
Cryptanalysis of a Cognitive Authentication Scheme

Philippe Golle∗ David Wagner†

Abstract

We present attacks against two cognitive authentication schemes [3] recently proposed at
the 2006 IEEE Symposium on Security and Privacy. These authentication schemes are designed
to be secure against eavesdropping attacks while relying only on human cognitive skills. They
achieve authentication via challenge response protocols based on a shared secret set of pictures.
Our attacks use a SAT solver to recover a user’s key in a few seconds, after observing only a
small number of successful logins. These attacks demonstrate that the authentication schemes
of [3] are not secure against an eavesdropping adversary.

1 Introduction

Consider a user who wants to establish a secure authenticated connection to a server from an
untrusted client. For example, the user may be logging into her bank account from an Internet
café. The password schemes traditionally used for authentication are insecure in this case, because
the untrusted client can record the user’s password, and use it to later impersonate the user.
This threat must be taken seriously, given the spread of key-loggers and other spyware on users’
machines.

To defend against this threat, [3] proposes new authentication schemes that are designed to be
secure against eavesdropping attacks (these authentication schemes are described in more detail
in a technical report [4]). The eavesdropping adversary is assumed capable of observing all user
input and all communication between the client and the server. A further distinctive advantage of
the schemes of [3] is that they rely only on human cognitive abilities. Users can engage unaided in
the authentication protocol. Authentication is achieved via challenge response protocols based on
a shared secret set of pictures.

In this paper, we show that the new cognitive authentication schemes of [3] are insecure against
eavesdropping attacks. Assuming a passive eavesdropping adversary, we propose attacks that re-
cover a user’s key in a few seconds, after observing only a small number of successful logins. The
crux of our attacks is the observation that every user’s response to an authentication challenge
allows the adversary to learn a boolean relationship between the bits of the user’s secret key. These
boolean relationships can easily be expressed in disjunctive normal form. With enough relation-
ships, a SAT solver quickly recovers the user’s key.

We demonstrate our attacks against the schemes exactly as defined in [3]. We also show that
our attacks still work against variants of the schemes with larger parameters. This suggests that
these schemes and their variants are fundamentally vulnerable to attacks based on SAT solvers.
We are not hopeful that a secure variant of these schemes can be designed.

∗Palo Alto Research Center – pgolle@parc.com
†University of California, Berkeley – daw@cs.berkeley.edu

1

Organization. We start with an overview of the cognitive authentication protocol of [3] (sec-
tion 2). We then propose attacks against two versions of this protocol: the high complexity version
(section 3) and the low complexity version (section 4).

2 Cognitive Authentication Protocol

The cognitive authentication scheme of [3] uses a set B of public pictures. We let N = |B| denote
the size of this set. The secret authentication key of a user is a secret subset F ⊂ B of size M < N .
The authentication protocol consists of a number of challenge response rounds. The number of
rounds in the protocol is adjustable depending on the level of security desired (more rounds lower
the success probability of a guessing adversary). In each round, the user must answer a query about
the subset F . The exact nature of the query depends on the version of the protocol considered.
In [3], two versions are proposed: a high complexity version, and a low complexity version (we
present attacks against both versions of the protocol in sections 3 and 4.) Authentication succeeds
if the user supplies correct replies to all challenge queries.

3 High Complexity Protocol

In this version of the protocol, the user is presented in each round with n < N pictures selected
randomly from B. These n pictures are displayed in random order in a rectangular panel of R rows
and C columns. Furthermore, an integer in the range [0;P − 1] is associated with each column and
each row of the panel. We denote vr the integer associated with row r and wc the integer associated
with column c. An example of such a panel is given in Figure 1.

P44 P31 P1 P26 P66 2
P46 P24 P21 P77 P43 3
P13 P16 P79 P38 P59 0
P36 P58 P76 P15 P53 2
0 1 0 3 1

Figure 1: An example of a high complexity panel query. This 4-by-5 panel consists of n = 20
pictures drawn at random for a set of N = 80 pictures. The numbers shown along the bottom
and right edges of the panel are the values wc and vr associated with the columns and rows of the
panel. In this example, the numbers are chosen in the range [0; 3], i.e. P = 4.

Given such a panel as a challenge, the user is asked to follow a mental path through the panel as
follows. Starting from the top left corner, the user moves down whenever the current cell contains
a picture that belongs to her secret set F , and moves right whenever the current cell contains a
picture in B−F . This path eventually exits the panel either through the bottom or the right edge
of the panel. If the path exits the panel through the bottom edge, the user reports the value wc

associated with the exit column. If the path exits the panel through the right edge, the user reports
the value vr associated with the exit row.

