
Accelerating Cryptanalysis with the Method of Four Russians

Gregory V. Bard∗

July 22, 2006

Abstract

Solving a dense linear system of boolean equations is the final step of several cryptanalytic
attacks. Examples include stream cipher cryptanalysis via XL and related algorithms, integer
factorization, and attacks on the HFE public-key cryptosystem. While both Gaussian Elimina-
tion and Strassen’s Algorithm have been proposed as methods, this paper specifies an algorithm
that is much faster than both in practice. Performance is formally modeled, and experimen-
tal running times are provided, including for the optimal setting of the algorithm’s parameter.
The consequences for published attacks on systems are also provided. The algorithm is named
Method of Four Russians for Inversion (M4RI), in honor of the matrix multiplication algorithm
from which it emerged, the Method of Four Russians Multiplication (M4RM).

Keywords: Matrix Inversion, Matrix Multiplication, Boolean Matrices, GF(2), Stream Cipher
Cryptanalysis, XL Algorithm, Strassen’s Algorithm, Method of Four Russians, Gaussian Elimina-
tion, LU-factorization.

1 Introduction

Solving a linear system of boolean equations lies at the heart of many cryptanalytic techniques.
Examples include stream cipher cryptanalysis via the XL algorithm and its many variants [Arm02,
Arm04, AA05, AK03, Cou02, Cou03, Cou04a, CM03, HR04, SPCK00]; the algebraic attacks on the
HFE public-key cryptosystem [Cou01, FJ03, CGP03, Cou04b]; and integer factorization methods
[AGLL94, PS92], where much of the research on boolean matrices began.

Gaussian Elimination, known in China for at least 2100 years1 but only known in the West since
the 19th century [wiki], is a natural choice of algorithm for these problems. However, for dense
systems, its cubic-time complexity makes it far too slow in practice. The algorithm in this paper
achieves a speed-up of 3.36 times for a 32000 × 32000 boolean matrix generated by random fair
coins. The theoretical complexity of the algorithm is O(n3/ log n), but it should be remembered
that frequently n is the cube or higher power of a parameter of the system being attacked, and
so frequently is in the millions (See Section 6). We also show that this algorithm will out-perform
Strassen’s algorithm and other “Fast Matrix Multiplication” algorithms developed after Strassen’s
famous paper, for any reasonably sized matrix. (See Section 1.1 and Appendix A).

∗Dept. of Applied Mathematics and Scientific Computation
1The important Chinese mathematical text The Nine Chapters on the Mathematical Art, written about 150 bc,

known as Jiuzhang Suanshu, has the earliest known presentation of Gaussian Elimination [wiki, KCA].

1



Origins and Previous Work A paper published by Arlazarov, Dinic, Kronrod, and Faradzev
[ADKF70] in 1970 on graph theory contained an O(n3/ log n) algorithm for finding the transitive
closure of a graph. This problem is of course equivalent to exponentiation of a boolean matrix
(the adjacency matrix) and the community quickly realized that it was useful not only as a matrix
squaring algorithm, but also a matrix multiplication algorithm, because[

A B
0 0

]2

=

[
A2 AB
0 0

]
and therefore squaring a matrix and matrix multiplication are equivalent. This equivalency is not
as inefficient as it might seem as one can trivially calculate the upper-right quadrant of the answer
matrix without calculating the other three-fourths of it. The matrix multiplication algorithm is
given in Section 2. This algorithm appears in Aho, Hopcroft, and Ullman’s book [AHU], which
gives the name “the Method of Four Russians. . . after the cardinality and the nationality of its
inventors” [AHU]. While that text states this algorithm is for boolean matrices, one can trivially
see how to adapt it to GF (q) for very small q.

A similarly inspired matrix inversion algorithm was known anecdotaly among some cryptana-
lysts. The author would like to express gratitude to Nicholas Courtois who explained the following
algorithm to him after Eurocrypt 2005 in Århus, Denmark. It appears that this algorithm has not
been published, either in the literature or on the Internet. The author calls this newer algorithm
“Method of 4 Russians Inversion” (M4RI) and the original as “Method of 4 Russians Multiplication”
(M4RM).

Contributions Besides giving the details of M4RI, this paper performs the first rigorous analysis
of the M4RI algorithm (known to the authors), and also contains experimental verification. In
addition, the author maintains coefficients in complexity formulae, while still dropping lower order
terms, by using ∼ rather than big-Oh notation. The coefficients enable the calculation of cross-over
points between two competing algorithms. Moreover, the author proves that Strassen’s algorithm
cannot be used without modification for solving boolean linear systems, and shows that it is slower
than M4RI for any practical sized matrix. Finally, exact (rather than asymptotic) upper-bounds
of the running times of some recently published cryptanalytic attacks in the stream cipher, HFE
public-key, and integer factorization communities are given. It should be noted that the exact
running times can be useful in verifying if an algebraic attack is slower or faster than brute force
exhaustive search.

It should be noted that this paper is only concerned with dense systems. Some systems in
practice are sparse, and would run much faster under specialized sparse algorithms, such as Lanczos,
Wiedemann or Coppersmith’s “Block Wiedemann”. On the other hand, sparse systems eventually
reduce to smaller dense systems and M4RI can be used in these situations as well. Also, one can
think of the times given in Section 6 as safe upper-bounds. While they ignore sparsity, no sparse
algorithm on a sparse matrix will run slower than the dense approach on that same matrix.

1.1 The Exponent of Matrix Multiplication

A great deal of research was done in the period 1969–1987 on fast matrix operations [Higham, Pan].
Various proofs showed that many important matrix operations, such as QR-decomposition, LU -
factorization, inversion, finding determinants, and finding the characteristic polynomial are no

2



more complex than matrix multiplication, in the big-Oh sense [AHU, CLRS]. For this reason,
much interest was generated as fast matrix multiplication algorithms were developed [Str69, Sch81,
Str87, Pan]. While M4RM and M4RI are specifically for GF (2) (and can work for GF (q) for other
very small q with trivial modification) the other algorithms were designed to work over any field
by using only the axioms of the definition of a field.

Of the general purpose algorithms, the most famous and frequently implemented of these is
Volker Strassen’s 1969 algorithm for matrix multiplication. Both Strassen’s Algorithm O(n2.81)
[Str69], and Coppersmith’s Algorithm O(n2.38) [CW90], the current fastest exponent, have been
proposed for boolean linear system solution. Neither, it turns out, is feasible.

Very Low Exponents The algorithms with exponents below O(n2.81) all follow the following
argument. Matrix multiplication of any particular fixed dimensions is a bilinear map from one
vector space to another. The input space is of matrices ⊕ matrices as a direct sum, and the
output space is another matrix space. Therefore, the map can be written as a tensor. By finding
a shortcut for a particular matrix multiplication operation of fixed dimensions, one lower-bounds
the complexity2 of this tensor for those fixed dimensions. Specifically, Strassen performs 2 × 2 by
2× 2 in seven steps instead of eight [Str69]. Likewise, Victor Pan’s algorithm performs 70× 70 by
70× 70 in 143,640 steps rather than 343,000, for an exponent of 2.795 [Pan].

