
Simplified Submission of Inputs to Protocols

Douglas Wikström⋆, dog@csc.kth.se

CSC KTH Stockholm, Sweden

Abstract. Consider an electronic election scheme implemented using a mix-net; a
large number of voters submit their votes and then a smaller number of servers compute
the result. The mix-net accepts an encrypted vote from each voter and outputs the set of
votes in sorted order without revealing the permutation used. To ensure a fair election,
the votes of corrupt voters should be independent of the votes of honest voters, i.e.,
some type of non-malleability or plaintext awareness is needed. However, for efficiency
reasons the servers typically expect inputs from some homomorphic cryptosystem,
which is inherently malleable.

In this paper we consider the problem of how non-malleability can be guaranteed in the
submission phase and still allow the servers to start their computation with ciphertexts
of the appropriate homomorphic cryptosystem. This can clearly be achieved using
general techniques, but we would like a solution which is: (1) provably secure under
standard assumptions, (2) non-interactive for the submitting parties, (3) very efficient
for all parties in terms of computation and communication.
We give the first solution to this problem which has all these properties. Our solution
is surprisingly simple and can be based on various Cramer-Shoup cryptosystems. To
capture its security properties we introduce a variation of CCA2-security.

1 Introduction

Mix-Nets. A mix-net is a cryptographic protocol executed by N senders and k mix-
servers, where typically N is quite large and k is fairly small, e.g., N = 104 and
k = 10. The functionality implemented by a mix-net corresponds to a trusted party
that collects inputs from the senders and then outputs the inputs in sorted order.
The main application of mix-nets is for electronic elections. All known efficient ro-
bust mix-nets exploit the homomorphic properties of cryptosystems such as the El
Gamal cryptosystem [13] in an essential way. A problem with using a homomorphic
cryptosystem in the submission phase is that corrupted senders can submit inputs
that are related to those of honest senders.

Formally, the proof of security fails. When using the simulation paradigm, e.g.,
universally composable security [4], a mix-net is said to be secure if for every adversary
attacking the mix-net there is an ideal adversary (simulator), typically running the
adversary as a black-box, attacking the ideal mix-net (the trusted party mentioned
above) such that no environment can tell the two models apart. The simulator does
not know the inputs of the honest parties and replaces them in its simulation, e.g., by
zero messages. It must also extract the inputs of corrupted parties in its simulation
and hand them to the ideal mix-net, since otherwise these inputs would be missing in
the output from the ideal mix-net and the environment could trivially distinguish the

⋆ Work partly done while at ETH Zürich, Department of Computer Science.



two models. Any successful adversary must result in a successful attack against the
underlying cryptosystem, which means that the simulator can not use the secret key
of the cryptosystem to extract the inputs of corrupt senders.

General Case. More generally, consider a cryptographic protocol that starts with a
submission phase where many parties submit ciphertexts formed with a public key
pk , and a smaller group of servers hold shares of the secret key sk corresponding
to pk . The servers then compute and publish some function of the input plaintexts.
Typically, efficient protocols exploit the algebraic structure of the cryptosystem, e.g.,
homomorphic properties. The problem with using a polynomially indistinguishable
cryptosystem directly in such protocols is that it does not guarantee that the plaintexts
submitted by corrupt parties are unrelated to those submitted by honest users.

Formally, the problem surfaces when the cryptographer constructing the protocol
tries to reduce the security of his/her scheme to the security of the cryptosystem.
If the simulation paradigm is used, some kind of simulator must be constructed and
the simulator must extract the values of the corrupt parties to be able to hand these
to an ideal version of the protocol. The existence of a successful adversary must
contradict the security of the cryptosystem, i.e., extraction must be done without
using the secret key of the cryptosystem. This is not possible using only a polynomially
indistinguishable [14] cryptosystem.

The Submission Problem. The submission problem is how to find a submission scheme
such that: (a) the inputs of corrupted parties can be extracted by the simulator without
using the secret key, and (b) its output is a list of ciphertexts of the form expected by
the servers computing the result. These requirements are essential to allow use of the
submission scheme as a prefix to the main protocol, but there are also several natural
additional properties that we can look for, or even require, in the submission phase.

1. The solution should be provably secure under standard assumptions in the plain
model, i.e., without any random oracles or generic groups.

2. The submission of an input should be non-interactive for a submitting party and
interaction between the servers should be limited, e.g., independent of the number
of senders.

3. The communication and computational complexity of the submittors should not
depend on the number of servers.

1.1 Previous Work

Informally, we may view any solution to the problem as a form of proof of knowledge
of the encrypted plaintext, since any solution must allow the simulator to extract the
submitted plaintext without knowledge of the secret key of the polynomially indis-
tinguishable cryptosystem. We classify the solutions in the literature and some minor
extensions as follows:

1. An interactive proof of knowledge [15] is used, either with a straight-line extractor
in the public key setting using the Naor and Yung [18] double-ciphertext trick, or
with a rewinding extractor.

2



2. A non-interactive proof of knowledge using general techniques [2] is used. This is
not efficient for either the submittor or the servers, even using the recent tech-
niques of Groth et al. [16]. Note that this is essentially the construction of a
CCA2-secure cryptosystems under general assumptions given by Sahai [23] based
on the Naor-Yung double-ciphertext trick, but starting from a concrete polynomi-
ally indistinguishable cryptosystem with useful structure.

3. A non-interactive (for the submitter) proof of knowledge based on verifiable secret
sharing is used, for example using techniques from Abe, Cramer, and Fehr [1]. Then
the computational and communication complexity of the submitting party grows
linearly with the number of servers, since each server must receive an encrypted
secret share, and the servers must communicate for each submitted ciphertext to
verify its proof.

4. A non-interactive proof of knowledge in the random oracle model is used, either
using the Naor and Yung double ciphertext trick, or with rewinding. Such solutions
are typically efficient, but unfortunately only heuristically secure [5]. Note that
the CCA2-secure cryptosystems in the random oracle model given by Shoup and
Gennaro [25] may be viewed as instantiations of this solution.

5. An arbitrary CCA2-secure cryptosystem is used and ciphertexts are translated
into suitable polynomially indistinguishable ciphertexts using general multiparty
computation techniques. This is inefficient both in terms of computation and com-
munication.

6. A special CCA2-secure cryptosystem such that a ciphertext can be transformed
more easily into a new ciphertext for the basic polynomially indistinguishable
scheme needed by the servers is used. We list the solutions of this type we are
aware of below.

(a) Canetti and Goldwasser [6] and Lysyanskaya and Peikert [17] have given CCA2-
secure cryptosystems with distributed decryption which allows transforming
ciphertexts into ciphertexts for polynomially indistinguishable cryptosystems.
These either involve interaction, expensive setup assumptions, or only work for
a small number of servers.

