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Abstract. At Eurocrypt 2004, Chen, Kudla and Paterson introduced the concept of
concurrent signatures, which allows two parties to produce two ambiguous signatures
until an extra piece of information (called keystone) is released by the initial signer.
Once the keystone is released publicly, both signatures are binding to their true signers
concurrently. At ICICS 2004, Susilo, Mu and Zhang further proposed perfect concurrent
signatures to strengthen the ambiguity of concurrent signatures. That is, even the both
signers are known having issued one of the two ambiguous signatures, any third party is
still unable to deduce who signed which signature, different from Chen et al.’s scheme.
However, this paper points out that Susilo et al.’s two perfect concurrent signatures are
actually not concurrent signatures. Specifically, we identify an attack that enables the
initial signer to release a carefully prepared keystone that binds the matching signer’s
signature, but not the initial signer’s. Therefore, both of their two schemes are unfair
for the matching signer. Moreover, we present a simple but effective way to avoid this
attack such that the improved schemes are truly perfect concurrent signatures.
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1 Introduction

The concept of concurrent signatures was recently introduced bey Chen, Kudla and
Paterson at Eurocrypt 2004 [11]. Such signature schemes allow two parties to produce
and exchange two ambiguous signatures until an extra piece of information (called
keystone) is released by one of the parties. More specifically, before the keystone is
released, those two signatures are ambiguous from the view point of any third party,
i.e., they may be issued either by two parties together or just by one party alone; after
the keystone is publicly known, however, both signatures are binding to their true
signers concurrently, i.e., anybody can publicly verify who signed which signature.

As explained below, concurrent signatures contribute a novel approach for the
traditional problem of fair exchange of signatures: Two mutually mistrustful parties
want to exchange their signatures in a fair way, i.e., after the completion of exchange,
either each party gets the other’s signature or neither party does. Fair exchange of
signatures has a wide range of potential applications in electronic commerce, like
contract signing and e-payment.

According to whether a trusted third party (TTP) is needed in the exchange pro-
cedure, there are two essentially different approaches in the literature for the problem
of fair exchanging signatures: (a) Gradual exchange without TTP; and (b) Optimal
exchange with TTP. Though without the help of a TTP, the first type solutions (e.g.,
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[20, 14,12]) impractically assume that both parties have equivalent computation re-
sources, and inefficiently exchange signatures “bit-by-bit” for many interactive rounds.
There are many efficient implementations belonging to the second approach, such as
verifiably encrypted signatures [6,5,9], escrowed signatures [3,4], convertible signa-
tures [8], and verifiable confirmation of signatures [10] etc. However, all those schemes
require a dispute-resolving TTP whose functions are beyond that of a CA in PKIs.
The point is that such an appropriate TTP may be costly or even unavailable to the
parties involved.

In [11], Chen et al. ingeniously observed that the full power of fair exchange is
not necessary in many applications, since there exist some mechanisms that provide
a more natural dispute resolution than the reliance on a TTP. Therefore, concurrent
signatures can be used as a weak tool to realize practical exchanges, if one of the
two parties would like to complete such an exchange. Chen et al. presented several
such applications, including a party needing the service of another, credit card pay-
ment transactions, secret information releasing, and fair tendering of contracts. In the
following, we only review a concrete example of the first kind application.

Consider a situation where a customer Alice would like to purchase a laptop from
a computer shop owned by Bob. For this purpose, Alice and Bob can first exchange
their ambiguous signatures via the Internet as follows. As the initial signer, Alice first
chooses a keystone, and signs her payment instruction ambiguously to pay Bob the
price of a laptop. Upon receiving Alice’s signature, Bob as the matching signer agrees
this order by signing a receipt ambiguously that authorizes Alice to pick one up from
Bob’s shop. However, to get the laptop from the shop physically, Alice has to show
both Bob’s signature and the keystone, because Bob’s ambiguous signature alone can
be forged by Alice easily. But the point is that once the keystone is released, both of the
two ambiguous signatures become binding concurrently to Alice and Bob respectively.
Therefore, Bob can present Alice’s signature together with the corresponding keystone
to get money from bank.