One can now lower-bound the complexity of matrix multiplication in general by extending the
shortcut. The method of extension varies by paper, but usually the cross-over3 can be calculated
explicitly. While the actual crossover in practice might vary slightly, these matrices have millions of
rows, and are totally infeasible. For example, for Schönhage’s algorithm at O(n2.70), the crossover
is given by [Sch81] at n = 314 ≈ 4.78 × 106 rows, or 328 ≈ 22.88 × 1012 entries (this is compared
to näıve dense Gaussian Elimination. The crossover would be much higher versus the algorithm in
this paper). Note that experimental confirmation of the minimum crossover is impossible, unless
one was certain that one had an “optimal implementation,” which is a bold claim.

Strassen’s Algorithm Strassen’s famous paper [Str69] has three algorithms—one for matrix
multiplication, one for inversion, and one for the calculation of determinants. The last two are
for use with any matrix multiplication algorithm taken as a black-box, and run in time big-Oh of
matrix multiplication. However, substantial modification is needed to make these work over GF(2).
In the Appendix A, we describe why these modifications are required, and show that Strassen’s
Formula for Matrix Inversion (used with Strassen’s Algorithm for Matrix Multiplication) is slower
than M4RI for any feasibly sized matrix. The two algorithms are of equal speed when n = 6.65×106

rows or 4.4× 1013 entries.

1.2 The Computational Cost Analysis Model

In papers on matrix operations over the real or complex numbers, the number of floating point
operations is used as a measure of running time. This removes the need to account for assembly
language instructions needed to manipulate index pointers, iteration counters, features of the in-
struction set, and measurements of how cache coherency or branch predictions will impact running

2An element of a tensor space is a sum of simple tensors. Here, the complexity of a tensor is the smallest number
of simple tensors required. This is often called the rank of the tensor, but other authors use the word rank differently.
The rank of the tensor is directly proportional to the complexity of the operation [Str87].

3The cross-over point is the size where the new tensor has rank (complexity) equal to the naive algorithm’s tensor

3



time. In the present paper, floating point operation counts are meaningless, for boolean matrices
do not use floating point operations. Therefore, we propose that matrix entry reads and writes be
tabulated, because addition (XOR) and multiplication (AND) are single instructions, while reads
and writes on rectangular arrays are much more expensive. Clearly these data structures are non-
trivial in size (hundreds of megabytes at the least) and so memory transactions will be the bulk of
the computational burden.

From a computer architecture viewpoint in particular, these matrices cannot fit in the cache
of the microprocessor, and so the fetches to main memory are a bottleneck. Even if exceptionally
careful use of temporal and spatial locality guarantees effective caching (and it is not clear that
this is possible), the data must still travel from memory to the processor. The bandwidth of buses
has not increased proportionally to the rapid increase in the speeds of microprocessors. Given the
relatively simple calculations done once the data is in the microprocessor’s registers (i.e. single
instructions), it is clear that the memory transactions are the rate-determining step.

Naturally, the exponents of the complexity polynomials of the algorithms in this model will
match those of the more flexible big-Oh notation counting all operations. On the other hand,
counting exactly the number of memory reads and writes permits us to calculate more directly the
coefficients of those polynomials. These coefficients are helpful in three principal ways. First and
foremost, they help determine the crossover point at which two competing algorithms are of equal
efficiency. This is absolutely critical because matrix multiplication and inversion techniques are
often recursive. Second, they help one compare two algorithms of equal exponent. Third, they help
calculate the total CPU running time required to solve a system. These coefficients are derived
mathematically and are not dependent on machine architectures or benchmarks, but experiments
will be performed to confirm them nonetheless. Table 1 has the results of analysis of several matrix
operations under this model, taken from the author’s E-print [Bar06].

When attempting to convert these memory operation counts into CPU cycles, remember that
other instructions are needed to maintain loops, execute field operations, and so forth. Also,
memory transactions are not one cycle each, but require several instructions to compute the memory
address offsets. Yet, they can be pipe-lined. Thus one can estimate that about 10–30 CPU cycles
are needed per matrix memory operation. (Our experiments show about 18, see Section 6).

Matrix Memory Operations Per Second By running the M4RI and dense Gaussian Elim-
ination algorithms on my PC (running 2 GHz, 1 GB RAM, Fedora Linux 5) using gcc with all
optimizations on, the experiments show running times that suggest 1.11 × 108 matrix memory
operations per second is the correct coefficient.

1.3 Notational Conventions

Precise performance estimates are useful, and so rather than the usual five symbols O(n), o(n),
Ω(n), ω(n), Θ(n), we will use f(n) ∼ g(n) to indicate that

lim
n→∞

f(n)
g(n)

= 1

While O(n) statements are perfectly adequate for many applications, coefficients must be known
to determine if algorithms can be run in a reasonable amount of time on particular target ciphers.
Also, these coefficients have an enormous impact upon crossover points, as will be shown in the
Appendix, comparing Strassen’s formula for matrix inversion with the M4RI.

4



Let f(n) ≤∼ g(n) signify that there exists an h(n) and n0 such that f(n) ≤ h(n) for all n > n0,
and h(n) ∼ g(n). Equivalently, this means lim sup f(n)/g(n) ≤ 1 as n →∞. Matrices in this paper
are over GF(2) unless otherwise stated, and are of size m rows and n columns. Denote ` as the
lesser of n and m. If n > m or ` = m the matrix is said to be underdefined, and if m > n or ` = n
then the matrix is said to be overdefined. The symbol lnx means loge x and log x means log2 x.
The term “n matrix reads/writes” means n operations, all of which are either reads or writes, not
n of each.

The term near-cubic operations refers to operations of complexity O(n3), O(n3/ log n), or , O(nlog2 7).
The term unit upper triangular means that the matrix is upper triangular, and has only ones on
the main diagonal. Obviously such matrices have determinant one, and so are non-singular. Like-
wise for unit lower triangular. A matrix algorithm which seeks to put a matrix into Reduced
Row Echelon Form is said to be in RREF mode, and into Unit Upper Triangular Form in UUTF
mode. Not all algorithms can do both.

Finally please note that some authors use the term boolean matrix to refer to matrices operating
in the semiring where addition is logical OR (instead of logical XOR) and multiplication is AND.
Those matrices are used in graph theory, and some natural language processing. Algorithms from
the real numbers can work well over this semiring [Fur70], and so are not discussed here.

1.4 To Invert or To Solve?

Generally, four basic options exist when presented with a system of equations, A~x = ~b, over the
reals as defined by a square matrix A. First, the matrix A can be inverted, but this is the most
computationally intensive option. Second, the system can be adjoined by the vector of constants
~b, and the matrix reduced into a triangular form U~x = ~b′ so that the unknowns can be found via
back-substitution. Third, the matrix can be factored into LU-triangular form (A = LUP ), or other
forms. Fourth, the matrix can be operated upon by iterative methods to converge to a matrix near
to its inverse. Unfortunately, in finite fields concepts like convergence toward an inverse do not
have meaning. This rules out option four.

