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Abstract. Frey proposed the idea of ‘disguising’ an elliptic curve. This
is a method to obtain a ‘black box’ representation of a group. We adapt
this notion to finite fields and tori and study the question of whether
such systems are secure.

Our main result is an algebraic attack which shows that it is not secure
to disguise the torus T2. We also show that some methods for disguising
an elliptic curve are not secure. Finally, we present a method to disguise
an elliptic curve which seems to resist our algebraic attack.

1 Introduction

Frey [4] proposed the idea of ‘disguising’ an elliptic curve by taking a Weil
descent to obtain a group law represented by a system of non-linear multivariate
polynomial equations and then ‘blinding’ this group law by applying an invertible
linear change of variable. Frey’s proposal was actually to disguise the trace zero
part of the Weil restriction, but the basic idea can be applied more generally.

The motivation for such a proposal is to obtain a ‘black box’ representation
for a group. A black box group is a group description for which one can perform
the group operation, and possibly test for equality of group elements, but one
does not necessarily know the order of the group or anything about the natural
representation of group elements. This usually means that the class of algorithms
which can be performed in the group is restricted compared to more natural
representations of the group. For example, there are index calculus algorithms
for finite fields which exploit the ‘smoothness’ of representations of certain group
elements, and these algorithms cannot be implemented in a black box finite field.

This idea has been adapted by Dent and Galbraith [2] for a ‘trapdoor pairing’
application. It is therefore important to understand the security of such systems.

One of the goals of this work is to study a simplified situation, namely al-
gebraic tori, in the hope is that this will shed light on the elliptic case. Indeed,
in Section 3 we obtain methods which show that it is not secure to disguise a
torus. We then, in Section 4, explain why some of these attacks do not seem to
apply in the elliptic curve case. Further analysis in the elliptic curve case will be
required before we can have confidence in its security.

A related computational problem is the isomorphism of polynomials with one
secret problem and several algorithms have been proposed to solve this problem.
We discuss this work in Section 5.



2 Warm-up: Disguising finite fields

The simplest case is finite fields. We describe this case in some detail as it gives
an easy example of the approaches used in the paper, both for disguising a group
and also for attacking the resulting system.

Consider a finite field K = Fqm . One can represent elements of K as m-tuples
with respect to some basis over Fq (for example, a polynomial basis). We will
use underlining to denote m-tuples, so that the field element a is represented as
the m-tuple a.

There is an explicit way to multiply elements represented as m-tuples. Indeed,
there are m homogeneous quadratic polynomials Fi(x0, . . . , xm−1, y0, . . . , ym−1)
(i = 0, . . . ,m − 1) defined over Fq such that, if a = (a0, . . . , am−1) and b =
(b0, . . . , bm−1) are m-tuples corresponding to elements a, b ∈ K then the product
c = ab is represented by the m-tuple c = (c0, . . . , cm−1) where

ci = Fi(a0, . . . , am−1, b0, . . . , bm−1).

We call this a ‘natural’ representation for Fqn .
We are interested in whether the field K can be diguised to give a black box

representation.
The approach taken by Frey for elliptic curves is to apply an invertible

transformation U on the vector space Fm
q . Initially, we will assume that U is

linear (see the end of this section for a discussion of the more general case).
Hence, for any element a = (a0, . . . , am−1) we associate the ‘disguised’ element
a′ = (a′0, . . . , a

′
m−1) = U(a0, . . . , am−1). One may think of U(a) as being MaT

where M is an m × m matrix over Fq and where aT is a column vector (the
transpose of a).

Denote by x′ and y′ two m-tuples representing arbitrary disguised group
elements. To obtain a group law it is necessary to ‘disguise’ the polynomials Fi

describing the group law to get m polynomials

(F ′
0, . . . , F

′
m−1) = U

(
F0(U−1x′, U−1y′), . . . , Fm−1(U−1x′, U−1y′)

)
.

defined over Fq (since U is linear the F ′
i are still quadratic). One can easily check

that if a′, b′ are disguised representations of a, b ∈ K then c′ = (F ′
i (a

′, b′)) is a
disguised representation of ab ∈ K. Since U is linear, the addition operation in
the field can also be immediately computed.

It is trivial to see that this ‘disguised’ representation does not give a black box
group. We stress that the issue is not whether one can find the transformation
U , but whether one can find a way to interpret the ‘disguised’ representation as
a ‘natural’ representation (i.e., to ‘look inside the box’). Hence the solution to
the cryptanalysis problem is not unique.