In the above example, Alice indeed has a degree of extra power over Bob, since
she controls whether to release the keystone. Actually, this is the exact reason why
concurrent signatures can only provide a somewhat weak solution for fair exchange
of signatures. In the usual real life, however, if Alice does not want to buy a laptop
(by releasing the keystone), why she wastes her time to book it. At the same time, by
adding a time limit in the receipt, Bob could cancel Alice’s order conveniently like the
practice in booking air-tickets nowadays. The advantage is that those solutions using
concurrent signatures [11,26] can be implemented very efficiently in both aspects of
computation and communication, and do not need any help from a TTP. Therefore,
the shortcomings in traditional solutions for fair exchange of signatures are overcome
in a relatively simple and natural way.

At ICICS 2004, Susilo, Mu and Zhang [26] pointed out that in Chen et al.’s con-
current signatures, if the two parties are known to be trustworthy any third party
can identify who is the true signer of both ambiguous signatures before the keystone
is released. To strengthen the ambiguity of concurrent signatures, Susilo et al. fur-
ther proposed a strong notion called perfect concurrent signatures, and presented two
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concrete constructions from Schnorr signature and bilinear pairing. That is, in their
schemes even a third party knows or believes both parities indeed issued one of the
two signatures, he/she still cannot deduce who signed which signature, different from
Chen et al.’s scheme.

However, this paper shall point out that Susilo et al.’s perfect concurrent signatures
are actually not concurrent signatures. Specifically, we successfully identify an attack
against their two schemes that enables the initial signer Alice to release a carefully
prepared keystone such that the matching signer Bob’s signature is binding, but not
her. Therefore, both of their two perfect concurrent signature schemes are unfair for
the matching signer Bob. To avoid this attack, we present a simple but effective way
so that the improved schemes are truly perfect concurrent signatures. Moreover, our
improvement from Schnorr signature obtains about 50% performance enhancement
over their original scheme. In addition, we also address another weakness in their
keystone generation algorithm.

For simplicity, we call PCS1 and PCS2 for Susilo et al.’s two perfect concurrent
signatures from Schnorr and bilinear pairing, respectively. In Sections 2 and 3, we
review PCS1 and then analyze its security. In Section 4, we discuss PCS2 and its
security. In Section 5, we present the improved schemes. Finally, Section 6 concludes
the paper.

2 Review of PSC1

We now review of PCS1 [26], which is a concurrent signature scheme derived from
Schnorr signature [25]. Susilo et al. constructed PCS 1 by using some techniques from
ring signatures [23, 1], as did by Chen et al.’s scheme in [11]. Basically, PCS1 consists
of four algorithms: SETUP, ASIGN, AVERIFY and VERIFY, as described below.

— SETUP. On input a security parameter £, the SETUP algorithm first randomly
generates two large prime numbers p and ¢ such that ¢|(p — 1), and a generator
g € Zy of order g, where ¢ is exponential in £. It also selects a cryptographic hash
function Hy : {0,1}* — Z4. Then, the SETUP algorithm sets message space M,
keystone space IC, and keystone fix space F as follows: M = K = {0,1}*, and F =
Zy. In addition, we assume that (z4,y4 = ¢4 mod p) and (rp,yp = g*# mod p)
are the private/public key pairs of Alice and Bob, respectively.

— ASIGN. The algorithm ASIGN outputs an ambiguous signature o = (¢, s, s), given
the input (v, yj, xi, s, m), where y; and y; are two public keys (y; # y;), z; is the
private key matching with y; (i.e. y; = ¢™ mod p), s € F, and m € M is the
message to be signed. The algorithm is carried out as follows:

1. Select a random number o € Z,.

2. Evaluate ¢ = Hi(m, ¢%y; mod p).

3. Compute s’ = (@ —¢) - 2; ! mod g.

4. Output anonymous signature o = (¢, §', s).

— AVERIFY. Given an anonymous signature-message pair (o,y;,yj, m), where o =
(¢,s', ), yi and y; are valid public keys, the AVERIFY algorithm outputs accept, if
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the following equality holds:
¢ = Hi(m, g%y mod p). (1)

Otherwise, it outputs reject.

— VERIFY. The algorithm accepts input (k,S), where k& € K is the keystone and
S = (o,yi,yj,m), and 0 = (¢, ', s). The algorithm VERIFY outputs accept if
AVERIFY (S)=accept and the keystone k is valid by running a keystone verification
algorithm. Otherwise, VERIFY outputs reject.

Note that the above are just the basic algorithms for generating and verifying con-
current signatures. In the following concrete concurrent signature protocol, it explic-
itly describes how to generate and verify keystones, and how to exchange concurrent
signatures between two parties without the help of a TTP.