The second option can be extended to solving the same system for two sets of constants ~b1, ~b2

but requires twice as much work during back substitution. However, back substitution is very cheap
(quadratic) compared to the other steps (near cubic). In light of this, it is easy to see that even if
many ~b were available, but fewer than ` = min(m,n), one would pursue the second option rather
than invert the matrix.

Therefore, one would generally choose to put the matrix in unit upper triangular form and use
back substitution. Option three, to use LU factorization or another type of factorization will turn
out to be the only way to use Strassen’s matrix inversion formula. Option one, inverting the matrix
would not normally be used. The exception is if the computation is taking place long before the
interception of the message, and further the attacker desires the plaintext as soon as possible upon
receipt. Then the inverse of the matrix can be calculated, and stored (near cubic cost). Upon
receipt of the message, the matrix-times-vector multiplication can take place (quadratic cost).

2 The Four Russians Matrix Multiplication Algorithm

This matrix multiplication algorithm is derivable from the original algorithm published by Ar-
lazarov, Dinic, Kronrod, and Faradzev [ADKF70], and has appeared in books including [AHU].

5



Consider a product of two matrices AB = C where A is an a× b matrix and B is a b × c matrix,
yielding an a× c for C. In this case, one could divide A into b/k vertical “stripes” A1 . . . Ab/k of k
columns each, and B into b/k horizontal stripes B1 . . . Bb/k of k rows each. (For simplicity assume
k divides b). The product of two stripes, AiBi is an a× b/k by b/k × c matrix multiplication, and
yields an a× c matrix Ci. The sum of all k of these Ci equals C.

C = AB =
i=k∑
i=0

AiBi

The algorithm itself proceeds as follows:

• for i = 1, 2, . . . , b/k do

– Make a Gray Code4 table of all the 2k linear combinations of the k rows of Bi.

Call the xth row Tx.

(Costs (3 · 2k − 4)c reads/writes, see Stage 2, in Section 5).
– for j = 1, 2, . . . , a do

∗ Read the entries aj,(i−1)k+1, aj,(i−1)k+2, . . . , aj,(i−1)k+k.
∗ Let x be the k bit binary number formed by the concatenation of aj,(i−1)k+1, . . . , aj,ik.
∗ for h = 1, 2, . . . , c do

· Calculate Cjh = Cjh + Txh (Costs 3 reads/writes).

Gray Code Step The step involving the Gray Code requires further explanation. The first entry
is all zeroes, and is associated with an all-zero row of appropriate length. The next entry is 0 · · · 01,
and is associated with the entries from the ith row, from column i + k until column n. The next
entry after that is 0 · · · 011, and is associated with the entries from the ith and (i+1)th rows added
together. Since any Gray Code has each line differing from the previous by exactly one bit, only
one vector addition is needed to calculate each line of this table. Likewise, with “only” 2k vector
additions, all possible linear combinations of the k rows in the slice have been calculated.

The innermost loop requires 3 steps, the next loop out requires k + 3c steps, and then the next
after that requires (3 · 2k − 4)c + a(k + 3c) steps. Finally the entire algorithm requires

b((3 · 2k − 4)c + a(k + 3c))
k

=
3b2kc− 4cb + abk + 3abc

k

matrix memory operations. Substitute k = log b, so that 2k = b, and observe,

3b2c− 4cb + ab log b + 3abc

log b
∼ 3b2c + 3abc

log b
+ ab

For square matrices this becomes ∼ (6n3)/(log n). More on the choice of k can be found in Section 4.

4A k-bit Gray Code is all 2k binary strings of length k, ordered so that each differs by exactly one bit in one position
from each of its neighbors. For example, one 3-bit Gray Code is {000, 001, 011, 010, 110, 111, 101, 100} [Gra53].

6



Transposing the Matrix Product Since AB = C implies that BT AT = CT , one can transpose
A and B, and transpose the product afterward. The transpose is a quadratic, and therefore
cheap, operation. This would have running time (3b2a+3abc)/(log b)+ cb and some manipulations
will show that this more efficient when c < a, for any b > 1. Therefore the final complexity is
∼ (3b2 min(a, c) + 3abc)/(log b) + b max(a, c). To see that the last term is not optional, substitute
c = 1, in which case the last term becomes the dominant term.

Improvements In the years since initial publication, several improvements have been made. In
particular, in reducing the memory requirements [AS88, SU86], and the base fields upon which the
algorithm can work [San79].

3 The Four Russians Matrix Inversion Algorithm

While the title of this section contains the words “matrix inversion”, the algorithm which follows
can be used either for matrix inversion, or for triangulation and back-substitution. This is also
true for Gaussian Elimination. As stated earlier, even if one has several ~b1, ~b2, ~b3, . . . , ~bn, it is far
more efficient to solve A~xi = ~bi by appending the bi as columns to the end of matrix A, and
putting matrix A in unit upper triangular form (UUTF). Then, one can solve for each xi by back
substitution to obtain the xi. (This is a quadratic, thus cheap, step). The alternative is to invert
A, and Section 3.1 contains changes for that approach, by adjoining A with an identity matrix and
processing it into row reduced echelon form (RREF).

In Gaussian Elimination to UUTF of an m×n matrix, each iteration i operates on the submatrix
aii . . . amn, with the objective of placing a one at aii and a zero at every other entry of the column i
below row i. In the Method of Four-Russians Inversion (M4RI) algorithm, k columns are processed
at once, producing a k×k identity matrix in the correct spot (aii . . . a(i+k−1),(i+k−1)), with all zeros
below it, and leaving the region above the submatrix untouched.

Stage 1: Denote the first column to be processed in a given iteration as ai. Then, perform Gaus-
sian elimination on the first 3k rows after and including the ith row to produce an identity matrix
in ai,i . . . a(i+k−1),(i+k−1), and zeroes in a(i+k),i . . . a(i+3k−1),(i+k−1) (To know why it is reasonable to
expect this to succeed, see Lemma 1 in Section 5.1).

Stage 2: Construct a table consisting of the 2k binary strings of length k in a Gray Code.
Thus with only 2k vector additions, all possible linear combinations of these k rows have been
precomputed. (See “Gray Code Step” in Section 2).

Stage 3: One can rapidly process the remaining rows from i + 3k until row m (the last row)
by using the table. For example, suppose the jth row has entries aji . . . aj,(i+k−1) in the columns
being processed. Selecting the row of the table associated with this k-bit string, and adding it to
row j will force the k columns to zero, and adjust the remaining columns from i + k to n in the
appropriate way, as if Gaussian Elimination had been performed.

The process is then repeated min(m,n)/k times. As each iteration resolves k columns, instead
of one column, one could expect that this algorithm is k times faster. The trade-off for large k is
that Stage 2 can be very expensive. It turns out (see Section 4) that selecting the right value of k
is critical.