One attack is to recover a polynomial representation of the field using the
following method. Choose a random m-tuple w′ corresponding to a field element
w and use the group operation to compute blinded representations of w2, w3, . . . ,
wm, wm+1. One then has m + 1 vectors in Fm

q so there is a linear dependence
over Fq. This linear dependence gives a polynomial g(x) which (once the trivial
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factor x is removed) has degree m over Fq and has w as a root. If w does
not lie in a proper subfield then g(x) is irreducible and we have recovered a
natural polynomial representation of our ‘disguised’ finite field K. It is easy to
decompose other elements of the disguised group representation in terms of the
new polynomial basis (indeed, computing isomorphisms between finite fields is
easy [7]). One can then apply index calculus algorithms etc.

We assumed above that U is linear. Frey [4] actually assumed affine maps,
so that U(x) = MxT + tT for some matrix M and vector t. There are at least
two ways to show that there is no extra generality by doing this. One approach
(following Perret [11]) is to note that MxT + tT can be expressed as M ′(x′)T

where x′ = (x, 1) and

M ′ =
(

M tT

0 1

)
.

Another approach is to note that the equation 0 · 0 = 0 in K implies that the
disguised representation of 0, namely t, is a fixed point of the multiplication op-
eration (another fixed point comes from 1 ·1 = 1). One can find such fixed points
from the equation (F ′

i (x, x)) = x, which we will assume can be easily solved us-
ing Gröbner basis methods. Once t is found one can perform a transformation
to reduce the problem to the previous case.

The case where U is non-affine is a question for further research, but such
transformations are less interesting from the application point of view as they
would increase the degree of the equations defining the group operation.

To summarise, it is impossible to securely disguise a finite field in the above
manner. We remark that our discussion does not contradict the results of Boneh
and Lipton [1] since the ‘disguised’ field above is not a true black box field: the
subfield Fq is clearly visible and the addition operation is not ‘black box’.

3 Tori

We now consider algebraic tori. These are subgroups of the multiplicative group
of a finite field.

Consider the simplest non-trivial torus, namely the subgroup T2 ⊂ F∗
q2m of

order qm +1. Equivalently, T2 is the kernel of the norm map with respect to the
Galois extension Fq2m/Fqm . Assume that Fq2m = Fqm(α) for some element α.
We denote by α the Galois conjugate of α.

There are several ways to represent this torus. The ‘direct’ way is T2 =
{a + bα : (a + bα)(a + bα) = 1} which allows one to represent T2 as an affine
variety in F2

qm . Another commonly used way to represent this tori is in the ‘affine
representation’

T2\{1} =
{

a + α

a + α
: a ∈ Fqm

}
.

A third way to represent the torus is in the ‘projective representation’

T2 =
{

a + bα

a + bα
: a, b ∈ Fqm , (a, b) 6= (0, 0)

}
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which has a natural projective equivalence relation such that the element corre-
sponding to (a, b) is equivalent to the element corresponding to (λa, λb) for any
λ ∈ F∗

qm .
For the affine and projective representations it is sufficient to store and com-

pute with the numerator only (since the denominator is always the Galois conju-
gate). Hence, the projective representation essentially coincides with the direct
representation, except the norm 1 condition on a + bα is no longer required.

There are other algebraic tori used in cryptography, such as the subgroup T6

of F∗
q6 of size q2−q+1. However, the problem of disguising such tori seems to be

of less interest since the group law directly on the torus is unattractive in these
cases. Instead, in practice one tends to ‘decompress’ the representation, compute
the group operations, and then ‘recompress’. An exception is the XTR represen-
tation (which is not a torus) and it might be of interest to study disguising this
group operation.

3.1 Representing the group law in T2

For simplicity let us now restrict to the case where m is odd and q = 2s where s
is odd. Then we can assume that α2 + α + 1 = 0 and α = α + 1. The group law
on the direct or projective representations of T2 is given by

(a + bα)(c + dα) = ac + bd + α(ad + bc + bd).

We call this the ‘projective group law’. For the affine representation this is

(a + α)(c + α) =
ac + 1

a + c + 1
+ α.