PCS1 Protocol: Before running the protocol, we assume that the SETUP algo-
rithm is executed and the public keys y4 and yp are published. Here we also assume
that Alice is the initial signer and Bob is the matching signer. Symmetrically, one can
get the protocol description for the case where the roles of Alice and Bob are changed.

1. The initial Alice performs as follows.
— Select a message mg € M.
— Choose a random keystone k € K and set sy = Hy (k).
— Run o4 < ASIGN(y4,yB, T4, S2,m4). Let 04 = (¢, 51, $2).
— Pick a random ¢t € Z; and compute t= y'y mod p.
— Send (04,t,m4) to the matching signer Bob.

2. Upon receiving Alice’s ambiguous signature-message pair (o4,%,m4), Bob vali-
dates it by checking whether the output of AVERIFY (04, y4,yB, m4) is accept. If
not, then Bob just aborts. Otherwise, Bob acts in the following way.

Select a message mp € M.

Compute r = £*8 mod p, and ' = r mod q.

Set s = s2 47" mod ¢.

— Run op < ASIGN(yB, ya,zp, s}, mp). Let op = (¢, s, 85).
— Send (op,mp) to Alice.
3. After (o5, mp) is received, Alice parses o into (¢, s, s5), and performs as follows.
— Check whether AVERIFY (op5,y4,yp, mp) = accept. If not, Alice aborts. Oth-
erwise, continue.
— Compute 7’ = s} — s3 mod gq.
— Compute r = y%“t mod p, and check whether ' = r mod ¢. If not, then Alice

aborts. Otherwise, continue.
— Issue the following signature proof I" by using the private key x4 [26]:

I~ SPKEQ(vy:r=yd Nt=g" Aya=g")(k). (2)

— Release the keystone k = {k,r,t, t,.I } publicly to bind both signatures o4 and
op concurrently.
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4. VERIFY Algorithm. After the keystone x = {k,r,t,f, '} is released publicly, both
signature-message pairs (o4, m4) and (op,mp) are binding concurrently. Specif-
ically, any verifier can conclude that o4 and op are respectively signed by Alice
and Bob if all of the following verifications hold.

— Parse 04 into (¢, s1,s2) and op into (¢, s}, s5).

— Check whether Hy (k) = so.

— Compute 7’ = s} — s2 mod ¢, and check whether ' = r mod gq.
— Check whether I' is a valid signature proof.

Check the validity of o4 and op, i.e., if AVERIFY (04,94, yB, ma) = accept and

AVERIFY(0B,y4,yB, mp) = accept.

If all above verifications hold, output accept. Otherwise, output reject.

3 The Security of PCS1

Before analyzing the security of PCS1, we first briefly review the security definition of
concurrent signatures and give some explanations on PCS1. The security of concur-
rent signatures is defined via three notions [11]: unforgeability, ambiguity, and fairness.
Unforgeability requires any efficient adversary without the corresponding two secret
keys cannot forge a valid concurrent signature with non-negligible probability under
chosen message attacks [21]. Ambiguity means that given a concurrent signature with-
out the keystone, any adversary cannot distinguish who of the two signers issued this
signature. Fairness intuitively requires that (a) only the initial signer can reveal the
keystone and (b) once the keystone is released, both signatures are binding to the two
signers concurrently. Readers could refer to Section 3 in [11] for those standard formal
definitions. Perfect concurrent signatures just strengthen the ambiguity by requiring
any adversary is still unable to identify the true signers even he/she knows that each
of the two signers indeed signed one of the two signatures. Formal definition is given
by Definition 5 in [26].

Now, we compare PCS1 with Chen et al.’s original concurrent signature proposed
n [11]. Actually, there are no essential differences in the underlying algorithms of
those two schemes, because both of them are some variants of Schnorr-based ring
signatures proposed by Abe et al. [1]. However, the authors of [11] and [26] have
different ideas on the problem how to exchange and fix concurrent signatures between
two parties. Simply speaking, Chen et al. [11] just used one keystone, but Susilo et al.
exploited two keystones. This is the exact reason why perfect concurrent signatures
can be implemented in [26].

