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Abstract. Key agreement protocols are a fundamental building block for ensur-
ing authenticated and private communications between two parties over an inse-
cure network. This paper focuses on key agreement protocols in the asymmetric
authentication model, wherein parties hold a public/private key pair. In particu-
lar, we consider a type of known key attack called key compromise impersonation
that may occur once the adversary has obtained the private key of an honest party.
This attack represents a subtle threat that is often underestimated and difficult to
counter. Several protocols are shown vulnerable to this attack despite their au-
thors claiming the opposite. We also consider in more detail how three formal
(complexity-theoretic based) models of distributed computing found in the liter-
ature cover such attacks.
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1 Introduction

Key agreement protocols are a fundamental building block for ensuring private com-
munications between two parties over an insecure network (i.e. fully controlled by the
adversary).

In general, (two-party) “authenticated key agreement” (AKE) protocols require en-
tity authentication and key agreement to be appropriately linked in order to provide
assurance that the session key is established only by the intended principals [12].

The property usually referred to @aplicit key authenticatiorflKA) requires that
in a run of the protocol uncorrupted principals are assured that no one aside from the
intended partners in the communication can possibly learn the value of the session key.
Sometimes a stronger properi§ey confirmatiohis mandated that requires a party be-
ing assured that its intended partner has actually computed the session key (see [8, 5]
for further discussion). Key confirmation is achieved at the expense of additional mes-
sages flows (e.g. using the compilers of [8, 7]); for this reason proving knowledge of the
session key may be left to the subsequent communication (i.e. the calling applications).

When both IKA and key confirmation hold the protocol provigeslicit key au-
thentication(EKA).

* This is a revised version of the paper appearing in EuroPKI'06.



The whole point about key-based authentication, first introduced with the MTI/AQ
[22] protocaol, is that it allows for the design of efficient protocols with a reduced num-
ber of communication rounds and cryptographic operations. Although the messages
exchanged are unauthenticated (i.e. there is no assurance they were sent by the intended
partners in the communication and thus are perfectly “simulatable” by a third party), the
IKA goal is achieved by letting the session key be “privately computable”, i.e. requiring
knowledge of long term private keying material known only by the principals running
the protocol (assuming they are uncorrupted). Surprisingly, such protocols often enjoy
important security properties (e.g. forward secrecy, key independence, etc).

Notice that key agreement protocols with the EKA property are not necessarily
equivalent to generic AKE protocols since the later often have the message flows ex-
plicitly authenticated (e.g. with signatures and message authentication codes).

As usual, we designate the two generic parties participating in a protocol run as
Alice and Bob. Now suppose an adversary (say Eve) has learned the private key of Alice
either by compromising the machine running an instance of the protocol (e.g. with the
private key stored in conventional memory as part of the current state) or perhaps by
cloning Alice’s smart card while she inadvertently left it unattended. Eve may now be
able to mount the following attacks against the protocol:

1. impersonate Alice in a protocol run;

2. impersonate a different party (e.g. Bob) in a protocol run with Alice;

3. obtain previously generated session keys established in honest-party runs of the
protocol.

In case 1. Eve can send messages on behalf of Alice and these will be accepted
as authentic, in case 2. Eve could establish a session with Alice while masquerading
as another party; this is known as Key Compromise Impersonaion and seems to
appear for the first time in [18]. For example, Eve could impersonate a banking system
and cause Alice to accept a predetermined session key and then obtain her credit card
number over the resulting private communication link. In case 3. Eve may be able to
decrypt the data exchanged by Alice and Bob in previous runs of the protocol (provided
the transcripts are known). This is a weaker form of forward secrecy (which considers
a passive adversary).

The preceding discussion demonstrates that long-term key compromise can lead to
undesirable consequences at least until the corrupted principal discovers that his key
was compromised. However, protocol designers are often concerned with forward se-
crecy and seem to ignore key compromise impersonation.

The main thesis of this paper is that key compromise impersonation is not less
important than forward secrecy (as considered above); one should require that a secure
key agreement protocol be alg@I-resilient since this security attribute is also related
to party corruption.

In Section 4 we show that several implicitly authenticated key agreement protocols
found in the literature do not withstamC| attacks despite the authors claims. In order
to offer a simplified and uniform treatment, all the protocols considered are specified
in an elliptic curve setting since most of them were originally conceived in EC-based
groups. In Section 5 we consider in more detail how three formal (complexity-theoretic
based) models of distributed computing cover such attacks.



