual information I(Su,λ;Ku1,r1 . . .Ku|Au|,r|λ|
). From (9) we have that

H(Su,λ) − H(Su,λ|Ku1,r1 . . .Ku|Au|,r|λ|
)

= H(Ku1,r1 . . .Ku|Au|,r|λ|
) − H(Ku1,r1 . . .Ku|Au|,r|λ|

|Su,λ). (6)

Since H(Su,λ|Ku1,r1 . . .Ku|Au|,r|λ|
) ≥ 0, from (5) and (6) it follows that

H(Su,λ) ≥ H(Ku1,r1 . . .Ku|Au|,r|λ|
).

From Lemma 3.3 we get

H(Ku1,r1 . . .Ku|Au|,r|λ|
) ≥ H(K) + α · (|Au| · |λ| − 1) · H(K)

= (1 − α + α · |Au| · |λ|) · H(K).

Hence, the theorem follows.
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Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G = (V,E) ∈ Γ, let
T be a sequence of distinct time periods, let P be the interval-set over T , and let 0 ≤ α ≤ 1 be a
rational number, say α = a/b, with a and b integers and b 6= 0. Moreover, let q ≥ 1.

Initialization

1. If a 6= b, the TA randomly chooses a string η ∈ {0, 1}(b−a)·q; if a = b, let η be the empty
string;

2. Afterwards, if a 6= 0, for any class v ∈ V and any time period t ∈ T , the TA randomly
chooses a string k′

u,t ∈ {0, 1}a·q; if a = 0, let k′
u,t be the empty string;

3. Then, the TA computes the key ku,t = η||k′
u,t, where || denotes string concatenation;

4. When a user is assigned to a class u ∈ V for a time sequence λ ∈ P, the TA delivers to the
user, by means of a secure channel, the private information su,λ, containing the string η, as
well as the string k′

v,t, for any class v ∈ Au and any time period t ∈ λ.

Key derivation

Each user belonging to a class u ∈ V for a time sequence λ ∈ P can use its private information

su,λ to compute the key kv,t = η||k′
v,t for any class v ∈ Au and any time period t ∈ λ, since both

strings η and k′
v,t are contained in su,λ.

Figure 1: An α-unconditionally secure key assignment scheme.

The bound of Theorem 3.4 is tight. Indeed, in Figure 1 we describe an α-unconditionally secure
key assignment scheme which meets it with equality.

In the following we show that the scheme of Figure 1 satisfies the security requirement of
Definition 3.1. Indeed, let u ∈ V be a class, t ∈ T be a time period, and X ⊆ Fu,t be a coalition of
corrupted users trying to compute the key ku,t. We distinguish two cases:

1. Case α = 1.
The key ku,t is independent from the private information s

X
held by the coalition, hence, the

corrupted users have absolutely no information about ku,t.

2. Case 0 < α < 1.
The key ku,t is equal to η||k′

u,t. Since the string η is part of the private information s
X

and
the string k′

u,t is randomly chosen by the TA, the uncertainty on Ku,t, given S
X

, is equal
to the uncertainty on K′

u,t. Since H(K′
u,t) = a · q and H(Ku,t) = b · q, it follows that

H(Ku,t|SX
) = α · H(Ku,t).

It is easy to see that the scheme of Figure 1 meets the bound of Theorem 3.4 with equality.
Consider a user belonging to a class u ∈ V for a time sequence λ ∈ P. If α = 1, the size of the
private information su,λ is equal to |Au| · |λ| · a · q bits, whereas, the size of each key is equal to a · q
bits. On the other hand, when α = 0, su,λ contains a key, having size b · q bits, which is the same
for each class and each time period. Finally, if 0 < α < 1, su,λ consists of (b − a + a · |Au| · |λ|) · q
bits, whereas, the size of each key is equal to b · q bits.
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4 The Computationally Secure Setting

In this section, we consider time-bound key assignment schemes based on specific computational
assumptions. In this setting, we obtain several results of interest. We first provide notions of
security with respect to key indistinguishability and key recovery and consider attacks carried out
by static or adaptive adversaries. Then, we explore all possible relations between different notions
of security and types of adversary. We show that security against adaptive adversaries is poly-
nomially equivalent to security against static ones. Afterwards, we prove that Yeh’s scheme [47]
is insecure against collusive attacks. Finally, motivated by the need for provably-secure schemes,
we propose two different constructions of time-bound key assignment schemes. The first one is
based on symmetric encryption schemes, whereas, the second one makes use of bilinear maps. Both
constructions are provably-secure and efficient.

4.1 Notions of Security

We use the standard notation to describe probabilistic algorithm and experiments following [26]. If
A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .) denotes the experiment of running A
on inputs x, y, . . . and letting a be the outcome, the probability being over the coins of A. Similarly,
if X is a set then x ← X denotes the experiment of selecting an element uniformly from X and
assigning x this value. If w is neither an algorithm nor a set then x ← w is a simple assignment
statement. A function ǫ : N → R is negligible if for every constant c > 0 there exists an integer nc

such that ǫ(n) < n−c for all n ≥ nc.

A time-bound hierarchical key assignment scheme for a family of graphs Γ corresponding to partially
ordered hierarchies is defined as follows.

Definition 4.1 A time-bound hierarchical key assignment scheme for Γ is a pair of algorithms
(Gen, Der) satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time. It takes as inputs
the security parameter 1τ , a graph G = (V, E) in Γ, and the interval-set P over a sequence
of distinct time periods T , and produces as outputs

(a) a private information su,λ, for any class u ∈ V and any time sequence λ ∈ P;

(b) a key ku,t, for any class u ∈ V and any time period t ∈ T ;

(c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ , G, and P, where s
and k denote the sequences of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes as inputs the
security parameter 1τ , a graph G = (V, E) in Γ, the interval-set P over a sequence of distinct
time periods T , two classes u and v such that v ∈ Au, a time sequence λ ∈ P, the private
information su,λ assigned to class u for the time sequence λ, a time period t ∈ λ, and the
public information pub, and produces as output the key kv,t assigned to class v at time period
t.
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We require that for each class u ∈ V , each class v ∈ Au, each time sequence λ ∈ P, each time
period t ∈ λ, each private information su,λ, each key kv,t, each public information pub which
can be computed by Gen on inputs 1τ , G, and P, it holds that

Der(1τ , G,P, u, v, λ, su,λ, t, pub) = kv,t.

Notice that in Definition 4.1 we have not specified the structure of the public information pub
and of the graph G. In order to improve the efficiency of key derivation, pub and G could be
structured in such a way that, whenever class u performs key derivation to compute the key of a
class v ∈ Au, it does not need to input the algorithm Der with the whole pub and G, but only with
those parts of them involved in the computation.

We consider two different security goals: with respect to key indistinguishability and against key
recovery. We also provide definitions of security with respect to static and adaptive adversaries.

Security against adaptive adversaries for hierarchical key assignment schemes with no temporal
constraints has been first considered by Atallah et al. [3]. A static adversary, given a class u and
a time period t, is allowed to access the private information assigned to all users not allowed to
compute the key ku,t, as well as all public information. An adaptive adversary is first allowed to
access all public information as well as all private information of a number of users of its choice;
afterwards, it chooses the class u it wants to attack and the time period t for which the attack
will be mounted. We explore the relationships of the security notions determined by all possible
combinations of goals (key indistinguishability / key recovery) and adversarial behaviors (static
/ adaptive). In particular, we show whether one notion implies another and viceversa. Figure 2
summarizes our results.

REC-ST

REC-AD

IND-ST

IND-AD

Th. 4.8

Th. 4.9

Th. 4.4 Th. 4.7

Figure 2: Hierarchy of security notions for time-bound hierarchical key assignment schemes. A solid line
from notion A to notion B means that any scheme meeting notion A also meets notion B, whereas, a broken
line indicates that a scheme meeting notion A does not necessarily meet notion B.

4.1.1 Security with respect to Key Indistinguishability

We first consider the case where there is a static adversary STATu,t, which attacks a class u ∈ V at
a certain time period t ∈ T and which is able to corrupt all users not allowed to compute the key
ku,t. We define an algorithm Corruptu,t which, on input the private information s generated by
the algorithm Gen, extracts the secret values sv,λ associated to all pairs (v, λ) ∈ Fu,t. We denote by
corr the sequence output by Corruptu,t(s). The computations performed by the adversary involve
all public information generated by the algorithm Gen, as well as the private information corr held
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by the corrupted users. Two experiments are considered. In the first one, the adversary is given
the key ku,t, whereas, in the second one, it is given a random string ρ having the same length as
ku,t. It is the adversary’s job to determine whether the received challenge corresponds to ku,t or
to a random string. We require that the adversary will succeed with probability only negligibly
different from 1/2.