In more detail, if we use the same notations as in PCS1 reviewed in the previous
section, Chen et al. realized their concurrent signature scheme by setting s| = so =
Hi(k), but Susilo et al. implemented their perfect concurrent signature scheme by
setting 8| = 1’ + so = ' + Hy(k) mod ¢, where value 1’ is fixed by another keystone r
via ' =r mod ¢ and r = (y%"‘t mod p) mod g. Therefore, given two valid ambiguous
signatures o4 = (¢, s1,$2) and op = (¢, 8, s5) without any knowledge of keystones,
an outsider can get different conclusions on the authorship of those two signatures.
Specifically, in Chen et al.’s scheme the following three cases occur with the same
probability 1/3:
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i) Alice generates both o4 = (¢, s1,2) and op = (¢, 8}, s5) by first running ASIGN(y 4,
yB,TA, sy, mp) and then ASIGN(ya,yB,za,s2 = s}, ma).

ii) Bob generates both 04 = (¢, 51, s2) and op = (¢, s}, s4) by first running ASIGN(y 3,
ya,xp,s1,ma) and then ASIGN(yp,ya,xp,s| = s2, mp).

iii) Alice first generates 04 = (c, s1,52) by ASIGN(ya,yp, x4, s2, m4), and then Bob
generates op = (¢, s, 85) by running ASIGN(yB,ya,xp, 8] = s2, mp).

However, in the Susilo et al.’s scheme it is also possible that Bob generates o4
and Alice generates op, since before the keystone k is released an outsider cannot
distinguish whether the value ' = s — s2 mod ¢ is predetermined or not. Hence, the
following case iv) will also appear equally with the above three cases (without the
restriction s} = s9):

iv) Bob generates o4 = (¢, s1,s2) by ASIGN(yp,ya, 2B, s1,ma), and Alice generates
op = (c, s}, s5) by running ASIGN(ya,yp, x4, sh, mp).

In summary, Susilo et al. strengthened the ambiguity of concurrent signatures so
that all four possible cases of authorship appear with the same probability 1/4. Due
to this reason, their schemes are called perfect concurrent signatures. As pointed in
[26], in such schemes even an outsider knows (or believes) that Alice and Bob signed
exactly one of two signatures o4 and op, he/she still cannot deduce whether Alice
signed o4 or op. In Chen et al. scheme, however, this is very easy for an outsider.

Due to the similarity of PCS1 and Chen et al.’s scheme, the authors of [26] stated
that the unforgeability of PCS1 can be established in the random oracle model, under
the discrete logarithm assumption in subgroup (g). This is really reasonable, since one
can incorporate the forking lemma [22] to provide a proof as did by Chen et al. in [11].

For the fairness, however, it is a different story.

3.1 On the Fairness
The authors of [26] argued the fairness of PCS1 protocol by the following two claims:

Claim 1. Before x = {k,r,t,t,I'} is released, both signatures o4 and op are am-
biguous (Theorem 1 in [26]).

Claim 2. After k = {k, 1, t, I'} is released, both signatures o4 and op are binding
to the two signers concurrently (Theorem 2 in [26]).

Claim 1 is correct, but Claim 2 may be false if the initial signer Alice is dishonest.
To illustrate this point, we now present a concrete attack against PCS1 protocol such
that once k is released, (o4, m 4) is not binding to Alice, but (05, mp) is indeed binding
to Bob. Moreover, if necessary Alice can issue another signature-message (G 4,m4) to
binding herself, where message m 4 is chosen at her will. In the view point of Bob, he
is cheated by Alice, because what he expected is to exchange his signature on message
mp with Alice’s signature on message m 4. But the result is that Alice indeed obtained
his signature on message mp, while Bob did not get Alice’s signature on message m 4
(though he may get Bob’s signature on a different message m,4). Naturally, this is
unfair for the matching signer Bob. Because fairness implies that the matching signer
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Bob cannot be left in a position where a keystone binds his signature to him while
the initial signer Alice’s signature is not also bound to Alice (See the last paragraph
of page 296 in [11]). In the example of purchasing laptop given in Introduction, due
to this attack Bob may be unable to get money from Alice, but Alice can pick up one
laptop from Bob’s shop.

The following is the basic idea of this attack. It is truly a natural and interesting
method to construct perfect concurrent signatures by exploiting two keystones instead
of one. However, we notice that in step 2 of PCS1 protocol no any mechanism is
provided for Bob to check the validity of the keystone fix s5. Based on this observation,
dishonest initial signer Alice can set so = Hi(k) + ' — # mod ¢, i.e., s2 + 7 =
Hy(k) + ' mod ¢, where r' and 7/ are some properly generated values. Then, Alice
generates an ambiguous signature on my4 by using value sg (though she does not know
the keystone for so). After receiving Bob’s ambiguous signature on mpg, Alice can issue
her signature on m4 by using the value sy = Hy(k) at her will. The details are given
below.