7



3.1 Triangulation or Inversion?

While the above form of the algorithm will reduce a system of boolean linear equations to unit
upper triangular form, and thus permit a system to be solved with back substitution, the M4RI
algorithm can also be used to invert a matrix, or put the system into reduced row echelon form
(RREF). Simply run Stage 3 on rows 0 · · · i − 1 as well as on rows i + 3k · · ·m. This only affects
the complexity slightly, changing the 2.5 coefficient to 3 (details omitted, see the author’s E-print
[Bar06]). To use RREF to invert a matrix, simply concatenate an identity matrix (of size n × n)
to right of the original matrix (of size n × n), producing a n × 2n matrix. Using M4RI to reduce
the matrix to RREF will result in an n× n identity matrix appearing on the left, and the inverse
matrix on the right.

4 Experimental and Numerical Results

Five experiments were performed. The first was to determine the correct value of k for M4RI. The
second was to determine the running time of both M4RI and Gaussian Elimination. In doing these
experiments, the author noted that the optimization level of the compiler heavily influenced the
output. Therefore, the third experiment attempted to calculate the magnitude of this influence.
The fourth was to determine if a fixed k or flexible k was superior for performance.

The specifications of the computer on which the experiments were run is given at the end of
Section 1.2. Except as noted, all were compiled under gcc with the highest optimization setting
(level three). The experiments consisted of generating a matrix filled with fair coins, and then
checking the matrix for invertibility by attempting to calculate the inverse using M4RI to RREF.
If the matrix was singular, a new matrix was generated. If the matrix was invertible, the inverse
was calculated again using Gaussian Elimination to RREF. These two inverses were then checked
for equality, and finally one was multiplied by the original to obtain a product matrix which was
compared with the identity matrix. The times were calculated using clock() from time.h built
into the basic C language. The functions were all timed independently, so extraneous operations
like verifying the correctness of the inverse will not affect running time (except possibly via cache
coherency but this is both unlikely and hard to detect). No other major tasks were being run on
the machine during the experiments, but clock() measures user-time and not time in the sense of
a wall clock.

In the first experiment (to determine the best value of k), the range of k was permitted to
change. The specific k which resulted in the lowest running time was reported for 30 matrices.
Except when two values of k were tied for fastest (recall that clock() on Linux has a granularity
of 0.01 sec), the thirty matrices were unanimous in their preferred value of k in all cases. A
linear regression shows that k = c1(log n) + c2 has minimum error in the mean-squared sense at
k = (3/4)(log n) + 0. For the next two experiments, k was fixed to be eight to simplify addressing.
Another observed feature of the first experiment was that the running time was trivially perturbed
if the value of k was off by one, and by a few percent if off by two. The results are in Table 3.

Each trial of the second experiment consisted of the same code compiled under all four opti-
mization settings. Since k was fixed to eight, addressing was vastly simplified and so the program
was rewritten to take advantage of this. The third experiment simply used the code from the
second experiment, with the compilation set to optimization level 3. The results are in Table 6 and
Table 5. The fourth experiment had the best running times, because k was permitted to vary. This

8



was a surprise, because the addressing difficulties were nontrivial, and varying k slightly has a small
effect on running time. See Table 4 for the affect of relatively adjusting k upward or downward.

A fifth mini-experiment was to take the computational cost expression for M4RI, and place it
into a spreadsheet, to seek optimal values of k for very large values of n, for which experimentation
would not be feasible. The expression 1 + log n − log log n was a better fit than any c1 + c2 log n.
On the other hand, it would be very hard to determine the coefficient of the log log n term in that
expression, since a double logarithm differs only slightly from a line.

5 Exact Analysis of Complexity

Assume for simplicity that log n divides n and m. To calculate the cost of the algorithm one need
only tabulate the cost of each of the three stages, which will be repeated min(m,n)/k times. Let
these stages be numbered i = 1 . . .min(m,n)/k.

The first stage is a 3k × n − ik underdefined Gaussian Elimination (RREF), which requires
∼ 1.5(3k)(n− ik)2−0.75((3k)3) matrix memory operations (see the author’s E-print [Bar06]). This
will be negligible.

The second stage, constructing the table, requires 3(n−ik−k) steps per row. The first row is all
zeroes and can be hard-coded, and the second row is a copy of the appropriate row of the matrix, and
requires (n−ik−k) reads followed by writes. Thus one obtains 2(n−ik−k)+(2k−2)(3)(n−ik−k) =
(3 · 2k − 4)(n− ik − k) steps.

The third stage, executed upon (m − ik − 3k) rows (if positive) requires 2k + 3(n − ik − k)
reads/writes per row. This becomes (m− ik−3k)(3n−3ik−k) matrix memory operations in total,
when that total is positive. For example, in a square matrix the last 2 iterations of stage 1 will take
care of all of these rows and so there may be no work to perform in Stage 3 of those iterations. To
denote this, let pos(x) = x if x > 0 and pos(x) = 0 otherwise.

Adding steps one, two and three yields

i=`/k−1∑
i=0

1.5(3k)2(n− ik)− 0.75((3k)3)(3 · 2k − 4)(n− ik − k) + (pos(m− ik − 3k))(3n− 3ik − k)

=

i=`/k−3∑
i=0

1.5(3k)2(n− ik)− 0.75((3k)3)(3 · 2k − 4)(n− ik − k) + (m− ik − 3k)(3n− 3ik − k)


+1.5(3k)2(n− ` + 2k)− 0.75((3k)3)(3 · 2k − 4)(n− ` + k)
+1.5(3k)2(n− ` + k)− 0.75((3k)3)(3 · 2k − 4)(n− `)

≤ ∼ 1
4k

[
2k(−6k` + 12n`− 6`2)− 6m`2 − 6n`2 + 4`3 + 12mn`

]
Recalling ` = min(m,n) and substituting k = log ` and thus 2k = `,

1
4 log `

(
6n`2 − 2`3 − 6m`2 + 12mn`

)
Thus for the over-defined case (` = n) this is (4n3 +6n2m)/(4 log n), and for the under-defined case
(` = m) this is (18nm2 − 8m3)/(4 log m), and for square (5n3)/(2 log n).

9



5.1 The Rank of 3k Rows, or Why k + ε is not Enough

The reader may be curious why 3k rows are selected instead of k rows at the small Gaussian
Elimination step (Stage 1 of each iteration). Normally to guarantee non-singularity, a system with
k variables is solved with k + ε equations, where ε ≈ 2 . . . 100. However, this does not work in the
M4RI algorithm, because `/ log ` submatrices must be reduced by Gaussian Elimination, and the
algorithm fails if any of these submatrices are singular.

The answer is that the probability of k vectors of length 3k having rank k is very high, as proved
below. The small Gaussian Elimination will fail to produce the identity matrix followed by rows of
zeroes if and only if this submatrix is not of full rank.

Lemma 1 A random boolean matrix of dimension 3k × k, filled by fair coins, has full rank with
probability ≈ 1− 2−2k.

