
A Stronger Definition for

Anonymous Electronic Cash

Mårten Trolin
marten@nada.kth.se

Royal Institute of Technology (KTH), Stockholm, Sweden

Abstract We investigate definitions of security for previously proposed
schemes for electronic cash and strengthen them so that the bank does
need to be trusted to the same extent. We give an experiment-based
definition for our stronger notion and show that they imply security in
the framework for Universal Composability. Finally we propose a scheme
secure under our definition in the common reference string (CRS) model
under the assumption that trapdoor permutations exist. As a tool we
define and prove the existence of simulation-sound non-interactive zero-
knowledge proofs (NIZK-PK) in the CRS-model under the assumption
that a family of trapdoor permutations exists.

1 Introduction

Electronic payments is an interesting cryptographic task. In the most basic
scheme there is a bank, users, and merchants. The bank issues coins to users.
Users spend the coins at merchants, who deposit them at the bank. An anonym-
ous scheme does not allow the identity of the spender to be revealed from a spent
coin. Since an electronic coin is nothing but a bit-string, a user may duplicate
a coin and spend it more than once. The common way to address this issue is
by providing a mechanism to spot double-spendings, and to reveal the identity
of the guilty user. In this paper we do not deal with other variants, such as
transferable coins or schemes with a trusted third party.

The concept of anonymous electronic cash was introduced by Chaum et al.
[11] As was common at the time, the claimed security properties were not defined
in a precise way. Many schemes [7,13,27,24,21,20,19,8] for anonymous electronic
followed.

From the point of view of the bank, a scheme is secure if it is infeasible to
construct valid coins by other means then withdrawing them. From the point of
view of the merchant, a coin that has been spent should always be accepted by
the bank. Finally, to be secure for a user, the anonymity property should hold
even if the bank conspires with other users and merchants. In addition, the bank
should not be able to claim that the user has withdrawn more coins than she
has, or falsely accuse the user of double-spending.

In the recent years, several papers have focused on giving precise security
definitions for tasks such as group signatures [2,3] and ring signatures [4]. In

this paper we suggest a definition of security of schemes for electronic cash. In
addition to an experiment-based definition we construct an ideal functionality
for electronic cash and show that security in the experiment setting implies
simulation-based security in the framework for universal composability [9] using
the ideal functionality.

We point out that previous definitions do not rule out a corrupt bank cheating
a user. The scenario is that the bank claims that a user has withdrawn a coin,
but the user denies this. We argue that the protocol should include a mechanism
to solve such an issue. Our definition addresses this issue by requiring a proof of
withdrawal from the bank.

Our security definition is based on four experiments, unforgeability, stating
that valid coins can only be issued by the bank, anonymity, ensuring a user stays
anonymous even if the complete system conspires against her, non-frameability,
requiring that no honest user can be accused of double-spending even by a cor-
rupt bank, and exculpability, ensuring that no user can be falsely accused of
withdrawing a coin. Previously considered security properties, as well as the
property mentioned above, follow from security under these four experiments.
The fact the security in the UC-model follows from the four experiments is an-
other argument that our definition cover the intuitive meaning of security for
electronic cash.

We construct a scheme using general methods, which is secure under our
definition in the common reference string (CRS) model assuming the existence
of a family of trapdoor permutations. The scheme is not intended for practical
use, but it is rather a proof of concept.

2 Notation and Definitions

We write [a, b] to denote the set {x ∈ Z | a ≤ x ≤ b}. We say that an ele-
ment is chosen “randomly” instead of the more cumbersome “independently and
uniformly at random”. By r ←R S we mean that r is chosen randomly in S.
Throughout the paper, κ denotes the security parameter. A function ε : N→ R

+

is said to be negligible if for each c > 0 there exists a κ0 ∈ N such that ε(κ) < κ−c

for κ > κ0. We say that a function f : N → R
+ is non-negligible whenever it is

not negligible.

We write ∅ to denote both the empty set and the empty string, and we let
⊥ be a special symbol. All adversaries in this paper are modeled as polynomial
time Turing machines with non-uniform auxiliary advice string. We denote the
set of such adversaries by PT∗.

Informally a family of functions is called a family of trapdoor permutations
if the permutation is hard to invert for an adversary in PT∗ unless a trapdoor
is known, in which case it can be efficiently inverted. The precise definition is
given in Appendix A.

Any algorithm not explicitly stated to be deterministic is assumed to be
randomized.

2

3 Protocol Definition and Security Model

Here we give a definition for a scheme for electronic cash as well as for its security.
While some security properties are obvious and dealt with from the very first

scheme, others are more subtle. Naturally a scheme must not allow for a user to
forge coins, and a double-spender must be detected. The schemes [8,28] require
that a corrupt bank cannot accuse an honest user of double-spending, whereas
this requirement is not explicit in some other papers, e.g., [19,18]. However,
to our knowledge, no scheme discusses the possibility of a corrupt bank falsely
claiming that an honest user has withdrawn a coin, or rejecting a deposition
from a merchant of a legally spent coin. The tendency seems to be to, apart
from anonymity, protect the interests of the bank rather than those of the user.

We give a definition requiring that the bank be able to prove withdrawals.
Thus, after executing the withdrawal protocol, the output of the bank should be
a proof of withdrawal and the output of the user should be a valid coin. However,
the neither part may be able to benefit by aborting the protocol prematurely.
While there exist protocols which address this issue, so called fair exchange
[5], they are either based on gradual release of information and thus not very
practical, or require the presence of a third trusted party. Since we would like a
definition that can be instantiated with a practical protocol, we use a different
approach. After the execution, the bank receives a withdrawal proof, and the
user receives a coin secret data which can be used to spend the coin. The honest
bank would send the withdrawal proof to the user, who can use it as a coin.
Should the bank fail to do this, the user can challenge the transaction and force
the bank to prove that a coin has indeed been withdrawn. Since the proof can
be used a coin, the scheme is fair also from the point of view of the user. We call
the bank’s output the coin public data and we call the user’s output the coin
user secret data.

We require that spent coins be publicly verifiable to avoid the possibility of
the bank rejecting a deposition and to ensure that a merchant cannot deny having
received a payment. In particular the bank can verify a spent coin. Therefore
there is no need for an interactive deposition protocol. The merchant simply
hands the spent coin to the bank.

The merchants do not have a secret key in our setting. Instead the receiving
merchant’s identity mid is encoded into the spent coin together with a transaction
identifier tid. Thus the merchant’s consent is not necessary in order to spend a
coin. We use this approach to make the definition cleaner. In practice, a user
would require some sort of contract before handing the merchant a coin, but we
feel this is best handled outside of our protocol. In standard banking systems
it is indeed possible to wire money without the recipient’s approval, although it
is usually not very sensible to do so. Since there is no secret for the merchant
and the resulting spent coin is publicly verifiable, the spending protocol is non-
interactive.

Consider a scheme where the merchants have secret keys which are used to
receive payments, deposit the coin at the bank, and prove the validity of a spent
coin to a third party. Assume also that the scheme is secure, i.e., anonymous

3

with unforgeable coins, also for corrupt merchants. By revealing the secret key,
we get a scheme with the properties we just described.

We assume the existence of a PKI, i.e., given a public key there exists a
method to obtain the identity of the holder of the key. Since we have a PKI and
assume the existence of trapdoor permutations, we can construct secure and
authenticated communication. We do not explicitly define a protocol to register
a user. If the protocol requires some secret information to be passed from the
bank to the user, this can be done in the withdrawal protocol, since we have
the existence of secure and authenticated channels. Therefore there is no loss of
generality in not having a registration protocol.

In this paper we discuss payment schemes containing all basic properties,
but there are many possible extensions. Examples of such alternative definitions
include the presence of a trusted third party which can identify coin spenders,
even when they have not double-spent. Such schemes are called fair. Another
extension is the possibility to transfer a coin between users in several steps before
it is deposited at the bank, and divisible coins. We leave it as an open problem
to adjust the definition to handle also such cases.

3.1 Participants

The participants are the bank B and users Ui. Each merchant has an identity
mid, but they do not take active part in any of our protocols.

3.2 Algorithms and Protocols

We now define the algorithms and protocols that a scheme for electronic cash
consist of. For non-interactive algorithms the definition is straight-forward. We
define two-party protocols as a pair of algorithms, where each participant ex-
ecutes one algorithm. The algorithms take as input a message and a state. The
state is initialized with the private input of the party. On startup of a protocol
the initiating party executes the algorithm with ∅ as message. Each algorithm
outputs a pair (msg, state), where msg is handed as message to the other party’s
algorithm, and state is passed as input by the executing party the next round.
When a party’s algorithm outputs p = ⊥ the protocol is finished, and the fi-
nal value of each party’s state is parsed as private output. The transcript of a
protocol is defined as the list of messages exchanged.

Algorithm 1 illustrates the execution between two parties using algorithms
A and B with private input skA, skB , respectively.

None of our subprotocols involve more than two parties, which allows us to
use the simplified notation above for interactive subprotocols. As a matter of
fact, the only protocols which involves exactly two parties is the withdrawal
protocol.

There is an algorithm for creating a bank key pair and a user key pair. After
the user has generated its keys, the public key is inserted into the PKI and hence
tied to the user’s identity.

4

Algorithm 1 An execution of a protocol with two parties.

stateA ← skA

stateB ← skB

while (msgA 6= ⊥) ∧ (msgB 6= ⊥) do

(msgB, stateA)← A(msgA, stateA)
if msgB 6= ⊥ then

(msgA, stateB)← B(msgB , stateB)
end if

end while

return (stateA, stateB)

The merchants have no secret keys. Instead each merchant has an iden-
tity mid ∈ {0, 1}κ/2, which together with a transaction identity tid ∈ {0, 1}κ/2

uniquely identifies a transaction. The reason to have fixed-length identities can
informally be described as follows. We would like a spent coin to have a fixed
length, and we would like a scheme which is secure under general assumptions
such as the existence of trapdoor permutations. If a user can create two inputs
which result in the same spent coin, then she will not be caught as a double-
spender. Therefore it must be infeasible to construct two such inputs. However,
this is what is required from a collision-free hash functions. Hence such a scheme
could be used to construct a collision-free hash function keyed on all other para-
meters of the scheme, which would solve the long-standing open problem of the
existence of collision-free hash functions assuming only the existence of trapdoor
permutations.

On the other hand, should we assume the existence of a collision-free hash
function, we could have merchant and transaction identifiers of arbitrary length
and hash them to a value of appropriate length.

Algorithm 2 (Bank Key Generation BKg).
Input: BKg(1κ), where κ is the security parameter.
Output: (bpk, bsk), where bpk is a bank public key and bsk is a bank secret key.

Algorithm 3 (User Key Generation UKg).
Input: UKg(1κ), where κ is the security parameter.
Output: (upk, usk), where upk is a user public key and usk is a user secret key.

Protocol 1 (Coin Withdrawal, (UWithdraw, BWithdraw)).
Parties: Bank B, User U .
Private input of B: Bank public key bpk, bank secret key bsk.
Private input of U : Bank public key bpk, user public key upk, user secret key
usk.
Private output of B: Coin public data cpd.
Private output of U : Coin user secret data cusd.

(UWithdraw, BWithdraw) is the protocol used when a user withdraws a coin.
The private input of the user is a user private key usk, a user public key upk, and

5

a bank public key bpk. The private input of the bank is a bank secret key bsk and
a bank public key bpk. The user’s private output is a coin secret key cusd used
when spending the coin, whereas the bank’s output is interpreted as the coin
public data, cpd, which we will sometimes simply refer to as a coin. Normally
the bank would hand the public data to the user, but we do not address this
in the protocol. If the bank fails to hand the coin public data to the user and
still charge the user’s account, the user would request a proof of the withdrawal.
Since the coin public data is the proof, the bank would be forced to reveal it.