(b) Boneh, Boyen, and Halevi [3] give a CCA2-secure cryptosystem with distrib-
uted decryption that may be viewed as containing a polynomially indistin-
guishable cryptosystem, but its security is based on a non-standard complexity
assumption based on pairings.

(c) Cramer, Damgård, and Ishai [7] present a solution based on distributed pseudo
random functions and share conversion that is reasonably efficient for a small
number of servers.

To summarize, there are numerous solutions to the submission problem which satisfies
properties (a) and (b), but no such solution has the properties (1)-(3) listed above.

1.2 Our Contribution

We give a simple solution to the submission problem that is efficient both in terms of
computation and communication.

3



The Idea. Recall the original construction of Cramer and Shoup [9]. The cryptosys-
tem is deployed in a group Gq of prime order in which the decision Diffie-Hellman
assumption is assumed to be hard. The key generator first chooses two random gener-
ators g0, g1 ∈ Gq. Then it chooses random exponents x0, x1, y0, y1, z ∈ Zq and defines
c = gx0

0 gx1
1 , d = gy0

0 gy1
1 , and h = gz

0 . It also generates a collision-free hash function
H. Finally, it outputs (pk , sk) = ((H, g0, g1, c, d, h), (x0, x1, y0, y1, z)). To encrypt a
message m ∈ Gq using the public key pk the encryption algorithm chooses r ∈ Zq

randomly and outputs the tuple (u0, u1, e, v) = (gr
0, g

r
1, h

rm, crdrH(u0,u1,e)). To decrypt
a tuple (u0, u1, e, v) ∈ G4

q using the secret key sk the decryption algorithm first checks

the validity of the ciphertext by testing if ux0
0 ux1

1 (uy0
0 uy1

1 )H(u0,u1,e) = v. If so it outputs
e/uz

0, and otherwise the unit element, i.e., 1, of the group.1

Note that h = gz and z have the form of an El Gamal [13] public and secret key
respectively and that (u0, e) is nothing more than an El Gamal ciphertext. This is of
course not a new observation. What seems to be a new observation is the fact that
the holder of the secret key may reveal (x0, x1, y0, y1) without any loss in security as
long as it never decrypts any ciphertext constructed after this point, and that this
solves the submission problem.

Generalizing and Applying the Idea. To allow us to generalize the observation about
the original Cramer-Shoup scheme and identify a class of cryptosystems for which it
applies, we introduce the notion of an augmented cryptosystem which contains an-
other cryptosystem as a component. In applications the latter cryptosystem will have
some useful structure, e.g., be homomorphic, that allows more efficient and simpler
protocols. We also introduce a strengthened variation of CCA2-security called submis-
sion security and observe that the generic scheme of Cramer and Shoup [10] already
satisfies this stronger definition. Finally, we illustrate the use of the new notion by
applying it to general secure function evaluation, which strictly generalizes the notion
of a mix-net.

Limitations of Our Approach. When using our solution, no new inputs can be accepted
after part of the secret key is revealed. This is a minor drawback in the targeted
applications, since we have a large number of submitting parties and executions of
the underlying protocol are infrequent. When a new session is executed the servers
simply generate a new key. However, it may be useful to re-use the public key of
the basic cryptosystem in the underlying protocol. Thus, our definitions require that
the augmentation can be replaced by a freshly generated augmentation without any
loss in security. This allows using several independent augmentations that may be
revealed sequentially, i.e., inputs can be processed in batches and then input to the
same underlying protocol. We remark that for general threshold decryption, e.g. [6],
our approach is not reasonable, since users requesting a decryption expect the result
immediately.

1 In [9] a special symbol ⊥ is output if the test fails, but this is only to simplify the analysis. Any
fixed output works just as well.

4



1.3 Notation

We denote by PT and PPT the sets of deterministic and probabilistic polynomial time
Turing machines respectively, and write PT∗ for the set of non-uniform polynomial
time Turing machines. We use n to denote the security parameter, and say that a
function ǫ(n) is negligible if for every constant c there exists a constant n0 such that
ǫ(n) < n−c for n > n0. If pk is the public key of a cryptosystem, we denote by Mpk ,
Cpk , and Rpk the plaintext space, the ciphertext space, and the randomness space
respectively.

2 Augmented Cryptosystems

Keeping our observation about the original Cramer-Shoup cryptosystem in mind, we
formalize a general class of augmented cryptosystems that given part of the secret
key allow conversion of a ciphertext into a ciphertext of another basic cryptosystem.
In applications, the basic cryptosystem typically has special properties, e.g., it is
homomorphic, that are exploited by the cryptographic protocol. We introduce the
following definition.

Definition 1 (Augmented Cryptosystem). A cryptosystem CS = (Kg,Enc,Dec)
is an augmentation of a cryptosystem CSB = (KgB ,EncB,DecB) if there exists an
augmentation algorithm Aug ∈ PPT and a stripping algorithm Strip ∈ PT such that:

1. On input 1n, Kg computes (pkB, skB) = KgB(1n) and (pkA, skA) = Aug(pkB),
and outputs (pk , sk) = ((pkA : pkB), (skA : skB)).

2. On input ((skA : skB), c), Dec outputs DecB
skB (Strippk ,skA(c)).

Clearly, any cryptosystem can be viewed as a trivial augmentation of itself, and if it is
CCA2-secure then the trivial augmentation is also submission secure as defined below.
We are interested in non-trivial augmentations where CSB has structural properties
useful in the construction of protocols.

Some readers may find it tempting to use a definition that mirrors the Cramer-
Shoup cryptosystem more closely to avoid the existence of trivial augmentations, i.e.,
one could explicitly require that it is possible to check the “validity” of a ciphertext
using skA. We remind those readers that for most cryptographic notions there are
trivial instances, e.g., the identity map is a cryptosystem, and we see no reason to im-
pose unnecessary conditions on which particular properties of the basic cryptosystem
that should be considered useful.

2.1 Submission Security of Augmented Cryptosystems

Recall the game considered in the definition of CCA2-security [18,11,22]. The ad-
versary is given a public key pk . Then it may ask any number of decryption queries
to a decryption oracle Decsk (·) holding the secret key sk corresponding to pk . The
adversary must then choose two challenge messages m0 and m1. The game is paramet-
erized by a bit b and returns a challenge ciphertext of the form c = Encpk (mb). Then

5



the adversary is again allowed to ask arbitrary decryption queries to Decsk (·) with the
exception of c, and must finally output a guess b′ of the bit b. If the cryptosystem is
CCA2-secure, then the difference in distribution of b′ when b = 0 or b = 1 respectively,
should be negligible.