Proof: Consider the columns of the matrix as vectors. One can attempt to count the number of
possible full rank matrices. The first vector can be any one of 23k − 1 non-zero length 3k vectors.
The second one can be any non-zero vector distinct from the first, or 23k − 2 choices. The third
one can be any non-zero vector not equal to the first, the second, or their sum, or 23k − 4. The ith
vector can be any vector not in the space spanned by the previous i− 1 vectors (which are linearly
independent by construction). Thus 23k − 2i−1 choices are available. Therefore, the probability of
any k vectors of length 3k being linearly independent is

∏i=k
i=1 (23k − 2i−1)

(23k)k
=

i=k∏
i=1

(1− 2i−12−3k) ≈ 1−
i=k∑
i=1

2i−12−3k ≈ 1− 2−3k(2k − 1) ≈ 1− 2−2k

And this is the desired result. []
In the case k = 5, the actual probability of less than full rank is 9.46×10−4, and the above formula
has a relative error of 3.08× 10−6, and would be even more accurate for higher k. Also, note when
k = log ` then the probability of full rank is 1− `−2. Since there will be (`)/(log `)− 1 iterations,
the probability of even one failure during all passes is approximately 1/(` log `), which is very low,
considering that ` may approach the millions. (See Section 6 for typical sizes).

Note that even if 2k × k were chosen, then the probability of failure over the whole algorithm
would be 1/ log `, which is non-trivial. Finally it is interesting to note that approximately 29% of
boolean square random matrices are invertible, and 71% are singular. To calculate this, redo the
proof of the lemma with k instead of 3k. In practice, when k was significantly lower than log `, the
algorithm would abort very frequently, whereas it never aborted in any of the experiments when k
was set near log `. (Abortions marked with a star in Table 3).

5.2 Using Bulk Logical Operations

The above algorithm can be improved upon if the microprocessor has instructions for 32-bit (or
even 64-bit) logical operations. Stages 2 and 3 essentially consist of repeated row additions. The
matrix can be stored in an 8-bits per byte format instead of the 1-bit per byte format, and long
XOR operations can perform these vector additions. Stage 1 is unaffected. However, stages 2 and
3 can proceed 32 or 64 times as fast as normal if single-instruction logical operators are available

10



in those sizes, as they are on all modern PCs. Since only stages 2 and 3 were non-negligible, it is
safe to say that the algorithm would proceed 32 or 64 times faster, for sufficiently large matrices.

Experimentally the author found that the speed up varied between 80% to 95% of this figure,
depending on the optimization settings of the compiler chosen. However, there is absolutely no
reason not to do this all the time, so the vector additions were performed 64 entries at one time.

6 Applications to Cryptanalysis

It is useful to calculate the cost of solving a system of equations. The final cost of a system of m
equations in n unknowns is equivalent to performing M4RI in UUTF mode on a m×(n+1) matrix.
The extra column is for the constants. According to Table 1, this will cost∼ (n3+1.5n2m)/(64 log n)
for m < n and ∼ (4.5nm2 − 2m3)/(64 log m) for m > n. We neglect the back substitution which
costs ∼ min(m,n)2 +n+m. This then should be divided by the previous figure of 1.11×108 matrix
memory operations per second.

6.1 Stream Ciphers

First, in stream cipher cryptanalysis, a stream cipher is converted to a system of boolean polynomial
equations whose solution is the key to the cipher. Second, the polynomial system is then converted
to a boolean linear system. This system is often sparse but its density will rise very rapidly under
Gaussian Elimination. Finally, the dense linear boolean system must be solved. The number of
equations or rows is m, and the number of variables or columns is n.

• Courtois and Meier attack Toyocrypt with
(128

3

)
= 341, 376 equations [CM03]. The system is

slightly overdefined, so therefore near square.

• Courtois attacks Sfinks 222.5 equations in one case and 236.5 in another [Cou05]. The system
is slightly overdefined, so therefore near square.

• Hawkes and Rose state that the best known attacks against E-0, Lili-128, and Toyocrypt
have 218, 212, and 27 equations. It is clear from context that the matrices are nearly square
[Arm02, HR04].

6.2 Hidden Field Equations

Courtois suggested attacking the HFE Challenge 1 with a dense boolean matrix of dimension
1,831,511 [Cou01]. This is not the fastest attack, see [FJ03].

6.3 Integer Factorization

In integer factorization, once all the relations have been found in an algorithm similar to the
Quadratic Field Sieve, one must find a vector in the null space of a matrix. This can be done
by first preconditioning the matrix [PS92], then using Sparse Gaussian Elimination and finally a
applying dense matrix operation step on a matrix of reduced size [AGLL94].

The sizes of this final dense matrix operation in practice can be described by the process to factor
the 129-digit prime number protecting the message “the magic words are squeamish ossifrage” from
the paper of the same name [AGLL94]. A sparse 569, 466 × 524, 339 boolean matrix was reduced

11



to a dense 188, 614 × 188, 160 dense boolean matrix, which was solved in 12 CPU hours of a Sun
Sparc 10 workstation at that time (see below for today’s estimate).

6.4 Algebraic Attacks on Block Ciphers

In Appendix B.5 of Courtois and Pieprzyk [CP02], two attacks on Rijndael are given which involve
solving a system of quadratic equations over GF(2). It is unclear how large the matrices for these
will be, as this depends on the conversion from a polynomial to a linear system. However, if these
attacks ever become feasible, M4RI is a good choice for the final linear algebra step. Likewise, the
complexity results here and in [Bar06] would be useful for determining if the attack is slower or
faster than brute force search.

6.5 Feasibility Analysis

During the actual testing, the performance times were divided by the values given by the model
(e.g. (9/64)n3/ log(n) for a n × 2n underdefined matrix, with M4RI in RREF mode), to obtain
1.11×108 matrix memory operations per second on the author’s PC. (See the end of Section 1.2 for
details). Since it is a 1.14 GHz machine, the author suggests that 108 matrix memory operations
per second per GHz is good at least as an order of magnitude estimate, or first approximation.
Alternatively, this is 11.4 clock cycles per matrix memory operation. This comes to 3.50 × 1015

matrix memory operations per year.
To give some scale to the feasibility of the algorithms as applied to the attacks discussed here,

note that a Cray X1E5 is a 174 Tflop6 machine, performing 4.6 × 1021 floating point operations
in a year. It is not correct to equate a 11.4 Pentium IV clock cycles per matrix operation with
11.4 flops per matrix operation, since they are not floating point operations, but it will serve as an
estimate. This comes to 1.28 × 1013 matrix memory operations per second, or 4.04 × 1020 matrix
memory operations per year.

The figures above permit one to calculate how long the above attacks would take, ignoring the
effects of sparsity which may be very important in some cases. These are calculated using the
figures 4.04 × 1020 or 3.5 × 1015 matrix memory operations per Cray-year or per PC-year from
above, and M4RI in UUTF mode.