To simplify notation, we use a short notation for an honest execution of
the protocol. We define Withdraw(bpk, bsk, upk, usk) to be the result, i.e., coin
public data cpd and coin user secret data cusd, of a withdrawal where both party
behaves according to the protocol.

Algorithm 4 (Coin Spending Spend).
Input: Spend(cpd, upk, usk, cusd, mid, tid, bpk), where cpd is a coin public data,
upk is a user public key, usk is a user secret key, cusd is a coin user secret data,
mid ∈ {0, 1}κ/2 is a merchant identity, tid ∈ {0, 1}κ/2 is a transaction identity,
and bpk is a bank public key.
Output: spentcoin, where spentcoin is a (publicly verifiable) spent coin.

Informally VfDoubleSpent(spentcoin1, spentcoin2, bpk) returns the public key
upk of the double-spender if spentcoin1 and spentcoin2 are two spendings of the
same coin. Otherwise it returns ⊥.

We require that the spent coins handed to VfDoubleSpent have been verified,
or the output of the algorithm is undefined. This requirement could be removed
by including (mid, tid) for each coin in the call, but this would make the interface
unnecessarily complex.

The bank secret key is not used in the below algorithm. If a key is indeed
needed, and it is separate from the key used to issue coins, then it can be made
public by including it into bpk. It is quite realistic to have double-spendings being
publicly verifiable. In case of a double-spending, the bank would still need to able
to prove this to a third party. It also makes the definitions less cumbersome.

Algorithm 5 (Identifying a Double-Spender, VfDoubleSpent).
Input: VfDoubleSpent(spentcoin1, spentcoin2, bpk), where spentcoin1 as well as
spentcoin2 are two spent coins and bpk is a bank public key.
Output: upk, a (possibly empty) user public key.

In addition to the above, there are two algorithms which verify the valid-
ity of coins produced during withdrawal and spending, VfCoin(cpd, upk, bpk),
VfSpentCoin(spentcoin, mid, tid, bpk), The algorithms output 1 if the proof is
valid with regards to the additional input parameters and 0 otherwise.

Algorithm 6 (Verifying a Withdrawal, VfCoin).
Input: VfCoin(cpd, upk, bpk), where cpd is the public data of a withdrawn coin,
upk a user public key, and bpk a bank public key.
Output: b ∈ {0, 1}.

6

Algorithm 7 (Verifying a Spent Coin, VfSpentCoin).
Input: VfSpentCoin(spentcoin, mid, tid, bpk), where spentcoin is a spent coin,
tid ∈ {0, 1}κ/2 is a transaction identity, mid is a merchant identity, and bpk

is a bank public key.
Output: b ∈ {0, 1}.

Each new coin public data cpd gives the bank the right to charge the account
once. We must decide on what we mean by a two coin public data cpd1 and cpd2

being different. The most obvious choice would be to require the two bit-string
to be equal. However, we allow the scheme to define the equivalence relation in
a different way. This equivalence relation is implicitly used also in the security
experiment, e.g., when building sets of coin public data. The reason to allow this
is that a scheme may allow the bank to reform a cpd into a different cpd′ in a
certain pattern, e.g., by resigning some data with a probabilistic signing scheme.
Rather than require a scheme to take additional steps to withstand such an
attack, we allow it to simply define two such coins to be identical.

3.3 Correctness

By correctness we mean that the scheme works as expected when all parti-
cipants are honest. Proving correctness is often straight-forward, and this prop-
erty is sometimes not stated explicitly. Here we define correctness for a scheme
as defined above.

Experiment 1 (Correctness, Expcorrect
EC,A (κ)).

(bpk, bsk)← BKg(1κ)
(upk, usk)← UKg(1κ)
(cpd, cusd)←Withdraw(bpk, bsk, upk, usk)
if VfCoin(cpd, upk, bpk) = 0 then

return 0
end if

(mid, tid)← A(guess, bpk, upk, cpd)
spentcoin← Spend(usk, cpd, cusd, mid, tid, bpk)
if VfSpentCoin(spentcoin, mid, tid, bpk) = 0 then

return 0
end if

return 1

The advantage of the adversary is defined as

Advcorrect
EC,A (κ) = Pr[Expcorrect

EC,A (κ) = 0] .

Definition 1 (Correctness). A scheme for electronic cash EC is correct if
Advcorrect

EC,A (κ) is negligible as a function of κ for any A ∈ PT∗.

Detection of double-spenders is not included in the definition of correctness.
This may seem strange at first, but correctness only stipulates how the protocol
works with honest parties, and an honest party does not double-spend. As we
will see later, the definition of unforgeability implies that double-spenders are
detected.

7

3.4 Security

We describe four experiments, or games, to define security for a scheme for
electronic cash. In each experiment the adversary has access to a number of
oracles defined below. They operate on the following global parameters.

– U contains all public keys inserted into the PKI.
– C contains the public keys of corrupt users. Obviously C is a subset of U.
– (upki, uski) is the public and private key of the ith honest user.
– l is the number of coins withdrawn from the bank using the withdrawal

oracle. It is initialized to 0.
– dsi is the number of double-spendings that has been made on behalf of user

upki using the spend oracle HonestSpend. It is initialized to 0.
– CSKi is the set of coin user secret data for user upki produced when the

withdrawal oracle is used. For a new user it is initiated as the empty set.

The oracles are defined as follows.

HonestUKg(1κ) calls UKg(1κ) to generate a key pair (upk, usk). The public key
upk is inserted into the PKI. The key pair (upk, usk) is stored in the key list.
The public key upk is returned.

AddCorruptU(upk) inserts the key upk into the PKI and into the set C.
HonestUWithdraw(i, j, msg) executes one step of withdrawal session j for Ui.

More precisely, if session j has not been instantiated for Ui, i.e., statei
j is

not defined, then statei
j ← (upki, uski, bpk). Thereafter a call is made to

UWithdraw(msg, statei
j) with output (msg′, statei

j). The message msg′ is re-

turned, and statei
j is stored for use in subsequent calls to the oracle. After

the session has finished, statei
j is parsed as a coin user secret data cusdi

j . The

key set for user i is updated CSKi ← CSKi ∪ {cusdi
j}.

HonestBWithdraw(j, msg) executes one step of withdrawal session j for B. More
precisely, if session j has not been instantiated, i.e., statej is not defined,
then statej ← (bpk, bsk). Then a call is made to BWithdraw(msg, statej)
with output (msg′, statej). The message msg′ is returned, and statej is stored.
After the session has finished, statej is parsed as a coin cpd and returned.
Each time a coin is returned the counter l is incremented.

HonestSpend(cpd, i, j, mid, tid) spends cpd on behalf of Uj using the secret key
from withdrawal session j. The oracle first checks if the secret data from
withdrawal session j, cusdi

j , has been stored in CSKi and returns ⊥ if this
is not the case. Then it checks if (i, cpd) has been stored by the oracle and
sets dsi ← dsi + 1 if this is the case. Then it stores (i, cpd), calls Spend(cpd,
upki, uski, cusdi

j , mid, tid, bpk), and returns the output.

We let QO be the set of queries to oracle O and we let RO be the set of
responses.

Concurrency The adversary is given oracle access to the withdrawal protocol
without any restrictions on how to access it. In particular it may execute several
sessions in parallel. Therefore the scheme must be secure also under concurrent
use to pass our definition.

8

Unforgeability The property of unforgeability informally says that one cannot
create valid coins by other means than withdrawing them from the bank. A
little more precisely it says that if a coalition of users spend more than they
have legally withdrawn, then at least one of them will get caught as a double-
spender. Recall that l is the number of withdrawn coins using the withdrawal
oracle. Unforgeability corresponds to the property balance of [8].

Experiment 2 (Unforgeability, Exp
unforge
EC,A (κ)).

(bpk, bsk)← BKg(1κ)
(spentcoin1, . . . , spentcoink)← AAddCorruptU(·),HonestBWithdraw(·,·)(bpk)
if k ≤ l then

return 0
end if

if ∃i ∈ [1, k] : VfCoin(spentcoini, bpk) = 0 then

return 0
end if

if ∃(i, j) ∈ [1, k]2 : VfDoubleSpent(spentcoini, spentcoinj , bpk) ∈ C then

return 0
end if

return 1

In the above experiment, there is no method for creating honest user. If there
is an adversary which would benefit from this, it could as well create the key
pair itself and run AddCorruptU. Coins for the honest user could be withdrawn
by playing the user part of the withdrawal protocol honestly.

The advantage of the adversary is defined as

Adv
unforge
EC,A (κ) = Pr[Exp

unforge
EC,A (κ) = 1] .

Definition 2 (Unforgeability). A scheme for electronic cash EC has unforge-

ability if for any A ∈ PT∗ the advantage Adv
unforge
EC,A (κ) is negligible as a function

of κ.

Non-Frameability A potential problem could be that a coalition of users and
possibly the bank could accuse an honest user of double-spending. We say that
a scheme has non-frameability if it is infeasible to frame an honest user in such
a way.

In experiment below, DS is the set of (indices of) double-spent coins that
implicate the framed Uj . The adversary wins if it creates more double-spendings
than dsj , the number of double-spendings the adversary has made on behalf of
Uj using the spending oracle. Intuitively this means that a user can only be
accused of the actual number of double-spending she has performed.

Non-frameability corresponds to strong exculpability of [8]. The weak variant
would guarantee that a user that has never double-spent cannot be accused of
double-spending, but it would not prevent a double-spending user from being
set up for additional double-spendings. Which variant to prefer is a matter of

9

taste. One could argue that a user that double-spends has already breached her
part of the contract, and the protocol should not protect her anymore. On the
other hand, a double-spending could occur due to a technical malfunction rather
than intentional misconduct, and in such a case it would be unreasonable for the
protocol to allow an adversary to create additional double-spendings on behalf
of the user. We choose the strong definition.

Since not even a dishonest bank should be able to frame a user, we allow the
bank key to be chosen in an adversial way.

Experiment 3 (Non-Frameability, Expnon−frame
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
((spentcoini, midi, tidi)

k
i=1, j)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·)(guess, state)
if ∃i : VfSpentCoin(spentcoini, midi, tidi, bpk) = 0 then

return 0
end if

DS ← {i : ∃i′ > i : VfDoubleSpent(spentcoini, spentcoini′ , bpk) = upkj}
if |DS| > dsj then

return 1
else

return 0
end if

We do not provide an oracle to add corrupt users to the PKI, since we are
not interested in exposing honest users as double-spenders. The advantage of
the adversary is defined as

Advnon−frame
EC,A (κ) = Pr[Expnon−frame

EC,A (κ) = 1] .

Definition 3 (Non-Frameability). A scheme for electronic cash EC has non-
frameability if for any A ∈ PT∗ the advantage Adv

non−frame
EC,A (κ) is negligible as

a function of κ.

Anonymity Informally a scheme for electronic cash is anonymous if it is in-
feasible for any player, including the bank, to decide the identity of a spender.
We define anonymity in a very strong sense, namely that not even knowing the
private key of the spender helps revealing the identity of the user. We cannot,
however, give the adversary the coin secret user data, since in such a case the
adversary could double-spend the coin and reveal the identity. For the same
reason the adversary may not use the HonestSpend oracle to double-spend one
of the challenge coins.

In the experiment we let the adversary choose the bank public key and use
oracles to create users and withdraw coins before it selects two coins, one of
which will be spent as the challenge. Together with the challenge spentcoin the
adversary is given the private keys of all users. This corresponds to the scenario
where the private key of a user is exposed. The privacy of the user should be
kept also in such a case.