2 Notation and mathematical background

Given two stringss, s2, the symbok; ||s2 denotes string concatenation Xfis a finite

setthenr & X denotes the sampling of an element uniformly at random f}onif «
is neither an algorithm nor a set« « represents a simple assignment statement. The
hash functiort{ is used as a key derivation function (see [16] for practical KDFs).

The protocols we consider are based on EC cryptosystem¥,,Lagnote the finite
field containingg elements, where is a prime powerd = p or ¢ = 2™). An elliptic
curve EF,) over the fieldF, (for simplicity we letq = p with p a prime greater 3) is
the set of point® = (P.z, P.y) that satisfy an (Weierstrass) equation of the form:

v =a34+ar+0b, 4a+270%#0

wherea,b € F,. The set EF,) with the operation opoint additionQ = P + R
defined according to ehord-and-tangentule and the point at infinity?,, serving as

the identity element forms an (abelian) group structure. Repeated addition of a point
P to itself x times is known ascalar multiplicationQ = z P, this operation often
dominates the execution time of elliptic curve based cryptographic schemes. The public
elliptic curve domain parameters ovy are specified by an 8-tuple:

@ECE (q,FR,S,a,b,Pm,h)

whereq is the underlying field ordetr’ R (field representatiohis an indication of the
method used to represent field element&inthe seedS is for randomly generated
elliptic curves, the twaoefficientss, b € F, define the equation of the elliptic curve
E overF,, thebase pointP = (P.z, P.y) in E(F,), the prime order of P and the
cofactorh = #E(F,)/n. There are several well known algorithms for validating the
parameter® g (see [13, 14]).

In an elliptic curve public-key cryptosystem uskris assigned a key pait(s, Wa)
which is compatible with the set of domain paramet&gs:. In practice, therivate key
is a randomly selected valuey in [1,n — 1] and the correspondingublic keyis the
elliptic curve pointlW 4=w 4 P.

There exist elliptic curve groups where the discrete logarithm assumption is known
to hold: given the generatd? and a random elemet¥ € E(F,) it is computationally
hard to computéog » X. More formally,

Assumption 1 (ECDL) The EC groufE(F,) satisfies the discrete logarithm assump-
tion if for all PPT algorithmsA we have:

Pr[x EF:X —aP: A(@pe, X)=z| < e

where the probability is taken over the coin tosseslqand random choices of x) and
€ is a negligible function.

The elliptic curve computational Diffie-Hellman (ECCDH) assumption holds in the
group EF,) if for random elements(, Y € E(FF,) it is computationally hard to com-
putelogp X logp Y P (i.e. if X = zP andY = yP then the output should bey P).



Assumption 2 (ECCDH) The EC groufk(TF,) satisfies the computational Diffie-Hellman
assumption if for all PPT algorithms we have:

Pr xﬁlﬁ‘;;y£F;;X<—xP;Y<—yP:A(@EC,X,Y)nyP <e€

where the probability is taken over the coin tossesdafand random choices af, )
ande is a negligible function.

3 Acloser look at Key Compromise Impersonation

A KClI attack involves an adversary that has obtained the private key of an honest party.
The adversarial goal is then to impersonate a different user and try to establish a valid
session key with the “corrupted” party. This attack represents a serious and subtle threat
since a user may not even be aware that his computer was “hijacked” and that a ma-
licious party has obtained his private key. Set out below is a formal definitis¢Cof
resilience:

Definition 1 (KCl-resilience ) A key agreement protocol iCl-resilientif compromise
of the long-term key of a specific principal does not allow the adversary to establish a
session key with that principal by masquerading as a different principal.

In the real world, a&KCl attack is carried through as a man-in-the-middle attack.
Let us consider the Unified Model [2, 15] IKA protocol described in Figure 1. Suppose
adversaryF knowsw 4. Message) 4 is delivered to its intended recipieft without
any interference from the adversary. NdwinterceptsB’s responsé) g and replaces it
with Qg = rgP. As aresultF causesA to accept the session kéy(w s Wg|raQr)
and is able to compute the same keyHsusWg||reQ 4). For this protocol, the attack
works in exactly the same way if the adversary corrupts

Although the above example seems a trivial one, it is useful because it draws our
attention on at least two important points: (1) many protocols are designed without
consideringkCl resilience as a security goal; (2) since messages are unauthenticated
the corrupted party may not be able to detect the attack since a message received by
the adversary (impersonating a legitimate user and deviating from the protocol specifi-
cation) is perfectly indistinguishable (e.g. mess@geabove) from one received by an
honest party.