Note that addition of elements of a torus is not defined.
As before, fix a basis for Fqm over Fq and represent an element a ∈ Fqm by

an m-tuple (a0, . . . , am−1). The above group law can be expressed in terms of
m-tuples. The affine multiplication rule is represented by m rational functions
in 2m variables while the projective multiplication rule is represented by 2m
quadratic polynomials in 4m variables.

The projective group law can be iteratively composed, but the affine repre-
sentation is not so convenient. Hence, in practice, one would prefer the projective
representation. The affine multiplication can be expressed as a system of polyno-
mial equations by giving an inversion rule using the norm. This is convenient in
the case s = 1, since the norm of any invertible element with respect to F2m/F2

is 1. We omit the details and stick with using the projective formulation.
To summarise, the projective group law is given by a sequence of 2m quadratic

polynomials Fi(a, b, c, d) in 4m variables. In the case where T2 has the direct
representation the polynomials are exactly the same, so this representation is
identical to the projective version even though we should ‘officially’ only work
with elements (a + bα) of norm 1.

To disguise the group we apply an invertible transformation U of 2m-dimensional
space. We therefore obtain the blinded affine system

F ′
i = UFi

(
U−1(a, b), U−1(c, d)

)
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The hope is that this blinded group law forms a black box group. Of course,
the public data contains q and 2m so we know that the black box group represents
the torus of order qm + 1. If the group operations alone are published then one
cannot necessarily compute inverses, test equality of projective representations
or even recognise a representative of the identity element 1.

3.2 Algebraic attack

Consider first the special case where the transformation U is of the form U1×U2

where U1 is a transformation of the first m-tuple (representing a) and where U2

is a transformation of the second m-tuple (representing b). We show that it is
trivial to recover the ‘natural’ structure of the torus as a subgroup of F∗

q2m in
this case.

The attack begins by taking a random element w of the form (a, 0) by setting
the second half of the values in the 2m-tuple to be zero. The multiplication rule
on elements of the form (a, 0) = a+0α becomes simply the multiplication rule in
Fqm . Hence one computes (a2, 0), (a3, 0), . . . , (am+1, 0) and recovers a polynomial
representation for Fqm as done in the previous section.

One then takes a random element of the form u = (0, ?). Then u corresponds
to bα for some value b. One can compute u2 = b2α2 in the form (a′, b′). We
have a′ = b2 and b′ = b2. One can express a′ with respect to the newly obtained
polynomial basis for Fqm and hence recover the representation of b with respect
to this basis. Repeating for m judicious choices of u allows all 2m-tuples in the
disguised representation to be expressed in the form a + bα where a and b are
expressed in terms of a polynomial basis for Fqm . The natural structure of the
torus is therefore recovered.

We remark, for later reference, that the key to this attack is using the op-
eration 1 · 1 = 1 on varying representations of 1 to turn our black box group
operation into a black box for multiplication in a finite field.

We now consider the more general case, where the transformation U mixes a
and b variables together. The attack is similar. Choose a random 2m-tuple (a, b)
and use the group operation to compute w = (a′, b′) = (a, b)qm+1. Then (a′, b′) is
an element which represents the identity, and so it corresponds to an un-disguised
element of the form (?, 0). Once we have such a random element we can recover a
polynomial basis for Fqm as above. One can then apply a linear transformation
U1 which diagonalises the first m variables. Again, choose a random element
of the form u = (0, ?). In this case, all we know is that u = a + bα for some
a, b ∈ Fqm . Compute wu, . . . , wmu, which are all of the form a′ + b′α. One can
then find a linear transformation U2 which removes all the terms a, a′ etc, so that
the original value u = (0, ?) is now ‘purely quadratic’. A natural representation
of the torus is now recovered.

Example: We take m = 3 and consider the torus in F∗
26 of order 23 + 1. We

represent a ∈ F23 as (a0, a1, a2).
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The un-disguised group law to multiply (a + bα)(c + dα) is given by the 6
polynomials (thanks to Magma):

F0 = a0c0 + a1c2 + a2c1 + b0d0 + b1d2 + b2d1
F1 = a0c1 + a1c0 + a1c2 + a2c1 + a2c2 + b0d1 + b1d0 + b1d2 + b2d1 + b2d2
F2 = a0c2 + a1c1 + a2c0 + a2c2 + b0d2 + b1d1 + b2d0 + b2d2
F3 = a0d0 + a1d2 + a2d1 + b0c0 + b0d0 + b1c2 + b1d2 + b2c1 + b2d1
F4 = a0d1 + a1d0 + a1d2 + a2d1 + a2d2 + b0c1 + b0d1 + b1c0 + b1c2