10

If the keys were given to the adversary in the first stage, it could withdraw
coins itself using the protocol, and it would trivially win the experiment by
double-spending the challenge coins.

Experiment 4 (Anonymity, Expanon−b
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(i0, j0, i1, j1mid, tid)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·,·)(choose, state)
spentcoin← Spend(cpdib

, uskib
, cusdib

jb
, mid, tid, bpk)

d← AHonestSpend(·,·,·,·,·)(guess, state, spentcoin, (uski)
|U|
i=1)

if ∃mid, tid : ({cpdi0 , i0, j0, mid, tid), (cpdi1 , i1, j1, mid, tid)} ∩ QHonestSpend 6= ∅
then

return 0
end if

if d = b then

return 1
else

return 0
end if

The advantage of the adversary is defined as

Advanon
EC,A(κ) = |Pr[Expanon−0

EC,A (κ) = 1]− Pr[Expanon−1
EC,A (κ) = 1]| .

Definition 4 (Anonymity). A scheme for electronic cash EC has anonymity
if for any A ∈ PT∗ the advantage Advanon

EC,A(κ) is negligible as a function of κ.

Exculpability Exculpability states that the bank should not be able to create
proofs of withdrawal, i.e., coins, which the user cannot spend. It should also not
be able to produce more proofs than number of withdrawals made by the user.

Experiment 5 (Exculpability, Exp
exculp
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(j, (cpdi)

k
i=1, mid, tid)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·,·)(guess, state)
if ∃i : VfCoin(cpdi, upkj , bpk) = 0 then

return 0
end if

if k > |CSKj | then

return 1
end if

if ∀cusd ∈ CSKj : Spend(cpd1, upkj , uskj , cusd, mid, tid, bpk) = ⊥ then

return 1
end if

return 0

11

There is no loss of generality in only checking if cpd1 is spendable, since the
adversary can always reorder the coins to output an unspendable first.

The advantage of the adversary is defined as

Adv
exculp
EC,A (κ) = Pr[Exp

exculp
EC,A (κ) = 1] .

Definition 5 (Exculpability). A scheme for electronic cash EC has exculp-

ability if for any A ∈ PT∗ the advantage Adv
exculp
EC,A (κ) is negligible as a function

of κ.

Finally we make the following definition.

Definition 6 (Secure Scheme for Electronic Cash). A scheme for elec-
tronic cash is secure if it has unforgeability, non-frameability, anonymity, and
exculpability.

3.5 Comparison to Group Signatures

Electronic cash resembles group signatures in many ways. We assume the reader
is familiar with the notion of group signatures, and refer to [2] and [3] for a
formal introduction to the subject.

Both group signatures and electronic cash allow users to perform transactions
while remaining anonymous. On a high level, the roles of the bank and the group
manager are similar. Withdrawing a coin has similarities to joining the group of
a group signature scheme, and spending is in some ways similar to signing. The
major difference in terms of anonymity is that a group signature can always be
opened by the group manager, but a spent coin is anonymous also to the bank. In
this sense, a scheme for electronic cash can be seen as a group signature scheme
with one-time keys and unrevocable anonymity.

It is not surprising that the security properties of the two tasks are similar in
many ways. Let us compare our definition for electronic cash to the definitions
for dynamic group signatures in [17,3].

Unforgeability Our definition of unforgeability resembles the misidentification
attack of [17] and traceability of [3].

Non-Frameability Non-frameability is similar to both group signature defin-
itions in that it requires that a user cannot be framed even if the complete
system conspires against her. Although the adversary is given the secret keys
of the group manager in [17,3], our definition is stronger, since we allow the
adversary to construct the key itself.

Anonymity Anonymity of a group signature is different than that of a spent
coin, since the opening key can always be used to open group signature. This is
reflected in the experiments, which otherwise are quite similar.

12

Exculpability The exculpability property is not defined for any group signature
scheme to our knowledge. The corresponding property would be that a group
manager cannot falsely claim that it has included a certain member into the
group. A scenario where this might pose a problem is if group members are
allowed to download certain information and there is a price to join the group.
Group signatures do not address the potential issue when a member claims that
the group manager has not issued him a key.

4 Security in the Framework for Universal Composability

We now consider the relation between experiment-based security of a scheme
for electronic cash as defined above and security in the framework for universal
composability (UC) [9]. We describe an ideal functionality, discuss why it cap-
tures the notion of anonymous electronic cash, and show that a scheme that is
secure according to Definition 6 also securely realizes the ideal functionality.

We use a model where the ideal functionality is linked to the players through
a communication network CI . The communication network forwards a message
m from a player P as (P, m) to the ideal functionality. When CI receives (P, m)
from the functionality, it forwards the message m to player P . Except for im-
mediate functions, defined as a message from a player P immediately followed
by a response to the same player P , the ideal adversary S is informed of when a
message is sent, but not of the content. The ideal adversary is allowed to delay
the delivery of such a message, but not change its content.

The functionality described here has only one non-immediate function – the
withdrawal protocol.

The adversary is allowed to choose an arbitrary number of players, including
the bank B, to corrupt at start-up.

The ideal anonymous electronic cash functionality FAnonEC running with
parties B, U = {U1,U2, . . . ,Uk} is given in Figure 1. The ideal adversary S
corrupts a subset of the users and possibly the bank. We let C be the set of
corrupted parties.

We do not differentiate between users and merchants. In fact, any party
(except for the bank B) can act both as a merchant and as a user. In addition
we assume every user is uniquely identified with an identifier mid ∈ {0, 1}κ/2.

The ideal functionality stores the following values.

Tcoins is the table of coins that the bank has issued.
cc is the number of coins that have been withdrawn by corrupt users. It is

initialized to 0.
Tspent−coins contains the coins that have been honestly spent.
Tvalid−coins holds the coins that have been verified to be correct, but which have

not been spent by honest users.
Tdouble are the coin pairs that have been determined to be double-spendings.
ds is the number of coins that have been determined to be double-spent by

corrupt users. It is initialized to 0.

13

Functionality 1 (Anonymous Electronic Cash).

1. Wait for the message (S ,Keys, (bpk, bsk), (upki, uski)
k
i=1) where uski = ⊥ if

Ui ∈ C and bsk = ⊥ if B ∈ C. Store (bpk, bsk) and (upki, uski).
2. Then handle incoming messages as follows.

– Withdraw. Upon reception of (B, AccWithdrawal,Ui) act as follows.

• If Ui /∈ C, then compute (cpd, cusd)←Withdraw(bpk, bsk, upki, uski).
Store (Ui, cpd, cusd) in Tcoins. Then hand ((B, IssuedNewCoin, Ui,
cpd), (S , AccWithdrawal, Ui)) to CI .

• If Ui ∈ C, then hand (S ,AccWithdrawal,Ui) to CI . Upon reception of
response (S ,IssuedNewCoin,Ui, cpd), store (Ui, cpd,⊥) in Tcoins. Set
cc← cc + 1. Hand (B, IssuedNewCoin,Ui, cpd) to CI .

– Verify Coin. Upon reception of (P, VfCoin, cpd,Ui), set b ←
VfCoin(cpd, bpk, upki) and hand (P, VfCoin, cpd,Ui, b) to CI .

– Spend. Upon reception of (Ui, Spend, cpd, mid, tid), execute (·, VfCoin,
cpd, Ui). If the result is 0, then hand (Ui, Spend, cpd, mid, tid, ⊥) to CI .
Otherwise compute (upk′, usk′) ← UKg(1κ), (cpd′, cusd′) ←
Withdraw(bpk, bsk, upk′, usk′), spentcoin′ ← Spend(cpd′, usk′, cusd′, mid,
tid, bpk). Store (Ui, cpd′, mid, tid, spentcoin′) in Tspent−coins.

– Verify Spent Coin. Upon reception of (P , VfSpentCoin, spentcoin, mid,
tid) proceed as follows.
• If B ∈ C, then set b← VfSpentCoin(spentcoin, mid, tid, bpk).
• If (·, mid, tid, spentcoin) has been stored in Tspent−coins, then set b← 1.
• If (·, cpd, mid, tid, spentcoin) /∈ Tspent−coins, then do as follows.
∗ If there exists Uj ∈ C such that (Uj , cpd,⊥) ∈ Tcoins, then set

b ← VfSpentCoin(spentcoin, mid, tid, bpk). If b = 1, then store
(Uj , mid, tid, spentcoin) in Tvalid−coins.
Execute upk = VfDoubleSpent(spentcoin, spentcoin′, bpk) for each
spentcoin ∈ Tvalid−coins and let Uj be such that upkj = upk. Insert
(Uj , {spentcoin, spentcoin′}) into Tdouble if Uj ∈ C. Let ds← ds+1
if at least one such double-spending is found.
If |Tvalid−coins| − cc > ds, then insert (Uj , {spentcoin, spentcoin′})
into Tdouble for a random spentcoin′ ∈ Tvalid−coins \ {spentcoin}
and Uj ∈ C and set ds← ds + 1.

∗ If no such user exists, then set b← 0.
Hand (P, VfSpentCoin, spentcoin, mid, tid, b) to CI .

– Verify Double-Spending. Upon reception of (P, VfDblSpent,
spentcoin1, spentcoin2), proceed as follows.

• If (Uj , cpd, mid, tid, spentcoin1) and (Uj , cpd, mid′, tid′, spentcoin2) for
(mid, tid) 6= (mid′, tid′) exist in Tspent−coins, then set U ← Uj .

• If (Uj , {spentcoin1, spentcoin2}) ∈ Tdouble, then let U ← Uj .
• Otherwise letU ← ⊥.

Hand (P, VfDblSpent, spentcoin1, spentcoin2,U) to CI .

Figure 1. The definition of FAnonEC.

14

4.1 About the Functionality

Let us discuss why FAnonEC captures what one would expect from a secure
scheme for anonymous electronic cash.

Withdrawal For an honest user, the coin is created as in the protocol to ensure
correct distribution. The coin is stored in the table for withdrawn coins Tcoins

and returned to the bank. For a corrupt user, the bank engages in the withdrawal
protocol (via the simulator). If the result is indeed a coin, then it is stored in the
coins table and the counter for coins withdrawn by corrupt users is incremented.

Coin Verification Coins are deemed valid when the protocol says so. This
may seem overly simplified, but since the Spend algorithms requires valid coins
to be spendable, this covers what one would expect from a valid coin. By the
correctness of EC, honestly withdrawn coins always pass the verification.

Spending Before a coin can be spent, it is verified that it is valid and the
spender owns the coin. If so, then a spent coin is created by creating a new user,
withdrawing a coin, and spending it. Thus the spent coin has no information
about the owner to ensure anonymity. The coin is stored in the table for spent
coins Tspent−coins.

Verification of Spent Coin If the bank is honest and the coin exists in the
table for spent coins, then it is valid. If it does not exist in the table, it may still
be valid, but only if it has been spent by a corrupt party and would implicate
a corrupt party if double-spent. This is handled by including the spent coin in
the list of potential double-spending by corrupt parties.

If the bank is corrupt, then any coin deemed valid by the protocol is accepted.

Identification of Double-Spenders The algorithm is constructed so that it
may only point out an honest user if it has actually double-spent a coin by
sending a Spend command twice for the same coin.

The algorithm also ensures that if more coins are spent than withdrawn by
corrupt parties, then a double-spender will be revealed. If the two coins have been
spent by corrupt parties, then they may only be cleared from double-spending if
there are enough potential double-spendings to cover the surplus of spent coins
against withdrawn coins. As a special case a double-spending is never required
to be exposed if the corrupt parties have not spent more coin than they have
withdrawn.