We now turn to examine the MTI/AO (Figure 2, [22]) and the MQV protocols (Fig-
ure 3, [20]) since they are apparently immuneta attacks. For both these implicitly
authenticated key agreement protocols it appears to be infeasible to setup an attack (that
exploits the algebraic group structure), similar to those presented in Section 4, with the
only information known by the adversary being the long-term private key of a party.
Indeed, for the MTI/AQ protocol Eve should be able to find a vallye such that the
session key computed by asr W + waQ g can also be calculated by an adversary
knowingw 4. However, this does not seem possible unless either ong of wg are
available to Eve. Similar reasoning also applies to the MQV protocol where the use of



a non standard functidrdestroys the algebraic structure of the group. To be honest, re-
sistance ta&Cl attacks was not the main design goal of the MQV protocol (and perhaps
neither for the MTI/AO protocol). In fact, the authors claim that the computatiof of
(for a group elemen)) was introduced for increased efficiency.

Notice that the protocols are easily broken if the adversary obtains the ephemeral
data used by, B (e.g.r 4, rp or any other session-specific information stored in the
current state); for this to occur, either the adversary is able to solve an instance of the
discrete logarithm problem in an EC group (see Section 2) or she is given the capability
of compromising a principals’ machine (therefore obtaining the states of all running
protocol instances at that time). The later case amounts to a stronger corruption model
(which is also harder to put into practice) than the one considered in this paper.

Airg & [1,n—1]
Qa—r1aP
A—B:Qa
B:rg & [1,n—1]
Qp «— rgP
B— A:QB
A:ska — waWas|raQs
B : Sk‘B — IUBWAHTBQA

Fig. 1. Protocol UM

A:ra Fid [1,n—1]
QA <—7"AP
A—B:Qa
B:irg & [1,n—1]
QB <—’I“BP
B— A:Qp
A:ska — H(raWp +waQgr)
B : skp «— H(rpWa +wQa)

Fig. 2. Protocol MTI/AO

4 Cryptanalysis of KCI-resilient AK Protocols

In this section we illustrate successkg| attacks brought against some IKA key agree-
ment protocols despite their authors have claimed resilience against such attacks. All the

! Recall that ifQ (# Ps) is an elliptic curve point an@ denotes the integer obtained from the
binary representation @.z, thenQ is the integer given byz{ mod2/#/21) + 2[//21 where
f = llogyn] +1.



A:rAi[l,nfl}
Qa«—1aP
A—B:Qa
B:rp & [1,n—1]
Qp «— rgP
B— A:QB
A:spg—1ra +@AwA
ska — sA(QB + QgWa)
B:sp <+« rp —|—@Bw3
skg «— sp(Qa + Qs Wa)

Fig. 3. Protocol MQV

protocols considered have optimal communication efficiency and computational com-
plexity.

A:mﬂi[l,n—l}
Qa—raWp
A—B:Qa
B:rg & [1,n —1]
Rp «—rgWa
T +— Qa+ RB
Qp «— Rg +rewz'Qa
B— A:QB
A:Ta — Qa+walwa+7a)"'Qp
ska «— Ta
B: SkB <—TB

Fig. 4. Protocol LLK

4.1 LLK Protocol

The LLK key agreement protocol of Figure 4 is due to leteal. [21]. The session
key is computed from the expressiénywg + rpwa)P. Although the authors have
conjectured that &Cl attack against the protocol is unfeasible, the following proves
the opposite. Adversark, impersonating3 with knowledge ofw 4, computes the EC
point Qg « rEwgl(QA +waWpg) and sends it td in a run of the protocol. It is
easily verified thatd and E' both accept with the ke (Q 4 + reWg).