In the game we consider, the adversary is given a public key pkB of the basic
cryptosystem. It can request that the experiment generates a fresh augmentation
(pkA

j , skA
j ) = Aug(pkB), stores (pk j , sk j) = ((pkA

j : pkB), (skA
j : skB)), and returns

pk j = (pkA
j : pkB) to the adversary. This is done by submitting the integer j to

its pkA
(·)-oracle. Any subsequent identical queries j give the same pk j. It can ask

decryption queries. This is done by submitting an index and ciphertext pair (j, c′) to
its Decsk(·)

(·)-oracle. It can request that the experiment reveals an augmentation skA
j

by submitting j to its skA
(·)-oracle, but after such a query no more decryption queries

of the form (j, c′) for some ciphertext c′ are allowed. Then the adversary must choose
an index i and two challenge messages m0 and m1. The game is parameterized by a
bit b and returns a challenge ciphertext of the form c = Encpk i

(mb). The adversary
is then again allowed to: ask for more fresh public keys, ask more decryption queries
with the exception of decryption of (i, c), and request more augmentations. Finally, it
outputs a guess b′ of b. If the cryptosystem is submission secure, then the difference
in distributions of b′ with b = 0 or b = 1 respectively should be negligible.

Experiment 1 (Submission Security, Expsub−b

CS,CSB ,A
(n)).

(pkB, skB)← KgB(1n) // Basic keys

(pkA
j , skA

j )← Aug(pkB) for j = 1, 2, 3, . . . // Augmentations

(pk j, sk j)←
(
(pkA

j : pkB), (skA
j : skB)

)
// Augmented keys

(i,m0,m1, state)← A
pkA

(·),sk
A
(·),Decsk(·)

(·)
(choose, pkB) // Choice of challenges

c← Encpk i
(mb) // Challenge ciphertext

d← A
pkA

(·),sk
A
(·),Decsk(·)

(·)
(guess, state) // Guess of adversary

The experiment returns 0 if Decsk(·)
(·) was queried on (i, c) or if it was queried on

(j, c′) for some c′ after skA
(·) was queried on j. Otherwise the experiment returns d.

We could equivalently have defined a game where the game only generates an aug-
mentation if requested to do so by the adversary, but the above is conceptually simpler.

Definition 2 (Submission Security). An augmentation CS of CSB is said to be
submission secure if ∀A ∈ PT∗: |Pr[Expsub−0

CS,CSBA
(n) = 1] − Pr[Expsub−1

CS,CSB ,A
(n) = 1]| is

negligible.

Example 1. A simple example of a submission secure cryptosystem can be derived
from the scheme of Sahai [23] based on the Naor and Yung double ciphertext trick
[18]. A polynomially indistinguishable cryptosystem CSB is given and a CCA2-secure

6



cryptosystem CS = (Kg,Enc,Dec) is constructed as follows. To generate a public key,
compute (pkB

0 , skB
0 ) = KgB(1n) and (pkB

1 , skB
1 ) = KgB(1n), and generate a com-

mon reference string CRS. Then output (pk , sk) = ((pkB
0 , pkB

1 , CRS), (skB
0 , skB

1 )).
To encrypt a message m, output (c0, c1, π) = (EncB

pkB
0
(m),EncB

pkB
1
(m), π), where π is a

simulation sound non-interactive adaptively zero-knowledge proof (NIZKP) that the
same message is encrypted in c0 and c1. To decrypt, verify the NIZKP and output
DecB

sk0
(c0) or 0 depending on if the NIZKP was accepted or not.

We could define a cryptosystem CS ′ = (Kg,EncB ,DecB) where the latter two
algorithms are executed on pkB

0 and skB
0 and ignore the remainder of the keys. The

augmentation algorithm Aug could give an empty pair as output, and we could define
the stripping algorithm Strip as checking the NIZKP and outputting c0 or EncpkB

0
(0, 0)

depending on if the NIZKP was accepted or not.
If we view CS as an augmentation of CS ′ it is submission secure. Although this

example does not satisfy our additional requirements of a solution to the submission
problem (it is very inefficient) it does simplify the analysis of the submission phase of
a theoretical construction based on such a cryptosystem.

3 Generic Cramer-Shoup Is Submission Secure

The fact that the generic CCA2-secure cryptosystem of Cramer and Shoup is submis-
sion secure if we view it as an augmentation of a basic polynomially indistinguishable
cryptosystem is quite easy to see from their security proof. On the other hand we need
to show that this is indeed the case. Thus, we recall their scheme and prove this fact
in the appendix, but we use coarse-grained and streamlined definitions. We also take
the liberty of ignoring the technical problem of constructing efficiently computable
hash families, since this complicates the definitions and does not add anything to our
exposition (see [10] for details).

3.1 Preliminaries

Subset Membership Problems. A subset membership problem consists of three sets X,
L ( X, and W , and a relation R ⊂ X ×W . The idea is that it should be hard to
decide if an element is sampled from L or from X \ L. To be useful in cryptography
we also need some algorithms that allow us to sample instances and elements, and
check for membership in X.

Definition 3. A subset membership problem M consists of a collection of distributions
(In)n∈N, an instance generator Ins ∈ PPT, a sampling algorithm Sam ∈ PPT, and a
membership checking algorithm Mem ∈ PT such that:

1. In is a distribution on instance descriptions Λ[X,L,W,R] specifying finite non-
empty sets X, L ( X, and W , and a binary relation R ⊂ X ×W .

2. On input 1n, Ins outputs an instance Λ with distribution statistically close to In.
3. On input 1n and Λ[X,L,W,R] ∈ [In], Sam outputs (x,w) ∈ R, where the distri-

bution of x is statistically close to uniform over L.

7



4. On input 1n, Λ[X,L,W,R] ∈ [In], and ζ ∈ {0, 1}∗, Mem outputs 1 or 0 depending
on if ζ ∈ X or not.

Definition 4. Let M be a subset membership problem. Sample Λ from In and let x
and x′ be randomly distributed over L and X \ L respectively. We say that M is hard
if for all A ∈ PT∗: |Pr[A(Λ, x) = 1]− Pr[A(Λ, x′) = 1]| is negligible.

Hash Families. Hash families are well known in the cryptographic literature and there
are many variations. We assume that all families are indexed by a security parameter
n.

Definition 5. A projective hash family H = (H,K,X,L,Π, S, α) consists of finite
non-empty sets K, X, L ( X, Π, and S, a function α : K → S, and a collection of
hash functions H = (Hk : X ×Π → Π)k∈K , where α(k) determines Hk on L×Π .

Definition 6. Let H = (H,K,X,L,Π, S, α) be a projective hash family, and let k ∈
K be random. Then H is universal2 if for all s ∈ S, x, x′ ∈ X with x 6∈ L ∪ {x′}, and
πx, π′

x, π, π′ ∈ Π, Prk[Hk(x, πx) = π ∧Hk(x
′, π′

x) = π′ ∧ α(k) = s] is negligible.

The following definition and lemma are stated informally in [10].