Attack 1 against PCS1 Protocol. In this attack, we assume that the initial
signer Alice is dishonest, but the matching signer Bob is honest, i.e., he follows each
step of PCS1 protocol properly.

1. The dishonest initial signer Alice performs in the following.
1.1) Pick two random numbers ¢, € Z,, and then compute values ¢, 7, 7/, ¥, 7,
and 7’ by

t= yy modp, r= y?‘t mod p (= #*8 mod p), ' =7 mod ¢,

N 7 N 3

t'=y! modp, 7= yg“‘t mod p (= *8 mod p), 7 =7 mod gq. 3)

1.2) Choose a random keystone k € K and set so = H;(k) + r' — 7 mod ¢. That
is, we have

sy + 7 = Hy(k) + 7" mod q. (4)

1.3) Run o4 = (¢, s1, 52) < ASIGN(ya,yp, A, S2,mA).
1.4) Send (0a,t,m4) to the matching signer Bob.
2. Tt is easy to know AVERIFY(o4,ya,y5,ma) = accept. So, honest Bob acts as
follows.
2.1) Compute 7 = #*8 mod p, and 7 = 7 mod gq.
2.2) Set s} = so+ 7 mod gq.
2.3) Run op = (¢, s, s5) < ASIGN(yp,ya, zp, s|,mp).
2.4) Send (0B, mp) to Alice.

3. Since (op,mp) is properly generated by honest Bob, it is easy to know that
AVERIFY (0p,y4,yB, mp) = accept and that 7 = s} — s2 mod ¢. That is, (o5, mp)
is Bob’s valid signature. Now, Alice selects a message m4 at her choice and per-
forms as follows.

3.1) Set 59 = Hl(k)

3.2) Run 4 = (¢, 51, 52) < ASIGN(ya, yp, x4, S2,m4).

3.3) Retrieve (¢,£,r,7') from Step 1.1 (recall Eq. (3)).

3.4) Issue a proof I' — SPKEQ(y:r = yg AN=g" ANya = g")(k).
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3.5) Output (54,m4), (08, mp), and the keystone x = {k,r,t,t,I'}.

On the validity of attack 1, we have the following proposition:

Proposition 1. After the keystone information k = {k,r,t,t,I'} is released, the two
signature-message pairs (g4, m4) and (o, mp) are binding to Alice and Bob, respec-
tively. However, (o4, ma) is not binding to Alice.

Proof- This proof is almost self-evident, so we just mention the following main facts:

— Hi(k) = 59 (recall Step 3.1).

— 7' = 5] — 5, mod ¢ = r mod ¢ (recall Egs. (3), (4)).

— [ is a valid signature proof for SPKEQ(y :r = yg ANt =g ANya = g7)(k), since
it is properly generated by Alice in Step 3.4.

— AVERIFY(04,y4,yB, ma) = accept and AVERIFY (op,y4,yB, mp) = accept, since
both op = (¢, s}, s4) and 54 = (¢, 51, S2) are properly generated by running algo-
rithm ASIGN in Steps 3.2 and 2.3, respectively.

Therefore, according to the specification of algorithm VERIFY reviewed in Section
2, (6a,ma) and (op,mp) are truly binding to Alice and Bob. However, the same
keystone information x = {k,r,t,#, I'} cannot be used to bind (o4, m4) to Alice. In
fact, even Alice is unable to reveal a keystone k' such that sy = Hj(k'). Otherwise,
this implies Alice can find a pre-image of hash value sy = Hy(k) + ' — 7 mod ¢q. O

3.2 On the Keystone Generation

In PCS1 protocol, a variant of Diffie-Hellman key exchange technique [13] is used to
derive keystone fix r’. In summary, 7’ is generated as follows. By selecting a random
number ¢ € Z,, Alice first sets t= yf4 mod p and sends h to Bob. Then, Bob computes
r = h® mod p, ¥ = rmod ¢, and sets s§ = s2 + r’ mod ¢. Finally, Alice issues
a signature proof I' «— SPKEQ(vy : r = yg At =g Nya = g7)(k), and releases
keystone information x = {k,r,t,t, I"}. Hence, from the public information  any third