+b1d0 + b1d2 + b2c1 + b2c2 + b2d1 + b2d2
F5 = a0d2 + a1d1 + a2d0 + a2d2 + b0c2 + b0d2 + b1c1 + b1d1 + b2c0

+b2c2 + b2d0 + b2d2

Now apply a linear change of variable U to get the blinded system:

F0 = a0c0 + a0c2 + a0d1 + a1d0 + a1d2 + a2c0 + b0c1 + b1c0
+b1d1 + b1d2 + b2c1 + b2d1

F1 = a0c0 + a0d0 + a0d1 + a1c1 + a1c2 + a1d0 + a2c1 + b0c0
+b0c1 + b0d2 + b1c0 + b1d1 + b2d0 + b2d2

F2 = a0c1 + a0d1 + a1c0 + a1c1 + a1d1 + a2c2 + b0d1 + b1c0
+b1c1 + b1d0 + b1d1 + b1d2 + b2d1 + b2d2

F3 = a0c1 + a1c0 + a1c1 + a1d0 + a2d0 + b0c1 + b0c2 + b0d1
+b1d0 + b1d2 + b2d1

F4 = a0d0 + a0d2 + a1c1 + a1d0 + a1d2 + a2d1 + b0c0 + b0c1
+b0d0 + b1c2 + b1d2 + b2c0 + b2c1 + b2d1

F5 = a0c0 + a0c1 + a0d1 + a1c0 + a1c1 + a2d2 + b0d0 + b0d1
+b1c0 + b1d0 + b1d2 + b2c2 + b2d1 + b2d2.

Choose u = (a0, a1, a2, b0, b1, b2) = (1, 0, 0, 0, 0, 0). One computes w = u9 =
u23+1 = (1, 1, 0, 0, 1, 0). This represents an element in F23 corresponding to the
torus element 1. Now, w2 = (0, 1, 0, 1, 1, 0), w3 = (1, 1, 1, 0, 1, 0) and w4 =
(1, 0, 0, 1, 0, 0). One finds the linear relation w+w2 +w4 = (0, 0, 0, 0, 0, 0). Hence
the element w has minimal polynomial g(x) = x3 + x + 1. Acting by the matrix

U1 =


0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1


transforms the representation so that the first three components correspond to
F23 with the polynomial basis {1, w, w2}. The polynomials Fi should be trans-
formed under U1.
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Now take u = (0, 0, 0, 1, 0, 0). One finds that 1u = u, wu = (1, 0, 0, 0, 1, 0)
and w2u = (0, 1, 0, 0, 1, 1). Hence, u does not correspond to a purely quadratic
field element such as bα. Transforming under a matrix of the form

U2 =
(

I3 A
0 I3

)
where I3 is a 3× 3 identity matrix and

A =

0 1 1
0 0 1
0 0 0


means that the element u = (0, 0, 0, 1, 0, 0) is now purely quadratic. Calling it
α we can compute wα = (0, 0, 0, 1, 0) and w2α = (0, 0, 0, 0, 1, 1). Hence we now
have a completely explicit basis in terms of the elements w and α. Finally, one
computes α2 = (0, 1, 1, 0, 0, 1) and finds that α satisfies the equation α2 + (w +
w2)(α + 1) = 0. A natural representation for the torus is therefore obtained. If
required, one could compute an isomorphism to a ‘nicer’ basis using the methods
of Lenstra [7].

4 Disguising elliptic curves

We now consider the case of the most interest, which is to obtain a black box
representation of an elliptic curve group. The minimum requirement for a black
box group is to be able to compute the group operation and to be given an
element of the group. Features which may or may not be given include the
ability to test equality of group elements, knowledge of the order of the group,
and the ability to randomly sample elements of the group

4.1 Elliptic curve group operations

As with tori, the most practical approach is to work with projective equations.
Hence, assume we have a curve

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3

over a finite field Fqm . As usual, we will represent elements x ∈ Fqm as m-tuples
over Fq.

We want to describe the group operation (x : y : z) + (u : v : w) as polyno-
mials. We will require 3m polynomials in 6m variables.