Experiment 2 (Computationally Universal2, Expcuni2

H,A (n)). Let τk be the pre-
dicate defined by τk((x, πx), π) ⇐⇒ Hk(x, πx) = π, and consider the following ex-
periment.

k← K

(x, πx, state)← Aτk(·,·)(α(k))

← Aτk(·,·)(Hk(x, πx), state)

Denote by ((xi, πx,i), πi) the ith query to τk, and let il be the index of the last query
before the first output. If A asks a query ((xi, πx,i), πi) to τk with Hk(xi, πx,i) = πi,
xi ∈ X \ L, and i ≤ il or xi 6= x, then output 1 and otherwise 0.

Definition 7. A projective hash family H is computationally universal2 if for every
A ∈ PT∗, Pr[Expcuni2

H,A (n) = 1] is negligible.

Lemma 1. If a projective hash family H is universal2, then it is computationally
universal2.

Definition 8. Let H = (H,K,X,L,Π, S, α) be a projective hash family, and let k ∈
K, x ∈ X \ L, and π ∈ X be random. Then H is smooth if for every πx ∈ Π the
distributions of (x, πx, α(k),Hk(x, πx)) and (x, πx, α(k), π) are statistically close.

Universal Hash Proof Systems. Informally, a hash proof system may be viewed as
a non-interactive zero-knowledge proof system where only the holder of a secret key
corresponding to the public common random string can verify a proof. Strictly speak-
ing, the definition below corresponds, in the unconditional case, to a special case of
what Cramer and Shoup [10] call “extended strongly (smooth, universal2)” hash proof
system.

8



Definition 9. A (smooth, (computational) universal2) hash proof system P for a sub-
set membership problem M associates with each instance Λ[X,L,W,R] a (smooth,
(computationally) universal2) projective hash family H = (H,K,X,L,Π, S, α), and
the following algorithms

1. A key generation algorithm Gen ∈ PPT that on input 1n and Λ ∈ [In] outputs
(s, k), where k is randomly distributed in K and s = α(k).

2. A private evaluation algorithm PEval ∈ PT that on input 1n, Λ ∈ [In], k ∈ K, and
(x, πx) ∈ X ×Π outputs Hk(x, πx).

3. A public evaluation algorithm Eval ∈ PT that on input 1n, Λ ∈ [In], α(k) with
k ∈ K, (x, πx) and w, with (x,w) ∈ R and πx ∈ Π, outputs Hk(x, πx).

4. A membership checking algorithm Mem ∈ PT that on input 1n, Λ ∈ [In], and
ζ ∈ {0, 1}∗ outputs 1 or 0 depending on if ζ ∈ Π or not.

3.2 Generic Scheme of Cramer and Shoup

Given the definitions above it is not hard to describe the generic cryptosystem of
Cramer and Shoup [10]. Let M be a hard subset membership problem, such that Π
can be fitted with a group operation for any Λ, let P0 = (Gen0,PEval0,Eval0,Mem0)
be a smooth hash proof system for M, and let P1 = (Gen1,PEval1,Eval1,Mem1) be a
computationally universal2 hash proof system for M.

Key Generation. Compute Λ[X,L,W,R] = Ins(1n), (s, k) = Gen0(1
n, Λ), (ŝ, k̂) =

Gen1(1
n, Λ), and output the key pair (pk , sk) = ((ŝ : Λ, s), (k̂ : k)).

Encryption of a message m ∈ Π. Compute (x,w) = Sam(Λ), π = Eval0(Λ, s, x,w) =
Hk(x), e = m + π, and π̂ = Eval1(Λ, ŝ, x, w, e) = Ĥbk

(x, e), and output (x, e, π̂).
Decryption of a ciphertext (x, e, π̂). Output m = e−PEval0(Λ, k, x) = e−Hk(x),

only if PEval1(Λ, k̂, x, e) = Ĥbk
(x, e) = π̂ and otherwise output 0.

We have not modified the cryptosystem, except that we have introduced a comma in
the notation to distinguish the two parts of the public and secret keys as needed in
the definition of submission security, and we have replaced the special symbol ⊥ by
the zero plaintext.

Write CS = (Kg,Enc,Dec) for the cryptosystem, and let CSB = (KgB ,EncB,DecB)
be the underlying basic cryptosystem defined as follows. It has public key (Λ, s) and
secret key k. A message m ∈ Π is encrypted as (x, e), where e = Eval0(Λ, s, x,w)+m,
and a ciphertext (x, e) is decrypted by computing e− PEval0(Λ, k, x). It is clear that
CS is an augmentation of CSB, since we can define Aug(Λ, s) = Gen1(1

n, Λ) and define
Strip

pk ,bk
(x, e, π̂) to output (x, e) if PEval1(Λ, k̂, x, e) = π̂ and otherwise EncpkB (0, 0).

Cramer and Shoup prove (see Theorem 1 in [10]) that CS is CCA2-secure under
the assumption that M is hard. We show a stronger result.

Proposition 1. If M is a hard subset membership problem, then CS is a submission
secure augmentation of CSB.

For a proof of the proposition we refer the reader to the appendix. The key observations
needed to extend Cramer’s and Shoup’s proof of CCA2-security are:

9



1. The projective property of hash proofs implies that proofs computed using a wit-
ness and hash proofs computed using the private key k̂ are identical (indeed this
is how a hash proof is verified). This means that the holder of k̂ can "perfectly
simulate" proofs without the witness, i.e., even if k̂ is made public the “simulated
proof” looks exactly like a proof computed using a witness.

2. The soundness of proofs computed by an adversary before k̂ is made public, is not
decreased by the publishing of k̂.

The generic Cramer-Shoup scheme generalizes several concrete schemes described
in [10], such as the El Gamal based scheme in the introduction, but also schemes based
on the Paillier cryposystem [19]. Both schemes are common in efficient protocols.

4 Applications of Submission Security

The original motivation for this paper was to come up with a practical non-interactive
submission phase in El Gamal based mix-nets. For readers that are not familiar with
mix-nets we give an informal description of a construction that goes back to Sako and
Kilian [24].

Then we illustrate how the notion of submission secure augmented cryptosystems
can be used to construct and analyze the submission phase of a protocol in a mod-
ularized way for general secure function evaluation, and explain how this generalizes
the mix-net setting in the informal description.

4.1 Informal Description of Application to a Mix-Net

There are many senders S1, . . . , SN and a small number of mix-servers M1, . . . ,Mk,
e.g., N = 104 and k = 10. In a joint key generation phase the mix-servers generate a
joint public key (g, h) such that each mix-server holds a verifiable secret share sj of the
joint secret key z such that h = gz . To submit a message mi ∈ Gq a sender Si computes
an El Gamal ciphertext (u0,i, e0,i) = (gri , hrimi), where ri ∈ Zq is randomly chosen.
Then the mix-servers take turns at re-encrypting, using the homomorphic property of
El Gamal, and permuting the list of ciphertexts. In other words, for j = 1, . . . , k, Mj

computes and publishes {(uj,i, ej,i)} = {(uj−1,πj(i)g
tj,i , ej−1,πj(i)h

tj,i)}, where tj,i ∈ Zq

and πj are random. Finally, the mix-servers jointly and verifiably decrypt the list
{(uk,i, ek,i)} output by the last mix-server Mk using their shares sj, sort the result,
and output it.