Numerical parameters. The implementation described in [3] proposes the following parameters.
The set B of public images is of size N = 80. A user’s key consists of a secret subset of M = 30
images. In each challenge query, all pictures are displayed (n = N = 80) in a panel of R = 8
rows and C = 10 columns. The values vr and wc are chosen in the range [0; 3], in such a way that

2

users’ replies to queries are approximately uniformly distributed in the range [0; 3]. Each run of
the authentication protocol consists of 11 rounds of challenge-response.

We demonstrate our attack first with this exact set of parameters. In particular, we use the
values vr and wc defined in Figure 1 on page 3 of [3]. Our attacks are however not sensitive to this
particular choice of parameters, and we show that they work against variants of the scheme with
much larger parameters.

3.1 Attack

We propose an attack that recovers the secret key of a user after observing the user’s replies to a
few authentication challenges. Let F denote the secret set of pictures chosen by the user under
attack. We define N boolean variables A1, . . . , AN associated with the N pictures in the public set
B. Let Ai = 1 if the i-th picture belongs to the set F and otherwise Ai = 0. We denote Ai the
negation of variable Ai. Note that recovering the user’s key is equivalent to determining the values
of A1, . . . , AN .

Boolean variables. Each challenge-response round of the authentication protocol reveals infor-
mation about the user’s key, and thus about the variables A1, . . . , AN . To capture this information
fully, we need to define the following additional boolean variables in every round:

• For 1 ≤ r ≤ R and 1 ≤ c ≤ C, we introduce a boolean variable Bk
(r,c) associated with the cell

in row r and column c of the panel submitted to the user in round k. We define Bk
(r,c) = 1 if

the path computed by the user in round k passes through cell (r, c), and Bk
(r,c) = 0 otherwise.

• For 1 ≤ r ≤ R, we introduce a boolean variable Bk
(r,C+1), and define Bk

(r,C+1) = 1 if the path
computed by the user exits the panel on the right in row r, and Bk

(r,C+1) = 0 otherwise.
• For 1 ≤ c ≤ C, we introduce a boolean variable Bk

(R+1,c), and define Bk
(R+1,c) = 1 if the path

computed by the user exits the panel at the bottom in column c, and Bk
(R+1,c) = 0 otherwise.

Boolean formulas. Given the user’s replies to the panel queries, we learn the following boolean
formulas between the variables A1, . . . , AN and Bk

(r,c). First, we know that in every round the path
computed by the user starts in the top left corner of the panel:

Bk
(1,1) = 1 ∀ k

Let f(k, r, c) denote the index of the picture in the cell at row r, column c, of the panel submitted
to the user in round k. The following formulas express the rules that the user follows to compute
a path through the panel:

(
Af(k,r,c) ∧Bk

(r,c)

) ⇒ Bk
(r+1,c) ∀ k, ∀ r ∈ {1, . . . , R}, ∀ c ∈ {1, . . . , C}

(
Af(k,r,c) ∧Bk

(r,c)

) ⇒ Bk
(r,c+1) ∀ k, ∀ r ∈ {1, . . . , R}, ∀ c ∈ {1, . . . , C}

Finally, let pk ∈ {0, . . . , P − 1} denote the reply submitted by the user in round k. The following
rules express the constraints on the path imposed by the user’s reply. First, the path cannot end
in row r if vr 6= pk, nor in column c if wc 6= pk:

Bk
(r,C+1) ∀ r such that vr 6= pk

Bk
(R+1,c) ∀ c such that wc 6= pk

3

Secondly, the path must end in a row r for which vr = pk or a column c for which wc = pk:
(∨

r | vr=pk

Bk
(r,C+1)

)
∨

(∨

c | wc=pk

Bk
(R+1,c)

)

All the boolean formulas above can be converted into equivalent boolean formulas in disjunctive
normal form. For example, P ⇒ Q is equivalent to P ∨ Q. These are given as input to a SAT
solver. Given enough formulas, a SAT solver quickly outputs a unique assignment of values to the
variables A1, . . . , AN . This assignment corresponds to the user’s secret key.

Implementation of the attack. We tested our attacks with the UBCSAT implementation [2]
of the SAPS [1] SAT solver (this SAT solver was the most efficient of those we tested). Table 1
summarizes the results of our attacks against the high complexity protocol. We tested the attacks
with various of the parameters suggested in [3]. In all cases, our attack correctly recovers a unique
candidate for the the user’s secret key. The complexity of the attack is measured according to the
number of challenge-response rounds that a passive adversary must observe, and the running time
(in seconds) of the SAT solver. The running time of the attack was measured on a desktop PC
running Windows XP with dual 3.40 GHZ CPUs and 1.00 GB of RAM.