Definition 4.2 [IND-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies,
let G = (V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-set
over T , and let (Gen, Der) be a time-bound hierarchical key assignment scheme for Γ. Let STATu,t

be a static adversary which attacks a class u ∈ V in a time period t ∈ T . Consider the following
two experiments:

Experiment ExpIND−1

STATu,t
(1τ , G,P) Experiment ExpIND−0

STATu,t
(1τ , G,P)

(s, k, pub) ← Gen(1τ , G,P) (s, k, pub) ← Gen(1τ , G,P)
corr ← Corruptu,t(s) corr ← Corruptu,t(s)
d ← STATu,t(1

τ , G,P, pub, corr, ku,t) ρ ← {0, 1}length(ku,t)

return d d ← STATu,t(1
τ , G,P, pub, corr, ρ)

return d

The advantage of STATu,t is defined as

AdvIND

STATu,t
(1τ , G,P) = |Pr[ExpIND−1

STATu,t
(1τ , G,P) = 1] − Pr[ExpIND−0

STATu,t
(1τ , G,P) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G = (V, E) in Γ, each
sequence of distinct time periods T , each class u ∈ V and each time period t ∈ T , the function
AdvIND

STATu,t
(1τ , G,P) is negligible, for each static adversary STATu,t whose time complexity is poly-

nomial in τ .

Now, consider the case where an adaptive adversary ADAPT first gets all public information
generated by the algorithm Gen, and then chooses, in an adaptive order, a number of users to
be corrupted. We assume the existence of an oracle which can provide the adversary with the
private information held by the corrupted users. Each adversary’s query to the oracle consists in
a pair (v, λ) ∈ V ×P, which the oracle answers with the private information sv,λ. Afterwards, the
adversary chooses the class u it wants to attack and the time period t for which the attack will
be mounted, among the classes and time periods such that the corresponding key ku,t cannot be
computed by the corrupted users. Two experiments are considered. In the first one, the adversary
is given the key ku,t, whereas, in the second one, it is given a random string ρ having the same
length as ku,t. After this stage, the adversary is still allowed to corrupt other users of its choice,
among those who cannot compute the key ku,t, making queries to the oracle. It is the adversary’s
job to determine whether the received challenge corresponds to ku,t or to a random string. We
require that the adversary will succeed with probability only negligibly different from 1/2.

Definition 4.3 [IND-AD] Let Γ be a family of graphs corresponding to partially ordered hierarchies,
let G = (V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-
set over T , and let (Gen, Der) be a time-bound hierarchical key assignment scheme for Γ. Let
ADAPT = (ADAPT1, ADAPT2) be an adaptive adversary that is given access to the oracle Os(·) during
both stages of the attack, where s is the private information computed by Gen. Consider the
following two experiments:
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Experiment ExpIND−1

ADAPT
(1τ , G,P) Experiment ExpIND−0

ADAPT
(1τ , G,P)

(s, k, pub) ← Gen(1τ , G,P) (s, k, pub) ← Gen(1τ , G,P)

(u, t, state) ← ADAPT
Os(·)
1 (1τ , G,P, pub) (u, t, state) ← ADAPT

Os(·)
1 (1τ , G,P, pub)

d ← ADAPT
Os(·)
2 (1τ , G,P, pub, u, t, state, ku,t) ρ ← {0, 1}length(ku,t)

return d d ← ADAPT
Os(·)
2 (1τ , G,P, pub, u, t, state, ρ)

return d

It is required that the pair (u, t) output by ADAPT1 is such that (v, λ) ∈ Fu,t, for any pair (v, λ)
already queried to the oracle Os(·). Moreover, it is also required that ADAPT2 never queries the
oracle Os(·) on a pair (v, λ) ∈ V × P such that u ∈ Av and t ∈ λ. The advantage of ADAPT is
defined as

AdvIND

ADAPT
(1τ , G,P) = |Pr[ExpIND−1

ADAPT
(1τ , G,P) = 1] − Pr[ExpIND−0

ADAPT
(1τ , G,P) = 1]|.

The scheme is said to be secure in the sense of IND-AD if for each graph G = (V, E) in Γ and each
sequence of distinct time periods T , the function AdvIND

ADAPT
(1τ , G,P) is negligible, for each adaptive

adversary ADAPT whose time complexity is polynomial in τ .

In the following we prove that security against adaptive adversaries is (polynomially) equivalent
to security against static adversaries.

Theorem 4.4 [IND-ST⇔IND-AD] Let Γ be a family of graphs corresponding to partially ordered
hierarchies. A time-bound hierarchical key assignment scheme for Γ is secure in the sense of IND-ST
if and only if it is secure in the sense of IND-AD.

Proof. The implication IND-AD⇒IND-ST is trivial, since any adaptive adversary could behave as
a static one attacking a class u in a time period t, simply by querying the oracle Os(·) on all pairs
(v, λ) ∈ Fu,t and by choosing the pair (u, t) in the first stage of the attack.

Now we prove that IND-ST⇒IND-AD. Let (Gen, Der) be a time-bound hierarchical key assign-
ment scheme for Γ secure in the sense of IND-ST and assume by contradiction the existence of an
adaptive adversary ADAPT = (ADAPT1, ADAPT2) whose advantage AdvIND

ADAPT
on input a given graph

G′ = (V ′, E′) in Γ and an interval-set P ′ over a sequence of distinct time periods T is non negligible.
Let (u, t) be a pair output by ADAPT1 with probability at least 1

|V ′|·|T | , where the probability is taken

over the coin flips of Gen and ADAPT1. This means that (u, t) belongs to the set of the most likely
choices made by ADAPT1. We show how to construct a static adversary STATu,t, using ADAPT, such
that AdvIND

STATu,t
on input G′ and P ′ is non negligible. In particular, we show that STATu,t’s advantage

is polynomially related to ADAPT’s advantage.
The algorithm STATu,t, on inputs the graph G′, the interval-set P ′, the public information pub

output by the algorithm Gen, the private information corr assigned by Gen to all corrupted users,
and a challenge value x, corresponding either to the key ku,t or to a random value having the same
length as ku,t, runs the algorithm ADAPT1, on inputs G′, P ′, and pub. Notice that STATu,t is able to
simulate the interaction between ADAPT1 and the oracle Os(·), for each query (v, λ) ∈ Fu,t. Indeed,
STATu,t simply retrieves from corr the private information sv,λ and gives it to ADAPT1. On the other
hand, if ADAPT1 queries the oracle on a pair (v, λ) such that u ∈ Av and t ∈ λ, then STATu,t outputs
0, because it is not able to reply with the private information sv,λ, which is not included in corr.
In such a case (u, t) cannot be the pair output by ADAPT1. Let (v, t′, state) be the triple output by
ADAPT1. If u = v and t = t′, then STATu,t outputs the same output as ADAPT2, on inputs G′, P ′,
pub, u, t, state and x. On the other hand, if u 6= v or t 6= t′, STATu,t outputs 0.
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It is easy to see that whether G = G′ and P = P ′, it holds that

AdvIND

STATu,t
(1τ , G,P) = Pr[u = v and t = t′] · AdvIND

ADAPT
(1τ , G,P).

Since (u, t) is chosen by ADAPT1 with probability at least 1
|V ′|·|T | and AdvIND

ADAPT
on input G′ and P ′

is non negligible, it follows that also AdvIND

STATu,t
on input G′ and P ′ is non negligible. Contradiction.

4.1.2 Security against Key Recovery

We first consider the case where there is a static adversary STATu,t which wants to compute the
key assigned to a class u ∈ V at a certain time period t ∈ T and which is able to corrupt all users
not allowed to compute the key ku,t. As done before, we denote by corr the sequence output by
the algorithm Corruptu,t, on input the private information s generated by the algorithm Gen. The
adversary, on input all public information generated by the algorithm Gen, as well as the private
information corr held by corrupted users, outputs a string k′

u,t and succeeds whether k′
u,t = ku,t. We

require that the adversary will succeed with probability only negligibly different from 1/2length(ku,t).

