
On the Resilience of Key Agreement Protocols
to Key Compromise Impersonation?

Maurizio Adriano Strangio

University of Rome “Tor Vergata”, ROME, ITALY
strangio@disp.uniroma2.it

Abstract. Key agreement protocols are a fundamental building block for ensur-
ing authenticated and private communications between two parties over an inse-
cure network. This paper focuses on key agreement protocols in the asymmetric
authentication model, wherein parties hold a public/private key pair. In particu-
lar, we consider a type of known key attack called key compromise impersonation
that may occur once the adversary has obtained the private key of an honest party.
This attack represents a subtle threat that is often underestimated and difficult to
counter. Several protocols are shown vulnerable to this attack despite their au-
thors claiming the opposite. We also consider in more detail how three formal
(complexity-theoretic based) models of distributed computing found in the liter-
ature cover such attacks.

Key words:key compromise impersonation, key agreement protocols

1 Introduction

Key agreement protocols are a fundamental building block for ensuring private com-
munications between two parties over an insecure network (i.e. fully controlled by the
adversary).

In general, (two-party) “authenticated key agreement” (AKE) protocols require en-
tity authentication and key agreement to be appropriately linked in order to provide
assurance that the session key is established only by the intended principals [12].

The property usually referred to asimplicit key authentication(IKA) requires that
in a run of the protocol uncorrupted principals are assured that no one aside from the
intended partners in the communication can possibly learn the value of the session key.
Sometimes a stronger property (key confirmation) is mandated that requires a party be-
ing assured that its intended partner has actually computed the session key (see [8, 5]
for further discussion). Key confirmation is achieved at the expense of additional mes-
sages flows (e.g. using the compilers of [8, 7]); for this reason proving knowledge of the
session key may be left to the subsequent communication (i.e. the calling applications).

When both IKA and key confirmation hold the protocol providesexplicit key au-
thentication(EKA).

? This is a revised version of the paper appearing in EuroPKI’06.

The whole point about key-based authentication, first introduced with the MTI/A0
[22] protocol, is that it allows for the design of efficient protocols with a reduced num-
ber of communication rounds and cryptographic operations. Although the messages
exchanged are unauthenticated (i.e. there is no assurance they were sent by the intended
partners in the communication and thus are perfectly “simulatable” by a third party), the
IKA goal is achieved by letting the session key be “privately computable”, i.e. requiring
knowledge of long term private keying material known only by the principals running
the protocol (assuming they are uncorrupted). Surprisingly, such protocols often enjoy
important security properties (e.g. forward secrecy, key independence, etc).

Notice that key agreement protocols with the EKA property are not necessarily
equivalent to generic AKE protocols since the later often have the message flows ex-
plicitly authenticated (e.g. with signatures and message authentication codes).

As usual, we designate the two generic parties participating in a protocol run as
Alice and Bob. Now suppose an adversary (say Eve) has learned the private key of Alice
either by compromising the machine running an instance of the protocol (e.g. with the
private key stored in conventional memory as part of the current state) or perhaps by
cloning Alice’s smart card while she inadvertently left it unattended. Eve may now be
able to mount the following attacks against the protocol:

1. impersonate Alice in a protocol run;
2. impersonate a different party (e.g. Bob) in a protocol run with Alice;
3. obtain previously generated session keys established in honest-party runs of the

protocol.

In case 1. Eve can send messages on behalf of Alice and these will be accepted
as authentic, in case 2. Eve could establish a session with Alice while masquerading
as another party; this is known as Key Compromise Impersonation (KCI) and seems to
appear for the first time in [18]. For example, Eve could impersonate a banking system
and cause Alice to accept a predetermined session key and then obtain her credit card
number over the resulting private communication link. In case 3. Eve may be able to
decrypt the data exchanged by Alice and Bob in previous runs of the protocol (provided
the transcripts are known). This is a weaker form of forward secrecy (which considers
a passive adversary).

The preceding discussion demonstrates that long-term key compromise can lead to
undesirable consequences at least until the corrupted principal discovers that his key
was compromised. However, protocol designers are often concerned with forward se-
crecy and seem to ignore key compromise impersonation.

The main thesis of this paper is that key compromise impersonation is not less
important than forward secrecy (as considered above); one should require that a secure
key agreement protocol be alsoKCI-resilient since this security attribute is also related
to party corruption.

In Section 4 we show that several implicitly authenticated key agreement protocols
found in the literature do not withstandKCI attacks despite the authors claims. In order
to offer a simplified and uniform treatment, all the protocols considered are specified
in an elliptic curve setting since most of them were originally conceived in EC-based
groups. In Section 5 we consider in more detail how three formal (complexity-theoretic
based) models of distributed computing cover such attacks.

2

2 Notation and mathematical background

Given two stringss1, s2, the symbols1‖s2 denotes string concatenation. IfX is a finite

set thenx
R← X denotes the sampling of an element uniformly at random fromX. If α

is neither an algorithm nor a setx ← α represents a simple assignment statement. The
hash functionH is used as a key derivation function (see [16] for practical KDFs).