4.2 SK Protocol

The SK key agreement protocol of Figure 5 was proposed by by [25]. The
session key is derived from the expressienwp + rpwa + rarp)P. The authors



A:rAi[l,nfl}
Qa —raP
A—B:Qa
B:rgﬁ[l,n—l}
Qp «— rgP
B— A:QB
A:ska —raWp+ (wa+71a)Q@B
B:skp —rgWa+ (wp +718)Qa

Fig. 5. Protocol SK

A:rAﬁ[l,nfl}
Qa—1aWp
A—B:Qa
B:rgﬁ[l,n—l}
Qe —rWa
B— A:QB
A:ska —rawy'Qp +waWsp
B : skp «— rnglQA + wpWa

Fig. 6. Protocol SSEB

claim resistance againstl attacks. However, we now describe a successfuittack.
AdversaryFE, impersonating3 with knowledge ofw 4, computes the EC poiip g «—
rgP — Wpg and sends it tal in a run of the protocol. It is easily verified thdtand £
both accept with the ket (re(Wa + Qa) — waWp).

4.3 SSEB Protocol

The SSEB key agreement protocol of Figure 6 was designed by Al-Sedtah[1].
The session key is derived from the expressionrp + wawpg)P. The conjectured
security attributes includ&Cl resilience. To prove that this claim is false it suffices
for an adversaryy, impersonatingB with knowledge ofw 4, to send the EC point
Qr — rgewaWpg to A in a run of the protocol. Once again it is easily verified tHat
andE both accept with the key{(rgQ 4 + waWg).

4.4 PU Protocol

The PU key agreement protocol of Figure 7 was proposed by Popescu [23]. The conjec-
tured security attributes includ€Ci resilience. The private/public key pair of a princi-
pal X is (wx, Wx = —wx P) while the mapgH(-) is a hash function. To communicate,
principalsA, B must share a static secretk&y = —w W = —wpWy = wawpP.

A trivial attack shows that the protocol is not secure aga{@tattacks. Indeed, an ad-
versaryE impersonatingB with knowledge ofw4 (and therefore can easily compute
K,), needs to send the EC poiRtz <+ rg P to A in a run of the protocol. Clearly, both

E and A will accept with the key-rgQa = —raQE.



A:rAi[l,nfl}
Qa«—1aP
es — H(Qa.x, K;.x)
A— B:Qa,ea
B:rg & [1,n—1]
QB HT'BP
es — H(Qp.z, Ks.x)
B— A: QB,eB
A:ep Z H(QB.z, Ks.x)
if false then abort elseks «— —rAQ5
Bies= H(Qa.x, Ks.x)
if false then abort elsekp «— —rpQa

Fig. 7. Protocol PU

4.5 Discussion

The implicitly authenticated protocols LLK, SSEB, SK, MTI use a similar approach to
compute the session key. The intuition is that, in a protocol run, the established (fresh)
session key results from an inextricable combination of information proving the identity
of a principal (e.g. private keys 4, wg) and of session-specific data (erg., rg), in

such a way to to avoid any danger of one4for B being fooled into associating

the key with the wrong principal. This is done by exploiting the algebraic structure of
the underlying group. However, although this approach guarantees important security
properties (e.g. key independence, forward secrecy), it makes possible for the adversary
to mount the attacks illustrated above. As already pointed out before, to prevent these
attacks, either the session key should be computed in such a way that the adversary is
unable to cause the corrupted principal (8gyo accept a particular session key without

the adversary knowing the private key of the principal she is impersonatignpand/or

the session-specific data af(r 4). Alternatively, by following the approach used by the
MQV protocol where such attacks are avoided by destroying the algebraic structure of
the group.

The UM protocol and the PU protocol (and also the three protocols presented in
[17]) are vulnerable to key compromise impersonation because they use a static shared
key waWp = wgW,) to compute the session key. To obtain this key, it is sufficient
for the adversary to corrupt either one of the principalsr B.

Adding key confirmation to the protocol may not necessarily help to coukter
attacks since if the adversary has successfully caused the corrupted principal to accept a
key then she knows the confirmation key too. To strengthen the protocol one could apply
signatures to the message flows but then there would be no point in using IKA protocols
at all, since there would be no real benefit with respect to plain Diffie-Hellmann key
exchange authenticated with signatures.

Apparently, public key cryptography seems the only way to olX@inresilient key
agreement protocols.