Authentication protocol parameters Attack complexity
N M P Panel size # Rounds Time (seconds)
80 30 4 8 by 10 60 102
80 30 4 8 by 10 100 7

120 45 4 8 by 10 500 45
120 45 2 8 by 10 1000 ≈ 960

Table 1: Cost of our attack against the high complexity authentication protocol, for various choices
of protocol parameters.

Discussion. The first row of Table 1 shows that, for parameters suggested in [3], a passive
eavesdropping adversary recovers a user’s secret key in seconds after observing only 60 rounds
of challenge-response. Bearing in mind that successful authentication requires multiple rounds of
challenge-response (11 rounds are suggested in [3]), the attacker learns a user’s secret key after
observing as few as 6 successful user logins.

This attack is close to optimal in the number of rounds it requires. Indeed, the secret keys
of users are chosen from a space with log2

(
80
30

) ≈ 72.9 bits of entropy. With P = 4, each user’s
reply to a challenge query reveals log2(4) = 2 bits of entropy of the secret key. Thus, 37 ≈ 72.9/2
challenge-response rounds are needed at the very minimum to uniquely recover a user’s key.

With fewer than 60 rounds, our attack tends to recover multiple candidates for a user’s key.
More rounds on the other hand decrease the running time of the attack, as shown in the second
row of Table 1.

The last two rows of Table 1 show that the attack also works for a larger choice of parameters
(when users’ keys consist of M = 45 pictures chosen from a set of size N = 120). Given the
fundamental limitations of SAT solvers, there is no doubt that our attack would not work with
sufficiently large parameters. However, large parameters present users with the challenge of memo-
rizing a large number of images. The results of Table 1 suggest that user’s memory might fail long
before large enough parameters place the authentication scheme beyond the reach of our attack.

4

4 Low Complexity Protocol

The setup for this version of the protocol is identical to the high complexity protocol. Recall that
we denote B a public set of pictures of size N . The authentication key of a user is a secret subset
F ⊂ B of size M < N . The difference lies in the questions asked of the user in each authentication
challenge.

In the low complexity version of the authentication protocol, the user is presented in each
challenge-response round with an ordered list of n pictures selected randomly from B. Each picture
in the list is assigned a random bit (either 0 or 1) which is shown next to it. These random bits
are chosen such that the number of pictures assigned 0 equals the number of pictures assigned 1.
The user is asked one of the following binary questions:

• First case. Identify the first picture in the ordered list that belongs to F , and the last
picture in the list that belongs to F . Let b0 and b1 be the bits associated with these two
images. Output b0 ⊕ b1.

• Second case. Identify the first, second and last pictures in the ordered list that belong to F .
Let b0, b1 and b2 be the bits associated with these pictures. Output the majority of b0, b1, b2.

The description of the protocol given in [3] does not specify what reply the user should give when
the ordered list contains fewer than 2 images from F (in the first case) or fewer than 3 images from
F (in the second case). The parameters of the protocol are chosen such that this situation happens
very infrequently. In our analysis, we generate ordered lists such that this situation never happens.

Numerical parameters. The implementation described in [3] proposes the following parameters.
The set B of public images is of size N = 240. A user’s key consists of a secret subset of M = 60
images. In each challenge query, n = 20 random pictures are displayed. Each run of the low
complexity authentication protocol consists of 22 rounds of challenge-response.

4.1 Attack

We propose an attack that recovers the key of a user after observing the user’s replies to a few
authentication rounds. Let F denote the secret set of pictures chosen by the user under attack. As
in section 3.1, we define N boolean variables A1, . . . , AN associated with the N pictures in the set
B. We define Ai = 1 if the i-th picture belongs to the set F and otherwise Ai = 0. We denote Ai

the negation of variable Ai. Note that recovering the user’s key is equivalent to determining the
values of A1, . . . , AN .

In every round, observing the user’s reply to an authentication query reveals boolean relation-
ships between the variables A1, . . . , AN . Specifically, let i1, . . . , in ∈ {1, . . . , N} denote the indices
of the n pictures presented to the user in the ordered list, and let b1, . . . , bn denote the bits asso-
ciated with these pictures. Finally, let b denote the bit returned by the user. We learn first that
at least one of the images in the ordered list is known to the user. In other words, the following
formula is true:

(Ai1 ∨Ai2 ∨ . . . ∨Ain).

First case. For all 1 ≤ j < k ≤ n, we know that bj ⊕ bk 6= b implies that pictures ij and ik cannot
be the first and last pictures that belong to F in the ordered list. Thus:

• If b1 ⊕ bn 6= b, we learn that pictures i1 and in cannot both belong to F . In other words, if
b1 ⊕ bn 6= b the following formula is true: (Ai1 ∨Ain).