. A .
party can derive the value yag = ¢®*4*8 mod p by calculating
yap =7 modp, wheret* =¢"" modgq. (5)

This point is that the value of y4p is the crux for some other cryptosystems, such as
strong designated verifier signature (SDVS) of Saeednia et al. [24], and signcryption
scheme of Huang and Cheng [18]. That is, if yap is available to an adversary those
cryptosystems are broken (See Helger et al.’s discussion [17] on SDVS). This implies
that one user cannot use the same key pair to run PCS1 protocol and those cryptosys-
tems, even though all of those cryptographic primitives work in the discrete logarithm
setting and have the same parameters. In other words, this is an example showing
that the simultaneous use of related keys for two cryptosystems is insecure (See [16]
for some positive results).
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4 PCS2 and Its Fairness

This section briefly reviews and analyzes PCS2, which is a perfect concurrent signature
constructed from bilinear pairing.

— SETUP: The SETUP algorithm selects an admissible bilinear pairing (Sec 2.1 of
[26]) e : G1 XG1 — Gg, where G and G2 are two cyclic (additive and multiplicative,
respectively) groups with the same prime order g. It also selects two cryptographic
hash functions Hy : {0,1}* — G and H; : {0,1}* — Z,. Alice and Bob have
private/public key pairs (s4, Ppupa = s4P) and (sp, Ppuyp = spP), where 54,55 €
Zy, and P is a generator of group G;. System parameters {G1, Ga, e, q, P, Ho, H1}
are publicly known.

— ASIGN: The ASIGN algorithm accepts input (Ppup1, Ppup2, 51, $,m), where s1 is the
secret key associated with the public key Ppup1, § € F, and m € M is the message
to be signed. The algorithm outputs an ambiguous signature o = (cg, ¢1,c2) as
follows:

e Select a random & € Zj.
e Compute ¢y = Hi(Ppyup1 || Ppusz||e(GHo(m), P)e(5Ho(m), Ppup2))-
o Let ¢; = (& —cp)s; mod g, and cp = 3.

— AVERIFY: Given o = (co, c1,c2), AVERIFY (0, Ppup1, Ppub2, m) = accept iff the fol-

lowing equality holds.

Co = Hl(Ppub1|’Ppub2‘|€(HO(m)a P)®e(Ho(m), Ppub1)016(H0(m)v Ppub2)62)-

— VERIFY: Given a concurrent signature (k, S), where k € K and S = (¢ = (co, 1, ¢2),
Poubts Ppuz, m), VERIFY(k, S) = accept iff k is a valid keystone by executing the
keystone verification algorithm, and AVERIFY(S) = accept.

PCS2 Protocol. Without losing generality, we assume that the initial signer Alice
and the matching signer Bob want to exchange their signatures on messages m4 and
mp, respectively.

1. Alice first performs the following.
— Select a random keystone k € K and sets ca = Hy (k).
— Pick a random « € Z; and compute Z = aP.
— Runs 04 = (co, c1, ¢2) < ASIGN(Ppupa, PpusB, 84, c2,m4).
— Send (04, Z) to Bob.
2. Upon receiving (04, Z), Bob checks whether AVERIFY (o4, Pyuba, Ppuv, ma) =
accept. If not, Bob aborts. Otherwise, he performs the following.
— Compute 7 = e(Ppupa, £)°B.
— Set ¢} = ¢a + r mod gq.
— Run op = (¢, ¢}, ¢&4) < ASIGN(Pyup8, Ppuba, SB; Ch, MB).
— Send op to Alice.

3. Once op = (¢, ¢}, ) is received, Alice first computes r = e(Z, Pyypp)%, and
then checks whether both AVERIFY(op, Pyupa, Ppuss, mB) = accept and ¢} =
co + r mod q. If any of the two verifications fails, then Alice aborts the protocol.
Otherwise, Alice releases the keystone (k,«) so that both signatures o4 and op
are binding concurrently. With (k, «), the validity of 04 and op can be validated
by any verifier if all the following verifications hold:
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— ¢y = cg +r mod g, where r = e(Pyupa, Pouss)®-
— AVER”:Y(O'A7 PpubAa PpubB, mA) = accept.
- AVERlFY(UB, PpubA7 PpubB7 mB) = accept.