5 KCI vs provable security

In general, it is difficult to formally prove that a protocolK€I-resilient. Indeed, it is

easier to find some specific message that demonstrates that the property does not hold at
all (as shown in Section 4). To this end, it is worthwhile considering in more detail how
the formal models of distributed computing found in the literature cover such attacks.
We explore this issue in the present section. The focus is on three models:

— The model due to Bellare and Rogaway [5] was originally conceived for two-
party protocols in the private-key authentication model. It was later extended to
the password-based [4] and public-key settings [10, 9, 8]. This model introduces
the notion of matching conversations as a means of entity authentication (and also
partnering functions [6]). Secrecy of a session key is modeled by its indistinguisha-
bility from a random string;

— The approach followed by Shoup [24], for key agreement protocols in the asym-
metric trust model, is completely different since it stems from the notion of simu-
latability (which is extensively present in the cryptographic literature as the basis
for zero knowledge proofs);

— The initial version of the model of Bellaret al. [3] is also founded on the notion
of simulatability. Later on, Canetti and Krawczyk [11] published a revised version
with a reformulation of the security definitions in terms of the indistinguishability
paradigm (a-la [5]).

Generally speaking, one expects that a formal security proof in the above models
implies resilience to a whole range of attacks. However, although the adversarial models
usually considered are almost all powerful (e.g. the adversary can relay messages out
of order or to unintended recipients, concurrently interact with multiple instances of the
protocol, corrupt legitimate users, acquire session keys, etc) a protocol is at best proven
secure with respect to impersonation, known-key (Denning-Sacco) attacks and to some
forms of long-term key exposure (e.g. forward secrecy).

5.1 KCI in the Bellare-Rogaway model

We briefly recall the main concepts of the Bellare-Rogaway [5] model in the asymmetric
setting (with the extensions of [8, 9]). A (two-party) key agreement protocol is defined
as a pairx = (g,II) of poly-time computable functions whetg is for generating
the long-term (private-public) keys assigned to a princigalsuppose there is a finite
numberN of principals) andll specifies the protocol actions and message formats.
The symbollI] denotes the-th protocol instance (oracle) run by principg@l. Honest
party oracles behave according to the description of the proidc@iracleIl] has an
intended communication partner (s&y) denoted bypid;. The session identifiesid;
for the instancdl havingpid; = P; is defined as the concatenation of messages
transmitted to and received from the sesdiin(for somes). Whensid; = sid} we say
thatII] andIl; have had anatching conversatio(and the two communicating oracles
are uniquely identified).

The adversary can initiate and interact with any (polynomial #- the security
parameter) number of protocol instances (oracles) by asking the following queries:



— (init,Z, 5): this query setpid; = P; and activates (the-th) instancdl of the proto-
col at the principalP; (in addition one may think of random coins being generated).
As aresult, oraclél] enters the idle state (i.e. waiting forsed,:, r, start) query);

— (send,i, r, M): the adversary sends messaygeto instancell]; masquerading as
pid;. WhenM = start and instancél] is idle it responds with the first message
according to the protocol specification and enters the expecting state. In all other
cases the oracle moves into a state (e.g. continue, abort or accept) that depends on
the initial state and on the message received;

— (execute,i, j): this query models a passive adversary eavesdropping on a run of the
protocol between honest (uncorrupted) principalsP;. The resulting transcript is
given to the adversary. In principle, arecute query can be simulated gnd and
init queries. However, in aexecute query the parties and oracle instances strictly
adhere to the protocol specification. This is opposesktal queries wherein the
adversary can specify messages of her own choice;

— (reveal,i, ): this query models exposure of the session key of the instfickie,
for example, to improper erasure after its use, hijacking of the machine running
the protocol or perhaps to cryptanalysis. It is applicable only to instances that have
accepted,;

— (corrupt,?): in the weak corruption modeh corrupt query exposes the long-term
private key of a principaP; (as opposed to th&rong corruption modekherein the
adversary also obtains the internal state of the instances ri)) byhe adversary
can use the compromised private key to impersoataith send queries. We
stress that the adversary does not obtain the session key as the resedtropa
query on a instancH] that has accepted;

— (test,i, r): when the adversaryl asks this query an unbiased céiis flipped and

Ky isreturned. Ih = 0 thenK, « sk! otherwiseK; il {0,1}** (¢, is a secondary
security parameter related fpand the adversaryl must distinguish which one.