4.2 On the Possibility of Simplifying the Functionality

The functionality FAnonEC is rather complex, and it is natural question to ask
whether it could be simplified. Let us consider how double-spenders are identi-
fied. Let Z be an environment proceeding as follows:

15

– Z runs with one corrupt user U1.
– U1 withdraws three coins.
– U1 spends four times, creating spentcoin1, spentcoin2, spentcoin3, spentcoin4.

When only three coins have been spent, the functionality does not need to
intervene if no double-spending is detected. If the fourth coin does not reveal a
double-spending, then the functionality forces a double-spending to be reported.
By using the Tdouble table, it is ensured that further queries are answered in a
consistent way.

As the above example suggests, the functionality needs to be keep track of
which coins have been reported as double-spendings, and which have not. It also
needs to determine whether to many coins have been spent, forcing a double-
spending if the number of spent coins exceeds the number of withdrawn coins.
It seems that the functionality needs to be fairly complex.

4.3 The Real Protocol πAnonEC

We describe how the protocol πAnonEC is built from the algorithms of the scheme.

The Bank

The bank B generates (bpk, bsk)← BKg(1κ) and broadcasts bpk. Then it waits
for a message (Keys, upki) for every user Ui. Incoming messages are handled as
follows:

– Upon reception of (AccWithdrawal,Ui), the bank engages in the withdrawal
protocol with Ui. After the protocol has terminated,the bank outputs the
tuple (IssuedNewCoin, Ui, cpd).

Users

The user Ui generates (upki, uski)← UKg(1κ) and broadcasts upki. Then it waits
for a message (Keys, upkj) for every user Uj and (Keys, bpk) from B. Incoming
messages are handled as follows:

– When challenged in the withdrawal protocol, run it according to the al-
gorithm UWithdraw. After the protocol has terminated, store the output
cusdj .

– Upon reception of (Spend, cpd, mid, tid), set spentcoin ← Spend(upki, uski,
cusdj , mid, tid, bpk) for the corresponding coin secret data cusdj . Output
(Spend, cpd, mid, tid, spentcoin).

All Parties

Incoming messages are handled as follows:

– Upon reception of the message (VfCoin, cpd, Uj), set b← VfCoin(cpd, upkj ,
bpk) and return (VfCoin, cpd, Uj , b).

– Upon reception of the message (VfSpentCoin, spentcoin, mid, tid), set b ←
VfSpentCoin(spentcoin, mid, tid, bpk) and return (VfSpentCoin, spentcoin,
mid, tid, b).

16

– Upon reception of the message (VfDblSpent, spentcoin1, spentcoin2), set
upk ← VfDoubleSpent(spentcoin1, spentcoin2, bpk). If upk = ⊥, then re-
turn (VfDblSpent, spentcoin1, spentcoin2, ⊥). Otherwise let Uj be such that
upkj = upk, and return (VfDblSpent, spentcoin1, spentcoin2, Uj)

4.4 Proof of Security

Theorem 1. Let EC = (BKg, UKg, UWithdraw, BWithdraw, VfCoin, Spend,
VfSpentCoin, VfDoubleSpent) be a secure scheme for anonymous electronic cash
according to Definition 6. Then πAnonEC securely realizes FAnonEC.

Proof. Defining the Hybrids. We prove the theorem with a hybrid argument. We
build a polynomial-size chain of protocols π0

1 , π1
1 , . . ., πm

1 , π0
2 , π1

2 , . . ., πm
2 , π0

3 ,
π1

3 , . . . , πm
4 such that π1

0 = FAnonEC and πm
4 = πAnonEC. Then we show that if

there exists an adversary A which can distinguish between πt and πt+1 for some
t, then A can be used to break one of the underlying assumptions.

1. Let π0
1 be FAnonEC. We define πt

1 to be πt−1
1 with the difference that the tth

call to Spend produces a spent coin according to the protocol rather than
using a dummy user as in the functionality.

2. Let π0
2 = πm

1 . We define πt
2 to be πt−1

2 with the difference that the tth call
to Spend there is no call to VfCoin before the spent coin is constructed.

3. Let π0
3 = πm

2 , and define πt
3 to be πt−1

3 with the difference that the tth
call to VfSpentCoin returns the VfSpentCoin(spentcoin, mid, tid, bpk) rather
than the value stipulated by the functionality. The table are manipuliated
according to the functionality.

4. Let π0
4 = πm

3 , and define πt
4 to be πt−1

4 with the difference that the tth
call to VfDblSpent is executed according to the protocol rather than to the
functionality and no table are manipulated in VfSpentCoin..

Building the Simulator. By assumption Z distinguishes between FAnonEC and
πAnonEC for any ideal adversary. In particular it distinguishes between the two
protocols for the adversary defined as follows.

For each player Pi that the real-world adversary A corrupts, the ideal ad-
versary S corrupts the corresponding dummy player P̃i. When a corrupted
dummy player P̃i receives a message m from Z, the simulator S lets Z ′ send m
to Pi. When a corrupted Pi outputs a message m to Z ′, then S instructs the
corrupted P̃i to output m to Z. This corresponds to Pi being linked directly to
Z.

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z.
All non-corrupted players are simulated honestly. The corrupted players run
according to their respective protocols.

When all parties have broadcasted their keys, S inspects the internal state
of honest parties and intercepts the broadcast of corrupt parties to construct
(bpk, bsk) and (upki, uski)

k
i=1 where bsk = ⊥ and uski = ⊥ only if B and Ui,

17

respectively, is corrupt. It hands (FAnonEC, Keys, (bpk, bsk), (upki, uski)
k
i=1) to

CI .
When S receives the message (AccWithdrawal,Ui), it instructs Z ′ to send

(AccWithdrawal,Ui) to B. If Ui ∈ C, then on output (IssuedNewCoin,Ui, cpd)
from B, S hands (FAnonEC, IssuedNewCoin,Ui, cpd) to CI . All other functions
are local and need not be simulated for A.

We now handle the cases when Z distinguishes between πt
i and πt+1

i for
i = 1, 2, 3, 4.

1. Assume Z can distinguish between πt
1 and πt+1

1 with non-negligible prob-
ability. Then we construct Aanon breaking the anonymity of EC as follows.
Aanon runs in Experiment 4 while simulating the protocol to Z as
by using its HonestUKg oracle to set up keys for honest users, interacts with
HonestBWithdraw to simulate withdrawals, and uses the HonestSpend oracles
to construct spent coins. Let the (t+1)th Spend request be on behalf of user
Ui for data (mid, tid). When executing Experiment 4, Aanon requests a spent
coin by either Ui or a user Uj , which has never before spent a coin. The
challenge coin spentcoin is returned on the Spend request.
If the challenge coin is by Ui, then Aanon has run πt+1

1 , and if the coin is by
Uj , then the protocol simulated is πt

1. Since, by assumption Z can distinguish
between the two, Aanon wins the anonymity experiment with non-negligible
probability.

2. Assume Z can distinguish between πt
2 and πt+1

2 with non-negligible probab-
ility.
We construct Aexculp breaking the exculpability property of EC by running
in Experiment 5 and simulating the protocol for Z. Aexculp uses its oracles
to create keys for the users, withdraw coins, and create spent coins. Since Z
can distinguish between πt

2 and πt+1
2 , the coin to be spent in call t + 1 does

not pass the VfCoin, but can still be spent. Then A′ outputs this coin in the
guess phase of the experiment. Since the coin cannot be spent, Aexculp wins
the experiment with non-negligible probability.

3. Assume Z can distinguish between πt
3 and πt+1

3 with non-negligible probab-
ility. We can assume B /∈ C, since otherwise VfSpentCoin is run identically
in the protocol and the functionality. By the correctness of EC, a coin issued
by the bank and honestly spent is always accepted.
By the construction of the functionality, a spentcoin created by corrupt user
will be detected as a double-spending if more coins are spent than has been
withdrawn. Therefore Z can distinguish between the protocol and the func-
tionality only if the tth call to Spend will be revealed as a double-spending
by the functionality but not by the protocol.
We use Z to break the unforgeability of EC as follows. We construct Aunforge

running in Experiment 2. The keys of the users are created honestly and then
“registered” using the AddCorruptU oracle. Withdrawals are simulated by
interacting with the HonestBWithdraw oracle. When asked to output forged
coins, it outputs Tvalid−coins. By the assumption, the table contains more
coins than have been withdrawn, thus breaking the unforgeability property
of EC.

18

4. Assume Z can distinguish between πt
4 and πt+1

4 with non-negligible probab-
ility.
For double-spendings that point out a corrupt user as double-spender, the
protocol and the functionality are identical. Therefore Z, if able to distin-
guish between the functionality and the protocol, has found (spentcoin1,
spentcoin2) such that the functionality does not consider them a double-
spending, but the protocol points out an honest party as double-spender.
We let Anon−frame interact in Experiment 3 and simulate the protocol for Z as
follows. The bank keys are constructed honestly and the keys of the honest
users are created using the HonestUKg oracle. Withdrawals are performed
by interacting with the HonestUWithdraw oracle, and spent coins are con-
structed with the HonestSpend oracle. By construction of the functionality,
Z has found (spentcoin1, spentcoin2) such that they were not both construc-
ted using the Spend, but still form a double-spending. Anon−frame breaks the
non-frameability of EC by outputting this pair.

As shown, for each hybrid pair we can construct an adversary breaking a
security assumption of EC. Therefore it follows that if EC is secure, πAnonEC

securely realizes FAnonEC.

5 A Construction

In this section we describe a secure scheme for electronic cash based on general
methods. We first define the primitives, then we give the algorithms, and finally
we prove that our scheme is secure according to our definition.

5.1 Common Reference String Model

Our model is secure in the Common Reference String (CRS) model. In this model
every player has access to a random string. The string is chosen at a setup phase
which is not discussed explicitly.

5.2 Primitives

Our construction uses a signature scheme, a commitment scheme, and simula-
tion sound non-interactive zero-knowledge proofs of knowledge (NIZK). Here we
briefly describe these notions, and refer to Appendix A for precise definitions of
these well-known concepts.

Digital Signatures A signature scheme SS = (Kg, Sig, Vf) is correct if for
(pk, sk) generated by Kg and any message m it holds that Vfpk(m, Sigsk(m)) = 1.
SS is secure against chosen-message attacks, CMA-secure [16], if, even if given
access to a signing oracle Sigsk(·) , it is infeasible to produce valid message-
signature pair for any message not signed by the oracle.

19

Commitment Schemes A commitment scheme COM = (Commit, Reveal) for
messages of length κ is secure if a commitment is both hiding and binding,
i.e., that the adversary gains any useful information about the committed value
from (c, r) ← Commit(m), and that given (c, r) it is infeasible to find (m′, r′)
and (m, r) such that Reveal(c, m′, r′) = 1 but m 6= m′.

Non-interactive Proofs of Knowledge We use non-interactive zero-know-
ledge proofs of knowledge, or NIZKs, in our construction. Given a language
L ∈ NP with witness relation R and x ∈ L, a NIZK (P, V) enables a prover P
to prove to a verifier V that she knows a witness w such that (x, w) ∈ R.

A proof system is said to be zero-knowledge if there exists a simulator which
produces proofs indistinguishable from real proofs, and the condition for it to
be called non-interactive should be obvious. A NIZK is complete if for any
(x, w) ∈ R it holds that V (x, P (x, w)) = 1 and sound if for any algorithm A
the probability that V (x, π) = 1 and x /∈ L is negligible, where (x, π) ← A(ξ).
A NIZK is a proof of knowledge (NIZK-PK) if there exists an extractor which,
if allowed to choose the CRS, can extract a witness.