The protocols we consider are based on EC cryptosystems. LetFq denote the finite
field containingq elements, whereq is a prime power (q = p or q = 2m). An elliptic
curve E(Fq) over the fieldFq (for simplicity we letq = p with p a prime greater 3) is
the set of pointsP ≡ (P.x, P.y) that satisfy an (Weierstrass) equation of the form:

y2 = x3 + ax + b, 4a3 + 27b2 6= 0

wherea, b ∈ Fq. The set E(Fq) with the operation ofpoint additionQ = P + R
defined according to achord-and-tangentrule and the point at infinityP∞ serving as
the identity element forms an (abelian) group structure. Repeated addition of a point
P to itself x times is known asscalar multiplicationQ = xP , this operation often
dominates the execution time of elliptic curve based cryptographic schemes. The public
elliptic curve domain parameters overFq are specified by an 8-tuple:

ΦEC ≡ (q, FR, S, a, b, P, n, h)

whereq is the underlying field order,FR (field representation) is an indication of the
method used to represent field elements inFq, the seedS is for randomly generated
elliptic curves, the twocoefficientsa, b ∈ Fq define the equation of the elliptic curve
E over Fq, thebase pointP = (P.x, P.y) in E(Fq), the prime ordern of P and the
cofactorh =]E(Fq)/n. There are several well known algorithms for validating the
parametersΦEC (see [13, 14]).

In an elliptic curve public-key cryptosystem userA is assigned a key pair (wA,WA)
which is compatible with the set of domain parametersΦEC . In practice, theprivate key
is a randomly selected valuewA in [1, n − 1] and the correspondingpublic keyis the
elliptic curve pointWA=wAP .

There exist elliptic curve groups where the discrete logarithm assumption is known
to hold: given the generatorP and a random elementX ∈ E(Fq) it is computationally
hard to computelogP X. More formally,

Assumption 1 (ECDL) The EC groupE(Fq) satisfies the discrete logarithm assump-
tion if for all PPT algorithmsA we have:

Pr
[
x

R← F∗q ;X ← xP : A(ΦEC , X)=x
]

< ε

where the probability is taken over the coin tosses ofA (and random choices of x) and
ε is a negligible function.

The elliptic curve computational Diffie-Hellman (ECCDH) assumption holds in the
group E(Fq) if for random elementsX, Y ∈ E(Fq) it is computationally hard to com-
putelogP X logP Y P (i.e. if X = xP andY = yP then the output should bexyP).

3

Assumption 2 (ECCDH) The EC groupE(Fq) satisfies the computational Diffie-Hellman
assumption if for all PPT algorithms we have:

Pr
[
x

R← F∗q ; y
R← F∗q ;X ← xP ;Y ← yP : A(ΦEC , X, Y)=xyP

]
< ε

where the probability is taken over the coin tosses ofA (and random choices ofx, y)
andε is a negligible function.

3 A closer look at Key Compromise Impersonation

A KCI attack involves an adversary that has obtained the private key of an honest party.
The adversarial goal is then to impersonate a different user and try to establish a valid
session key with the “corrupted” party. This attack represents a serious and subtle threat
since a user may not even be aware that his computer was “hijacked” and that a ma-
licious party has obtained his private key. Set out below is a formal definition ofKCI
resilience:

Definition 1 (KCI-resilience) A key agreement protocol isKCI-resilientif compromise
of the long-term key of a specific principal does not allow the adversary to establish a
session key with that principal by masquerading as a different principal.

In the real world, aKCI attack is carried through as a man-in-the-middle attack.
Let us consider the Unified Model [2, 15] IKA protocol described in Figure 1. Suppose
adversaryE knowswA. MessageQA is delivered to its intended recipientB without
any interference from the adversary. Now,E interceptsB’s responseQB and replaces it
with QE = rEP . As a result,E causesA to accept the session keyH(wAWB‖rAQE)
and is able to compute the same key asH(wAWB‖rEQA). For this protocol, the attack
works in exactly the same way if the adversary corruptsB.

Although the above example seems a trivial one, it is useful because it draws our
attention on at least two important points: (1) many protocols are designed without
consideringKCI resilience as a security goal; (2) since messages are unauthenticated
the corrupted party may not be able to detect the attack since a message received by
the adversary (impersonating a legitimate user and deviating from the protocol specifi-
cation) is perfectly indistinguishable (e.g. messageQE above) from one received by an
honest party.