The security of protocol is defined in the context of the following game between a
challengelC and the adversary:

(@) Setup: The challenge€ runs algorithmg (1¢) to generate private-public key pairs
(SK;, PK;) for every principalP;. The adversary is given the SgPK;|i € N};

(b) Queries: Adversary.4 can adaptively ask (a polynomial ihnumber of) oracle
queries (a singleest query is allowed). If required, both the challenger and the
adversary can access a (public) random oracle modeling a hash function;

(c) Output: The adversary attempts to distinguish whether a key obtained frotasthe
query is a real session key or a random one (or equivalently the adversary must
output a correct guegs of the bitb chosen by the challenger when answering the
test query).

At the end of the above game the advantage of the adversary must be negligible for the
protocol to be secure. In a concrete analysis this advantage is expressed as a function of
the resource expenditure required to win the game.

To set out a meaningful notion of security the adversarial capabilities must be first
specified; these are expressed in terms of the types of queries the adversary is allowed
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to ask during the game. For example, the weak form of forward secrecy, captures the
inability of obtaining information on already generated session keys for a passive ad-
versary that has corrupted the principals after a protocol run. This is modeled by leaving
the adversary the ability to aghit, send, execute, reveal, corrupt queries in the game
above. To win the game the adversary must try to guedshitasking theest query
of aFS-fresh oracle, i.e. an oracle that (at the end of the game) has not been the target
of areveal query (neither has its partner oracle) andsand queries were asked of that
oracle and its partner.

The advantage of the adversary is defined@&>(¢) = |2 - Pr[t’ = b] — 1] and the
protocol isFS-secure if the following inequality holds:

AdVER (£,1) = max{AWVES ()} < (1)

for negligiblee(¢) and where the maximum is evaluated with respect to all adversaries
running in polynomial time (i.e. t is a polynomial in?).

As it is, the model of Bellare-Rogaway offers no formalisatiorkaf resilience.
This is due to the corruption model used that allows only a restricted notion of oracle
freshness which captures weak forward secrecy (as defined before). Indeed, the basic
notion of a fresh oracle does not allow the adversary to corrupt the principal running
the target session nor the principal running the partner session, and the adversary is not
allowed to askeveal queries neither of the target session nor of any matching session.

In order to provide for such a possibility, we present the following definition of a
KCl-fresh oracle. The adversary can ask th&t query to aKCl-fresh oracle in the game
defined above while being able to ask, send, reveal, corrupt queries.

Definition 2 (KCl-fresh oracle ) An oraclell] is KCI-fresh if the following conditions
hold at the end of the game:

1. acc] = TRUE

2. neither(reveal, i, 7) nor (corrupt, j) queries were asked by the adversary;

3. if the adversary has querigdorrupt, ), then no(send, j, s, M) query was asked,
whereM is a message chosen by the adversary gidil = P;.

The advantage of the adversary is defined@&’ (¢, ¢) = |Pr{t’ = b] — 5| and it must
be negligible for the protocol to &Cl-secure.

The above definition of &CI-fresh oracle (obviously) requires that the private key
of the corrupted principaP; was not used by the adversary to impersorate other
principals. Observe also thé@l; may not terminate with a partnered oracle (if such
an oracle exists then we should also require thatemeal queries were asked of that
oracle).

Note that in the strong corruption model we would require that the adversary learned
no session state information of the target oracle thus implying that the corruption oc-
curred before any sessions were initiated at that party.

Unfortunately, key compromise impersonation resilience must be established on its
own since there appears to be no relationship, for example, with (weak) forward se-
crecy (which, on the other hand, can be shown to imply key independence). However,

11



a protocol secure against key compromise impersonation also maintains (weak) par-
tial forward secrecy (WpFS), i.e. a passive adversary cannot learn any information on
the session key of the target oracle even after obtaining the private key of a specific
principal. More formally, the definition of apFS-fresh oracle is simply obtained from
Definition 2 under the assumption that the test oratjeand its partner, sajl; (for
somes), have had a matching conversation.

Definition 3 (wpFS-fresh oracle ) An oraclell] is wpFS-fresh if the following condi-
tions hold at the end of the game:

1. acc] = acc; = TRUEandsid; = sid} # NULL,

2. (reveal, 1, ri, (reveal, j, s) queries were not asked by the adversary;

3. if the adversary has queriédorrupt, 7) or (corrupt, 5), then no(send, j, s, M) nor
(send,i,r, M) queries was asked, wheid, M are messages chosen by the ad-
versary.