Attack Matrix Mem Ops CRAY Time PC Time

Courtois and Meier vs. Toyocrypt: 8.45× 1014 66 secs 88 days
Courtois vs. Sfinks (222.5 case): 3.62× 1018 3.3 days 1030 yrs
Courtois vs. Sfinks (236.5 case): 9.82× 1030 2.43× 1010 yrs 2.80× 1015 yrs
Best known attack on E-0: 3.9× 1013 3.0 secs 4.0 days
Best known attack on Lili-128: 2.23× 108 trivial 2 secs
Squeamish Ossifrage: 1.49× 1014 12 secs 15.5 days
HFE Challenge 1: 4.15× 1016 54 mins 11.8 yrs

One can conclude four things from this list. First, that matrix operation running times are
highly dependent on dimension. Second, that algebraic attacks are indeed feasible against all but
one of the above systems. Third, that some attacks will require some sort of supercomputing facility.

5Data from the Cray website.
6For comparison the SETI@Home system operates at 250 TFlop [wiki2].

12



Fourth, systems not feasible in a day are probably not feasible in a year either, since 3651/3 ≈ 7.14.
However, one should also mention that while showing a quick running time is proof an attack is
feasible, showing a slow running time is not proof of infeasibility, because sparse methods may be
successful for the billion year dense attack above.

7 Acknowledgments

The author would like to recognize first and foremost, Nicholas Courtois, whose work inspired this
paper and whose ideas, so freely given in conversation, have been indispensable. We are deeply
indebted to Lawrence Washington and Patrick Studdard for comments on earlier drafts of this
paper. The author would also like to recognize Dan Bernstein for his encouragement and detailed
suggestions. Antoine Joux was very helpful by sharing an algorithm for calculating the Gray Code
on-the-fly. Much of this work was done by the author in Paris, supported by ECRYPT, a European
Union “Center of Excellence”, as an invited visiting scientist.

References

[AHU] A. Aho, J. Hopcroft, and J. Ullman. “Chapter 6: Matrix Multiplication and Related Oper-
ations.” The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[AGLL94] D. Atkins, M. Graff, A. Lenstra, P. Leyland. “The Magic Words are Squeamish Os-
sifrage.” Advances in Cryptology: ASIACRYPT’94 1994.

[ADKF70] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. “On Economical Construction of
the Transitive Closure of a Directed Graph.” Dokl. Akad. Nauk. SSSR No. 194 (in Russian),
English Translation in Soviet Math Dokl. No. 11, 1970.

[Arm02] F. Armknecht. “A Linearization Attack on the Bluetooth Key Stream Generator.” IACR
E-print, 2002, No. 191.

[Arm04] F. Armknecht. “Improving Fast Algebraic Attacks.” Proceedings of Fast Software Encryp-
tion ’04, Springer-Verlag Lecture Notes in Computer Science, 2004.

[AA05] F. Armknecht, and G. Ars. “Introducing a New Variant of Fast Algebraic Attacks and
Minimizing Their Successive Data Complexity.” Proceedings of Mycrypt ’05, Springer-Verlag
Lecture Notes in Computer Science, 2005.

[AK03] F. Armknecht and M. Krause. “Algebraic Attacks on Combiners with Memory.” Advances
in Cryptology: CRYPTO 2003.

[AS88] M. Atkinson and N. Santoro. “A Practical Algorithm for Boolean Matrix Multiplication.”
Information Processing Letters. 13 September 1988.

[Bar06] G. Bard. “Achieving a log(n) Speed Up for Boolean Matrix Operations and Calculating
the Complexity of the Dense Linear Algebra step of Algebraic Stream Cipher Attacks and of
Integer Factorization Methods.” IACR E-print, 2006, No. 163.

13



[Ber95] D. Bernstein. “Matrix Inversion Made Difficult.” Unpublished Manuscript available on
http://cr.yp.to/papers/mimd.ps

[BH74] J. Bunch and J. Hopcroft. “Triangular Factorization and Inversion by Fast Matrix Multi-
plication.” Math Comp. No. 28:125, 1974.

[CLRS] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. “Chapter 28: Matrix Operations.”
Introduction to Algorithms, Second Edition. MIT Press, McGraw-Hill Book Company, 2001.

[CW90] D. Coppersmith and S. Winograd. “Matrix Multiplication via Arithmetic Progressions.”
J. of Symbolic Computation, 9. 1990.

[Cou01] N. Courtois. “The security of Hidden Field Equations (HFE)”, Cryptographers’ Track Rsa
Conference, 2001.

[Cou02] N. Courtois. “Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toy-
ocrypt.” Proceedings of ICISC ’02, Springer-Verlag Lecture Notes in Computer Science, 2002.

[Cou03] N. Courtois. “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.” Advances
in Cryptology: CRYPTO 2003.

[Cou04a] N. Courtois. “Algebraic Attacks on Combiners with Memory and Several Outputs.” Pro-
ceedings of ICISC ’04, Springer-Verlag Lecture Notes in Computer Science, 2004.

[Cou04b] N. Courtois. “Short Signatures, Provable Security, Generic Attacks and Computational
Security of Multivariate Polynomial Schemes such as HFE, Quartz and Sflash.” IACR E-print,
2004, No. 143.

[Cou05] N. Courtois. “Cryptanalysis of Sfinks.” Proceedings of ICISC ’05, Springer-Verlag Lecture
Notes in Computer Science, 2005.

[CGP03] N. Courtois, L. Goubin, and J. Patarin. “SFLASHv3, a fast asymmetric signature
scheme.” IACR E-print, 2003, No. 211.

[CM03] N. Courtois, and W. Meier. “Algebraic Attacks on Stream Ciphers with Linear Feedback.”
Advances in Cryptology: EUROCRYPT 2003.

[CP02] N. Courtois, and J. Pieprzyk. “Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations.” Advances in Cryptology: ASIACRYPT 2002.

[FJ03] J. Faugère, and A. Joux. “Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryp-
tosystems Using Gröbner Bases” Advances in Cryptology: CRYPTO 2003.

[Fur70] M. Furman. “Application of a Method of Fast Multiplication of Matrices in the Problem
of Finding the Transitive Closure of a Graph.” Dokl. Akad. Nauk. SSSR No. 194 (in Russian),
English Translation in Soviet Math Dokl. No. 3, 1970.

[Gra53] F. Gray. Pulse Code Communication. March 17, 1953. USA Patent 2,632,058.

[HR04] P. Hawkes, and G. Rose. “Rewriting Variables: the Complexity of Fast Algebraic Attacks
on Stream Ciphers.” Advances in Cryptology: CRYPTO 2004.

14



[Higham] N. Higham. “Chapter 23: Fast Matrix Multiplication.” Accuracy and Stability of Numer-
ical Algorithms, Second Edition. SIAM, 2002.

[KCA] S. Kangshen, J. Crossley, and L. Anthony (Eds.) The Nine Chapters on the Mathematical
Art. Oxford University Press. 1999.

[Moo20] E. Moore. “On the Reciprocal of the General Algebraic Matrix.” Bulletin of the American
Mathematical Society. 26, 1920.

[Pan] V. Pan. “Chapter 1: The Exponent of Matrix Multiplication.” How to Multiply Matrices
Faster. Springer-Verlag, 1984.