We now turn to examine the MTI/A0 (Figure 2, [22]) and the MQV protocols (Fig-
ure 3, [20]) since they are apparently immune toKCI attacks. For both these implicitly
authenticated key agreement protocols it appears to be infeasible to setup an attack (that
exploits the algebraic group structure), similar to those presented in Section 4, with the
only information known by the adversary being the long-term private key of a party.
Indeed, for the MTI/A0 protocol Eve should be able to find a valueQE such that the
session key computed byA asrAWB + wAQE can also be calculated by an adversary
knowingwA. However, this does not seem possible unless either one ofrA or wB are
available to Eve. Similar reasoning also applies to the MQV protocol where the use of

4

a non standard function1 destroys the algebraic structure of the group. To be honest, re-
sistance toKCI attacks was not the main design goal of the MQV protocol (and perhaps
neither for the MTI/A0 protocol). In fact, the authors claim that the computation ofQ
(for a group elementQ) was introduced for increased efficiency.

Notice that the protocols are easily broken if the adversary obtains the ephemeral
data used byA,B (e.g.rA, rB or any other session-specific information stored in the
current state); for this to occur, either the adversary is able to solve an instance of the
discrete logarithm problem in an EC group (see Section 2) or she is given the capability
of compromising a principals’ machine (therefore obtaining the states of all running
protocol instances at that time). The later case amounts to a stronger corruption model
(which is also harder to put into practice) than the one considered in this paper.

A : rA
R← [1, n− 1]

QA ← rAP
A→ B : QA

B : rB
R← [1, n− 1]

QB ← rBP
B → A : QB

A : skA ← wAWB‖rAQB

B : skB ← wBWA‖rBQA

Fig. 1.Protocol UM

A : rA
R← [1, n− 1]

QA ← rAP
A→ B : QA

B : rB
R← [1, n− 1]

QB ← rBP
B → A : QB

A : skA ← H(rAWB + wAQB)
B : skB ← H(rBWA + wBQA)

Fig. 2.Protocol MTI/A0

4 Cryptanalysis of KCI-resilient AK Protocols

In this section we illustrate successfulKCI attacks brought against some IKA key agree-
ment protocols despite their authors have claimed resilience against such attacks. All the

1 Recall that ifQ (6= P∞) is an elliptic curve point andx denotes the integer obtained from the
binary representation ofQ.x, thenQ is the integer given by (x mod2df/2e) + 2df/2e where
f = blog2 nc+ 1.

5

A : rA
R← [1, n− 1]

QA ← rAP
A→ B : QA

B : rB
R← [1, n− 1]

QB ← rBP
B → A : QB

A : sA ← rA + QAwA

skA ← sA(QB + QBWB)

B : sB ← rB + QBwB

skB ← sB(QA + QAWA)

Fig. 3.Protocol MQV

protocols considered have optimal communication efficiency and computational com-
plexity.

A : rA
R← [1, n− 1]

QA ← rAWB

A→ B : QA

B : rB
R← [1, n− 1]

RB ← rBWA

TB ← QA + RB

QB ← RB + rBw−1
B QA

B → A : QB

A : TA ← QA + wA(wA + rA)−1QB

skA ← TA

B : skB ← TB

Fig. 4.Protocol LLK

4.1 LLK Protocol

The LLK key agreement protocol of Figure 4 is due to Leeet al. [21]. The session
key is computed from the expression(rAwB + rBwA)P . Although the authors have
conjectured that aKCI attack against the protocol is unfeasible, the following proves
the opposite. AdversaryE, impersonatingB with knowledge ofwA, computes the EC
point QE ← rEw−1

A (QA + wAWB) and sends it toA in a run of the protocol. It is
easily verified thatA andE both accept with the keyH(QA + rEWB).

4.2 SK Protocol

The SK key agreement protocol of Figure 5 was proposed by Songet al. [25]. The
session key is derived from the expression(rAwB + rBwA + rArB)P . The authors

6

A : rA
R← [1, n− 1]

QA ← rAP
A→ B : QA

B : rB
R← [1, n− 1]

QB ← rBP
B → A : QB

A : skA ← rAWB + (wA + rA)QB

B : skB ← rBWA + (wB + rB)QA

Fig. 5.Protocol SK

A : rA
R← [1, n− 1]

QA ← rAWB

A→ B : QA

B : rB
R← [1, n− 1]

QB ← rBWA

B → A : QB

A : skA ← rAw−1
A QB + wAWB

B : skB ← rBw−1
B QA + wBWA

Fig. 6.Protocol SSEB

claim resistance againstKCI attacks. However, we now describe a successfulKCI attack.
AdversaryE, impersonatingB with knowledge ofwA, computes the EC pointQE ←
rEP −WB and sends it toA in a run of the protocol. It is easily verified thatA andE
both accept with the keyH(rE(WA + QA)− wAWB).

4.3 SSEB Protocol

The SSEB key agreement protocol of Figure 6 was designed by Al-Sultanet al. [1].
The session key is derived from the expression(rArB + wAwB)P . The conjectured
security attributes includeKCI resilience. To prove that this claim is false it suffices
for an adversaryE, impersonatingB with knowledge ofwA, to send the EC point
QE ← rEwAWB to A in a run of the protocol. Once again it is easily verified thatA
andE both accept with the keyH(rEQA + wAWB).