In the experiments we give the adversary access to oracles which sometimes
produce simulated proofs. Potentially this could help the adversary in producing
false proofs. The stronger notion of simulation sound NIZKs requires that no
adversary can break the soundness even if given access to a simulator.

It has been shown [23,25] that a simulation sound NIZK exists for any NP-
relation if trapdoor permutations exist. Combined with the standard method of
[1] we show how it can be turned into a NIZK-PK under the assumption that
dense encryption schemes [1,26] exist. We detail the construction in Appendix
A, where we prove the following theorem.

Theorem 2. Given an NP-language L there exists a proof system (P, V) for
L which is extractable, adaptively indistinguishable, and unbounded simulation
sound in the CRS-model if there exists a family of trapdoor permutations and a
dense encryption scheme.

We need NIZKs for languages on the form L = {x ∈ Im(f)}. Here the
obvious witness relation is R = {(x, w) : f(w) = x}. For such a relation we
use the notation NIZK(ω : f(ω) = x) to denote a NIZK. We use Greek letters
to denote variables in the witness, i.e., known only to the prover, and Latin
letters for variables known both to the prover and to the verifier. We denote the
verification algorithm by Vf. It will be clear from context for which relation the
proof is.

5.3 The Protocol

Here we give the definitions for algorithms and protocols that form a scheme for
electronic cash in the CRS-model. We begin by giving an informal description.
In order to identify double-spenders, we use Ferguson’s [13] trick of letting each
coin contain a line y = ax + upk, such that the coordinate of its intersection

20

with the y-axis coincides with the identity upk of the owner. When spending
the coin, one point on the line is revealed. Thus one spending of a coin gives no
information about its owner. However, since we make sure different spendings
reveal different points, the identity can be computed from two spendings of the
same coin.

When withdrawing a coin, the user randomly selects the slope a. It computes
a commitment ã of a and a commitment â of ã with associated randomness ra

and rã.

a //

��
@

@

@

@

@

@

@

@

ã //

A

A

A

A

A

A

A

A

â

ra rã

A two-step commitment b̂ of the user public key upk is also computed. Then
â, b̂ is sent to the bank and signed, and when a coin is spent, ã is revealed to-
gether with a proof of knowledge that it is correctly formed, i.e., that it is indeed
the middle element of a two-step commitment of a and the user knows the as-
sociated randomness and bank signature. Intuitively this gives anonymity, since
ã, b̃ cannot be linked to â, b̂. It also assures that double-spenders are detected,
since it is infeasible to open â, b̂ in more than one way. It can be noted that the
signing mechanism is similar to the blind signature scheme found by Fischlin
[14].

We let SS = (Kg, Sig, Vf) be a CMA-secure signature scheme and we let
COM = (Commit, Reveal) be a binding and hiding commitment scheme. Such
signature schemes and commitment schemes exist if one-way functions exist
[22,15], and thus certainly if trapdoor permutations exist.

We use NIZKs for two different relations in the withdrawal and the spending
protocols. The NIZKs work in the common reference string model. We will denote
the reference string ξ. Each proof system needs its own CRS, so we divide ξ into
two parts so that ξ = ξ0||ξ1 such that both ξ0 and ξ1 are long enough. We let
S(setup, 1κ) create both ξ0 and ξ1, store the two secrets in simstate, and return
ξ0||ξ1. Now S can simulate and extract proofs for both relations.

We start with the key generation algorithms. Key generation for the bank
consists of generating a key for the signature scheme. The key for the user is
created by drawing a value at random and computing a commitment to the value.
The private key is the random value and coin tosses used in the commitment,
and the public key is the commitment. As explained above, we do not include
user registration at the bank as part of the protocol.

Definition 7 (BKg(1κ)).

(bpk, bsk)← Kg(1κ)
return (bpk, bsk)

Definition 8 (UKg(1κ)).

t←R {0, 1}κ

21

(upk, rt)← Commit(t)
usk← (t, rt)
return (upk, usk)

Merchant registration is straight-forward. Since our protocol does not use a
merchant secret key, registration simply consists of handing the merchant iden-
tity to the bank, which registers the merchant.

The coin withdrawal protocol is a two-round protocol with the following
steps.

1. The user draws a value a at random and commits to a in two steps, i.e., it
computes a commitment ã to a, and a commitment â to ã. In the same way
it computes a two-step commitment b̂ to its public key upk. It also constructs
a proof πU of knowledge of a a and coin tosses used in the commitments. It
hands â, b̂ and πU to the bank and stores a together with the coin tosses as
the coin user secret data cusd.

2. The bank verifies that the user is allowed to withdraw a coin and that the
proof of knowledge is valid. It then signs the user’s public key concatenated
with (â, b̂). The coin consists of the signature, â,b̂, the user’s public key upk,
and the proof πU .

More precisely, the withdrawal protocols consists of the following two al-
gorithms.

Definition 9 (UWithdraw(msg, state)).

Parse state as (upk, usk).
a←R {0, 1}κ

(ã, ra)← Commit(a)
(â, rã)← Commit(ã)
(b̃, rupk)← Commit(upk)

(b̂, rb̃)← Commit(b̃)

πU ← NIZK(α, ρα, α̃, ρα̃, τ, ρτ , ρupk, β̃, ρβ̃ :
Reveal(ã, α, rα) = 1 ∧ Reveal(â, α̃, ρα̃) = 1 ∧ Reveal(upk, τ, ρτ) = 1∧

Reveal(β̃, upk, ρupk) = 1 ∧ Reveal(b̂, β̃, ρβ̃) = 1)

return ((a, ã, ra, rã, b̃, rupk, rb̃), (upk, â, b̂, πU))

Definition 10 (BWithdraw(msg, state)).

Parse state as (bsk).

Parse msg as (upk, â, b̂, πU).
Quit if user with public key upk is not allowed to withdraw a coin.
if Vf(πU) = 1 then

return (reject, ∅)
end if

s←R Sigbsk(upk, â, b̂)

cpd← (s, â, b̂, upk, πU)
return (cpd, ∅)

22

We also need to be able to verify whether or not a coin has been withdrawn by
a certain user by verifying the coin’s signature and the user’s proof of knowledge.

Definition 11 (VfCoin(cpd, upk, bpk)).

Parse cpd as (s, â, b̂, upk, πU).

return Vfbpk((upk, â, b̂), s) ∧ Vf(πU)

We define two coin public data cpd = (s, â, b̂, upk, πU) and cpd′ = (s′, â′, b̂′,

upk′, πU) to be equal if â = â′, b̂ = b̂′, upk = upk′.
To spend a coin the user first checks that the coin is valid. Then it lets (x, y)

be a point on the line y = ax + upk, where a is the coin user secret data and
upk the public key of the user. The point x is chosen as the concatenation of
the transaction identity and the merchant identity. The user reveals the values
ã and b̃. The spent coin consists of (ã, b̃, x, y), and a proof of knowledge of a and
upk such that (x, y) is indeed a point on the line and of a bank signature on

(upk, â, b̂) as well as of coin tosses such that â is a commitment of ã and b̂ of b̃.

Definition 12 (Spend(cpd, usk, cusd, mid, tid, bpk)).

Parse cpd as (s, â, û, upk, πU)
Parse usk as (t, rt)
Parse cusd as (a, ã, ra, rã, b̃, rupk, rb̃)

if (Vfbpk((upk, â, b̂), s) = 0) ∨ (Reveal(ã, a, ra) = 0) ∨ (Reveal(â, ã, rã) = 0) ∨

(Reveal(upk, t, rt) = 0)∨ (Reveal(b̃, upk, rupk) = 0)∨ (Reveal(b̂, b̃, rb̃) = 0) then

return ⊥
end if

x← mid||tid
y ← ax + upk

π ← NIZK(ι, α, ρα, α̂, ρã, ρupk, β̂, ρb̃, σ, τ, ρτ :

y = αx + ι ∧ Reveal(ã, α, ρα) = 1 ∧ Reveal(α̂, ã, ρã) = 1 ∧ Reveal(b̃, ι, ρupk)∧

Reveal(β̂, b̃, ρb̃) = 1 ∧ Vfbpk((ι, α̃, β̃), σ) = 1 ∧ Reveal(ι, ρτ , τ) = 1)

spentcoin← (ã, b̃, x, y, π)
return spentcoin

Verification of a spent coin is straight-forward:

Definition 13 (VfSpentCoin(spentcoin,tid,mid,bpk)).

Parse spentcoin as (ã, b̃, x, y, π).
if x 6= mid||tid then

return 0
end if

return Vf(π)

Finally we give the algorithm to identify a double-spender. A coin is double-
spent if the values (ã, b̃) appears twice with different values of x. Finding the
double-spender is then simply a task of solving the two equations for upk.

Definition 14 (VfDoubleSpent(spentcoin1, spentcoin2, bpk)).

23

Parse spentcoin1 as (ã1, b̃1, x1, y1, π1).
Parse spentcoin2 as (ã2, b̃2, x2, y2, π2).
if ((ã1, b̃1) 6= (ã2, b̃2)) ∨ (x1 = x2) then

return ⊥
end if

upk← x1y2−x2y1

x1−x2

return upk

6 Proof of Security

In this section we prove the following theorem about the scheme EC = (BKg,
UKg, UWithdraw, BWithdraw, VfCoin, Spend, VfSpentCoin, VfDoubleSpent) as
defined in Section 5.

Theorem 3. If there exists a family of trapdoor permutations, then there exists
a scheme for electronic cash which is correct and secure in the common reference
string model.

From Theorem 1 this implies the following, where FCRS in the common
reference string functionality.

Theorem 4. If there exists a family of trapdoor permutations, then there exists
a protocol which securely realizes FAnonEC in the FCRS-hybrid model.

We prove the theorem by showing the five properties about the scheme
defined in Section 5. Each lemma holds in the CRS-model under the assump-
tion that a family of trapdoor permutations exists, although this is not stated
explicitly.

Lemma 1 (Correctness). The scheme EC is correct.

Proof. Follows by the construction of the algorithms.

Lemma 2 (Unforgeability). The scheme EC has unforgeability.

Proof. Let A be an adversary that is successful in Experiment 2 with non-
negligible probability. We show how to use A to construct either a machine Acma

breaking the CMA-security of the signature scheme SS = (Kg, Sig, Vf), a ma-
chine Abinding breaking the binding property of the commitment scheme COM,
or a machine Asim−sound breaking the simulation soundness of the NIZK-PK.

Acma is given a public key pk for the signature scheme as input. It passes pk

as parameter bpk to A. The CRS is created using the simulator (ξ, simstate)←
S(setup, 1κ). As in the experiment for CMA security, Acma has access to a signa-
ture oracle. The BWithdraw oracle is run honestly using the signature Sigbsk(·)
produced by calling the signature oracle.

Let k be the number of spentcoin produced by A. Recall A has made l with-
drawals using its oracle. This implies Acma has made l calls to the CMA oracle.
For each spentcoini = (ãi, b̃i, xi, yi, πi), Acma calls S(extract, (âi, b̂i, xi, yi),

πi, ξ, simstate) to extract (among other parameters) σi, ι, α̂, β̂, ρβ such that

Vfbpk((ι, α̂, β̂), σ) = 1. We now have the following different cases:

24

1. Signatures on more than l distinct messages are extracted. Then there exists
a message-signature pair (ι, α̂, β̂) for which no signature has been generated
by the CMA oracle. Hence Acma is successful in breaking the CMA-security
of SS by returning (ι, α̂, β̂), σ.