Definition 4.5 [REC-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies,
let G = (V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-set
over T , and let (Gen, Der) be a time-bound hierarchical key assignment scheme for Γ. Let STATu,t

be a static adversary which attacks a class u in a time period t. Consider the following experiment:

Experiment ExpREC

STATu,t
(1τ , G,P)

(s, k, pub) ← Gen(1τ , G,P)
corr ← Corruptu,t(s)
k′

u,t ← STATu,t(1
τ , G,P, pub, corr)

return k′
u,t

The advantage of STATu,t is defined as

AdvREC

STATu,t
(1τ , G,P) = Pr[k′

u,t = ku,t].

The scheme is said to be secure in the sense of REC-ST if, for each graph G = (V, E) in Γ, each
sequence of distinct time periods T , each class u ∈ V and each time period t ∈ T , the function
AdvREC

STATu,t
(1τ , G,P) is negligible, for each static adversary STATu,t whose time complexity is poly-

nomial in τ .

Now, consider the case where an adaptive adversary ADAPT first gets all public information
generated by the algorithm Gen, and then chooses, in an adaptive order, a number of users to
be corrupted. We assume the existence of an oracle which can provide the adversary with the
private information held by the corrupted users. Each adversary’s query to the oracle consists
in a pair (v, λ) ∈ V × P, which the oracle answers with the private information sv,λ. After-
wards, the adversary chooses the class u it wants to attack and the time period t for which the
attack will be mounted, among the classes and time periods such that the corresponding key ku,t

cannot be computed by the corrupted users. Finally, it outputs a string k′
u,t and succeeds whether

k′
u,t = ku,t. We require that the adversary will succeed with probability only negligibly different

from 1/2length(ku,t).
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Definition 4.6 [REC-AD] Let Γ be a family of graphs corresponding to partially ordered hierarchies,
let G = (V, E) ∈ Γ be a graph, let T be a sequence of distinct time periods, let P be the interval-
set over T , and let (Gen, Der) be a time-bound hierarchical key assignment scheme for Γ. Let
ADAPT = (ADAPT1, ADAPT2) be an adaptive adversary that is given access to the oracle Os(·) during
both stages of the attack, where s is the private information computed by Gen. Consider the
following experiment:

Experiment ExpREC

ADAPT
(1τ , G,P)

(s, k, pub) ← Gen(1τ , G,P)

(u, t, state) ← ADAPT
Os(·)
1 (1τ , G,P, pub)

k′
u,t ← ADAPT

Os(·)
2 (1τ , G,P, pub, u, t, state)

return k′
u,t

It is required that the pair (u, t) output by ADAPT1 is such that (v, λ) ∈ Fu,t, for any pair (v, λ)
already queried to the oracle Os(·). Moreover, it is also required that ADAPT2 never queries the
oracle Os(·) on a pair (v, λ) ∈ V × P such that u ∈ Av and t ∈ λ. The advantage of ADAPT is
defined as

AdvREC

ADAPT
(1τ , G,P) = Pr[k′

u,t = ku,t].

The scheme is said to be secure in the sense of REC-AD if, for each graph G = (V, E) in Γ, each
sequence of distinct time periods T , each class u ∈ V and each time period t ∈ T , the function
AdvREC

ADAPT
(1τ , G,P) is negligible, for each adaptive adversary ADAPT whose time complexity is poly-

nomial in τ .

The next result can be proved following the lines of the proof of Theorem 4.4.

Theorem 4.7 [REC-ST⇔REC-AD] A time-bound hierarchical key assignment scheme for a family
of graphs Γ is secure in the sense of REC-ST if and only if it is secure in the sense of REC-AD.

It is easy to see that any static adversary which breaks the security of the key assignment scheme
for Γ in the sense of REC-ST can be easily turned into an adversary which breaks the security of
the key assignment scheme for Γ in the sense of IND-ST. Hence, the next result holds.

Theorem 4.8 [IND-ST⇒REC-ST] Let Γ be a family of graphs corresponding to partially ordered
hierarchies. If a time-bound hierarchical key assignment scheme for Γ is secure in the sense of
IND-ST, then it is also secure in the sense of REC-ST.

In the following we show that security against key recovery does not necessarily imply security
with respect to key indistinguishability. Let (Gen, Der) be a time-bound hierarchical key as-
signment scheme for a family of graphs Γ which is secure in the sense of REC-ST. We construct
another scheme (Gen′, Der′) for Γ and we show that it is secure in the sense of REC-ST but is not
secure in the sense of IND-ST. Let G = (V, E) be a graph in Γ, let u ∈ V be a class and let t ∈ T
be a time period. Let ku,t be the key assigned by Gen to u in time period t. Algorithm Gen′

randomly chooses a bit b and computes the key k′
u,t by concatenating b and ku,t. All other values

computed by Gen′ are exactly the same as the ones computed by Gen, with the exception of the
public information pub′, which also includes the bit b. Algorithm Der′ differs from Der in the fact
that the bit b contained in pub′ has also to be considered when deriving ku,t. Let STATu,t be a
static adversary that simply checks whether the first bit x0 of the challenge x, which corresponds
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either to the key k′
u,t or to a random string having the same length as k′

u,t, is equal to the bit b,
which is included in pub′. If x0 = b, then STATu,t outputs 1, otherwise, it outputs 0. It is easy to
see that AdvIND

STATu,t
(1τ ) is non-negligible, hence (Gen′, Der′) is not secure in the sense of IND-ST.

On the other hand, (Gen′, Der′) is secure in the sense of REC-ST. Assume by contradiction that
(Gen′, Der′) is not secure in the sense of REC-ST. It follows that also (Gen, Der) is not secure in
the sense of REC-ST. This is a contradiction. Hence, the next result holds.

Theorem 4.9 [REC-ST6⇒IND-ST] Let Γ be a family of graphs corresponding to partially ordered
hierarchies. There exists a time-bound hierarchical key assignment scheme for Γ which is secure in
the sense of REC-ST but which is not secure in the sense of IND-ST.

Figure 2 shows the hierarchy of security definitions for time-bound key assignment schemes,
resulting from Theorems 4.4, 4.7, 4.8, and 4.9.

4.2 A Collusion Attack to Yeh’s Scheme

In this section we show a security weakness of Yeh’s scheme, relying in the fact that in some cases
a coalition of users is able to compute some encryption keys that they should not be able to access.
Yeh’s scheme is described in Figure 3.

In order to show our attack we need the next lemma, which is a simple generalization of a result
due to Shamir [40].

Lemma 4.10 Let n be the product of two distinct large primes. Given four integers α, β ∈ Z∗
n

and x, y ∈ Z, such that βx = αy mod n, it is easy to compute γ ∈ Z∗
n such that γx mod n =

αgcd(x,y) mod n.

Proof. Let δ = gcd(x, y). By the extended Euclid’s algorithm it is easy to compute two integers a
and b such that δ = ax + by. Let γ = βb · αa. It is easy to see that γx mod n = αδ mod n. Indeed

(βb · αa)x mod n = αby+ax mod n (since βx = αy mod n)

= αby+ax−δ · αδ mod n

= αδ mod n.

Thus, the lemma holds.

Consider the hierarchy of Figure 4 and let A and B be two users assigned to classes u and v
in time sequences (t1, t2) and (t2, t3), respectively. Moreover, let gcd(eu, gt3) = 1. In the following
we show how users A and B can collude to compute the key ku,t3 , that they should not be able to

obtain. Let ku,t2 = k
dudwht2
0 mod n and sv,(t2,t3) = k

dvdwht2ht3
0 mod n. Moreover, let β = ku,t2 and

α = (sv,(t2,t3))
ev mod n. Since βeu = αgt3 mod n, from Lemma 4.10 users A and B can efficiently

compute the value γ such that γeu mod n = α, that is, γ = k
dudwht2ht3
0 mod n. Thus, they can

compute the key ku,t3 = k
dudwht3
0 mod n = γgt2 mod n.

More generally, let u and v be two distinct classes such that v 6∈ Au and Au \ {u} ⊆ Av. Let
A and B be two users assigned to classes u and v in time sequences (tx, . . . , ty) and (ti, . . . , tj),
respectively, where t1 ≤ tx < ti ≤ ty < tj ≤ t

|T |
. Let ti ≤ t ≤ ty and gt = δ · ρ, where ρ ≥ 1 and
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Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G = (V,E) ∈ Γ be
a graph, let T = (t1, . . . , t|T |) be a sequence of distinct time periods, and let P be the interval-set
over T .