Attack 2 against on PCS2 Protocol. Compared with PCS1, PCS2 protocol is
more efficient since the 2nd keystone fix r is exchanged between Alice and Bob more
efficiently (thanks to the bilinear pairing). However, PCS2 protocol is also unfair for
the matching signer Bob, since a dishonest initial signer Alice can cheat Bob in an
analogous way as in PCS1. More precisely, dishonest Alice first chooses three random
numbers k,a, o/ € Zy, then computes Z = aP and Z' = o/ P. Then, Alice computes
r = e(Ppupa, Ppupp)®, 7’ = e(PpubA,PpubB)a/, and sets co = Hy(k)+r—1r" mod ¢. That
is, we have the following equality:

co+ 1" = Hy(k) +r mod q. (6)

After that, Alice generates o4 on message m,4 by using value cq, and sends (o4, Z")
to Bob. Once getting Bob’s valid signature op = (¢, ¢}, ,) on message mp, where
¢} = co+ 1" mod ¢q and 1" = e(Ppypa, Z')°B, Alice releases (k, ) so that (op, mp) is
binding to Bob. However, the same keystone information (k, o) does not bind (o 4,m4)
to Alice. Moreover, if needed Alice can generate her signature & 4 on a different message
ma of her choice by using value ¢o = Hj (k). Due to Eq. (6), it is easy to know that
the keystone (k, ) shall bind (g4,m4) to Alice.

5 Improvements

We observe that the attack against the fairness of PCS1 and PCS2 results from the
following fact: The initial singer Alice sets both two pieces of keystone alone. Therefore,
Alice can choose two pairs of keystone fixes so that the sums of them have the same
value (recall Egs. (4) and (6)). However, this sum determines the matching signer
Bob’s signature. Therefore, to avoid this attack we improve PCS1 and PCS2 as iPCS1
and iPCS2 by allowing Bob to choose the second keystone. At the same time, our
improved protocols are designed to achieve a symmetry for both keystones. That is,
both keystones can be values in the same domain and have the same verification
algorithm. Moreover, the signature proof I' is totaly removed in our iPCS1 to get
a more efficient concurrent signature protocol (Check Table 1). The reason is that
in iPCS1, the authenticity of Hp(k') can be checked by Alice in Step 3 as follows:
s| = sy + Hy(K') mod g, where ' = (*4 mod p) mod ¢ and (£,s)) is received from
Bob.

In the following description, we just specify our two improved concurrent signature
protocols iPCS1 and iPCS2, while the corresponding algorithms are the same as in
PCS1 and PCS2, respectively. In addition, note that iPCS1 also works well for Chen
et al.’s concurrent signature scheme [11].

iPCS1 Protocol: As in PCS1, we assume that the SETUP algorithm is already
executed, an that the initial signer Alice and the matching signer Bob want to exchange
their signatures on messages m 4 and mp, respectively.
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1. The initial Alice performs as follows.
— Choose a random keystone k € K and set sy = Hy (k).
— Run 04 <« ASIGN(ya,yB, T, S2,m4). Let 04 = (¢, 51, $2).
— Send (04, m4) to the matching signer Bob.
2. Upon receiving (04, m4), Bob checks whether AVERIFY (04,4, Y5, ma) = accept.
If not, then Bob just aborts. Otherwise, Bob acts in the following way.
— Pick a random t € Z, and compute ¢ = y% mod p.
— Compute 7 = y%?" mod p, and k' = r mod ¢.
Set s} = so + H1 (k") mod gq.
— Run op = (¢, s}, s5) < ASIGN(yp,ya,zp, s}, mp).
— Send (o, mp,t) to Alice.
3. After (o, mp,t) is received, Alice parses op into (c,s),s)), and performs as
follows.

— Compute 7 = t*4 mod p, and ¥’ = r mod gq.

— Test whether ] = so + Hy (k') mod q.

— Check whether AVERIFY (o5,y4,yB, mp) = accept.

— If op is invalid, abort. Otherwise, release the keystone (k, k') publicly to bind
both signatures 04 and op concurrently.

4. VERIFY Algorithm. Once the keystone (k, k') is available, any verifier can verify
that o4 and op are respectively signed by Alice and Bob if all of the following
equalities hold.

— s9 = Hy(k) and s} = so + Hy (k') mod gq.
— AVERIFY(04,yA,yB, ma) = accept.
— AVERIFY(oB,y4,yB, mp) = accept.

iPCS2 Protocol: Again, we just assume that the initial signer Alice and the
matching signer Bob want to exchange their signatures on messages m4 and mp,
respectively.