The idea is that due to the transformations computed by the mix-servers the
correspondence between the output plaintexts and the input ciphertexts should be
hidden. To ensure robustness, each mix-server also prove correctness of the trans-
formation it computes on the list of ciphertexts (in fact it must prove knowledge of a
witness of the transformation as pointed out in [27]).

Unfortunately, the construction is completely insecure [21], since a malicious sender
Sl may compute its ciphertext as (u0,l, e0,l) = (ua

0,i, e
a
0,i) for some random exponent

a and then identify a matching pair (m,ma) in the final output. This reveals the
message sent by the honest sender Si. Intuitively, what is needed is a non-malleable

10



cryptosystem, but on the other hand the cryptosystem must be homomorphic for re-
encryption to be possible. Formally, what is needed in the overall proof of security of
the mix-net (see [26,27,29]) is a way to extract the messages submitted by corrupted
players without using the secret key of the cryptosystem, as explained in the intro-
duction. In previous work this is either solved heuristically, or as in the cited works a
proof of knowledge is used explicitly.

We augment the above to make the cryptosystem used for submission identical to
the Cramer-Shoup scheme. We set g0 = g and let the mix-servers generate g1 ∈ Gq,
x0, x1, y0, y1 ∈ Zq, c = gx0

0 gx1
1 , and d = gy0

0 gy1
1 , where x0, x1, y0, y1 are verifiably

secret shared among the mix-servers. This gives a Cramer-Shoup key pair ((H, g1, c, d :
g0, h), (x0, x1, y0, y1 : z)) with verifiably secret shared secret key. Due to the submission
security of the cryptosystem the mix-servers may simply reconstruct the first part
(x0, x1, y0, y1) of the shared key before starting the mixing process. This allows each
mix-server to identify the valid ciphertexts without any additional communication, and
form the list of El Gamal ciphertexts consisting of the El Gamal part of each valid
ciphertext. Then the mix-servers execute as explained above.

4.2 Application to a General Functionality

In this section we give a proof of concept for augmented cryptosystem and submis-
sion security. We do this by showing how the submission phase can be factored out
in the construction and analysis of a multiparty protocol using a submission secure
augmented cryptosystem. To keep the exposition clear and ignore irrelevant problems,
we show this in the UC-framework [4] and assume the existence of ideal functionalities
for the building blocks of the protocol we realize. For simplicity we assume that the
adversary can not influence if or when messages are delivered.

Ideal Secure Function Evaluation. Below we formalize secure function evaluation as
an ideal functionality. We focus on situations where a large group of submittors give
inputs and a smaller group of servers compute the result.

Functionality 1 (Secure Function Evaluation). The function evaluator Ff for a function f
running with submittors S1, . . . , SN , servers M1, . . . , Mk, and ideal adversary S proceeds as follows.

1. Initialize D = ∅, DS = ∅, and DM = ∅, and repeatedly wait for inputs:
– On input (Input, xi) from Si with i 6∈ DS , set D ← D∪{(i, xi)} and DS ← DS ∪{i}, and

then hand (Input, i) to S .
– On input (RequestOutput) from Mj with j 6∈ DM , set DM ← DM ∪ {j} and hand

(RequestOutput, j) to S . If |DM | ≥ (k + 1)/2, then go to Step 2.
2. Set xi = 0 for i 6∈ DS and hand (Output, f(x1, . . . , xN)) to S and all Mj .

The functionality simply accepts inputs from the submittor (at most one input for
each submittor), waits until a majority of the servers request the result, and computes
and outputs the result. Recall that the ideal mix-net functionality [26] accepts inputs
from senders until a majority of the mix-servers request the sorted list of inputs from
senders. Thus, this is an instance of this functionality.

11



Ideal Secure Function Evaluation On Encrypted Inputs. Consider now the functional-
ity below, which is parameterized by a function f and a cryptosystem CS.

Functionality 2 (Secure Function Evaluation On Encrypted Inputs). The function eval-
uator FCS

f for a function f with cryptosystem CS, running with parties M1, . . . , Mk, and ideal
adversary S proceeds as follows.

1. Generate a key pair (pk , sk) = Kg(1n), and hand (PublicKey, pk) to S and all Mj .
2. Initialize D = ∅ and DM = ∅, and repeatedly wait for inputs:

– On input (Input, Cj) from Mj such that j 6∈ DM , set D ← D ∪ {(j, Cj)} and DM ←
DM ∪{j}, and hand (Input, Cj) to S . If |{(j, Cj) : Cj = C}| ≥ (k +1)/2 for some C, then
go to Step 3.

3. Interpret C as a list (c1, . . . , cl) of ciphertexts, compute x = (Decsk(c1), . . . , Decsk (cl)) and
y = f(x), and hand (Output, y) to S and all Mj .

The functionality generates and outputs a public key pk of the cryptosystem. Then it
waits for inputs, i.e., lists of ciphertexts, until a majority of the servers have submitted
identical lists. Finally, it decrypts these ciphertexts, invokes the function f on the
resulting plaintexts, and outputs the result.

An ideal functionality of the mixing phase of the mix-net described above which
takes El Gamal ciphertexts as input could be modeled by simply letting f be the
function that lexicographically sorts its inputs. The first key generation step then
corresponds to generating a joint El Gamal public key h with verifiably shared secret
key z. This can be done by letting each party generate an El Gamal key pair ((g, hj), zj)
and run Feldman’s verifiable secret sharing protocol [12] using the secret key zj as
secret and the public key hj as the first checking element. Then the joint public key
h is the product

∏
hj of all the individual public keys (keys with incorrect sharings

are ignored).2

Ideal Augmentation. We use the following ideal key augmentation functionality.

Functionality 3 (Augmentation). The cryptosystem augmentor FCS,CSB

aug for an augmentation
CS of CSB running with servers M1, . . . , Mk, and ideal adversary S proceeds as follows.

1. Initialize D = ∅ and DM = ∅ and repeatedly wait for inputs:
– On input (Augment, pkB

j ) from Mj such that j 6∈ DM , set D ← D ∪ {(j, pkB
j )} and

DM ← DM ∪ {j}. If |{(j, pkB
j ) : pkB

j = pkB}| ≥ (k + 1)/2 for some pkB , go to Step 2.

2. Compute (pkA, skA) = Aug(pkB), set pk = (pkA : pkB) and output (PublicKey, pk).
3. Set DM ← ∅, and and repeatedly wait for inputs:

– On input (Recover) from Mj such that j 6∈ DM , set DM ← DM ∪ {j}.
If |DM | ≥ (k + 1)/2, then output (PrivateKeyAugmentation, skA).