Algorithm Gen(1τ , G,P)

1. Randomly choose two distinct large primes p and q and compute n = p · q, having bitlength
τ , and φ(n) = (p − 1)(q − 1);

2. For each class u ∈ V , randomly choose a public integer eu such that gcd(eu, φ(n)) = 1;

3. For each time period t ∈ T , randomly choose a public integer gt such that gcd(gt, φ(n)) = 1;

4. Let pub be the sequence of public information computed in the previous two steps;

5. For each class u ∈ V , compute the secret integer du, such that eu · du = 1 mod φ(n);

6. For each time period t ∈ T , compute the secret integer ht such that gt · ht = 1 mod φ(n);

7. Choose a random integer k0, where 1 < k0 < n, and for each class u ∈ V compute a class

key ku = k

∏
v∈Au

dv

0 mod n;

8. For each class u ∈ V and each time sequence λ ∈ P, compute the private information

su,λ = k

∏
r∈λ

hr

u mod n;

9. For each class u ∈ V and each time period t ∈ T , compute the key ku,t = kht
u mod n;

10. Let s and k be the sequences of private information and keys, respectively, computed in the
previous steps;

11. Output (s, k, pub).

Algorithm Der(1τ , G,P, u, v, λ, su,λ, t, pub)
Compute the key kv,t as

(su,λ)

∏
w∈Au\Av

ew

∏
r∈λ & r 6=t

gr
= kht

v mod n = kv,t.

Figure 3: Yeh’s time-bound hierarchical key assignment scheme.

δ = gcd(eu, gt′), for some ty < t′ ≤ tj . In the following we show how users A and B can collude to
compute the key ku,t′ , that they should not be able to obtain. Let β = ku,t and

α = (sv,(ti,tj))

∏
r∈(ti,...,tj) & r 6=t,t′

gr

∏
w∈Av\Au

ew
mod n.

It is easy to see that

βeu = k
ht

∏
w∈Au\{u}

dw

0 mod n = αgt′ mod n.

Hence, from Lemma 4.10 users A and B can efficiently compute the value γ such that γeu mod n =

αδ mod n, that is, γ = k
ht·ht′ ·δ

∏
w∈Au

dw

0 mod n. Afterwards, they can compute the value

γρ mod n = k
ht′

∏
w∈Au

dw

0 mod n = ku,t′ .
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u v

w

Figure 4: A partially ordered hierarchy.

4.3 A Scheme based on Symmetric Encryption Schemes

In this section we first show how to construct a time-bound key assignment scheme (Gen, Der)
using as a building block a symmetric encryption scheme. Afterwards, we prove that the security
property of the resulting time-bound key assignment scheme depends on the security property of
the underlying encryption scheme. We first recall the definition of a symmetric encryption scheme.

Definition 4.11 A symmetric encryption scheme is a triple Π = (K, E ,D) of algorithms satisfying
the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes as input the security
parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as inputs 1τ , a string
key produced by K(1τ ), and a message m ∈ {0, 1}∗, and produces as output the ciphertext y.

3. The decryption algorithm D is deterministic polynomial-time. It takes as inputs 1τ , a string
key produced by K(1τ ), and a ciphertext y, and produces as output a message m. We require
that for any string key which can be output by K(1τ ), for any message m ∈ {0, 1}∗, and for
all y that can be output by E(1τ , key, m), we have that D(1τ , key, y) = m.

In Figure 6 we describe a time-bound hierarchical key assignment scheme using as a building
block a symmetric encryption scheme Π = (K, E ,D). The first step of the algorithm Gen performs
a graph transformation, starting from the graph G = (V, E) and P. The output of such a trans-
formation is a graph GPT

= (VPT
, EPT

), where VPT
= VP ∪ V

T
and VP ∩ V

T
= ∅, constructed as

follows:

• for each class u ∈ V and each time sequence λ ∈ P, we place a class uλ in VP ;

• for each class u ∈ V and each time period t ∈ T , we place a class ut in V
T
;

• for each class u ∈ V , each time sequence λ ∈ P, and each time period t ∈ λ, we place an edge
between uλ and ut in GPT

, i.e., (uλ, ut) ∈ EPT
;

• for each pair of classes u and v connected by a path in G, each time sequence λ ∈ P, and
each time period t ∈ λ, we place an edge between uλ and vt in GPT

, i.e., (uλ, vt) ∈ EPT
.

Figure 5 shows an example of the graph transformation described above, where P = {λ1, λ2, λ3},
λ1 = (t1), λ2 = (t1, t2), and λ3 = (t2).

Notice that in the two-level partially ordered hierarchy obtained by the above transformation
the classes at the first level do not need to be assigned encryption keys, since they have no data
to be protected. On the other hand, the classes at the second level do not need to perform key
derivations, since there are no classes that can be accessed by them.
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Figure 5: The graph transformation used in our construction.

4.3.1 Analysis of the Scheme

In the following we show that the security property of the time-bound key assignment scheme of
Figure 6 depends on the security property of the underlying encryption scheme. We first need to
define what we mean by a secure symmetric encryption scheme. We consider two different security
goals: with respect to plaintext indistinguishability and against plaintext recovery.

We start with the definition of security with respect to plaintext indistinguishability, which
is an adaption of the notion of polynomial security as given in [25]. We imagine an adversary
A = (A1, A2) running in two stages. In advance of the adversary’s execution, a random key key
is chosen and kept hidden from the adversary. During the first stage, the adversary A1 outputs a
triple (x0, x1, state), where x0 and x1 are two messages of the same length, and state is some state
information which could be useful later. One message between x0 and x1 is chosen at random and
encrypted to give the challenge ciphertext y. In the second stage, the adversary A2 is given y and
state and has to determine whether y is the encryption of x0 or x1. Informally, the encryption
scheme is said to be secure with respect to a non-adaptive chosen plaintext attack, denoted by
IND-P1-C0 in [32], if every polynomial-time adversary A, which has access to the encryption oracle
only during the first stage of the attack and has never access to the decryption oracle , succeeds in
determining whether y is the encryption of x0 or x1 with probability only negligibly different from
1/2.

Definition 4.12 [IND-P1-C0] Let Π = (K, E ,D) be a symmetric encryption scheme and let τ be
a security parameter. Let A = (A1, A2) be an adversary that has access to the encryption oracle
only during the first stage of the attack and has never access to the decryption oracle. Consider the
following two experiments:

Experiment ExpIND−P1−C0−1

Π,A (1τ ) Experiment ExpIND−P1−C0−0

Π,A (1τ )

key ← K(1τ ) key ← K(1τ )

(x0, x1, state)←A
Ekey(·)
1 (1τ ) (x0, x1, state)←A

Ekey(·)
1 (1τ )

y←Ekey(x1) y←Ekey(x0)
d ← A2(1

τ , y, state) d ← A2(1
τ , y, state)

return d return d

The advantage of A is defined as

AdvIND−P1−C0

Π,A (1τ ) = |Pr[ExpIND−P1−C0−1

Π,A (1τ ) = 1] − Pr[ExpIND−P1−C0−0

Π,A (1τ ) = 1]|.

The scheme is said to be secure in the sense of IND-P1-C0 if the advantage function AdvIND−P1−C0

Π,A (1τ )
is negligible, for any adversary A whose time complexity is polynomial in τ .
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Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G = (V,E) ∈ Γ be
a graph, let T be a sequence of distinct time periods, let P be the interval set over T , and let
Π = (K, E ,D) be a symmetric encryption scheme.

Algorithm Gen(1τ , G,P)

1. Perform a graph transformation in order to obtain the two-level partially ordered hierarchy
G

PT
= (V

PT
, E

PT
), where V

PT
= V

P
∪ V

T
;

2. For each class uλ in V
P
, let su,λ ← K(1τ );

3. For each class ut in V
T
, randomly choose a secret value ku,t ∈ {0, 1}τ ;

4. Let s and k be the sequences of private information and keys, respectively, computed in the
previous two steps;

5. For any pair of classes (uλ, vt) ∈ V
P
× V

T
such that (uλ, vt) ∈ E

PT
, compute the public

information p(u,λ),(v,t) = Esu,λ
(kv,t);

6. Let pub be the sequence of public information computed in the previous step;

7. Output (s, k, pub).

Algorithm Der(1τ , G,P, u, v, λ, su,λ, t, pub)

1. Extract the public value p(u,λ),(v,t) from pub;

2. Output the key kv,t = Dsu,λ
(p(u,λ),(v,t)).

Figure 6: A time-bound hierarchical key assignment scheme based on a symmetric encryption scheme.