2. At least one proof πi cannot be extracted. In this case Asim−sound uses πi to
break the extractable simulation soundness of the NIZK-PK in the following
way. Asim−sound takes part in Experiment 13 while running A. Asim−sound

creates the bank key pair honestly and answers queries to HonestBWithdraw

honestly. When A has output spentcoini with the unextractable proof πi,
Asim−sound returns spentcoini, thus winning in its experiment.

3. All proofs can be extracted, but two proofs yield signatures on the same
message (ι, α̂, β̂). Since no double-spending is detected, all (α̃, β̃) are dis-
tinct. Hence there are two commitments with associated randomness (α̃i, ρi)
and (α̃j , ρj) such that Reveal(α̂, α̃i, ρi) = Reveal(α̂, α̃j , ρj) = 1. A machine
Abinding which lets the simulator generate the CRS, generates the bank keys
honestly, answers HonestBWithdraw queries honestly wins Experiment 8, the
binding experiment of the commitment scheme COM, by extracting and
outputting (α̂, α̃i, ρi, α̃j , ρj).

Thus we have shown that an adversary which breaks unforgeability can be
used to either break the CMA security of SS, the extractable simulation sound-
ness of the NIZK-PK, or break the binding property of COM. Hence EC has
unforgeability.

Lemma 3 (Non-Frameability). The scheme EC has non-frameability.

Proof. Let A be an adversary that succeeds in Experiment 3 with non-negligible
probability. We show how to use A to construct either a machine Asecrecy break-
ing the secrecy property of the commitment scheme COM, a machine Abinding

breaking the binding property, or a machine Aext−sim−sound, which breaks the
extractable simulation soundness of the NIZK-PK.

The machine Asecrecy takes part in Experiment 7. It creates a CRS using the
simulator (ξ, simstate)← S(setup, 1κ). It randomly draws two message msg0 and
msg1 which it returns to its experiment, receiving a challenge commitment c. Let
the polynomial p(κ) be an upper bound on the number of calls to HonestUKg

by A. Since A runs in polynomial time, there exists such a polynomial. Asecrecy

randomly selects t ∈ [1, p(κ)]. Intuitively Asecrecy guesses that A will frame user
Ut. All queries to HonestUKg are executed honestly except for query t, to which
Asecrecy responds c.

When A queries HonestUWithdraw or HonestSpend for a user different from
Ut, the query is answered honestly. For Ut, the NIZK-PK is constructed by
invoking the simulator S(simulate, ·, ξ, simstate).

First consider the case when A behaves differently on simulated and honest
proofs. If this is the case, then we can construct Aad−ind running in Experiment
10 or 11 as follows. Aad−ind receives the CRS from its experiment. It runs A
simulating all oracles honestly, except that the NIZK-PKs are constructed by
requesting an honest or simulated proof from its experiment. Note that the view

25

of A is identical to the view of A when used by Asecrecy. If A behaves differently
on honest and simulated proofs, then Aad−ind can distinguish between its two
experiments, breaking the adaptive indistiguishability of the NIZK-PK.

A outputs a list of spent coins (spentcoini)
k
i=1. Let spentcoini, spentcoinj

be spent coins such that VfDoubleSpent(spentcoini, spentcoinj, bpk) /∈ C and at
least one spent coin has not been produced by HonestSpend. Since A outputs
more double-spent coins than was created by HonestSpend, such a pair of spent
coins exists by the pigeon-hole principle. Let spentcoini = (ãi, b̃i, xi, yi, πi) and
spentcoinj = (ãj , b̃j , xj , yj , πj). By the assumption that they form a double-

spending, we have that (ãi, b̃i) = (ãj , b̃j) and xi 6= xj . With probability 1/p(κ),
i.e., non-negligible, it holds that VfDoubleSpent(spentcoini, spentcoinj , bpk) =
upkt. From now on, we will assume that this is the case.

From πi and πj the machine Asecrecy attempts to extract (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk,

¯uski, r̄
(i)
usk) and (āj , r̄

(j)
a , ¯upkj , r̄

(j)
upk),

¯uskj , r̄
(j)
usk) such that Reveal(ãi, āi,r̄

(i)
a) = 1,

Reveal(b̃i, ¯upki, r̄
(i)
upk) = 1, Reveal(¯upki,

¯uski, r̄
(i)
usk) = 1 and Reveal(ãj , āj , r̄

(j)
a) = 1,

Reveal(b̃j , ¯upkj , r̄
(j)
upk) = 1, Reveal(¯upkj ,

¯uskj, r̄
(j)
usk) = 1. We now have the following

cases and subcases:

1. None of the proofs were created by the simulator.

(a) At least one extraction fails. In such case we can construct a machine
Aext−sim−sound using A and breaking the extractable simulation soundness
of the NIZK-PK as follows. Aext−sim−sound takes part in Experiment 13.
When A asks for a spent coin, Aext−sim−sound uses its simulation oracle
to form the NIZK-PK of the spent coin. The un-extractable NIZK-PK
of A is output by Aext−sim−sound, which wins the extractable simulation
soundness experiment with non-negligible probability.

(b) Both extractions succeed but return āi 6= (̄a)j or ¯upki 6= ¯upkj . Let us as-
sume the first inequality holds, since the other case is analogous. In such a
case the extracted values can be used by the machine Abinding to break the
binding property of COM by letting Abinding run A while generating the

keys and simulating the oracle honestly and output (ã, r̄
(i)
a , āi, r̄

(j)
a , āj)

in Experiment 8.

(c) Both extractions succeed and return consistent values. Since the NIZK-
PK also proves that yl = axl + upk, it follows that ¯upk = upkt. The
machine Asecrecy breaking the secrecy of COM by running in Experiment
7 is constructed as follows. Recall that msg0, msg1 are drawn by Asecrecy

when genereating a key for Ut. Now Asecrecy finds d such that msgd = ¯cusd

and returns d. Since A is successful with non-negligible probabilty, the
so is Asecrecy.

If no such d is found, then a machine Abinding wins in Experiment 8 as fol-
lows. In runs as described with the difference that (c, r)← Commit(usk).
It then outputs (upkt,

¯cusd, r̄upk, c, r), which forms a double opening of a
commitment. Hence Abinding is successful with non-negligible probabilty.

26

2. One proof was created by the simulator. Without loss of generality we assume

that the simulator created πj , and let aj , r
(j)
a , upkj , r

(j)
upk be the values used

when responding to the oracle query.

(a) The extraction of the proof πi fails. If this is the case, then Aext−sim−sound

proceeds as in Step 1a to break the simulation soundness of the NIZK-
PK.

(b) The extraction of πi succeeds but yields (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk) 6= (aj , r

(j)
a ,

upkj , r
(j)
upk). Then, as in Step 1b, the binding property of COM is broken.

(c) The extraction πi succeeds and gives consistent values. Then, as in Step
1c, the secrecy of COM is broken.

3. Both proofs were created by the simulator. Since, by assumption, at least
one coin was not created by an oracle query, this cannot happen.

We have shown that if A breaks the non-frameability property, then at least
one of the machines Asecrecy, Abinding, and Aext−sim−sound is successful with non-
negligible probability. Since this breaks the assumption, the scheme EC has non-
frameability.

Lemma 4 (Anonymity). The scheme EC has anonymity.

Proof. Assume A wins in the anonymity experiment 4 with non-negligible prob-
ability. We show how to construct either Asecrecy breaking the secrecy of the
commitment scheme COM or a machine Aad−ind breaking the adaptive indistin-
guishability of the NIZK-PK.

We define two variants of the scheme EC. We let EC′ be EC with the modific-
ation that the CRS is created by the simulator, (ξ, simstate)← S(setup, 1κ) and
that the NIZK-PK in the Spend algorithm is generated by the simulator. We let
EC′′ be EC′ with the difference that the commitment scheme of UWithdraw used
to produce ã is replaced by a commitment scheme with perfect secrecy.

Since a spentcoin in EC′′ contains no information about the spender of a
coin, the advantage of A when attacking EC′′ is 0. We now have the following
two cases.

1. The advantage of A when attacking EC′ is non-negligible. We show how to
use A to construct Asecrecy which successfully attacks the secrecy of the com-
mitment scheme COM. Asecrecy takes part in Experiment 7 while simulating
Experiment 4 to A. All calls to HonestUKg and HonestSpend are answered
honestly. When A outputs (i0, i1, mid, tid), Asecrecy outputs (upki0 , upki1) to
its experiment, receiving a commitment c in response. Then Asecrecy uses c
as ã when creating the challenge spentcoin and constructs the rest of the
coin honestly. (Since EC′ only uses simulated NIZK-PKs, not knowing the
message of c is not a problem.) A outputs a bit d, which Asecrecy outputs in
its experiment.

From the construction it follows that Asecrecy is successful when A is, and
hence breaks the secrecy of COM with non-negligible probability.

27

2. The advantage of A when attacking EC′ is negligible. In such case we can
use A to construct Aad−ind breaking the adaptive indistinguishability of the
NIZK-PK. Aad−ind takes part in Experiment 10 and 11 while executing Ex-
periment 4 for A. All parts of Experiment 4 are executed honestly, except
that NIZK-PKs of HonestSpend are created by requesting a proof for Aad−ind

in the choose phase. If A is successful, Aad−ind responds that it is interacting
with Experiment 10, and otherwise that it is interacting with Experiment
11. Since A is successful only when NIZK-PKs are genuine, Aad−ind has a
non-negligible advantage.

We have shown that a machine breaking the anonymity of EC can be made
into a machine either breaking the secrecy of the commitment scheme or a ma-
chine breaking the adaptive indistinguishability of the proof system. Since such
machines contradicts the assumptions, we conclude that EC has anonymity.

Lemma 5 (Exculpability). The scheme EC has exculpability.

Proof. Let A be an adversary which wins in Experiment 5 with non-negligible
probability. Thus A either creates a coin public data which the owner cannot
spend or creates a coin which has not been withdrawn. Let us consider the first
case. We use A to construct either a machine Asecrecy breaking the secrecy prop-
erty of the commitment scheme COM, Abinding breaking the binding property of
the COM, or a machine Aext−sim−sound breaking the simulation soundness of the
NIZK-PK.

We define the scheme EC′ being equal to EC with the difference that the CRS
is setup using the simulator (ξ, simstate) ← S(setup, 1κ) and the NIZK-PK of
UWithdraw is created using the simulator.

First assume A has negligible probability of breaking the exculpability prop-
erty of EC′. Then we can use A to construct Aad−ind in the following way. Aad−ind

takes part in Experiment 10 or 11. It invokes A, answering all queries honestly
except that the NIZK-PK is created by requesting a proof in the choose phase of
Aad−ind. Hence, if Aad−ind is run in Experiment 10, it will run EC for A, but if it
is run in Experiment 11, it will run EC′. If A is successful, then Aad−ind returns
0, and otherwise it returns 1. From the construction of Aad−ind it follows that it
breaks the adaptive indistinguishability of the NIZK-PK.

Now assume A has non-negligible probability in winning the exculpability
experiment against EC′. We use A in a similar way, letting (ξ, simstate) be con-
structed by the simulator. Proofs of knowledge for Ut are constructed using the
simulator.

1. The NIZK-PK πU of cpd output by A has been constructed by the simulator.
This implies that πU was created by HonestUWithdraw for a certain user and
coin secret key uski, cusdi. Hence the coin can be spent using uski, cusdi,
contradicting the assumption that the exculpability property is broken.