The functionality waits until a majority of the servers input the same public key
pkB from the cryptosystem CSB . It then computes an augmentation (pkA, skA) =
Aug(pkB) of pkB (and the unknown skB), and outputs the resulting public key pk =
(pkA : pkB). If later a majority of the mix-servers request skA it outputs it.

2 The adversary can bias the distribution of the resulting joint public key, but only in a benign way.
To keep Functionality 2 simple and let us focus on our contribution we ignore this issue.

12



Note that this corresponds to extending the generation of the joint El Gamal
public key to the generation of a joint Cramer-Shoup key. The joint “independent”
generator g1 can be generated exactly as the key h. The joint verification element c
can be generated by letting each server Mj generate its own (xj,0, xj,1) and cj and
invoking Pedersen verifiable secret sharing [20] where the secret shared is xj,0, the
constant component of the usually completely random polynomial is fixed to xj,1, and
cj is the first checking element. Then the joint element c is defined as the product∏

cj of all the cj (keys with incorrect sharings are ignored). The joint element d is
generated correspondingly.3 The recovery phase corresponds to the recovery phase of
Pedersen verifiable secret sharing.

Ideal Bulletin Board. We also need an authenticated ordered bulletin board.

Functionality 4 (Bulletin Board). The bulletin board FBB running with servers M1, . . . , Mk,
and ideal adversary S proceeds as follows.

Initialize D = ∅ and c = 1, and repeatedly wait for inputs:

– On input (Write, s) from Mj set D← D ∪ {(c, j, s)}, c← c + 1, and hand (Write, c, j, s) to A.
– On input (Read, c) from Mj such that (c, l, s) ∈ D hand (Read, c, l, s) to Mj and A.

Realizing Secure Function Evaluation. We now give a secure realization of the secure
function evaluation functionality in a hybrid model with the above ideal functionalit-
ies.

Protocol 1 (Secure Function Evaluation). The secure function evaluation protocol for f in

the (FCS
B

f ,FCS,CSB

aug ,FBB )-hybrid model running with submittors S1, . . . , SN , servers M1, . . . , Mk,
and adversary S proceeds as follows.

Server Mj :

1. Wait for (PublicKey, pkB) from FCS
B

f .

2. Hand (Augment, pkB) to FCS,CSB

aug and wait for (PublicKey, pk) from FCS,CSB

aug .
3. Write (PublicKey, pk) on FBB .
4. Repeatedly wait for messages and inputs:

– On an input (Input, ci) from Si write (i, ci) to FBB and ignore further messages from Si.
– On input (RequestOutput), write (RequestOutput) to FBB . If at least (k + 1)/2 servers

have written (RequestOutput) to FBB , then go to Step 5.
5. Denote by T the contents written to FBB before the ⌈(k + 1)/2⌉th occurrence of

(RequestOutput). Interpret T as a set of the form {(j, s)}, where j is the identity of the pub-
lisher of the information s. Define TC to consist of the set of (i, ci) such that |{j : (j, (i, ci)) ∈
T}| ≥ (k + 1)/2, i.e., at least (k + 1)/2 servers received (i, ci) from Si.

6. Hand (Recover) to FCS,CSB

aug and wait until it returns (PrivateKeyAugmentation, skA).
7. Define C = (Strippk,skA(c1), . . . , Strippk,skA(cN )), where we define ci = Encpk (0) if (i, ci) 6∈ TC .

Then hand (Input, C) to FCS
B

f and wait until it returns (Output, y). Then output (Output, y).

Submittor Si:

1. Wait for an input (Input, xi).
2. Wait until (PublicKey, pk j) is written to FBB by Mj by (k + 1)/2 distinct Mj with identical

pk j = pk . Compute ci = Encpk (xi) and write (Input, ci) to all Mj .

3 Again the resulting keys may be biased in a benign way by the adversary.

13



Proposition 2. If CS is a submission secure augmentation of CSB, then Protocol 1

securely realizes Ff in the (FCSB

f ,FCS,CSB

aug ,FBB )-hybrid model with respect to static
adversaries corrupting any minority of the servers and any number of submittors.

We could extend our proof of concept such that it allows repeated secure function
evaluation, but reusing the same instance of FCSB

f . To do this we would also have

to modify Ff and FCSB

f such that they keep track of several sessions. We could also
extend the protocol such that different sets of submittors uses different augmentations
of the basic public key pkB. This allows moving some of the work involved in stripping
ciphertexts to the submission phase of the protocol. We hope the reader agrees that
providing details for these extensions would give a much more complicated protocol,
but little additional insight.

5 Future Work

In the mix-net application, all messages are free-form. This may not be the case in
other applications. It is for example not the case in multi-candidate homomorphic
election schemes, e.g., [8], where the submitted messages must be of a special form to
encode a valid candidate. It is an interesting question if it is possible to come up with
an efficient hash proof system that constrains the set of messages in this way. This
would give a very efficient non-interactive submission phase for such election schemes
in the standard model.

6 Acknowledgments

I thank Eike Kiltz for helpful discussions, and I thank Ronald Cramer for answering
my questions about the relation between their generic scheme and their concrete
instantiations.

References

1. M. Abe, R. Cramer, and S. Fehr. Non-interactive distributed-verifier proofs and proving relations
among commitments. In Advances in Cryptology – Asiacrypt 2002, volume 2501 of Lecture Notes
in Computer Science, pages 206–223. Springer Verlag, 2002.

2. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In
20th ACM Symposium on the Theory of Computing (STOC), pages 103–118. ACM Press, 1988.

3. D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold encryption
without random oracles. In Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at
the RSA Conference 2006, volume 3860 of Lecture Notes in Computer Science, pages 226–243.
Springer Verlag, 2006.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145. IEEE
Computer Society Press, 2001. (Full version at Cryptology ePrint Archive, Report 2000/067,
http://eprint.iacr.org, October, 2001.).

5. R. Canetti, O. Goldreich, and S. Halevi. The random oracle model revisited. In 30th ACM
Symposium on the Theory of Computing (STOC), pages 209–218. ACM Press, 1998.

14



6. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In Advances in Cryptology – Eurocrypt ’99, volume 1592 of
Lecture Notes in Computer Science, pages 90–106. Springer Verlag, 1999.

7. R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and ap-
plications to secure computation. In 2nd Theory of Cryptography Conference (TCC), volume
3378 of Lecture Notes in Computer Science, pages 342–362. Springer Verlag, 2005.

8. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. In Advances in Cryptology – Eurocrypt ’97, volume 1233 of Lecture Notes in
Computer Science, pages 103–118. Springer Verlag, 1997.

9. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Advances in Cryptology – Crypto ’98, volume 1462 of Lecture Notes
in Computer Science, pages 13–25. Springer Verlag, 1998.

10. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. http://homepages.cwi.nl/˜cramer/, June 1999.

11. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM Symposium on
the Theory of Computing (STOC), pages 542–552. ACM Press, 1991.

12. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 427–438. IEEE Computer Society
Press, 1987.

13. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

14. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

15. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

16. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for np. In Advances
in Cryptology – Eurocrypt 2006, volume 4004 of Lecture Notes in Computer Science, pages 339–
358. Springer Verlag, 2006.

17. A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From cryptosystems
to signature schemes. In Advances in Cryptology – Asiacrypt 2001, volume 2248 of Lecture Notes
in Computer Science, pages 331–350. Springer Verlag, 2001.

18. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM Symposium on the Theory of Computing (STOC), pages 427–437. ACM
Press, 1990.

19. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances
in Cryptology – Eurocrypt ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–238.
Springer Verlag, 1999.

20. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology – Crypto ’91, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer Verlag, 1992.

21. B. Pfitzmann and A. Pfitzmann. How to break the direct RSA-implementation of mixes. In
Advances in Cryptology – Eurocrypt ’89, volume 434 of Lecture Notes in Computer Science,
pages 373–381. Springer Verlag, 1990.

22. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen cipher-
text attack. In Advances in Cryptology – Crypto ’91, volume 576 of Lecture Notes in Computer
Science, pages 433–444. Springer Verlag, 1991.

23. A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext security.
In 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 543–553. IEEE
Computer Society Press, 1999.

24. K. Sako and J. Killian. Reciept-free mix-type voting scheme. In Advances in Cryptology –
Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science, pages 393–403. Springer Verlag,
1995.

25. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
In Advances in Cryptology – Eurocrypt ’98, volume 1403 of Lecture Notes in Computer Science,
pages 1–16. Springer Verlag, 1998.

15



26. D. Wikström. A universally composable mix-net. In 1st Theory of Cryptography Conference
(TCC), volume 2951 of Lecture Notes in Computer Science, pages 315–335. Springer Verlag,
2004.

27. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Advances in Cryptology
– Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science, pages 273–292. Springer
Verlag, 2005. (Full version [28]).

28. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. Cryptology ePrint
Archive, Report 2004/137, 2005. http://eprint.iacr.org/.

29. D. Wikström and J. Groth. An adaptively secure mix-net without erasures. In 33rd International
Colloquium on Automata, Languages and Programming (ICALP), volume 4052 of Lecture Notes
in Computer Science, pages 276–287. Springer Verlag, 2006.

A Proofs

A.1 Proof of Lemma 1

Denote by ((xi, πx,i), πi) the ith query of A and let Ei be the event that Hk(xi, πx,i) =
πi, xi ∈ X \ L, and i ≤ il or xi 6= x. Condition on arbitrary fixed values of (x, πx),
π = Hk(x, πx), and α(k). Then the conditional probability of the event Ei is negligible
by universiality2 of H. Since the fixed values are arbitrary, this holds also without
conditioning. Finally, A asks at most a polynomial number of queries and the lemma
follows from the union bound. �

A.2 Proof of Proposition 1

Conceptually, we follow the proof of Cramer and Shoup, but our proof is somewhat
simplified, since we ignore the problem of approximating the hash families by efficiently
computable hash families.

Denote by T
(0)
b the machine that simulates the experiment Expsub−b

CS,CSB,A
(n) with

some adversary A ∈ PT∗, except that when computing the challenge ciphertext
(x, e, π̂), the two hash proofs π and π̂ are computed as π = PEval0(Λ, k, x) = Hk(x)
and π̂ = PEval1(Λ, k̂i, x, e) = Ĥbki

(x, e), where i is the challenge index chosen by the
adversary. By the projectivity of hash proofs this does not change the distribution of
the experiment.

We now change T
(0)
b step by step until it is independent of b.

Claim 1. Denote by T
(1)
b the machine T

(0)
b except that x is chosen randomly in X \L.

Then |Pr[T
(0)
b = 1]− Pr[T

(1)
b = 1]| is negligible.

Proof. Denote by Amem an algorithm that tries to solve the subset membership prob-
lem M. It accepts as input (Λ, x), where x either belongs to L or X \ L. It simulates

T
(0)
b except that it uses the instance Λ and defines the challenge ciphertext (x, e, π̂)

using x from its input (Λ, x). Note that Amem is identically distributed to T
(0)
b or

T
(1)
b depending on if x ∈ L or x ∈ X \ L. From the hardness of M follows that

|Pr[T
(0)
b = 1]− Pr[T

(1)
b = 1]| is negligible. �

16



Denote by (ij , (πj , ej , π̂j)) the jth query of A to the decryption oracle Decsk(·)
(·),

and let jl be the index of the last query before the adversary outputs its choice of
challenge index and messages. Denote by (x, e, π̂) the challenge ciphertext, and let E
be the event that A asks a decryption query (ij , (πj , ej , π̂j)) with Ĥbkij

(xj, ej) = π̂j,

xj ∈ X \ L, and j ≤ jl or xj 6= x, for some index j before it requests skA
ij

from its

skA
(·)-oracle.

Claim 2. Pr[E] is negligible.

Proof. Let Q be the total number of queries to the augmentation oracle pk (·) made
by the adversary. Without loss we assume that the adversary asks the queries l =
1, . . . , Q.

Define Al
uni for l = 1, . . . , Q to be the machine that simulates T

(1)
b and takes

part in Experiment 2. The simulation is modified in that ŝl is defined as the hash

proof key received in Experiment 2, whenever T
(1)
b needs to check a hash proof as

PEval1(Λ, k̂l, xj , ej) = Ĥbkl
(xj , ej) it simply queries its τbkl

(·, ·)-oracle in Experiment 2

with (xj , ej) instead, and when it needs to compute PEval1(Λ, k̂l, x, e) = Ĥbkl
(x, e) =

π̂ it outputs (x, e) and waits for Ĥbkl
(x, e) = π̂ from the experiment instead. The

computational universal2 property and the union bound then implies the claim.

Note that the computational universal2 property can be applied despite that the exper-
iment reveals private hash proof keys, since by definition of submission security the
adversary only wins if it never asks a decryption query after this point. This observa-
tion is the only essential change to the original proof. �

Denote by T
(2)
b the machine T

(1)
b , except that it outputs ⊥ if the event E occurs.

The machine T
(2)
b may not be efficient, but this does not matter since the remainder

of the argument is statistical.

Claim 3. Denote by T
(3)
b the machine T

(2)
b except that in the computation of the chal-

lenge ciphertext (x, e, π̂), π is chosen randomly in Π. Then |Pr[T
(2)
b = 1]−Pr[T

(3)
b = 1]|

is negligible.