1. Alice first performs the following.
— Select a random keystone k € K and sets ca = Hy (k).
— Runs o4 = (co, 1, ¢2) < ASIGN(Ppupa, PpuvB, 54, C2,m4).
— Send (04, m4) to Bob.

2. Upon receiving (o 4, m 4 ), Bob checks the validity of o 4 by testing whether AVERIFY
(04, Ppuba, Ppubp,ma) = accept. If not, Bob aborts the protocol. Otherwise, he
performs the following.

— Pick a random « € Zj, compute Z = aP and r = e(Ppupa; Ppuba)”
— Set the second keystone k' by k' = r mod q.
— Compute ¢} = ¢o + Hi (k') mod q.
— Run op = (¢, ¢}, ¢&5) « ASIGN(PyupB, Ppuba, SB, Ch, MB).
— Send (0B, Z) to Alice.
3. Once op = (¢, ¢}, ¢y) is received, Alice performs as follows:
— Compute 7 = e(Z, Ppypp)®, and k' = r mod gq.
— Test whether ¢} = ca + Hy (k') mod ¢. If not, abort. Otherwise, continue.
— Check whether AVERIFY (05, Ppupa, Pyuss, mB) = accept.
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— If op is invalid, then Alice aborts the protocol. Otherwise, Alice releases the
keystone (k, k') to bind both signatures 04 and op concurrently.
4. With the keystone (k, k"), the validity of 04 and op can be validated by any verifier
if all the following verifications hold:
— ¢o = Hy(k) and ¢| = ¢o + H1 (k') mod gq.
— AVERIFY (04, PyupA, Ppubp, ma) = accept.
- AVERlFY(O’B, PpubAy PpubB7 mB) = accept.

Based on the results in [11,26] and the discussions previously provided, it is not
difficult to see that both iPCS1 and iPCS2 are truly perfect concurrent signature
protocols. Formally, we have the following proposition.

Proposition 2. According to the formal definitions given in [11,26], the above
1PCS1 and iPCS2 are secure perfect concurrent signature protocols, under the discrete
logarithm assumption and bilinear Diffie-Hellman assumption, respectively. That is,
both iPCS1 and i1PCS2 are ambiguous, fair, and existentially unforgeable under a
chosen message attack in the multi-party setting.

Table 1 gives the efficiency comparison for all concurrent signature protocols dis-
cussed in this paper. As the main computational overheads, we only consider multi-
exponentiations (denote by E), scalar multiplications (denote by M), and bilinear
mappings (denote by e). As in [5], we assume that simultaneous exponentiations are

efficiently carried out by means of an exponent array. Namely, the costs for aj’a3? and

aj*as*as® are only equivalent to 1.16 and 1.25 single exponentiation, respectively. As
a result, note that our iPCS1 is much more efficient since it improves the performance

of original PCS1 by about 50%.

Table 1. Efficiency Comparison

Comp. Cost Comp. Cost Comp. Cost| Signature| Keystone
Protocol || of Alice of Bob of Verifier | Size Size
CS[11] [[2.41E 2.41E 2.5E 3|q] ldl
CPS1 [26]|| 9.41E 3.41E 7.98E 3|q| 4lq| + 2|p|
iCPS1 || 3.41E 4.41F 2.5E 3|q| 2/q|
CPS2 [26]|| 6e-+3.41E+1M| 6e+3.41E Te+35E | 3]q| 2/q|
iCPS2 6e+3.41E 6e+3.41E4+1M| 6e+2.5E 3|q| 2|q|

6 Conclusion

For the applications with somewhat weak requirement of fairness, concurrent signa-
tures [11] provide very simple and natural solutions for the traditional problem of fair
exchange signatures without any help from a trusted third party. To strengthen the
ambiguity of concurrent signatures, two perfect concurrent signatures are proposed
in [26]. This paper successfully identified an attack against those two perfect concur-
rent signatures showing that both of those two schemes are actually not concurrent
signatures. Consequently, those two schemes are unfair in fact. To avoid this attack,
we presented effective improvements to achieve truly perfect concurrent signatures.
Moreover, our improvement from Schnorr signature obtains about 50% performance
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enhancement over the original scheme in [26]. In addition, we also addressed another
weakness in their keystone generation algorithm. As the future work, it is interesting
to consider how to construct more efficient perfect concurrent signatures.
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