4.4 PU Protocol

The PU key agreement protocol of Figure 7 was proposed by Popescu [23]. The conjec-
tured security attributes includeKCI resilience. The private/public key pair of a princi-
palX is (wX ,WX = −wXP) while the mapH(·) is a hash function. To communicate,
principalsA,B must share a static secret keyKs = −wAWB = −wBWA = wAwBP .
A trivial attack shows that the protocol is not secure againstKCI attacks. Indeed, an ad-
versaryE impersonatingB with knowledge ofwA (and therefore can easily compute
Ks), needs to send the EC pointQE ← rEP to A in a run of the protocol. Clearly, both
E andA will accept with the key−rEQA = −rAQE .

7

A : rA
R← [1, n− 1]

QA ← rAP
eA ← H(QA.x, Ks.x)

A→ B : QA, eA

B : rB
R← [1, n− 1]

QB ← rBP
eB ← H(QB .x, Ks.x)

B → A : QB , eB

A : eB
?
= H(QB .x, Ks.x)

if false then abort elseskA ← −rAQB

B : eA
?
= H(QA.x, Ks.x)

if false then abort elseskB ← −rBQA

Fig. 7.Protocol PU

4.5 Discussion

The implicitly authenticated protocols LLK, SSEB, SK, MTI use a similar approach to
compute the session key. The intuition is that, in a protocol run, the established (fresh)
session key results from an inextricable combination of information proving the identity
of a principal (e.g. private keyswA, wB) and of session-specific data (e.g.rA, rB), in
such a way to to avoid any danger of one ofA or B being fooled into associating
the key with the wrong principal. This is done by exploiting the algebraic structure of
the underlying group. However, although this approach guarantees important security
properties (e.g. key independence, forward secrecy), it makes possible for the adversary
to mount the attacks illustrated above. As already pointed out before, to prevent these
attacks, either the session key should be computed in such a way that the adversary is
unable to cause the corrupted principal (sayA) to accept a particular session key without
the adversary knowing the private key of the principal she is impersonating (wB) and/or
the session-specific data ofA (rA). Alternatively, by following the approach used by the
MQV protocol where such attacks are avoided by destroying the algebraic structure of
the group.

The UM protocol and the PU protocol (and also the three protocols presented in
[17]) are vulnerable to key compromise impersonation because they use a static shared
key (wAWB = wBWA) to compute the session key. To obtain this key, it is sufficient
for the adversary to corrupt either one of the principalsA or B.

Adding key confirmation to the protocol may not necessarily help to counterKCI
attacks since if the adversary has successfully caused the corrupted principal to accept a
key then she knows the confirmation key too. To strengthen the protocol one could apply
signatures to the message flows but then there would be no point in using IKA protocols
at all, since there would be no real benefit with respect to plain Diffie-Hellmann key
exchange authenticated with signatures.

Apparently, public key cryptography seems the only way to obtainKCI-resilient key
agreement protocols.

8

5 KCI vs provable security

In general, it is difficult to formally prove that a protocol isKCI-resilient. Indeed, it is
easier to find some specific message that demonstrates that the property does not hold at
all (as shown in Section 4). To this end, it is worthwhile considering in more detail how
the formal models of distributed computing found in the literature cover such attacks.
We explore this issue in the present section. The focus is on three models:

– The model due to Bellare and Rogaway [5] was originally conceived for two-
party protocols in the private-key authentication model. It was later extended to
the password-based [4] and public-key settings [10, 9, 8]. This model introduces
the notion of matching conversations as a means of entity authentication (and also
partnering functions [6]). Secrecy of a session key is modeled by its indistinguisha-
bility from a random string;

– The approach followed by Shoup [24], for key agreement protocols in the asym-
metric trust model, is completely different since it stems from the notion of simu-
latability (which is extensively present in the cryptographic literature as the basis
for zero knowledge proofs);

– The initial version of the model of Bellareet al. [3] is also founded on the notion
of simulatability. Later on, Canetti and Krawczyk [11] published a revised version
with a reformulation of the security definitions in terms of the indistinguishability
paradigm (a-la [5]).

Generally speaking, one expects that a formal security proof in the above models
implies resilience to a whole range of attacks. However, although the adversarial models
usually considered are almost all powerful (e.g. the adversary can relay messages out
of order or to unintended recipients, concurrently interact with multiple instances of the
protocol, corrupt legitimate users, acquire session keys, etc) a protocol is at best proven
secure with respect to impersonation, known-key (Denning-Sacco) attacks and to some
forms of long-term key exposure (e.g. forward secrecy).