In the following we consider a weaker definition of security. We imagine an adversary A whose
goal is to recover the plaintext corresponding to a given ciphertext. In advance of the adversary’s
execution, both a random key key and a random message x, having a certain length, are chosen and
kept hidden from the adversary. The message x is then encrypted and given to the adversary as
the challenge ciphertext y. Informally, the encryption scheme is said to be secure with respect to a
non-adaptive chosen plaintext attack, denoted by PR-P1-C0, if every polynomial-time adversary A,
which has access to the encryption oracle and has never access to the decryption oracle, succeeds
in determining the plaintext x corresponding to the challenge ciphertext y with probability only
negligibly different from 1/2length(x).

Definition 4.13 [PR-P1-C0] Let Π = (K, E ,D) be a symmetric encryption scheme and let τ be a
security parameter. Let A be an adversary that has access to the encryption oracle and has never
access to the decryption oracle. Consider the following experiment:

Experiment ExpPR−P1−C0

Π,A (1τ )

key ← K(1τ )
x ← {0, 1}τ

y←Ekey(x)
x′ ← AEkey(·)(y)
if x = x′ then return 1

else return 0
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The advantage of A is defined as

AdvPR−P1−C0

Π,A (1τ ) = Pr[ExpPR−P1−C0−1

Π,A (1τ ) = 1].

The scheme is said to be secure in the sense of PR-P1-C0 if the advantage function AdvPR−P1−C0

Π,A (1τ )
is negligible, for any adversary A whose time complexity is polynomial in τ .

Now we are ready to show that if the encryption scheme Π = (K,D, E) is secure in the sense of
IND-P1-C0 (PR-P1-C0, respectively), then our time-bound key assignment scheme is secure in the
sense of IND-ST (REC-ST, respectively).

Theorem 4.14 If the encryption scheme Π = (K,D, E) is secure in the sense of IND-P1-C0, then
the time-bound key assignment scheme of Figure 6 is secure in the sense of IND-ST.

Proof. Let Γ be a family of graphs corresponding to partially ordered hierarchies and let G = (V, E)
be any graph in Γ. The proof uses a standard hybrid argument. Let ut∗ ∈ V

T
be a class and assume

there exist m classes in VP which are able to access ut∗ . W.l.o.g., let u1λ1
, . . . , umλm

be such
classes. Let STATu,t∗ be a static adversary attacking class ut∗ . We construct a sequence of m + 1
experiments Exp1

u,t∗ , . . . ,Expm+1
u,t∗ , all defined over the same probability space. In each experiment

we modify the way the view of STATu,t∗ is computed, while maintaining the view’s distributions
indistinguishable among any two consecutive experiments. For any q = 1, . . . , m + 1, experiment
Expq

u,t∗ is defined as follows:

Experiment Expq
u,t∗(1

τ , G,P)
(s, α, pub) ← Genq(1τ , G,P)
corr ← Corruptu,t∗(s)
d ← STATu,t∗(1

τ , G,P, pub, corr, αu,t∗)
return d

The algorithm Genq used in Expq
u,t∗ is the same algorithm Gen used in the scheme of Figure 6

with the following modification: for any h = 1, . . . , q− 1, the public value p(vh,λh),(u,t∗) is computed
as the encryption, with the key svh,λh

, of a random value βq ∈ {0, 1}τ , instead of the encryption of
the key assigned to ut∗ , which is denoted by αu,t∗ . Notice that experiment Exp1

u,t∗ is the same as

ExpIND−1

STATu,t∗
. Indeed, the adversary STATu,t∗ is given the value αu,t∗ and for each h = 1, . . . , m, the

public value p(vh,λh),(u,t∗) computed by Gen1 corresponds to the encryption of αu,t∗ . On the other

hand, experiment Expm+1
u,t∗ is the same as ExpIND−0

STATu,t∗
. Indeed, the adversary STATu,t∗ is given

the value αu,t∗ and, for each h = 1, . . . , m, the public value p(vh,λh),(u,t∗) computed by Genm+1

corresponds to the encryption of the value βm+1.
In the following we show that, for any q = 2, . . . , m + 1, the adversary’s view in the (q − 1)-th

experiment is indistinguishable from the adversary’s view in the q-th one. Hence, it follows that
also the adversary’s views in experiments ExpIND−1

STATu,t∗
and ExpIND−0

STATu,t∗
are indistinguishable.

Assume by contradiction that there exists a polynomial-time distinguisher Bq which is able to

distinguish between the adversary STATu,t∗ ’s views in experiments Expq−1
u,t∗ and Expq

u,t∗ with non-
negligible advantage. We show how to construct a polynomial-time adversary A = (A1, A2), using
Bq, which breaks the security of the encryption scheme Π = (K, E ,D) in the sense of IND-P1-C0.
The algorithm A1, on input 1τ , makes queries to the encryption oracle Ekey(·) and outputs a triple
(x0, x1, state), where x0, x1 ∈ {0, 1}τ , and state is some state information.
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Algorithm A
Ekey(·)
1 (1τ )

x0, x1 ← {0, 1}τ

//construction of secret values
for each class wλ ∈ V

P
\ {vqλq

}

sw,λ ← K(1τ )
for each class wt ∈ V

T
\ {ut∗}

kw,t ← {0, 1}τ

//construction of public values
for h = 1, . . . , q − 1

p(vh,λh),(u,t∗) ← Esvh,λh
(x1)

for h = q + 1, . . . ,m
p(vh,λh),(u,t∗) ← Esvh,λh

(x0)

for any class wt ∈ V
T
\ {ut∗} such that (vqλq

, wt) ∈ E
PT

p(vq,λq),(w,t) ← Ekey(kw,t)
for any two classes zλ ∈ V

P
\ {vqλq

} and wt ∈ V
T
\ {ut∗} such that (zλ, wt) ∈ E

PT

p(z,λ),(w,t) ← Esz,λ
(kw,t)

//construction of the view
pub′ ← all public values constructed as above
corr ← secret values held by classes in the set {wλ ∈ V

P
: (wλ, ut∗) 6∈ E

PT
}

state ← (pub′, corr, x0, x1)
return (x0, x1, state)

Let y be the challenge for the algorithm A, corresponding to the encryption of either x0 or x1

with the unknown key key. The algorithm A2 constructs the view for the distinguisher Bq, adding
the value p(vq ,λq),(u,t∗) = y to the public information pub′ constructed by A1, and outputs the same
output as Bq on inputs such a view, the class u, the time period t∗, and x0. More formally, the
algorithm A2 is defined as follows:

Algorithm A2(1
τ , y, state)

let state = (pub′, corr, x0, x1)
pub ← pub′ with p(vq,λq),(u,t∗) set equal to y
d ← Bq(1

τ , G,P, pub, corr, x0)
return d

Notice that if y corresponds to the encryption of x1, then the random variable associated to
the adversary’s view is exactly the same as the one associated to the adversary view in experiment
Expq−1

u,t∗ , whereas, if y corresponds to the encryption of x0, it has the same distribution as the one
associated to the adversary’s view in experiment Expq

u,t∗ .
Hence, if the algorithm Bq is able to distinguish between such views with non negligible advan-

tage, it follows that algorithm A is able to break the security of the encryption scheme Π = (K, E ,D)
in the sense of IND-P1-C0. Contradiction.

Hence, for any q = 2, . . . , m + 1, the adversary’s view in the (q − 1)-th experiment is indistin-
guishable from the adversary’s view in the q-th one. Therefore, the adversary’s view in experiment
ExpIND−1

STATu,t∗
is indistinguishable from the adversary’s view in experiment ExpIND−0

STATu,t∗
. This concludes

the proof.

Following the lines of Theorem 4.14 we can prove that the next result also holds.

Theorem 4.15 If the encryption scheme Π = (K,D, E) is secure in the sense of PR-P1-C0, then
the time-bound key assignment scheme of Figure 6 is secure in the sense of REC-ST.

22



4.3.2 Performance Evaluation

In this section we evaluate the scheme of Figure 6, taking into account several parameters, such as
space requirements for public and private information storage, computational requirements for key
derivation, and security. Regarding space requirements, the scheme requires a public value for each

edge in the graph GPT
used in the construction. It is easy to see that |EPT

| = O(|V |2) ·
∑|T |

i=1 i ·
(|T | − i + 1) = O(|V |2 · |T |3). More precisely, |EPT

| = O(|E∗| · |T |3), where G∗ = (V, E∗) is the
directed graph that can be obtained from G = (V, E) by adding to E all self-loops and edges which
are implied by the property of the transitive closure. On the other hand, each user belonging to a
certain class for a time sequence has to store a single secret value. Moreover, users are required to
perform a single decryption in order to derive a key.