[Pen55] R. Penrose “A Generalized Inverse for Matrices.” Proc. of the Cambridge Phil. Soc. 51.
1955.

[PS92] C. Pomerance and J. Smith. “Reduction of Huge, Sparse Matrices over Finite Fields via
Created Catastrophes.” Experimental Mathematics. Vol. 1, No. 2. 1992.

[San79] N. Santoro. “Extending the Four Russians’ Bound to General Matrix Multiplication.”
Information Processing Letters. 18 March 1979.

[SU86] N. Santoro and J. Urrutia. “An Improved Algorithm for Boolean Matrix Multiplication.”
Computing, 36. 1986.

[Sch81] A. Schönhage. “Partial and Total Matrix Multiplication.” SIAM Journal of Computing,
Vol 10, No. 3, August 1981.

[SPCK00] A. Shamir, J. Patarin, N. Courtois, and A. Klimov. “Efficient Algorithms for solv-
ing Overdefined Systems of Multivariate Polynomial Equations.” Advances in Cryptology:
CRYPTO 2004.

[Str69] V. Strassen. “Gaussian Elimination is not Optimal.” Numerische Mathematik, Vol 13, No
3. 1969.

[Str87] V. Strassen. “Relative Bilinear Complexity and Matrix Multiplication.” J. Reine Angew.
Math. Vols 375 & 376, 1987.

[wiki] “Gaussian Elimination.” From Wikipedia—The Free Encyclopedia.

[wiki2] “SETI@Home.” From Wikipedia—The Free Encyclopedia.

A The Unsuitability of Strassen’s Algorithm

It is important to note that Strassen’s famous paper [Str69] has three algorithms. The first is a
matrix multiplication algorithm, which we call “Strassen’s Algorithm for Matrix Multiplication.”
The second is a method for using any matrix multiplication technique for matrix inversion, in
asymptotically equal time (in the big-Oh sense). We call this Strassen’s Formula for Matrix Inver-
sion. The third is a method for the calculation of the determinant of a matrix. Below, Strassen’s
Formula for Matrix Inversion is analyzed, by which a system of equations over a field can be solved.

15



Given a square matrix A, by dividing it into equal quadrants one obtains the following inverse:
(A more detailed exposition is found in [CLRS], using the same notation).

A =

[
B C
D E

]
⇒ A−1 =

[
B−1 + B−1CS−1DB−1 −B−1CS−1

−S−1DB−1 S−1

]

where S = E −DB−1C, which is the Schur Complement of A with respect to B.
One can easily check that the product of A and the matrix formula for A−1 yields the identity

matrix, either multiplying on the left or on the right. If an inverse for a matrix exists, it is unique,
and so therefore this formula gives the unique inverse of A, provided that A is in fact invertible.

However, it is a clear requirement of this formula that B and S be invertible. Over the real
numbers, or other subfields of the complex numbers, one can show that if A and B are non-singular,
then S is non-singular also [CLRS]. The problem is to guarantee that the upper-left submatrix,
B, is invertible. Strassen did not address this in the original paper, but the usual solution is as
follows (more details found in [CLRS]). First, if A is positive symmetric definite, then all of its
principal submatrices are positive symmetric definite, including B. All positive symmetric definite
matrices are non-singular, so B is invertible. Now, if A is not positive symmetric definite, but
is non-singular, then note that AT A is positive symmetric definite and that (AT A)−1AT = A−1.
This also can be used to make a pseudoinverse for non-square matrices, called the Moore-Penrose
Pseudoinverse [Moo20, Pen55, Ber95].

However, the concept of positive symmetric definite does not work over a finite field, because
these fields cannot be ordered (in the sense of an ordering that respects the addition and multipli-
cation operations). Observe the following counterexample,

A =


1 0 0 0
1 0 1 0
0 1 0 0
0 1 0 1

 AT A =


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1


Both A and AT A have det = 1, thus are invertible. Yet in both cases the upper-left hand 2x2
submatrices have det = 0, and therefore are not invertible. Thus Strassen’s formula for inversion is
unusable without modification. The modification below is from Aho, Hopcroft and Ullman’s book
[AHU] though first appeared in [BH74].

Consider a matrix L that is unit lower triangular, and a matrix U that is unit upper triangular.
Then Strassen’s Matrix Inversion Formula indicates

L =

[
B 0
D E

]
⇒ L−1 =

[
B−1 0

−E−1DB−1 E−1

]

U =

[
B C
0 E

]
⇒ U−1 =

[
B−1 −B−1CE−1

0 E−1

]

Note S = E −DB−1C, which is the Schur Complement of A with respect to B, becomes S = E
in both cases, since either C or D is the zero matrix. Since L (or U) is unit lower (or upper)
triangular, then its submatrices B and E are also unit lower (or upper triangular), and therefore

16



invertible. Therefore Strassen’s Matrix Inversion Formula over GF(2) will always work for unit
lower or upper triangular matrices.

It is well known that any matrix over any field has a factorization A = LUP where P is a
permutation matrix, L is unit lower triangular and U is unit upper triangular [CLRS]. Once A is
thus factored, the matrix inversion formula is sufficient to calculate A−1. Aho, Hopcroft and Ullman
[AHU] give an algorithm for computing the LUP factorization over an arbitrary field, in time equal
to big-Oh of matrix multiplication, by use of a black-box matrix multiplication algorithm. We
call this algorithm AHU-LUP. The algorithm is very complex and is not given here, but a detailed
analysis is found in the author’s E-print [Bar06]. Once the factorization of A is complete, Strassen’s
Matrix Inversion Formula can be applied to L and U . Note P = P−1, and also A−1 = P−1U−1L−1.

Consequences Therefore to use the Strassen Matrix Inversion Formula, we calculate the LUP-
factorization, invert both L and U , and finally perform matrix multiplication to get A−1. These
extra steps, which are each of equal complexity to the whole algorithm in the big-Oh sense, add a
large hidden coefficient to O(n2.81), and make the crossover with Gaussian Elimination enormous.

This coefficient is calculated explicitly in the author’s E-print [Bar06], and is ∼ 6.4893n2.81

matrix memory operations, for inverting a boolean matrix. The equivalent value for M4RI is
∼ 9n3/(64 log n) (this is an underdefined n× 2n matrix, processed with M4RI into RREF). Simple
calculation shows that these two expressions are equal for n = 1.33× 1018 rows. Recall, this is the
point where the two algorithms are of equal performance. The point at which Strassen is twice as
fast as the M4RI is n = 8.44 × 1020 rows. These matrices are have 1.78 × 1036 and 7.11 × 1039

entries respectively. For this reason, Strassen’s Formula for Matrix Inversion is not faster than the
method of Four Russians for any size matrix whose inverse can be computed at present.

However, if one merely wants to solve a system of equations, one can perform the LU-factorization
using AHU-LUP with Strassen’s Matrix Multiplication in the black box, and then use back-
substitution, without calculating A−1 explicitly. This changes the coefficients to ∼ 2.2876n2.81 and
∼ 2.5n3/(64 log n). The cross-over is therefore at 5.59× 1018, and the doubling point 3.47× 1020.