5.1 KCI in the Bellare-Rogaway model

We briefly recall the main concepts of the Bellare-Rogaway [5] model in the asymmetric
setting (with the extensions of [8, 9]). A (two-party) key agreement protocol is defined
as a pairΣ = (G,Π) of poly-time computable functions whereG is for generating
the long-term (private-public) keys assigned to a principalPi (suppose there is a finite
numberN of principals) andΠ specifies the protocol actions and message formats.
The symbolΠr

i denotes ther-th protocol instance (oracle) run by principalPi. Honest
party oracles behave according to the description of the protocolΠ. OracleΠr

i has an
intended communication partner (sayPj) denoted bypidr

i . The session identifiersidr
i

for the instanceΠr
i having pidr

i = Pj is defined as the concatenation of messages
transmitted to and received from the sessionΠs

j (for somes). Whensidr
i = sids

j we say
thatΠr

i andΠs
j have had amatching conversation(and the two communicating oracles

are uniquely identified).
The adversary can initiate and interact with any (polynomial in` — the security

parameter) number of protocol instances (oracles) by asking the following queries:

9

– (init,i, j): this query setspidr
i = Pj and activates (ther-th) instanceΠr

i of the proto-
col at the principalPi (in addition one may think of random coins being generated).
As a result, oracleΠr

i enters the idle state (i.e. waiting for a (send,i, r, start) query);
– (send,i, r, M): the adversary sends messageM to instanceΠr

i masquerading as
pidr

i . WhenM ≡ start and instanceΠr
i is idle it responds with the first message

according to the protocol specification and enters the expecting state. In all other
cases the oracle moves into a state (e.g. continue, abort or accept) that depends on
the initial state and on the message received;

– (execute,i, j): this query models a passive adversary eavesdropping on a run of the
protocol between honest (uncorrupted) principalsPi, Pj . The resulting transcript is
given to the adversary. In principle, anexecute query can be simulated bysend and
init queries. However, in anexecute query the parties and oracle instances strictly
adhere to the protocol specification. This is opposed tosend queries wherein the
adversary can specify messages of her own choice;

– (reveal,i, r): this query models exposure of the session key of the instanceΠr
i due,

for example, to improper erasure after its use, hijacking of the machine running
the protocol or perhaps to cryptanalysis. It is applicable only to instances that have
accepted;

– (corrupt,i): in the weak corruption modela corrupt query exposes the long-term
private key of a principalPi (as opposed to thestrong corruption modelwherein the
adversary also obtains the internal state of the instances run byPi). The adversary
can use the compromised private key to impersonatePi with send queries. We
stress that the adversary does not obtain the session key as the result of acorrupt
query on a instanceΠr

i that has accepted;
– (test,i, r): when the adversaryA asks this query an unbiased coinb is flipped and

Kb is returned. Ifb = 0 thenK0 ← skr
i otherwiseK1

R← {0, 1}`1 (`1 is a secondary
security parameter related to`) and the adversaryA must distinguish which one.

The security of protocolΣ is defined in the context of the following game between a
challengerC and the adversaryA:

(a) Setup: The challengerC runs algorithmG(1`) to generate private-public key pairs
(SKi, PKi) for every principalPi. The adversary is given the set{PKi|i ∈ N};

(b) Queries: AdversaryA can adaptively ask (a polynomial iǹnumber of) oracle
queries (a singletest query is allowed). If required, both the challenger and the
adversary can access a (public) random oracle modeling a hash function;

(c) Output: The adversary attempts to distinguish whether a key obtained from thetest
query is a real session key or a random one (or equivalently the adversary must
output a correct guessb′ of the bitb chosen by the challenger when answering the
test query).

At the end of the above game the advantage of the adversary must be negligible for the
protocol to be secure. In a concrete analysis this advantage is expressed as a function of
the resource expenditure required to win the game.

To set out a meaningful notion of security the adversarial capabilities must be first
specified; these are expressed in terms of the types of queries the adversary is allowed

10

to ask during the game. For example, the weak form of forward secrecy, captures the
inability of obtaining information on already generated session keys for a passive ad-
versary that has corrupted the principals after a protocol run. This is modeled by leaving
the adversary the ability to askinit, send, execute, reveal, corrupt queries in the game
above. To win the game the adversary must try to guess bitb by asking thetest query
of a FS-fresh oracle, i.e. an oracle that (at the end of the game) has not been the target
of a reveal query (neither has its partner oracle) and nosend queries were asked of that
oracle and its partner.

The advantage of the adversary is defined asAdvFS
Σ (`) = |2 ·Pr[b′ = b]− 1| and the

protocol isFS-secure if the following inequality holds:

AdvFS
Σ (`, t) = max

A
{AdvFS

Σ (`)} ≤ ε(`)

for negligibleε(`) and where the maximum is evaluated with respect to all adversaries
running in polynomial timet (i.e. t is a polynomial iǹ).

As it is, the model of Bellare-Rogaway offers no formalisation ofKCI resilience.
This is due to the corruption model used that allows only a restricted notion of oracle
freshness which captures weak forward secrecy (as defined before). Indeed, the basic
notion of a fresh oracle does not allow the adversary to corrupt the principal running
the target session nor the principal running the partner session, and the adversary is not
allowed to askreveal queries neither of the target session nor of any matching session.