To obtain a scheme secure in the sense of IND-ST we construct an encryption scheme secure in
the sense of IND-P1-C0. To this aim, we could use a pseudorandom function family, an important
cryptographic primitive originally defined by Goldreich, Goldwasser, and Micali [24]. Loosely
speaking, a distribution of functions is pseudorandom if it satisfies the following requirements: 1) It
is easy to sample a function according to the distribution and to evaluate it at a given point; 2) It
is hard to tell apart a function sampled according to the distribution from a uniformly distributed
function, given access to the function as a block-box. Since pseudorandom functions have a wide
range of applications, the problem of designing efficient constructions for such functions has received
considerable attention. A first construction, based on pseudorandom generators, was proposed in
[24]. It is well known that pseudorandom generators can be constructed from one-way functions
[9, 28]. The two more efficient constructions were proposed by Naor and Reingold [38]. In their
constructions, the cost of evaluating such functions is comparable to two modular exponentiations.

Consider the following construction, called the XOR construction [7], of a symmetric encryption
scheme ΠXOR,F = (KXOR, EXOR,DXOR) which is based on a pseudorandom function family F :
{0, 1}τ × {0, 1}τ → {0, 1}τ :

• The key generation algorithm KXOR outputs a random τ -bit key ρ for the pseudorandom
function family F , thus specifying a function Fρ of the family.

• The encryption algorithm EXOR considers the message x to be encrypted as a sequence of
τ -bits blocks x = x1 · · ·xn (padding is done on the last block, if necessary), chooses a random
string r of τ bits and computes, for i = 1, . . . , n the value yi = Fρ(r + i)⊕ xi. The ciphertext
is r||y1 · · · yn, where || denotes string concatenation.

• The decryption algorithm DXOR, on input a ciphertext z, parses it as r||y1 · · · yn and com-
putes, for i = 1, . . . , n the value xi = Fρ(r + i) ⊕ yi. The corresponding plaintext is
x = x1 · · ·xn.

The encryption scheme ΠXOR,F has been shown to be secure in the sense of IND-P1-C0 (see
[7, 32]), assuming that F is a pseudorandom function family. Therefore, ΠXOR,F could be used to
obtain a time-bound hierarchical key assignment scheme secure in the sense of IND-ST. An efficient
implementation of the resulting time-bound hierarchical key assignment scheme could be obtained
by using the HMAC [6] to realize the pseudorandom function family F .

Notice that if the message x to be encrypted has length τ , the XOR construction reduces to
compute the ciphertext as r||y, where y = Fρ(r) ⊕ x and r is a random string of τ bits. Such a
construction has been used by Atallah et al. [3] to design a hierarchical key assignment scheme
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without temporal constraints. In their scheme, for each edge (u, v) ∈ E there is a public value
yu,v = Fku(ℓv) ⊕ kv, corresponding to the encryption of the key kv assigned to class v, where the
key ku specifies a function Fku of the pseudorandom function family F , and ℓv is a public label
associated to v.

4.3.3 Handling Dynamic Changes

In this section we show how to manage changes to the hierarchy, such as addition and deletion of
nodes and edges, in such a way that no private information held by users need to be re-computed
by the TA. Indeed, such updates can be handled by local changes to the public information.

Insertion of an edge Let (u, v) be an edge to be added to the hierarchy, starting from time
period ti through t

|T |
. Such an update can be managed by the TA by adding to the public

information pub the public value p(u,λ),(v,tj) = Esu,λ
(kv,tj ), for each sequence of time periods

λ = (tx, . . . , ty) ∈ P, where i ≤ x ≤ j ≤ y.

Deletion of an edge Let (u, v) be an edge to be deleted from the hierarchy, starting from time
period ti through t

|T |
. In order to forbid users belonging to class u from computing the

key of class v in any time period tj , where j = 1, . . . , |T |, the TA has to choose a new key
k′

v,tj ∈ {0, 1}τ for class v at time period tj . On the other hand, in order to allow authorized
users to compute such a new key, the TA has to update the public information pub, by
recomputing the public value p(w,λ),(v,tj) = Esw,λ

(k′
v,tj ), for each edge (w, v) ∈ E and each

time sequence λ = (tx, . . . , ty) ∈ P, where i ≤ x ≤ j ≤ y.

Insertion of a node Let u be a node to be added to the hierarchy, along with new incoming and
outgoing edges, starting from time period ti through t

|T |
. For each j = i, . . . , |T |, the TA first

chooses a random key ku,tj ∈ {0, 1}τ . Then, for each time sequence λ = (tx, . . . , ty) ∈ P,
where i ≤ x ≤ y, the TA computes the private information su,λ ← K(1τ ) and uses it to
compute the public value p(u,λ),(u,tj) = Esu,λ

(ku,tj ), for any j = 1, . . . , |T |, which is added
to the public information pub. Finally, the updates involving the addition of incoming and
outgoing edges are managed by using the above procedure for edge insertions.

Deletion of a node Let u be a node to be deleted by the hierarchy, starting from time period
ti through t

|T |
. The TA first uses the above procedure for edge deletions to delete all edges

incident on u and then removes the node from V .

4.4 A Scheme based on Bilinear Maps

In this section we design a time-bound hierarchical key assignment where the amount of public
information does not depend on the number of time periods. Our scheme uses as a building block
a bilinear map between groups. Bilinear maps have been used in cryptography to construct key
exchange schemes [31], public-key cryptosystems [10, 11, 13], signature schemes [12], etc. We first
recall the definition of a bilinear map.

Definition 4.16 A function e : G1×Ĝ1 → G2 is said to be a bilinear map if the following properties
are satisfied:

1. G1 and Ĝ1 are two groups of the same prime order q;
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2. For each α, β ∈ Zq, each g ∈ G1, and each h ∈ Ĝ1, the value e(gα, hβ) = e(g, h)αβ is efficiently
computable;

3. The map is non-degenerate (i.e., if g generates G1 and h generates Ĝ1, then e(g, h) generates
G2).

Typically, the group G1 is a subgroup of the additive group of points of an elliptic curve E(Fp),
where p denotes the size of the field where the elliptic curve is defined. The group Ĝ1 is a subgroup
of E(Fpη), where η > 0 is the embedding degree of the map, whereas, the group G2 is a subgroup of
the multiplicative group of the finite field F ∗

pη . Given a security parameter τ , let G be a randomized
algorithm, called a BDH parameter generator, which, on input 1τ , outputs a prime number q of
τ bits, the description of two groups G1 and G2 of order q, and the description of a bilinear map
e : G1 × G1 → G2. The running time of G is polynomial in τ . We denote the output of G by
G(1τ ) =< q, G1, G2, e >.

In the following we describe a time-bound hierarchical key assignment scheme based on a bilinear
map. For simplicity, we focus on symmetric bilinear maps (i.e., such that G1 = Ĝ1), but our scheme
works in the more general asymmetric setting (in particular, this implies that we could use the
highly efficient MNT curves [37]). We consider a two-level partially ordered hierarchy, where each
level contains the same number of classes and there are no edges between classes at the same level.
We remark that this is not a restriction, since any directed graph representing an access control
policy can be transformed in a two-level partially ordered hierarchy having the above features,
using a technique proposed in [18]. For the reader’s convenience, we first explain how such a graph
transformation works. Let G = (V, E) be the graph corresponding to a partially ordered hierarchy.
We can construct a two-level partially ordered hierarchy G′ = (V ′, E′), where V ′ = Vℓ ∪ Vr and
Vℓ ∩ Vr = ∅, as follows:

• for each class u ∈ V , we place two classes uℓ and ur in V ′, where uℓ ∈ Vℓ and ur ∈ Vr;

• for each class u ∈ V , we place the edge (uℓ, ur) in E′;

• for each pair of classes v and u connected by a path in G, we place the edge (vℓ, ur) in E′.

It is easy to see that the graphs G and G′ define exactly the same access control policy. Figure 7
shows an example of the graph transformation described above.

a

b c

aℓ bℓ cℓ

ar br cr

Figure 7: The graph transformation used in our construction.

25



Our scheme based on bilinear maps is described in Figure 8.

Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G = (V,E) ∈ Γ be a graph, let
T be a sequence of distinct time periods, let P be the interval-set over T , let G′ = (V ′, E′) be the two-level
partially ordered hierarchy obtained from G, and let G be a BDH parameter generator.