Proof. Consider an arbitrary fixed instance Λ of the subset membership problem and
an arbitrary fixed random string of the experiment conditioned on the event Ē. Define

a function f : X × S ×Π → {0, 1} as follows. Let f(x, α(k), π) simulate T
(2)
b except

that the input parameters are used in the computation of the challenge ciphertext.

Note that f exists, since T
(2)
b outputs ⊥ if the event E occurs and α(k) determines

Hk on L by the projective property of H, so the answers of all queries are determined
by α(k). When k ∈ K, x ∈ X, and π ∈ Π are randomly chosen, f(x, α(k),Hk(x)) is

identically distributed to T
(2)
b and f(x, α(k), π) is identically distributed to T

(3)
b . The

claim now follows from the smoothness of P.

Conclusion of Proof of the Proposition. To conclude the proof of the proposition we

simply note that the distributions of T
(3)
0 and T

(3)
1 are identical. The claims above

now imply that |Pr[T
(0)
0 = 1]− Pr[T

(0)
1 = 1]| is negligible. �

17



A.3 Proof of Proposition 2

Suppose we are given an adversary A in the hybrid model such that for every ideal ad-
versary S, there exists an environment Z such that the difference between the output
of Z in the two models is not negligible. We show that such an adversary contradicts
the submission security of the cryptosystem CS derived from the cryptosystem CSB .
We first describe an ideal adversary and then we reach a contradiction.

The ideal adversary. We first describe an ideal adversary S that simulates the
hybrid protocol using A as a black-box, but with a number of modifications. Denote
by J and I the indices of servers Mj and submittors Si respectively corrupted by the
adversary A in S’s simulation. S corrupts the corresponding dummy parties in the
ideal model. Then it proceeds with its simulation except for the following changes:

Short-circuit communication. We ensure that the environment essentially communic-
ate directly to the simulated corrupted parties and the adversary as follows:

– Any input to a corrupted dummy submittor S̃i with i ∈ I is forwarded to the cor-
responding corrupted simulated submittor Si, and any output from the corrupted
simulated submittor Si is forwarded to the corresponding dummy submittor S̃i.

– Any input to a dummy server M̃j with j ∈ J is forwarded to the corresponding
simulated submittor Mj, and any output from the corrupted simulated server Mj

is forwarded to the corresponding dummy server M̃j.
– Any input to S from the environment Z is forwarded to A and any output from
A is forwarded to the environment Z.

Extraction from corrupted submittors. The ideal adversary must extract the inputs
used by corrupted submittors in the simulation and hand these inputs to the ideal
functionality Ff . This is done as follows. When a pair (i, ci) is written to FBB which
implies that (i, ci) will belong to the set TC the simulation of FBB is interrupted.
Then S computes xi = Decsk (ci) and instructs the dummy submittor S̃i to hand xi

to Ff . When Ff hands (Input, xi) to S the simulation of FBB is resumed.

Simulation of honest submittors. When a dummy submittor hands an input to the
ideal functionality Ff , the ideal adversary must make sure that it appears as if the
corresponding simulated submittor submitted the same input in the simulated hybrid
protocol. This is done as follows. When S is handed (Input, i) with i 6∈ I from Ff it
sets x′

i = 0 and inputs (Input, x′
i) to the simulated submittor Si. Note that x′

i most
likely is different from the true value xi submitted by Si to Ff .

Extraction from corrupted servers. When a corrupted server requests the computa-
tion of the function in the simulated hybrid protocol the simulator must make sure
that the corresponding dummy server requests that the ideal functionality Ff com-
putes the function f as well. This is done as follows. When Mj with j ∈ J writes
(RequestOutput) to FBB the simulation of FBB is interrupted. Then S instructs M̃j

to hand (RequestOutput) to Ff . When Ff hands (RequestOutput, j) to S, the sim-
ulation of FBB is continued.

18



Simulation of honest servers. When an honest server requests the computation of f
from the ideal functionality Ff , the corresponding simulated server must request the
computation of f in the real protocol. This is done as follows. When S is handed
(RequestOutput, j) with j 6∈ J , it inputs (RequestOutput) to Mj in its simulation.

Reaching a contradiction. Denote by Z the environment that is able distinguish
the hybrid model from the real model that does not have negligible advantage. Denote
by W0 its output when executing the ideal model with S, and denote by W1 its output
when executing in the hybrid model with A.

Denote by H0 the algorithm that simulates an execution in the ideal model with
S and Z. Define Hl to be H0 except that when simulating the submission from an
honest submittor Si with i ≤ l, it replaces the input x′

i = 0, by the true value xi

that was submitted by S̃i to Ff . The true value can be extracted from Ff , since Hl

simulates Ff and can look at its internal data.
The result of this is that the output of HN is identically distributed to W1. This

can be seen by inspection. More precisely:

1. An input extracted from a corrupt submittor is given to Ff only if the corres-
ponding output is guaranteed to be used in the computation of the output in the
protocol.

2. An input is given to a simulated honest submittor only if the corresponding honest
dummy submittor hands an input to Ff in the ideal model. Since the correct inputs
are used in HN the submitted cleartexts are also identical in the two models.

3. The output is requested from Ff by a corrupted dummy server in the ideal model
only if it is requested by the corresponding server in the protocol.

4. The output is requested in the protocol by an honest simulated server only if the
corresponding dummy server requests the output from Ff .

5. An output is generated in both models exactly when some ⌈(k + 1)/2⌉th server
have requested the output, and the output is defined in both models as all mes-
sages/plaintexts submitted until the ⌈(k + 1)/2⌉th server requests the output.

A hybrid argument now implies that |Pr[Hi−1 = 1]−Pr[Hi = 1]| is not negligible
for some fixed i.

Finally, we define B to be an adversary in the submission security experiment,
Experiment 1. It simulates Hi−1 with the following changes. It instructs FCSB

f to use

the public key pkB it receives in Experiment 1, instead of generating this public key

by itself. It hands the query 1 to its pk (·)-oracle and instructs FCS,CSB

aug to use the reply

pk1 = (pkA
1 : pkB) instead of generating (pkA

1 , skA
1 ) by itself. When FCSB

f needs to
decrypt a ciphertext cj, B hands the query (1, cj) to its Decsk(·)

(·)-oracle and instructs

FCSB

f to use the result xj as if it decrypted it itself. When FCS,CSB

aug must output the

secret augmentation key, B hands the query 1 to its skA
(·)-oracle and instructs FCS,CSB

aug

to use the reply skA
1 as if it had generated it by itself.

The final change to Hi−1 is that when it is about to compute the simulated cipher-
text ci it instead hands (0, xi) to Experiment 1, and uses ci as before in the continued
simulation.

19



The output of B is identically distributed to the output of Hi−1 or Hi respectively
depending on if ci is an encryption of 0 or xi. Thus, B breaks the submission security
of CS, which is a contradiction. �

20