In order to provide for such a possibility, we present the following definition of a
KCI-fresh oracle. The adversary can ask thetest query to aKCI-fresh oracle in the game
defined above while being able to askinit, send, reveal, corrupt queries.

Definition 2 (KCI-fresh oracle) An oracleΠr
i is KCI-fresh if the following conditions

hold at the end of the game:

1. accr
i = TRUE;

2. neither(reveal, i, r) nor (corrupt, j) queries were asked by the adversary;
3. if the adversary has queried(corrupt, i), then no(send, j, s,M) query was asked,

whereM is a message chosen by the adversary andpids
j = Pi.

The advantage of the adversary is defined asAdvKCI
Σ (`, t) = |Pr[b′ = b]− 1

2 | and it must
be negligible for the protocol to beKCI-secure.

The above definition of aKCI-fresh oracle (obviously) requires that the private key
of the corrupted principalPi was not used by the adversary to impersonatePi to other
principals. Observe also thatΠr

i may not terminate with a partnered oracle (if such
an oracle exists then we should also require that noreveal queries were asked of that
oracle).

Note that in the strong corruption model we would require that the adversary learned
no session state information of the target oracle thus implying that the corruption oc-
curred before any sessions were initiated at that party.

Unfortunately, key compromise impersonation resilience must be established on its
own since there appears to be no relationship, for example, with (weak) forward se-
crecy (which, on the other hand, can be shown to imply key independence). However,

11

a protocol secure against key compromise impersonation also maintains (weak) par-
tial forward secrecy (wpFS), i.e. a passive adversary cannot learn any information on
the session key of the target oracle even after obtaining the private key of a specific
principal. More formally, the definition of awpFS-fresh oracle is simply obtained from
Definition 2 under the assumption that the test oracleΠr

i and its partner, sayΠs
j (for

somes), have had a matching conversation.

Definition 3 (wpFS-fresh oracle) An oracleΠr
i is wpFS-fresh if the following condi-

tions hold at the end of the game:

1. accr
i = accs

j = TRUEandsidr
i = sids

j 6= NULL;
2. (reveal, i, r), (reveal, j, s) queries were not asked by the adversary;
3. if the adversary has queried(corrupt, i) or (corrupt, j), then no(send, j, s,M) nor

(send, i, r,M ′) queries was asked, whereM,M ′ are messages chosen by the ad-
versary.

We now prove the following theorem.

Theorem 1 Given theEC parametersΦEC , theMTI/A0 protocol (Figure 2) is aKCI-
resilient protocol assuming the group E(Fq) satisfies theECCDHassumption and the
hash functionH is modeled as a random oracle. Concretely, we have

AdvKCI-R
MTI/A0 (`, t, qh, qre, qco, qse) ≤ 1/N2 · 1/qh · ε,

where t is the total running time of the game played by the adversary (including its
execution time),̀ the security parameter andqh, qco, qre, qse, respectively, the number
of random oracle,corrupt, reveal andsend queries andN is the number of principals.

Proof. Given X = xP, Y = yP the symbol DH(X, Y) denotes the Diffie-Hellman
secretxyP . The proof is by a reduction technique; if an adversaryA is able to break
KCI-resilience then we may construct an adversaryF that usesA as a subroutine and
succeeds in solving the computational Diffie-Hellman problem (CDHP) in the underly-
ing elliptic curve group E(Fq). AlgorithmF simulates the game played byA (against
the challengerC — see above) in such a way thatA’s view is indistinguishable from
the real game. The description ofF follows:

1. F receives in input (X = xP , Y = yP), choosesi∗, j∗ (we assume thati∗ 6= j∗)
guessing thati∗ will be the principal corrupted byA in its game and thatj∗ is the
principal impersonated byA in the attack;

2. F generates private/public keys (wi,Wi) for all principalsPi wherei = j∗ and sets
Wj∗ = Y

3. F runsA as a subroutine answering its queries as follows:
- For (send,i, r, M) queries, whenΠr

i is in the idle state the answer isaP for
randoma (with oracleΠr

i moving into the expecting state ifM = start). If
i = i∗ andpidr

i∗ = Pj∗ then the response isaP + X;
- For (send,i, r, M) queries, whenΠr

i is in the expecting state the session keyskr
i

is set to a random element in{0, 1}` (and oracleΠr
i moves into the accepting

state); ifi = i∗, pidr
i∗ = Pj∗ (with sidr

i∗ prefixed byaP +X) and a (corrupt,i∗)
query was askedF stores the record (aP + X,M) in the list L1;

12

- For random oracle queriesH(i, j, U, V,W) the response is a random element
sampled from{0, 1}` (or the value output previously for the same argument);
if i = i∗ andpidr

i∗ = Pj∗ thenF finds the record (aP + X, M) in L1 (if it
exists) such thatU = aP + X andV = M and writes (aP + X, M, W) to list
L2;

- init, execute, reveal, test queries are answered normally;
- (corrupt,i) queries are answered as usual except that ifi = j∗ thenF aborts.