Since the attack on tori exploits the operation 1 · 1 = 1, it is natural in the
elliptic curve case to exploit the operation 0 + 0 = 0 (where 0 is the point at
infinity on the curve). It turns out (see [5, 6]) that it is impossible to give one
list of polynomials for elliptic curve addition which give the correct result for all
valid input points. This fact seems to thwart the algebraic attacks used earlier.
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The natural thing to do is to use the usual group law for affine points (i.e.,
where z 6= 0) which is extended to projective points. There are formulae for
doubling and formulae for addition, or one might prefer the combined formulae
which represent both doubling and addition. It is sufficient for the attack on tori
to consider squaring, so we focus on doubling here.

For a curve of the form y2 = x3 + Ax + B the usual formula is

[2](x, y, z) = (x2, y2, z2)

where

x2 = 2yz(x4 − 2Ax2z2 − 8Bxz3 + A2z4)
y2 = x6 + 5Ax4z2 + 20Bx3z3 − 5A2x2z4 − 4ABxz5 − (A3 + 8B2)z6

z2 = (2yz)3.

One can see that [2](0, 1, 0) = (0, 0, 0) so this formula is not valid when doubling
infinity.

The addition formulae are considerably more complicated, and not just be-
cause there are 6 variables involved instead of 3. We refer to [2] for some details.

A case of particular interest for the hidden pairing application is disguising
supersingular elliptic curves. So consider y2 + y = x3 + a2x

2 + a4x + a6. The
projective doubling formula in this case is [2](x, y, z) = (x2, y2, z2) where

x2 = x4z2 + (a2
4 + a2)z6

y2 = x6 + a4x
4z2 + x3z3 + (a2

4 + a2)x2z4 + a4xz5 + yz5 + (a2a4 + a3
4 + 1)z6

z2 = z6.

Again, one sees that [2](0, 1, 0) gives (0, 0, 0), which is not defined.

4.2 Disguising an elliptic curve

Let Fi(x, u) be a system of polynomial functions which represents the elliptic
curve group law. This may be a general group addition formula, or one could
use two systems of polynomial functions, the first giving point doubling and the
second giving addition of two distinct points.

As before, we take an invertible transformation U which acts on 3m-tuples
and define the ‘disguised’ 3m-tuples as (x′, y′, z′) = U(x, y, z). The ‘disguised’
group law is obtained as(

F ′
i (x

′, y′, z′, u′, v′, w′)
)

= U
(
Fi(U−1(x′, y′, z′), U−1(u′, v′, w′)

)
4.3 Attacks

As before we consider two cases.
In the first case, suppose U keeps the m-tuples corresponding to x, y and z

separate. The natural first guess would be to set all x and z variables to zero and
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to compute (0, y, 0) + (0, y, 0). But this is not useful since the group operation
is not defined on such points (it returns (0, 0, 0)). This is a crucial observation.

Nevertheless, in this case one can set, say, y = z = 0 and compute [2](x, 0, 0) =
(0, x6, 0). If U acts the same way on each m-tuple then one could then compute
[2](x6, 0, 0) = (0, x36, 0) and recover x as long as the extension degree is coprime
to 6. Note that it doesn’t matter if (x, 0, 0) is a point on the curve or not; we
are simply evaluating some polynomials on some values.

Now consider the case where U mixes all variables together. In this case the
algebraic attacks do not seem to work. Even if the group order N is known, one
can compute [N ](x, y, z) for a random point, to get a representation of a point
(0, 1, 0). But, as noted, the group law fails to add points at infinity correctly and
so the black box elliptic curve group law does not seem to give us access to a
black box finite field.

Hence, elliptic curves seem to resist the algebraic methods used to attack the
case of the torus T2.

On the other hand, they might be attacked by multivariate techniques, such
as linearisation or Gröbner bases, which would determine the transformation U
just from the polynomials defining the group operation. We discuss such attacks
in more details in the next section.

5 Relationship with the isomorphism of polynomials
problem

Some related problems have been already considered in the literature. Let a =
(a1(x0, . . . , xm−1), . . . , an(x0, . . . , xm−1) be a list of n polynomials in m variables
over Fq. Let b be another such list of n polynomials in m variables.

Isomorphism of polynomials with one secret problem (IP1S): Given a
and b find M ∈ GLm(Fq) and t such that bi(x) = ai(MxT + tT ).

Isomorphism of polynomials (with two secrets) problem (IP): Given a
and b find M,N ∈ GLm(Fq) and t1, t2 such that bi(x) = Nai(MxT +tT1 )+tT2 .