2. The NIZK-PK πU of cpd output by A has not been constructed by the
simulator. In this case we can construct Asecrecy breaking the secrecy of the
commitment scheme as follows. Let p(κ) be an upper bound on the number

28

of calls to HonestUKg. Since A is polynomial, such a bound exists. Let t←R

[1, p(κ)]. Informally Asecrecy guesses that A will frame Ut. Asecrecy randomly
chooses τ0, τ1 and requests a challenge commitment c on one of them from its
experiment. It answers queries honestly, except that when asked to generate
the public key for Ut, it returns the challenge commitment c as upkt.
With probability 1/p(κ) A produces a coin cpd that can be verified to belong
to Ut. Assume this is the case. Then Asecrecy uses the extractor to extract
τ, rτ such that Reveal(upkt, τ, rτ) = 1. We now have three cases.
(a) There exists d such that τd = τ . Then Asecrecy returns d and breaks the

secrecy of the commitment scheme COM with non-negligible probability.
(b) No such d exists. Then two openings of commitment upkt has been found,

allowing us to construct Abinding breaking the binding property of COM
as follows. Abinding runs Asecrecy (which in turn runs A) as above. When
the challenge commitment c is created for τb, Abinding stores c = upkt and
the associated randomness rc. After Asecrecy has extracted τ, rτ , Abinding

outputs τb, upkt, rc, τ, rτ . Since τ 6= τb, Abinding breaks the binding prop-
erty of COM.

(c) The extraction fails. Such an adversary A can be used by Aext−sim−sound

breaking the extractable simulation soundness of the NIZK-PK of the
withdrawal protocol which is constructed as follows. Aext−sim−sound runs
in Experiment 13, using ξ as CRS. When A asks for a withdrawn coin,
Aext−sim−sound uses a simulated proof from its experiment, constructing
the other parts of the coin honestly. The other oracles are simulated
honestly. When the unextractable proof π is constructed, it is output by
Aext−sim−sound, which then is successful in its experiment. Since the view
of A is the same as in the above cases, the probability of A constructing
such a proof is non-negligible.

Let us now consider the case where A outputs more coins than executions
of the withdrawal protocol. Since we can assume that all coins can be spent,
otherwise the first case would hold, two distinct coins cpd1 = (s1, â1, b̂1, upk1, π1),

cpd2 = (s2, â2, b̂2, upk2, π2) can be spent with the same coin secret data cusd.

By the definition of equal coins, (â1, b̂1) 6= (â2, b̂2). Since the probability that
two honestly created coins can be spend using the same cusd is negligible, with
overwhelming probability at least one of the coins has been constructing without
using the withdrawal oracle of A. Without loss of generality we let cpd1 be this
coin. Then case 2 above holds if we use cpd1 in place of cpd.

We can conclude that a machine breaking the exculpability property of EC
implies a machine breaking one of the assumptions. Therefore EC has exculpab-
ility.

7 Conclusions and Future Work

We have given a definition of security that are stronger than what has previously
been suggested. We also show that the requirements are realistic by giving a

29

scheme fulfilling them under the assumption of existence of a family of trapdoor
permutations.

It remains an open problem to construct a practical scheme which is secure
in our sense under some well-established number-theoretical assumptions such
as the strong RSA assumption and the Decision Diffie-Hellman assumption.

We would like to thank Johan Håstad for helpful discussions and Douglas
Wikström for pointing out the similarities to [14].

References

1. Giuseppe Persiano A. De Santis. Zero-knowledge proofs of knowledge without inter-
action (extended abstract). In 33rd IEEE Symposium on Foundations of Computer

Science – FOCS, pages 427–436. IEEE Computer Society Press, 1992.
2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:

Formal definitions, simplified requirements, and a construction based on general
assumptions. In Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 614–629. Springer Verlag, 2003.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In RSA Conference 2005, Cryptographers’ Track 2005, volume
3376 of Lecture Notes in Computer Science, pages 136–153. Springer Verlag, 2005.
Full version at http://eprint.iacr.org/2004/077.

4. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In Theory of Cryptography Conference –

TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 60 – 79.
Springer Verlag, 2006. Full version at http://eprint.iacr.org/2005/304.

5. M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems

– TOCS, 1(2):175–193, 1983.
6. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-

plications. In 20th ACM Symposium on the Theory of Computing – STOC, pages
103–118. ACM Press, 1988.

7. S. Brands. Untraceable off-line cash in wallets with observers. In Advances in

Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 302–318. Springer Verlag, 1994.

8. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Advances

in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer

Science, pages 302–321. Springer Verlag, 2005. Full version at http://eprint.

iacr.org/2005/060.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science – FOCS.
IEEE Computer Society Press, 2001. Full version at http://eprint.iacr.org/

2000/067.
10. M. Chase and A. Lysyanskaya. On signatures of knowledge. Cryptology ePrint

Archive, Report 2006/184, 2006. http://eprint.iacr.org/2006/184.
11. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in

Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science,
pages 319–327. Springer Verlag, 1990.

12. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

30

13. N.T. Ferguson. Single term off-line coins. In Advances in Cryptology – EURO-

CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 318–328.
Springer Verlag, 1993.

14. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Advances in Cryptology – CRYPTO2006, volume 4117 of Lecture

Notes in Computer Science, pages 60–77. Springer Verlag, 2006.

15. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
21st ACM Symposium on the Theory of Computing – STOC, pages 25–32. ACM
Press, 1989.

16. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

17. A. Kiayias and M. Yung. Efficient secure group signatures with dynamic joins
and keeping anonymity against group managers. In Mycrypt 2005, volume 3715 of
Lecture Notes in Computer Science, pages 151–170. Springer Verlag, 2005.

18. M. Liskov and S. Micali. Amortized e-cash. In Financial Cryptography 2001,
volume 2339 of Lecture Notes in Computer Science, pages 1–20. Springer Verlag,
2001.

19. T. Nakanishi, M. Shiota, and Y. Sugiyama. An efficient online electronic cash with
unlinkable exact payments. In Information Security Conference – ISC 2004, volume
3225 of Lecture Notes in Computer Science, pages 367–378. Springer Verlag, 2004.

20. T. Nakanishi and Y. Sugiyama. Unlinkable divisible electronic cash. In Information

Security Workshop – ISW 2000, volume 1975 of Lecture Notes in Computer Science,
pages 121–134. Springer Verlag, 2000.

21. T. Okamoto and K. Ohta. Universal electronic cash. In Advances in Cryptology –

CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 324–337.
Springer Verlag, 1992.

22. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM Symposium on the Theory of Computing – STOC, pages 387–394.
ACM Press, 1990.

23. A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In 40th IEEE Symposium on Foundations of Computer Science

– FOCS, pages 543–553. IEEE Computer Society Press, 1999.

24. T. Sander and A. Ta-Shma. Auditable, anonymous electronic cash. In Advances

in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science,
pages 555–572. Springer Verlag, 1999.

25. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Ro-
bust non-interactive zero knowledge. In Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer Ver-
lag, 2001.

26. A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all np relations. In
27th International Colloquium on Automata, Languages and Programming – IC-

ALP, volume 1853 of Lecture Notes in Computer Science, pages 451–462. Springer
Verlag, 2000.

27. V. Varadharajan, K.Q. Nguyen, and Y. Mu. On the design of efficient RSA-based
off-line electronic cash schemes. Theoretical Computer Science, 226:173–184, 1999.

28. V. Wei. More compact e-cash with efficient coin tracing. Cryptology ePrint
Archive, Report 2005/411, 2005. http://eprint.iacr.org/2005/411.

31

A Definitions

A.1 Trapdoor Permutations

Definition 15 (Trapdoor Permutation Family). A trapdoor permutation
family is a tuple of probabilistic polynomial time Turing machines F = (Gen,
Eval, Invert) such that:

1. Gen(1κ) outputs a pair (f, f−1) such that f is a permutation of {0, 1}κ.
2. Eval(1κ, f, x) is a deterministic algorithm which on input f , where (f, f−1) ∈

Gen(1κ), and x ∈ {0, 1}κ outputs y = f(x).
3. Invert(1κ, f−1, y) is a deterministic algorithm which on input f−1, where

(f, f−1) ∈ Gen(1κ), and y ∈ {0, 1}κ outputs some x = f−1(y).
4. For all κ, (f, f−1) ∈ Gen(1κ), and x ∈ {0, 1}κ we have f−1f(x) = x.
5. For all adversaries A ∈ PT∗, the following is negligible

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = f−1(y)] .

A.2 Signature Schemes

A signature scheme SS = (Kg, Sig, Vf) is secure against chosen-message attacks,
CMA-secure [16], if it is infeasible to produce valid message-signature pair for
any message not previously signed, even if the adversary has access to a signing
oracle Sigsk(·). Formally we use the following experiment for the definition. Recall
that QO is the set of queries passed to oracle O.

Experiment 6 (CMA, Expcma
SS,A(κ)).

(pk, sk)← Kg(κ)
(m, σ)← ASigsk(·)(pk)
if (m /∈ QSig) ∧ (Vfpk(m, σ) = 1) then

return 1
else

return 0
end if

The advantage of the adversary is defined as

Adv
cma
SS,A(κ) = Pr[Expcma

SS,A(κ) = 1] .

A signature scheme SS is CMA-secure if Adv
cma
SS,A(κ) is negligible for any A ∈

PT∗.

A.3 Commitment Schemes

A (non-interactive) commitment scheme COM = (Commit, Reveal) consists of
two algorithms, the commitment algorithm and the reveal algorithm. The com-
mitment algorithm takes as input a message msg ∈ {0, 1}κ and outputs a pair

32

(c, r). The reveal algorithm takes a commitment c, a message msg, and the secret
r and determines whether or not c is a commitment to msg under commitment
secret r.

The following two experiments defines secrecy and binding of a commitment
scheme.

Experiment 7 (Secrecy, Exp
secrecy−b
COM,A (κ)).

(msg0, msg1, state)← A(choose, 1κ)
(c, r)← Commit(msgb)
d← A(guess, c, state)
return d

The advantage of an adversary A is

Adv
secrecy
COM,A(κ) = |Pr[Exp

secrecy−0
COM,A (κ) = 1]− Pr[Exp

secrecy−1
COM,A (κ) = 1]| .

The commitment scheme COM has secrecy if Adv
secrecy
COM,A(κ) is negligible for

any A ∈ PT∗.

Experiment 8 (Binding, Exp
binding
COM,A(κ)).

(c, r0, msg0, r1, msg1)← A(guess)
if (Reveal(c, msg0, r0) = Reveal(c, msg1, r1) = 1) ∧ (msg0 6= msg1) then

return 1
else

return 0
end if

The advantage of an adversary A is

Adv
binding
COM,A(κ) = Pr[Exp

binding
COM,A(κ) = 1] .

The commitment scheme COM is binding if Adv
binding
COM,A(κ) is negligible for any

A ∈ PT∗.
One could give stronger a definitions, but in our case the above experiments

suffice. As an example, they do not rule out malleability, i.e., the existence of
an adversary which, after seeing one commitment, creates another commitment
to a related value, which can be opened after the first commitment has been
opened.

It is known that secret and binding commitment schemes exist if there exists
a family of one-way permutations [15]. The construction even gives a perfectly
binding scheme, i.e., even an unbounded adversary cannot decommit to more
than one value.

A.4 Indistinguishable Encryption Schemes

Informally an encryption scheme CS = (Kg, E, D) is called indistinguishable if
it is infeasible to distinguish between the encryptions of two plaintexts of the
same length. The experiment below formalizes this assumption.

33

Experiment 9 (Indistinguishability, Expind−b
CS,A (κ)).

(pk, sk)← Kg(1κ)
(msg0, msg1, state)← A(choose, pk)
c← Epk(msgb)
d← A(guess, c, state)
return d

The advantage of an adversary A is

Advind
CS,A(κ) = |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]| .