Algorithm Gen(1τ , G′,P)

1. Run G(1τ ) to generate a prime q, two groups G1 and G2 of order q and a bilinear map e : G1×G1 → G2;

2. Choose a generator g ∈ G∗
1;

3. For each class uℓ ∈ Vℓ, randomly choose a secret value πℓ
u ∈ Zq;

4. For each class vr ∈ Vr, randomly choose a secret value πr
v ∈ Zq;

5. For each pair of classes uℓ ∈ Vℓ and vr ∈ Vr connected by an edge, i.e., such that (uℓ, vr) ∈ E′,

compute the public information pu,v = gπr
v/πℓ

u ;

6. Let pub be the sequence of public information computed in the previous step, along with the bilinear
map e and the generator g;

7. For each time period t ∈ T , randomly choose a secret value δt ∈ Zq;

8. For each class uℓ ∈ Vℓ and each time period t ∈ T , compute the private information su,t = gπℓ
u·δt ;

9. For each class uℓ ∈ Vℓ and each time sequence λ ∈ P, where λ = (tx, . . . , ty), compute the private
information su,λ = (su,tx

, . . . , su,ty
);

10. For each class vr ∈ Vr and each time period t ∈ T , compute the key kv,t = e(g, g)πr
v·δt ;

11. Let s and k be the sequences of private information and keys, respectively, computed in previous steps;

12. Output (s, k, pub).

Algorithm Der(1τ , G′,P, uℓ, vr, λ, su,λ, t, pub)

1. Extract the public value pu,v = gπr
v/πℓ

u from pub;

2. Compute the key kv,t as follows

e(su,t, pu,v) = e(gπℓ
u·δt , gπr

v/πℓ
u)

= e(g, g)πr
v·δt

= kv,t.

Figure 8: A time-bound hierarchical key assignment scheme based on a bilinear map.

4.4.1 Analysis of the Scheme

The Bilinear Diffie-Hellman Problem (BDH) in < G1, G2, e > is as follows: given the tuple
(g, gα, gβ , gγ), for randomly chosen α, β, γ ∈ Z∗

q , and a random generator g of G1, compute

e(g, g)α·β·γ ∈ G2. Such a problem has been introduced in [11].

26



Definition 4.17 (BDH Assumption) Let G be a BDH parameter generator. The advantage of
an algorithm A in solving the BDH Problem for G is defined as

AdvBDH

G,A(1τ ) = Pr[A(g, gα, gβ , gγ) = e(g, g)α·β·γ ],

where the probability is over the random choices of G(1τ ), the random choice of g in G∗
1, the random

choice of α, β, γ in Z∗
q , and the random bits of A.

The BDH problem is said to be hard in groups generated by G if the function AdvBDH

G,A(1τ ) is
negligible, for each randomized algorithm A whose time complexity is polynomial in 1τ .

The Bilinear Decisional Diffie-Hellman Problem (BDDH) in < G1, G2, e > is as follows: given
the tuple (g, gα, gβ , gγ , x), for randomly chosen α, β, γ ∈ Z∗

q , x ∈ G2, and a random generator g of

G1, decide whether x = e(g, g)α·β·γ . Such a problem has been introduced in [11].

Definition 4.18 (BDDH Assumption) Let G be a BDH parameter generator. The advantage
of an algorithm A in solving the BDDH Problem for G is defined as

AdvBDDH

G,A (1τ ) = |Pr[A(g, gα, gβ , gγ , x) = 1] − Pr[A(g, gα, gβ , gγ , e(g, g)α·β·γ) = 1]|,

where the probability is over the random choices of G(1τ ), the random choice of g in G∗
1, the random

choice of α, β, γ in Z∗
q , the random choice of x in G2, and the random bits of A.

The BDDH problem is said to be hard in groups generated by G if the function AdvBDDH

G,A (1τ ) is
negligible, for each randomized algorithm A whose time complexity is polynomial in 1τ .

Now we are ready to prove that if the BDDH problem is hard in groups generated by G, then
our time-bound key assignment scheme is secure in the sense of IND-ST.

Theorem 4.19 The time-bound hierarchical key assignment scheme of Figure 8 is secure in the
sense of IND-ST, assuming the BDDH problem is hard in groups generated by G.

Proof. We show that any polynomial-time adversary breaking the security of the scheme in the
sense of IND-ST can be turned into a polynomial-time adversary solving the BDDH problem. Let
Γ be a family of graphs corresponding to partially ordered hierarchies and let G = (V, E) be any
graph in Γ. Assume there exists a static adversary STATv,t∗ whose advantage AdvIND

STATv,t∗
(1τ , G)

is non negligible. In the following we show how to construct a polynomial-time adversary A that,
given an instance (g, gα, gβ , gγ , x) of the BDDH problem, uses the adversary STATu,t∗ to decide
whether x = e(g, g)α·β·γ . The adversary A, on input the instance (g, gα, gβ , gγ , x), constructs the
inputs for the adversary STATv,t∗ by means of a simulation of the scheme, as shown in the following.
In order to construct the public information pub to be given as input to STATv,t∗ , the adversary A
performs the following steps:

1. For each class uℓ ∈ Vℓ, randomly chooses a value σℓ
u ∈ Zq;

2. For each class vr ∈ Vr, randomly chooses a value σr
v ∈ Zq;

3. For each pair of classes connected by an edge, computes the public information according to
the three following distinct cases:
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(a) For each class uℓ ∈ Vℓ such that (uℓ, vr) ∈ E′, computes the value pu,v = (gβ)σr
v/σℓ

u .
Note that this means that the secret values πℓ

u and πr
v associated to the classes uℓ and

vr during the initialization phase of the simulated scheme correspond to the values α ·σℓ
u

and α · β · σr
v, respectively;

(b) For each pair of classes (uℓ, wr) ∈ Vℓ×Vr \{v
r} such that (uℓ, wr) ∈ E′ and (uℓ, vr) ∈ E′,

computes the public information pu,w = gσr
w/σℓ

u . Note that this means that the secret
values πr

w and πℓ
u associated to the classes wr and uℓ during the initialization phase of

the simulated scheme correspond to the values α · σr
w and α · σℓ

u, respectively;

(c) For each pair of classes (uℓ, wr) ∈ Vℓ×Vr \{v
r} such that (uℓ, wr) ∈ E′ and (uℓ, vr) 6∈ E′,

computes the public information pu,w = (gα)σr
w/σℓ

u . Note that this means that the secret
values πr

w and πℓ
u associated to the classes wr and uℓ during the initialization phase of

the simulated scheme correspond to the values α · σr
w and σℓ

u, respectively.

Observe that each pair of classes connected by an edge in E′ is involved in exactly one of
the above three cases. On the other hand, each single class may be involved in more than
one case. However, it is easy to see that the secret value corresponding to each class is
consistent with the others. Clearly, such secret values cannot be computed by the adversary
A, but we have outlined the correspondence between each class and its secret value in order
to fuel intuition over the reader. Figure 4.4.1 shows the two-level hierarchy of Figure 7 with
the public information constructed by A and the secret values corresponding to the classes,
assuming br is the attacked class.

aℓ

πℓ
a = α · σℓ

a

gσr
a/σℓ

a

bℓ

πℓ
b = α · σℓ

b

(gβ)σr
b
/σℓ

b

cℓ

πℓ
c = σℓ

c

ar

πr
a = α · σr

a

br

πr
b = α · β · σr

b

(gβ)σr
b
/σℓ

a

cr

πr
c = α · σr

c

gσr
c/σℓ

a
(gα)σr

c/σℓ
c

Figure 9: The two-level hierarchy of Figure 7 with the public information constructed by A and the secret
values corresponding to the classes.

In order to construct the private information corr held by corrupted classes, to be given as
input to STATu,t∗ , the adversary A performs the following steps:

1. For each time period t 6= t∗, randomly chooses a value δt ∈ Zq and for each class uℓ ∈ Vℓ,

computes the private information su,t = gπℓ
u·δt , where the value πℓ

u corresponds either to α ·σℓ
u

or to σℓ
u according to the above construction. More precisely, we distinguish the following

two cases:

(a) For each class uℓ ∈ Vℓ such that (uℓ, vr) ∈ E′, A computes the value su,t = (gα)σℓ
u·δt ;

(b) For each class uℓ ∈ Vℓ such that (uℓ, vr) 6∈ E′, A computes the value su,t = gσℓ
u·δt .
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2. For the time period t∗, randomly chooses a value ϕ ∈ Zq and for each class uℓ ∈ Vℓ such

that (uℓ, vr) 6∈ E′, computes the private information su,t∗ = (gγ)σℓ
u·ϕ. Note that this means

that the secret value δt∗ associated to the time period t∗ during the initialization phase of the
simulated scheme corresponds to the value γ · ϕ.