Polynomial linear equivalence (PLE): Given a and b find M ∈ GLm(Fq)
such that bi(x) = ai(MxT ).

The isomorphism of polynomials problem was introduced by Patarin [10].
Perret [11] shows that IP1S and PLE are equivalent, by using the fact that an
affine transformation on n variables can be viewed as a linear transformation on
n + 1 homogeneous variables.

Perret [11] gives an interesting algorithm to attack the PLE problem, which
is based on getting information about M by considering the Jacobian matrices
of the systems a and b (essentially relating the degree 1 components of a and b)
and similarly relating the degree 2 components of a and b. This algorithm solves
many PLE problems in polynomial time.
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More recently, Faugère and Perret [3] consider solving such systems using the
F5 Gröbner basis algorithm. Advantage is taken of working with homogeneous
components of low degree, when possible. They give experimental results in a
number of cases, and give some idea of the numbers of variables required to
prevent their attack. Unfortunately, it seems to be hard to give a complexity
estimate for their methods, or even a clear picture of the number of variables
required to attain a given security level.

The computational problem arising from our application is not necessarily as
hard as the general IP problem, since we blind our system using a single matrix,
as F ′(x, u) = UF (U−1x,U−1u).

On the other hand, for the IP1S and PLE problems both the original system
of polynomials a and the final system b are given. In our application, only the
final system F ′ is given to an attacker. However, if information about F is leaked
or can be guessed then attacks of this form may be relevant. This is particularly
relevant for the case of hidden pairings [2], where the original equation of the
curve can be guessed.

5.1 Hidden pairings

In [2] it is proposed to disguise the supersingular elliptic curve y2 + y = x3 + 1
over Fqm where q = 2s. Two variants are given, the first of which involves pub-
lishing polynomials giving a general addition rule for pairs of points in blinded
representation. The second variant gives a partial group law, comprising a gen-
eral doubling formula, but only formulae for addition by a fixed point P . Note
that, in both variants, the published polynomial systems for the doubling op-
eration are homogeneous of degree at least 3, though in the second variant the
addition formula with respect to a fixed base point P is not homogeneous.

In both variants, one can obtain pairs (F (x), F ′(x′)) of systems of explicitly
known polynomials such that F ′(x′) = U(F (U−1x′)) where U is the unknown
change of variable, by considering just the case of doubling a point. One can also
obtain other systems of polynomials from the group law, but it seems natural
to start with the simplest case of doubling. Hence, the security of the scheme
depends on an the hardness of a certain isomorphism of polynomials problem.

In [2] a method to solve such systems using Gröbner bases is sketched. Much
more detail of this sort of attack is given in [3]. Further work on determining
which, if any, values for m are secure is needed.

The reason why this attack is applicable is that it is known how the original
curve and group law are chosen. For example, this attack cannot be performed
using the polynomial equations representing addition by the fixed point P , since
the original coordinates of P cannot be guessed.

One might think that this attack can be avoided by taking a more general
elliptic curve equation, as suggested at the send of Section 4.2 of [2]. Unfortu-
nately, this idea does not work, since all supersingular elliptic curves over F2n

are isomorphic over F2n to one of a finite number of ‘canonical’ supersingular
elliptic curves (see, for example, [8, 9]). Since an isomorphism of Weierstrass
equations of elliptic curves over F2n is given by a linear change of variable, any
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such isomorphism may be already included in the change of variable U . Hence, if
the curve equation is ‘randomised’ but the isomorphism of polynomials problem
can be efficiently solved, then we can just repeat the attack a small number of
times by trying each of the canonical elliptic curves in turn.

To summarise, the Gröbner basis methods in [2, 3] do not seem to be directly
applicable to the general problem of disguising an elliptic curve, but they are
applicable to the hidden pairings application. As a result, for hidden pairings it
seems that m is required to be rather large (at least m ≥ 11) and so the storage
requirements for the system might be too large for it to be practical.

6 Conclusions

We have given a simple algebraic attack which shows that it is not secure to
disguise the torus T2. We have then explained why this attack does not seem to
apply to disguised elliptic curves. Finally, we have considered the case of hid-
den pairings and explained the connection with the isomorphism of polynomials
problem. Due to the success of the methods in [3] it seems that the parameter
m in hidden pairing applications is required to be larger than hoped in [2], and
so the practicality of such systems is questionable.

We encourage further research on cryptanalysis of disguised elliptic curve
systems.
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