5

• For 1 ≤ j < k ≤ n such that (j, k) 6= (1, n) and bj ⊕ bk 6= b, we learn that if pictures ij and ik
both belong to F , then there must exist at least one other picture that belongs to F in the
range [1, j − 1]∪ [k + 1, n]. In other words, for all 1 ≤ j < k ≤ n such that (j, k) 6= (1, n) and
bj ⊕ bk 6= b the following formula is true:

(Aij ∧Aik) ⇒
(
(Ai1 ∨ . . . ∨Aij−1) ∨ (Aik+1

∨ . . . ∨Ain)
)
.

Second case. For all 1 ≤ j < k < l ≤ n, we know that if the majority of the three bits (bj , bk, bl)
is not equal to b, then this implies that pictures ij , ik and il cannot be the first, second and last
pictures that belong to F in the ordered list. Thus:

• If the majority of (b1, b2, bn) is not equal to b, the following formula is true: (Ai1 ∨Ai2 ∨Ain).
• For all 1 ≤ j < k < l ≤ n such that (j, k, l) 6= (1, 2, n) and such that the majority of (bj , bk, bl)

is not equal to b, we learn that if pictures ij , ik and il all belong to F , then there must exist
at least one other picture that belongs to F in the range [1, j − 1] ∪ [j + 1, k − 1] ∪ [l + 1, n].
In other words, for all 1 ≤ j < k < l ≤ n such that (j, k, l) 6= (1, 2, n) and the majority of
(bj , bk, bl) is not equal to b, the following formula is true:

(Aij ∧Aik ∧Ail) ⇒
(
(Ai1 ∨ . . . ∨Aij−1) ∨ (Aij+1 ∨ . . . ∨Aik−1

) ∨ (Ail+1
∨ . . . ∨Ain)

)
.

As in section 3.1, these boolean formulas are converted into equivalent boolean formulas in
disjunctive normal form and given as input to a SAT solver. Given enough formulas, a SAT
solver quickly outputs a unique assignment of values to the variables A1, . . . , AN . This assignment
corresponds to the user’s secret key.

Implementation of the attack. We tested our attacks with the UBCSAT implementation of the
SAPS SAT solver on a desktop PC running Windows XP with dual 3.40 GHZ CPUs and 1.00 GB
of RAM. Table 2 summarizes the results of our attacks. With these parameters suggested in [3],
our attack recovers the user’s authentication key in less than 1 second, given 250 challenge-response
rounds (first case) or 400 rounds (second case).

Authentication protocol parameters Attack complexity
N M n Query type # Rounds Time (seconds)

240 60 20 Case 1 250 < 1
600 150 20 Case 1 800 2.6
240 60 20 Case 2 400 < 1

Table 2: Cost of our attack against the low complexity authentication protocol, for various choices
of protocol parameters.

Discussion. As noted earlier, successful authentication requires multiple rounds of challenge-
response (22 rounds are suggested in [3] for the low complexity protocol). Thus, the first row
of Table 2 shows that a passive eavesdropping adversary can recover a user’s secret key after
observing as few as 12 successful user logins. With fewer rounds, our attack tends to recover
multiple candidates for a user’s key. Our attack also works for a larger choice of parameters. When
users’ keys consist of M = 150 pictures chosen from a set of size N = 600, the attack recovers the
user’s secret key in 2.6 seconds. No reasonable choice of parameters (from the viewpoint of the
memory effort required of users) can place the low-complexity authentication scheme beyond the
reach of our attack.

6

5 Conclusion

We have shown that the cognitive authentication schemes proposed in [3] are insecure against
eavesdropping attacks. Assuming a passive eavesdropping adversary, our attacks recover a user’s
secret key in a few seconds, after observing only a small number of successful logins. Designing
secure authentication schemes that resist eavesdropping attacks and rely only on the cognitive
abilities of humans remains a challenging open problem.

References

[1] F. Hutter, D. Tompkins and H. Hoos. Scaling and Probabilistic Smoothing: Efficient Dynamic
Local Search for SAT. In LNCS 2470: Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming, pages 233–248. Springer Verlag, 2002.

[2] UBCSAT. The Stochastic Local Search SAT Solver from The University of British Columbia.
http://www.satlib.org/ubcsat/

[3] D. Weinshall. Cognitive authentication schemes safe against spyware (short paper). In Proc.
of the 2006 Symposium on Security and Privacy, pp. 295–300.

[4] D. Weinshall. Cognitive authentication schemes safe against spyware. Hebrew University. Leib-
niz Center for Research in Computer Science. TR 2006-5, 2006.

7