The encryption scheme CS is indistinguishable if Advind
COM,A(κ) is negligible for

any A ∈ PT∗.
The notion of indistinguishability is equivalent to the well-known definition

of semantic security, which informally says that no information about the plain-
text can be efficiently computed from the cipher-text. We use the terms “indis-
tinguishable encryption scheme” and “semantically secure encryption scheme”
interchangeably in this text.

A.5 Proofs of Knowledge

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feld-
man, and Micali [6]. Several works have since refined and extended the notion in
various ways. Following [2] we employ the definition of adaptive zero-knowledge
for NIZK introduced by Feige, Lapidot, and Shamir [12] and we use the no-
tion of simulation soundness introduced by Sahai [23]. The notion of simulation
soundness is strengthened by De Santis et al. [25]. In contrast to [2], the NIZK
we use must be adaptive zero-knowledge for polynomially many statements, and
not only for a single statement. The requirement on simulation soundness is in
fact unchanged compared with [2], i.e., single statement simulation soundness
suffices.

Definition 16 (NIPS). A triple (p(κ), P, V) is an efficient adaptive non-inter-
active proof system (NIPS) for a language L ∈ NP with witness relation R if
p(κ) is a polynomial and P and V are probabilistic polynomial time machines
such that

1. Completeness. (x, w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x, w, ξ), ξ) = 1.
2. Soundness. For all functions A,

Pr
ξ∈{0,1}p(κ)

[A(ξ) = (x, π) ∧ x /∈ L ∧ V (x, π, ξ) = 1]

is negligible in κ.

We suppress p in our notation of a NIPS and simply write (P, V).
Loosely speaking a non-interactive zero-knowledge proof system is a NIPS,

which is also zero-knowledge, but there are several flavors of zero-knowledge. We
need a NIZK which is adaptive zero-knowledge (for a single statement) in the
sense of Feige, Lapidot, and Shamir [12].

34

Experiment 10 (Adaptive Indistinguishability, Expad−ind−0
(P,V,S),A(κ)).

ξ ←R {0, 1}f(κ)

(state, x, w)← A(setup, ξ)
while (x, w) ∈ R do

(state, x, w)← A(choose, P (x, w, ξ))
end while

return A(guess, state)

Experiment 11 (Adaptive Indistinguishability, Expad−ind−1
(P,V,S),A(κ)).

(ξ, simstate)← S(1κ)
(state, x, w)← A(setup, ξ)
while (x, w) ∈ R do

(state, x, w)← A(choose, S(x, ξ, simstate))
end while

return A(guess, state)

The advantage in the experiment is defined

Advad−ind
(P,V,S),A(κ) = |Pr[Expad−ind−0

(P,V,S),A(κ) = 1]− Pr[Expad−ind−1
(P,V,S),A(κ) = 1]|

and the notion of adaptive zero-knowledge is given below.

Definition 17 (Adaptive Zero-Knowledge (cf. [12])). A NIPS (P, V) is
adaptive zero-knowledge (NIZK) if there exists a polynomial time Turing ma-
chine S such that Advad−ind

(P,V,S),A(κ) is negligible for all A ∈ PT∗.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If the experiment simulates NIZKs to
the adversary, the adversary could potentially gain the power to compute valid
proofs of false statements. For a simulation sound NIZK this is not possible.

Recall that RO is the set of responses by oracle O.

Experiment 12 (Simulation Soundness, Expsim−sound
(P,V,S),A(κ) (cf. [25])).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
if (π /∈ RS) ∧ (x /∈ L) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

Definition 18 (Simulation Soundness (cf. [23,25])). A NIZK (P, V) with
polynomial time simulator S for a language L is unbounded simulation sound if

Advsim−sound
(P,V,S),A(κ) = Pr[Expsim−sound

(P,V,S),A(κ) = 1]

is negligible for all A ∈ PT∗.

35

De Santis et al. [25] extend the results in [12] and [23] and prove the following
result.

Theorem 5. If there exists a family of trapdoor permutations, then there exists
a simulation sound NIZK for any language in NP in the CRS-model.

In the this paper we abbreviate “efficient non-interactive adaptive zero-knowledge
unbounded simulation sound proof” by NIZK.

It is important to note that the above definition does not require that it is
possible to extract the witness, i.e., they are not proofs of knowledge. To our
knowledge, there are no results on the existence of simulation-sound proofs of
knowledge, although signatures of knowledge [10] are similar.

One must be careful when defining the experiment for extractability. As for
simulation-soundness, we want to give the adversary the ability to request sim-
ulated proofs for theorems of its choice, and if it outputs a valid proof, the
extractor should be able to extract a witness. In the original definitions of NIZK
proofs of knowledge [1,25], soundness and validity, i.e., the requirement on ex-
tractability, are two separate properties. Such a definition would be hard to
use when designing protocols. In a protocol, we need to produce a single CRS
which is used both for simulation and for extraction. Therefore it makes sense
to combine the two properties in a single experiment.

Experiment 13 (Extractable Simulation Soundness, Expext−sim−sound
(P,V,S),A (κ)

(cf. [25])).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
w ← S(extract, x, π, ξ, simstate)
if (π /∈ RS) ∧ ((x, w) /∈ R) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

Definition 19 (Extractable Simulation Soundness). A NIZK (P, V) with
polynomial time simulator S for a language L is unbounded extractable simula-
tion sound if

Advext−sim−sound
(P,V,S),A (κ) = Pr[Expext−sim−sound

(P,V,S),A (κ) = 1]

is negligible for all A ∈ PT∗.

We now give a construction of an extractable simulation sound proof system
based on an unbounded simulation sound proof system. The idea behind the
construction is the same as for [1], which is also used in [10], namely to encrypt
the witness using a semantically secure encryption scheme where the public key
is derived from the common reference string. Extraction is performed by letting
the extractor choose the CRS in such a way that it knows the private key.

36

Let L be a language with witness relation R, i.e., x ∈ L exactly when there
exists w such that (x, w) ∈ R. We define a proof system (P, V) with simulator
S and prove that it is an unbounded simulation sound zero-knowledge proof of
knowledge. Note that S plays the role both of the simulator and the extractor.

In all the below experiments, we let the common reference string ξ consist
of two parts, ξ0 and ξ1, where ξ0 is long enough to be used as CRS for a NIZK
of [25]. We let pk be a public key for the encryption scheme CS = (Kg, E, D) of
the appropriate length defined by ξ1, and we let sk be the corresponding secret
key. We also let L′

ξ1
= {(x, c) | x ∈ L ∧ (x, Dsk(c)) ∈ R} with witness relation

R′
ξ1

= {((x, c), (w, r)) | (x, w) ∈ R∧Epk,r(w) = c}. Let (P ′
ξ1

, V ′
ξ1

) be a unbounded
simulation sound proof system for L′

ξ1
, and let S′

ξ1
be its simulator guaranteed

to exist by [25].

Definition 20 (Prover P (x, w, ξ)).

pk← ξ1

(c, r)← Epk(w)
π′ ← P ′

ξ1
((x, c), (w, r), ξ0)

π ← (c, π′)
return π

Definition 21 (Verifier V (x, π, ξ)).

Parse π as (c, π′)
return V ′

ξ1
((x, c), π′, ξ0)

Definition 22 (Simulator S(tag, params)).

if tag = setup then

Parse params as 1κ

(pk, sk)← Kg(1κ)
ξ1 ← pk

(ξ0, simstate′)← S′(setup, 1κ)
simstate← (sk, simstate′)
ξ ← (ξ0, ξ1)
return (ξ, simstate)

else if tag = simulate then

Parse params as (x, ξ, simstate)
Parse simstate as (sk, simstate′)
c← Epk(0)
π′ ← S′(simulate, (x, c), ξ0, simstate′)
π ← (c, π′)
return π

else if tag = extract then

Parse params as (π, x, ξ, simstate)
Parse simstate as (sk, simstate′)
Parse π as (c, π′)
w ← Dsk(c)
return w

37

else

return ⊥
end if

We now prove Theorem 2.

Proof. We prove, in order, the properties adaptive indistinguishability and ex-
tractable simulation-soundness.

Adaptive Indistinguishability Assume (P, V) is not adaptively indistin-
guishable. Let A be an adversary such that Adv

ad−ind
(P,V,S),A(κ) is non-negligible. We

will use A to construct Aad−ind, breaking either the adaptive indistinguishability
of (P ′, V ′), or Asem−sec, breaking the semantic security of CS.

Let (ξ0, simstate′) ← S′(setup, 1κ), and let ξ1 be chosen at random. Let pk

be the public key defined by ξ1. Consider the proof system (P̃ , Ṽ), which is
identical to (P, V) except that instead of outputting (c, π′), the prover P̃ outputs
(c, S′(simulate, (x, c), ξ0, simstate′)). Assume A wins the Experiments 10, 11 with
non-negligible probability when Experiment 10 is run with P and S is replaced
by P̃ in Experiment 11. Then Aad−ind running in Experiment 10 can use A as
follows. When A asks for a proof, simulated or honest, of (x, w) ∈ R, then Aad−ind

computes (c, r) ← Epk(w) and asks its experiment for a proof of (x, c), (w, r).
When the answer π′ is received, it prepends c and returns the answer to A. If
Aad−ind is run with P ′, then this is what P would return, and if run with S′, then
the answer is that of P̃ . When A returns its guess, the same guess is forwarded
by Aad−ind. By construction Aad−ind is successful when A is.

If A does not distinguish between P and P̃ , then it distinguishes between
P̃ and S with non-negligible probability. Let us define a chain of machines
P̃0, . . . , P̃k such that P̃t answers the t first queries as S and the remaining queries
as P̃ , i.e., P̃0 = S and P̃k = P̃ for k such that A makes at most k queries. Then A
can distinguish between P̃t and P̃t+1 for some t with non-negligible probability.
Fix such a t. We show how such a machine A can be used by Asem−sec in the fol-
lowing way. Asem−sec receives a public key pk as input in Experiment 9, and lets
ξ1 be the CRS corresponding to pk and defines (ξ0, simstate′) ← S′(setup, 1κ).
When A make query t + 1 on (x, w), then Asem−sec requests an encryption c of
either w or 0 from its experiment, and returns (c, S′(simulate, (x, c), ξ0, simstate′))
to A. If A responds that it is executed with P̃t, then Asem−sec guesses that 0 was
encrypted, and otherwise that w was encrypted. By construction Asem−sec is
successful when A is.

Since, by assumption, (P ′, V ′) has adaptive indistinguishability and CS is
semantically secure, the existence of either Aad−ind or Asem−sec with the above
properties is a contradiction. Hence (P, V) has adaptive indistinguishability.

Extractable Simulation-Soundness Assume (P, V) does not have ex-
tractable simulation-soundness, and let A be an adversary which wins in Ex-
periment 13 with non-negligible probability. We describe how to construct an
adversary Asim−sound which breaks the simulation soundness of (P ′, V ′).

Asim−sound runs A in Experiment 13, while taking part in Experiment 12
itself. When Asim−sound receives the CRS ξ it uses it as ξ0 in Experiment 13,

38

while ξ1 is generated as in the definition of S. Asim−sound answers queries to S
by the algorithm in Definition 22, using its oracle S′ where necessary. When A
outputs (x, π) on the call A(guess, ξ), Asim−sound parses π as (c, π′) and outputs
((x, c), π′) on its call Asim−sound(guess, ξ). If w ← Dsk(c) is not a witness of x, then
(x, c) /∈ L′. Thus Asim−sound wins in its experiment exactly when A wins. Thus
Asim−sound breaks the simulation-soundness of (P ′, V ′), which is a contradiction.
We conclude that (P, V) is extractable simulation sound.

In this paper we write NIZK-PK for unbounded simulation sound non-inter-
active zero-knowledge proof of knowledge.

39