4. WhenF terminates (exactly whenA does) it chooses a random element in the list
L2 and outputs DH(X, Y)=W − aY − wi∗M (whereW = (a + x)Y + wi∗M).
Observe that oraclesΠu

i∗ , for someu, such thatsidu
i = U‖V areKCI-fresh accord-

ing to the simulation (and therefore anytest query thatA asks of these oracles can
be correctly answered byF).

It is straightforward to verify that the success probability ofF is bounded from above
by 1/N2 · 1/qh · ε. ut

5.2 KCI in the Canetti-Krawczyk model

Recently, Krawczyk [19] has formally definedKCI attacks in the model of Canetti-
Krawczyk [11]. The formalism is introduced to prove the resilience of a hash-based
version of the MQV protocol (HMQV). Two communication models are considered; the
first one is the simplified authenticated-links (AM) model wherein the communication
links are assumed to be authenticated, the second one is the unauthenticated-links (UM)
model wherein the network is totally under the control of the adversary. In both the
models the adversary is given capabilities which allow different levels of information
exposure of a session and/or principal (the adversary may ask queriessession-state
reveal, party-corruption, session-key query, session expiration, test-session).

A secure key exchange protocol is formalised ([11], definition 4) in a context similar
to the game of Section 5.1 by requiring that (1) if two uncorrupted principals complete
matching sessions then (with overwhelming probability) they both output the same key
and (2) the probability of success of the adversary in distinguishing the session key
from a random one is no greater than 1/2 plus a negligible function.

In the model it is hypothesized that in real world implementations long-term se-
cret keys are often granted better protection (e.g. by using cryptographic modules) than
session-specific data; this is reflected in the attackers’ capabilities by considering sep-
arate party corruption and session state reveal operations. The authors speculate that
whenever this is not a realistic assumption one could weaken the model by omitting
the session-state reveal operation. However, in practice almostall computations can
take place in a cryptographic module (e.g. those involving the generation of ephemeral
Diffie-Hellman public keys) thus making session-specific information leakage more dif-
ficult. Furthermore, hardware-specific attacks (e.g. power analysis) are not considered.

The basic definition of a secure protocol does not look upon the case of corrupted
principals, therefore, in [19] a new notion is introduced into the model to account for
KCI attacks, namely, that of aclean session. The goal is to capture the situations wherein
the adversary has learned the long-term private key of a principal but has not actively
controlled the session (e.g. by impersonating the principal) during a run of the protocol.

13

A key agreement protocol is considered resilient toKCI attacks if the adversary is unable
to distinguish the real session key (from a random one) of a complete session, being this
session clean and the peer session (if it exists) at an uncorrupted principal also clean.
Under this definition ([19], Definition 20) it is shown that the HMQV protocol is secure
in the model of [11].

5.3 KCI in the Shoup model

In the formal model of Shoup [24] security is defined via simulation. There is an ideal
world wherein the service offered by the key agreement protocol is defined, and a real
world which describes how protocol participants communicate. An ideal world adver-
sary is essentially constrained to be benign. A security proof shows that the adversary in
the real world is essentially “simulatable” by the adversary in the ideal world and there-
fore one deduces that the protocol is secure in the real world. Again, the simulation
takes place in the context of a game similar to those defined in the preceding models.
Three classes of adversaries are defined, according to their capability of obtaining pri-
vate information held by users (either static or ephemeral data), that give rise to static
corruptions, adaptive corruptions and strong adaptive corruptions.

Let us examine howKCI attacks can be viewed in the adaptive corruptions model
(in the static corruptions model the adversary holding the private key of a principal may
simply decide to actively impersonate that principal in a protocol run). We use the no-
tation and terminology of [24]. Consider an instanceIij engaging in the key agreement
protocol (e.g. the two pass LLK protocol) with acompatibleinstanceIi′j′ . Suppose that
after the first messageM1 (e.g.Qi = riWi′ in protocol LLK) is delivered,Ii′j′ accepts
the session keyKi′j′ . The adversary now corrupts userUi. InstanceIi′j′ responds with
a messageM2 (e.g.Qi′ = ri′Wi in protocol LLK), the adversary intercepts it and in-
stead delivers messageM2 (e.g.M2 ≡ Qi′ = ri′w

−1
i (Qi + wiWi′) in protocol LLK).

At this point Iij will accept a session keyKij known by the adversary and different
from Ki′j′ (which the adversary ignores). Now, in the ideal world, whenIi′j′ generated
its session key, it was not corrupted so the only connection assignment possible forIi′j′

is create. On the other hand, the only possible connection assignment forIij , being
Ui corrupted, iscompromise. However,Iij andIi′j′ arecompatible, henceIij cannot
be compromised without breaking the rules of the game sincePIDij = IDi′ is as-
signed to userUi′ . Moreover, aconnect is also not possible betweenIij andIi′j′ since
this would implyKij = Ki′j′ . We must conclude that the simulation is not possible
since it would lead to inconsistent real world and ideal world transcripts. Note that we
have used theliberal compromise ruleas defined in [24] (the simulation is still not be
possible under theconservative compromise rule).