We now prove the following theorem.

Theorem 1 Given theEC parametersp z, the MTI/AO protocol (Figure 2) is aKCl-
resilient protocol assuming the grouglE;,) satisfies thee CCDH assumption and the
hash functior{ is modeled as a random oracle. Concretely, we have

Adv&'cl'll}io (ﬁ, tv 4h;sqre; 4co; q$e) S 1/N2 : ]-/(Ih €,

where t is the total running time of the game played by the adversary (including its
execution time)/ the security parameter ang,, g.o, gre, ¢se, respectively, the number
of random oraclecorrupt, reveal andsend queries andV is the number of principals.

Proof. Given X = zP,Y = yP the symbol DH{, Y) denotes the Diffie-Hellman
secretry P. The proof is by a reduction technique; if an adversdris able to break
KClI-resilience then we may construct an adversarthat uses4 as a subroutine and
succeeds in solving the computational Diffie-Hellman problem (CDHP) in the underly-
ing elliptic curve group EF,). Algorithm F simulates the game played by (against

the challengef — see above) in such a way thdts view is indistinguishable from

the real game. The description Bffollows:

1. Freceives in inputX = 2P, Y = yP), chooses*, j* (we assume that £ j*)
guessing that* will be the principal corrupted byl in its game and that* is the
principal impersonated by in the attack;

2. F generates private/public keysWV;) for all principalsP; wherei = j* and sets
W =Y

3. Fruns A as a subroutine answering its queries as follows:

- For (send,i, r, M) queries, whedI] is in the idle state the answer as” for
randoma (with oracleII] moving into the expecting state ¥/ = start). If
i = 4" andpid;. = P;~ then the response ig” + X,

- For (send,i, r, M) queries, wheil is in the expecting state the session kiy
is set to a random element {9, 1}* (and oracldI; moves into the accepting
state); ifi = i*, pidj. = P;- (with sidj. prefixed byaP + X)) and a ¢orrupt,i*)
query was asked stores the recordyP + X ,M) in the list L1;
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- For random oracle querig<(i, j, U, V, W) the response is a random element
sampled from{0, 1}* (or the value output previously for the same argument);
if ¢ = ¢* andpid]. = P;- thenF finds the recorddP + X, M) in L1 (if it
exists) such tha/ = aP + X andV = M and writes ¢P + X, M, W) to list
L2;

- init, execute, reveal, test queries are answered normally;

- (corrupt,i) queries are answered as usual except thatifj* thenF aborts.

4. WhenF terminates (exactly whed does) it chooses a random element in the list
L2 and outputs DHK, Y)=W — aY — w;- M (WwhereW = (a + x)Y + w;« M).
Observe that oraclds}., for someu, such thasid; = U||V areKCl-fresh accord-
ing to the simulation (and therefore atgt query that4 asks of these oracles can
be correctly answered bi%).

It is straightforward to verify that the success probability?ofs bounded from above
byl/N2~1/qh'E. O

5.2 KCI in the Canetti-Krawczyk model

Recently, Krawczyk [19] has formally define<Cl attacks in the model of Canetti-
Krawczyk [11]. The formalism is introduced to prove the resilience of a hash-based
version of the MQV protocol (HMQV). Two communication models are considered; the
first one is the simplified authenticated-links (AM) model wherein the communication
links are assumed to be authenticated, the second one is the unauthenticated-links (UM)
model wherein the network is totally under the control of the adversary. In both the
models the adversary is given capabilities which allow different levels of information
exposure of a session and/or principal (the adversary may ask geesisn-state

reveal, party-corruption, session-key query, session expiration, test-session).

A secure key exchange protocol is formalised ([11], definition 4) in a context similar
to the game of Section 5.1 by requiring that (1) if two uncorrupted principals complete
matching sessions then (with overwhelming probability) they both output the same key
and (2) the probability of success of the adversary in distinguishing the session key
from a random one is no greater than 1/2 plus a negligible function.

In the model it is hypothesized that in real world implementations long-term se-
cret keys are often granted better protection (e.g. by using cryptographic modules) than
session-specific data; this is reflected in the attackers’ capabilities by considering sep-
arate party corruption and session state reveal operations. The authors speculate that
whenever this is not a realistic assumption one could weaken the model by omitting
the session-state reveal operation. However, in practice alaliosbmputations can
take place in a cryptographic module (e.g. those involving the generation of ephemeral
Diffie-Hellman public keys) thus making session-specific information leakage more dif-
ficult. Furthermore, hardware-specific attacks (e.g. power analysis) are not considered.