Parralelization Note that Strassen’s Algorithm for Matrix Multiplication and Strassen’s Matrix
Inversion Formula are potentially amenable to parralelization, since no communication between
processes is required once A is cut into quadrants [CLRS]. Therefore, in the presence of 4n pro-
cessors Strassen’s Algorithm or Formula could be useful in breaking the problem up n times into
4n pieces, each of which can be solved independently via the M4RI or M4RM as required. The
complexity, however, would still depend on the underlying algorithm (M4RI or M4RM) and there
exist circumstances in which it would be better to run M4RI on one processor and leave all the
others idle than it would to run Strassen’s algorithms (see the author’s E-print [Bar06]).

Finally, note that it might be possible to find a method of speeding up Strassen by a factor
of 64, using 64-bit arithmetic. This would make the cross-overs 9.63 × 106 and 1.40 × 106 for
system-solving and matrix inversion, respectively.

17



Table 1: Inversion Algorithms and Asymptotic Performance
Algorithm Overdefined Square Underdefined

System Upper-Triangularization
M4RI (UUTF) (n3 + 1.5n2m)/(log n) (2.5n3)/(log n) (4.5nm2 − 2m3)/(log m)
AHU-LUP Fact. with Strassen — 2.2876nlog 7 2.2876mlog 7 + 3mn
Dense Gaussian Elim. (UUTF) 0.75mn2 − 0.25n3 0.5n3 0.75nm2 − 0.25m3

Back Substitution n2 + m n2 m2 + n

Matrix Inversion
Strassen’s—U/L Triang. Inversion — 0.9337nlog 7 —
Strassen’s—General Inversion — 6.4893nlog 7 —
Dense Gaussian Elim. (RREF) 0.75mn2 0.75n3 1.5nm2 − 0.75m3

M4RI (RREF) (3n3 + 3mn2)/(2 log n) (3n3)/(log n) (6nm2 − 3m3)/(log m)

Table 2: Multiplication Algorithms and Asymptotic Performance

Algorithm Rectangular a× b by b× c Square n× n by n× n

Multiplication
M4RM (3b2 min(a, c) + 3abc)/(log b) + b max(a, c) (6n3)/(log n)
Näıve Multiplication 2abc 2n3

Strassen’s Algorithm 2.3343(abc)(log 7)/(3) 2.3343nlog 7

Table 3: Running times, in msec, Optimization Level 0
k 1,024 1,536 2,048 3,072 4,096 6,144 8,192 12,288 16384

5 870 2,750 6,290 20,510 47,590 —* —* —* –
6 760 2,340 5,420 17,540 40,630 132,950 —* 1,033,420 –
7 710 2,130 4,850 15,480 35,540 116,300 —* 903,200 –
8 680 2,040 4,550 14,320 32,620 104,960 242,990 798,470 –
9 740 2,100 4,550 13,860 30,990 97,830 223,270 737,990 1,703,290

10 880 2,360 4,980 14,330 31,130 95,850 215,080 690,580 1,595,340
11 1,170 2,970 5,940 16,260 34,020 99,980 218,320 680,310 1,528,900
12 1,740 4,170 7,970 20,470 41,020 113,270 238,160 708,640 1,557,020
13 2,750 6,410 11,890 29,210 55,970 147,190 295,120 817,950 1,716,990
14 4,780 10,790 19,390 45,610 84,580 208,300 399,810 1,045,430 –
15 8,390 18,760 33,690 77,460 140,640 335,710 623,450 1,529,740 –
16 15,290 34,340 60,570 137,360 246,010 569,740 1,034,690 2,440,410 –
*Indicates that too many abortions occured due to singular submatrices. See Section 5.1.

18



Table 4: Percentage Error for Offset of K, From Experiment 1
error of k 1,024 1,536 2,048 4,096 6,144 8,192 12,288 16384

-4 — — 48.0% 53.6% 38.7% – 32.8% —
-3 27.9% 34.8% 26.6% 31.1% 21.3% – 17.4% —

-2 11.8% 14.7% 11.7% 14.7% 9.5% 13.0% 8.5% 11.4%
-1 4.4% 4.4% 3.3% 5.3% 2.1% 3.8% 1.5% 4.3%

Exact 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

+1 8.8% 2.9% 3.4% 0.5% 4.3% 1.5% 4.2% 1.8%
+2 29.4% 15.7% 17.3% 9.8% 18.2% 10.7% 20.2% 12.3%

+3 72.1% 45.6% 47.7% 32.4% 53.6% 37.2% 53.7% —
+4 155.9% 104.4% 110.8% 80.6% 117.3% 85.9% 124.9% —

+5 304.4% 214.2% 229.1% 172.9% 250.2% 189.9% 258.7% —
+6 602.9% 428.9% 458.9% 353.8% 494.4% 381.1% — —

Table 5: Results of Experiment 3—Running Times, Fixed k=8
Size M4RI Gaussian Ratio

4,000 rows 18.97 s 6.77 s 2.802
6,000 rows 59.40 s 22.21 s 2.674
8,000 rows 135.20 s 51.30 s 2.635

12,000 rows 167.28 s 450.24 s 2.692
16,000 rows 398.12 s 1023.99 s 2.572
20,000 rows 763.92 s 1999.34 s 2.617

19



Table 6: Experiment 2—Running times in seconds under different Optimizations, k=8
Opt 0 Opt 1 Opt 2 Opt 3

4000 x 4000
Gauss 91.41 48.35 48.37 18.97

Russian 29.85 17.83 17.72 6.77
Ratio 3.062 2.712 2.730 2.802

6000 x 6000
Gauss 300.27 159.83 159.74 59.40

Russian 97.02 58.43 58.38 22.21
Ratio 3.095 2.735 2.736 2.674

8000 x 8000
Gauss 697.20 371.34 371.86 135.20

Russian 225.19 136.76 135.21 51.30
Ratio 3.096 2.715 2.750 2.635

Table 7: Optimization Level 3, Flexible k
Dimension 4,000 8,000 12,000 16,000 20,000 24,000 28,000 32,000

Gaussian 19.00 138.34 444.53 1033.50 2022.29 3459.77 5366.62 8061.90

7 7.64 – – – – – – –
8 7.09 51.78 – – – – – –
9 6.90 48.83 159.69 364.74 698.67 1195.78 – –
10 7.05 47.31 151.65 342.75 651.63 1107.17 1740.58 2635.64
11 7.67 48.08 149.46 332.37 622.86 1051.25 1640.63 2476.58
12 – 52.55 155.51 336.11 620.35 1032.38 1597.98 2397.45
13 – – 175.47 364.22 655.40 1073.45 1640.45 2432.18
14 – – – – – – 1822.93 2657.26

Min 6.90 47.31 149.46 332.37 620.35 1032.38 1597.98 2397.45

Gauss/M4RI 2.75 2.92 2.97 3.11 3.26 3.35 3.36 3.36

20