6 Conclusions and future work

In this paper we discussed key compromise impersonation resilience for key agree-
ment protocols in the asymmetric trust model. Several protocols, whose authors have
mistakenly claimed resilience toKCI, are proven vulnerable to such attacks. For these
protocols, explicit key confirmation (e.g. using the compilers of [8, 7]) may provide

14

an effective countermeasure since the parties involved (A,B) accept different session
keys. However, this is achieved at the expense of increased computational and round
complexity.

It appears that protocol designers do not always pay attention to key compromise
impersonation. Instead, forward secrecy, which is indeed another harmful threat related
to party corruption, is usually considered more important. However, our thesis is that
the security analysis of key agreement protocols is incomplete with a corruption model
that considers only forward secrecy.

Although there is a constant debate in the research community concerning formal
(complexity-theoretic based) security models, they undoubtedly constitute a valuable
approach to achieve proactively secure key agreement protocols. Surprisingly, however,
three of the most significant models found in the literature do not have a satisfactory
approach (besides having one at all) toKCI. We have attempted to incorporate a reason-
able notion ofKCI resilience into the model of Bellare-Rogaway. Future work includes
formulating an appropriate notion of resilience toKCI into the formal security model of
Shoup.

References

1. K. Al-Sultan, M. Saeb, M. Elmessiery, and U.A.Badawi. A new two-pass key agreement
protocol.Proceedings of the IEEE Midwest 2003 Symp. on Circuits, Systems and Computers,
2003.

2. R. Ankney, D. Hohnson, and M. Matyas. The Unified Model.Contribution to X9F1, 1995.
3. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis

of authentication and key exchange protocols.In 30th Symposium on Theory of Computing,
pages 419–428, 1998.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attack.In Proceedings of EUROCRYPT 2000, LNCS 1807:139–155, 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution.In Proceedings of
CRYPTO 1993, LNCS 773:232–249, 1993.

6. M. Bellare and P. Rogaway. Provably secure session key distribution - the three party case.
In Proceedings of 27th ACM Symposium on the Theory of Computing 1995, 1995.

7. M. Bellare and P. Rogaway. The AuthA protocol for password-based authenticated key
exchange.Contribution to IEEE P1363, 2000.

8. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their security
analysis. In Proceedings of the 6th IMA Int.l Conf on Cryptography and Coding, LNCS
1355:30–45, 1997.

9. S. Blake-Wilson and A. Menezes. Entity authentication and authenticated key transport pro-
tocols employing asymmetric techniques.Security Protocols - 5th International Workshop,
LNCS 1361:137–158, 1998.

10. S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellmann key agreement protocols.
Selected Areas in Cryptography - 5th International Workshop, LNCS 1556:339–361, 1999.

11. R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for building
secure channels.Advances in Cryptology-EUROCRYPT 2001, LNCS 2045:453–474, 2001.

12. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchange.
Designs, Codes and Cryptography, 2:107–125, 1992.

13. FIPS-PUB-186-2. Digital Signature Standard. National Institute of Standards and Technol-
ogy, 2000.

15

14. D. Hankerson, A. Menezes, and S. Vanstone.Guide to Elliptic Curve Cryptography. Springer
Professional Computing, New York, 2004.

15. IEEE-P1363-2000. Standard specifications for public key cryptography. Institute of Electri-
cal and Electronics Engineers, 2000.

16. IEEE-P1363.2/D15. Standard specifications for password-based public key cryptographic
techniques. Institute of Electrical and Electronics Engineers, 2004.

17. I. Jeong, J. Katz, and D. Lee. One-Round Protocols for Two-Party Authenticated Key Ex-
change.Applied Cryptography and Network Security 2004, 2004.

18. M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement.Advances in
Cryptology-ASIACRYPT 1996, LNCS 1163:36–49, 1996.

19. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellmann protocol.
http://eprint.iacr.org/2005/176, 2005.

20. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenti-
cated key agreement.Designs, Codes and Cryptography, 28:119–134, 2003.

21. C. Lee, J. Lim, and J. Kim. An efficient and secure key agreement.IEEE p1363a draft, 1998.
22. T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key distribution systems.

Transactions of IEICE, VolE69:99–106, 1986.
23. C. Popescu. A Secure Authenticated Key Agreement Protocol.Proceedings of the 12th IEEE

Mediterranean Electrotechnical Conference, 2004.
24. V. Shoup. On Formal Models for Secure Key Exchange. Technical Report RZ 3120, IBM

Research, 1999.
25. B. Song and K. Kim. Two-pass authenticated key agreement protocol with key confirmation.

Progress in Cryptology - Indocrypt 2000, LNCS 1977:237–249, 2000.

16