The basic definition of a secure protocol does not look upon the case of corrupted
principals, therefore, in [19] a new notion is introduced into the model to account for
KCI attacks, namely, that of@dean session. The goal is to capture the situations wherein
the adversary has learned the long-term private key of a principal but has not actively
controlled the session (e.g. by impersonating the principal) during a run of the protocol.

13



A key agreement protocol is considered resilierk@ attacks if the adversary is unable

to distinguish the real session key (from a random one) of a complete session, being this
session clean and the peer session (if it exists) at an uncorrupted principal also clean.
Under this definition ([19], Definition 20) it is shown that the HMQV protocol is secure

in the model of [11].

5.3 KCI in the Shoup model

In the formal model of Shoup [24] security is defined via simulation. There is an ideal
world wherein the service offered by the key agreement protocol is defined, and a real
world which describes how protocol participants communicate. An ideal world adver-
sary is essentially constrained to be benign. A security proof shows that the adversary in
the real world is essentially “simulatable” by the adversary in the ideal world and there-
fore one deduces that the protocol is secure in the real world. Again, the simulation
takes place in the context of a game similar to those defined in the preceding models.
Three classes of adversaries are defined, according to their capability of obtaining pri-
vate information held by users (either static or ephemeral data), that give rise to static
corruptions, adaptive corruptions and strong adaptive corruptions.

Let us examine howClI attacks can be viewed in the adaptive corruptions model
(in the static corruptions model the adversary holding the private key of a principal may
simply decide to actively impersonate that principal in a protocol run). We use the no-
tation and terminology of [24]. Consider an instadgeengaging in the key agreement
protocol (e.g. the two pass LLK protocol) wittcampatiblenstancel;, ;. Suppose that
after the first messag¥/; (e.g.Q; = r;W; in protocol LLK) is delivered ;- ;; accepts
the session key;/;-. The adversary now corrupts ugéy. Instancel; ;» responds with
a messagé/, (e.g.Q; = riW; in protocol LLK), the adversary intercepts it and in-
stead delivers messagé, (e.9.M» = Q,;, = Fyw; *(Q; + w;Wy ) in protocol LLK).
At this point I;; will accept a session kex;; known by the adversary and different
from K;/;» (which the adversary ignores). Now, in the ideal world, wiign generated
its session key, it was not corrupted so the only connection assignment possiile for
is create. On the other hand, the only possible connection assignme fobeing
U; corrupted, iscompromise. However,I;; and ;;» arecompatible hencel;; cannot
be compromised without breaking the rules of the game sitB;; = ID; is as-
signed to uset/;,. Moreover, econnect is also not possible betwedyy andl; ; since
this would imply K;; = K, ;. We must conclude that the simulation is not possible
since it would lead to inconsistent real world and ideal world transcripts. Note that we
have used théberal compromise rules defined in [24] (the simulation is still not be
possible under theonservative compromise rjle

6 Conclusions and future work

In this paper we discussed key compromise impersonation resilience for key agree-
ment protocols in the asymmetric trust model. Several protocols, whose authors have
mistakenly claimed resilience KCl, are proven vulnerable to such attacks. For these
protocols, explicit key confirmation (e.g. using the compilers of [8, 7]) may provide
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an effective countermeasure since the parties involved] accept different session
keys. However, this is achieved at the expense of increased computational and round
complexity.

It appears that protocol designers do not always pay attention to key compromise
impersonation. Instead, forward secrecy, which is indeed another harmful threat related
to party corruption, is usually considered more important. However, our thesis is that
the security analysis of key agreement protocols is incomplete with a corruption model
that considers only forward secrecy.

Although there is a constant debate in the research community concerning formal
(complexity-theoretic based) security models, they undoubtedly constitute a valuable
approach to achieve proactively secure key agreement protocols. Surprisingly, however,
three of the most significant models found in the literature do not have a satisfactory
approach (besides having one at allK@. We have attempted to incorporate a reason-
able notion ofKCl resilience into the model of Bellare-Rogaway. Future work includes
formulating an appropriate notion of resiliencextol into the formal security model of
Shoup.
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