The last input for STATv,t∗ , corresponding either to the key kv,t∗ or to a random value having the
same length as kv,t∗ , is computed as xσr

v ·ϕ.
It is easy to see that the adversary STATv,t∗ ’s view in the above simulation cannot be dis-

tinguished from the one obtained in a real execution of the scheme, since the random variables
associated to such views are exactly the same. Moreover, all the computations needed to construct
STATv,t∗ ’s view can be performed in polynomial-time.

Clearly, since STATv,t∗ distinguishes the key kv,t∗ from a random string having the same length,
with non negligible advantage, it follows that the adversary A decides whether x is equal to
e(g, g)α·β·γ with non negligible advantage. Hence, the theorem holds.

4.4.2 Performance Evaluation

With respect to storage requirements, notice that the scheme requires a public value for each edge
in the graph G′ = (V ′, E′) used in the construction, thus the total number of public values is
|E′| = |E∗| = O(|V |2), which does not depend on the number |T | of time periods. This means that
the number of time periods for which the scheme must be active does not need to be known in
advance. Moreover, we stress that each public value is typically 171 bits long. On the other hand,
each user belonging to a certain class for a time sequence has to store as many secret values as
the number of time periods in the sequence. Hence, the number of private values for each user is
O(|T |). Moreover, users are required to evaluate the bilinear map at two given points, in order to
perform key derivations.

Finally, notice that BDH parameter generators believed to satify the BDH and BDDH assump-
tions can be efficiently constructed from the (modified) Weil [10] and Tate pairings [23] defined
within elliptic or hyperelliptic curves over finite fields.

4.4.3 Handling Dynamic Changes

In this section we show how to manage changes to the hierarchy, such as addition and deletion of
nodes and edges, in such a way that no private information held by users need to be re-computed
by the TA. Indeed, such updates can be handled by local changes to the public information.

Insertion of an edge Let (u, v) be an edge to be added to the hierarchy, starting from time period

ti through t
|T |

. Such an update can be managed by the TA by adding the value pu,v = gπr
v/πℓ

u

to the public information pub.

Deletion of an edge Let (u, v) be an edge to be deleted from the hierarchy, starting from time
period ti through t

|T |
. In order to forbid users belonging to class u from computing the key of

class v in time period tj , where j = i, . . . , |T |, the TA has to assign a new key k′
v,tj to v. This

is done by choosing a new secret value for πr
v ∈ Zq and computing k′

v,tj according to such
a value. On the other hand, in order to allow authorized users to compute such a new key,
the TA has to update the public information pub, by recomputing the public value p(w,v), for
each edge (w, v) ∈ E according to the new value of πr

v ∈ Zq.
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Insertion of a node Let u be a node to be inserted to the hierarchy, along with new incoming and
outgoing edges, starting from time period ti through t

|T |
. The TA first chooses two random

values πℓ
u, πr

u ∈ Zq and then computes the value p(u,u) = gπr
u/πℓ

u , which is added to the public
information pub. Finally, the updates involving the addition of incoming and outgoing edges
are managed by using the above procedure for edge insertions.

Deletion of a node Let u be a node to be deleted from the hierarchy, starting from time period
ti through t

|T |
. The TA first uses the above procedure for edge deletions to delete all edges

incident on u and then removes the node from V .

5 Summary and Extensions

In this paper we have designed and analyzed time-bound hierarchical key assignment schemes that
are provably-secure and efficient. We have considered both the unconditionally secure and the
computationally secure settings and we have distinguished between two different goals: security
with respect to key indistinguishability and against key recovery. In the computational setting, we
have further distinguished security against static and adaptive adversarial behaviors. After showing
that a recently-proposed scheme is insecure, we have introduced two different constructions for time-
bound key assignment schemes. The first one is based on symmetric encryption schemes, whereas,
the second one makes use of bilinear maps. Both schemes support updates to the access hierarchy
with local changes to the public information and without requiring any private information to be
re-distributed. Figure 10 shows a summary of the constructions proposed in this paper.

Scheme Public Private Key Operation Computational
info. info. derivation type assumption

Unconditionally None O(|V | · |T |) Direct String None
secure concat.

Encryption O(|V |2 · |T |3) One Direct Decryption IND-P1-C0

based secure encryption

Pairing O(|V |2) O(|T |) Direct Pairing BDDH

based eval.

Figure 10: Summary of the constructions proposed in this paper.

Building on this work, and using some constructions for hierarchical key assignment schemes
without time constraints, recently proposed in [19], new constructions for time-bound hierarchical
key assignment schemes have been proposed in [21]. Such schemes exhibit a tradeoff among the
amount of secret data that needs to be distributed and stored by the users, the amount of data
that needs to be made public, the complexity of key derivation, and the computational assumption
on which the security of the scheme is based. An open problem would be to find a time-bound
hierarchical key assignment scheme which optimizes all parameters at the same time.

In this paper we have considered hierarchical time-bound key assignment schemes, however, the
model could be extended to the case where the graph G represents a general access control policy,
(i.e., which cannot be represented by a partially ordered hierarchy). Moreover, we have considered
the case where the graph G has the same structure for any time period, since it represents the
same access control policy. The model could be generalized to the case where there are different
access control policies, one for each time period. For example, consider a web-based electronic
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newspaper company which offers several types of subscription packages, organized as a partially
ordered hierarchy, where leaf nodes represent different topics. Assume that the newspaper company
is going to offer some subscription packages in some fixed time periods. In such a case a user may
subscribe to a package only for the time periods in which the newspaper company offers it. Such a
situation can be modeled by using a different graph to describe the access control policy for each
time period. More precisely, for any i = 1, . . . , |T |, we could represent the access control policy for
time period ti by a graph Gi = (Vi, Ei), where Vi denotes the set of classes affected by the policy
at time period ti, whereas, Ei represent the access relation between the classes. Throughout this
paper, for the sake of simplicity, we have analyzed the case usually considered in literature where
the access control policy can be represented by a partially ordered hierarchy and it is the same for
any time period. However, all our results could be easily extended for the more general setting.
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Appendix

In this Appendix we review the basic concepts of Information Theory used in our definitions and
proofs. For a complete treatment of the subject the reader is advised to consult [16].

Given a probability distribution {Pr
X
(x)}x∈X on a set X, we define the entropy 1 of X, H(X),

as
H(X) = −

∑

x∈X

Pr
X
(x) log Pr

X
(x).

The entropy satisfies the following property

0 ≤ H(X) ≤ log |X|,

where H(X) = 0 if and only if there exists x0 ∈ X such that Pr
X
(x0) = 1; whereas, H(X) = log |X|

if and only if Pr
X
(x) = 1/|X|, for all x ∈ X.

Given two sets X and Y and a joint probability distribution on their cartesian product, the
conditional entropy H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

Pr
Y

(y)Pr(x|y) log Pr(x|y).

From the definition of conditional entropy it is easy to see that

H(X|Y) ≥ 0.

Given n sets X1, . . . , Xn and a joint probability distribution on their cartesian product, the
entropy of X1 . . .Xn can be expressed as

H(X1 . . .Xn) = H(X1) +
n∑

i=2

H(Xi|X1 . . .Xi−1). (7)

Given n + 1 sets X1, . . . , Xn, Y and a joint probability distribution on their cartesian product, the
entropy of X1 . . .Xn given Y can be expressed as

H(X1 . . .Xn|Y) = H(X1|Y) +
n∑

i=2

H(Xi|X1 . . .Xi−1Y). (8)

The mutual information I(X;Y) between X and Y is defined by

I(X;Y) = H(X) − H(X|Y) (9)

and satisfies the following properties:

I(X;Y) = I(Y;X)

and I(X;Y) ≥ 0, from which one gets

H(X) ≥ H(X|Y). (10)

1All log’s in this paper denote basis 2 logarithms.
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Given three sets X, Y, Z and a joint probability distribution on their cartesian product, the
conditional mutual information I(X;Y|Z) between X and Y given Z is

I(X;Y|Z) = H(X|Z) − H(X|ZY) (11)

and satisfies the following properties:

I(X;Y|Z) = I(Y;X|Z)

and I(X;Y|Z) ≥ 0. Since the conditional mutual information is always non negative we get

H(X|Z) ≥ H(X|ZY). (12)

From (8) and (12) one easily gets that for any sets Y, X1, . . . , Xn and a joint probability distribution
on their cartesian product it holds that

n∑

i=1

H(Xi|Y) ≥ H(X1X2 . . .Xn|Y). (13)
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